
ALGEBRAIC FREDHOLM THEORY

JOEL H. SHAPIRO
ABSTRACT. These notes develop the purely algebraic parts of the basic theoryof Fredholm operators. The setting is vector spaces over arbitrary fields,and linear transformations between these spaces. No topology is assumedfor the vector spaces and consequently no continuity is assumed for thelinear transformations. Within this reduced setting the notion of “Fredholmtransformation” is studied, emphasizing invertibility properties, expression ofthese properties in terms of Fredholm index, invariance of these propertiesunder finite-rank perturbations, and implications for the study of spectra.The exposition culminates in a Fredholm-inspired analysis of the spectra ofmultiplication operators on spaces of holomorphic functions.

1. LINEAR SPACES
Throughout these notes the setting is an arbitrary, possibly infinite dimen-sional, vector spacedevoid of topology. In this initial section we’ll discussthe fundamental notions of dimension, codimension, and invertibility, empha-sizing the computation and estimation of codimension.
Notation and terminologyIn what follows, “vector space” will mean “vector space over a field F,” hence-forth called “the scalar field,” or just “the scalars.” Since there is no topologyin sight, there will be no discussion of continuity. Symbols X , Y , and Z , possi-bly with subscripts, will always denote vector spaces over F. The collection oflinear transformations X → Y will be denoted by L (X, Y ), or, if X = Y , justby L (X ). The sub-collection of finite-rank transformations (those linear trans-formations T for which ranT := T (X ) is finite dimensional) will be denotedby F (X, Y ), or, if X = Y , just by F (X ) .
Basis and DimensionRecall that a basis for a vector space is a maximal linearly independent set,i.e., a linearly independent set whose span is the whole space. Every vector in
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2 J. H. SHAPIRO
the space is thus uniquely expressible as a (finite) linear combination of basisvectors. If a linearly independent set does not span the whole space, vectorscan always be appended (often thanks to the Axiom of Choice) to extend theoriginal set to a basis (see , e.g., [2, §1.11, and §1.14 Exercise 2] or [3, Theorem1.1(i), page 3]).The dimension of a vector space is the cardinality of a basis; this number isindependent of the basis (see, e.g., [3, Theorem 1.1(ii)]). Here we will think ofthe cardinality of an infinite set as just “∞”, ignoring any subtleties attachedto infinite cardinal numbers.1 In particular, dimensions of vector spaces willbe either finite or “infinite”. Thus, under the usual conventions for addition inthe set {Non-Negative Integers} ∪ {∞}, the following fundamental result istrue even if some of the dimensions involved are infinite.
Theorem 1.1 (The “Fundamental Theorem of Linear Algebra”). If T ∈ L (X, Y )
then dimX = dim kerT + dim ranT .

Proof. Fix K a basis for kerT and add a linearly independent set J of vectorsto extend this basis to one for X . Since T is injective on the span of J, it’senough to prove that T takes J to a basis for ranT . Clearly T (J) ⊂ ranT . Tosee T (J) spans ranT , write an arbitrary vector in X as a linear combinationof the vectors in K ∪ J and note that upon applying T to this vector, onlythe terms involving T (J) survive. To see that T (J) is linearly independent,suppose that the zero-vector of Y is a linear combination of vectors in T (J),say ∑ ckT (vk ) = 0, where the vectors vk lie in J, the ck ’s are scalars, and thesum extends over just finitely many indices k . Let x = ∑ ckvk so that Tx = 0.Thus x ∈ (span J) ∩ kerT = {0}, hence by the linear independence of the set
J, all the c′ks are zero. �

Perhaps the best known application of Theorem 1.1 is the following result,which we will encounter in increasing generality throughout the sequel.
Corollary 1.2 (Fredholm Alternative I). Suppose X is a finite dimensional
vector space and T ∈ L (X ). Then T is injective if and only if it is surjective.

Proof. T is injective if and only if kerT = {0}. By Theorem 1.1 this is equiv-alent to “dim ranT = dimX .” Since ranT is a subspace of X , and X is finitedimensional, this last statement is equivalent to “ranT = X .” �

1This informality comes at a price; not all vector spaces of “dimension ∞” are isomorphic.
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Examples 1.3 (Shift transformations). Here are two examples of linear trans-formations that illustrate many of the phenomena that we are going to study.Right now they show us that Corollary 1.2 is not true in infinite dimensionalspaces. For our vector space we’ll take the collection ω of all scalar sequences,i.e., all functions from the natural numbers into the scalar field.(a) The Forward Shift. This is the transformation S ∈ L (ω) defined for n ∈ Nand x ∈ ω by: Sx(n) = 0 if n = 1, and = x(n − 1) if n > 1. That is:

Sx = (0, x(1), x(2), . . . ) (x ∈ ω).Thus S shifts each sequence one unit to the right, placing a zero in the newlyemptied first position. S is an injective linear transformation with range con-sisting of those sequences with first coordinate zero, and so is not surjective.(b) The Backward Shift. This is the transformation B ∈ L (ω) defined by
Bx(n) = x(n+ 1), i.e.,

Bx = (x(2), x(3), . . . ) (x ∈ ω).Thus B is a surjective linear transformation with kernel equal to those se-quences that are zero except possibly in the first coordinate; it is surjectivebut not injective.
Here are two further applications of the Fundamental Theorem of Linear Al-gebra that will prove useful later on.
Corollary 1.4. Suppose T ∈ L (X, Y ) has finite dimensional kernel, and V is
a finite dimensional subspace of Y . Then T−1(V ) is finite dimensional.

Proof. Let T0 denote the restriction of T to T−1(V ). Then ranT0 = ranT ∩ Vand kerT0 = kerT (since kerT = T−1{0} ⊂ T−1(V )). By Theorem 1.1,dimT−1(V ) = dim kerT0 + dim ranT0 = dim kerT + dim(V ∩ ranT ).Since both summands on the right are finite, so is dimT−1(V ). �

Theorem 1.5 (Kernel of a product). Suppose T ∈ L (X, Y ) and S ∈ L (Y , Z ).
Then(1) dim(kerST ) = dim(kerT ) + dim(kerS ∩ ranT )
Proof. The argument depends on these two facts about kerST :

(a) kerT ⊂ kerST , and(b) kerST = T−1(kerS).
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Let T0 denote the restriction of T to kerST . By (a) above, kerT0 = kerT , soupon applying Theorem 1.1 to T0 : kerST → Z we obtain:dim(kerST ) = dim(kerT0) + dim(ranT0) = dim(kerT ) + dim(T (kerST ))from which follows (1), because

T (kerST ) = T (T−1(kerS)) = kerS ∩ ranT ,where the first equality follows from (b) above. �

Complements and Codimension

Definition 1.6 (Complements and direct sums). Subspaces X1 and X2 of a vectorspace X are called complementary if X = X1 + X2 and X1 ∩ X2 = {0}. Whenthis happens we write X = X1 ⊕ X2, call X1 and X2 (algebraic) complementsof each other, and call X the (algebraic) direct sum of X1 and X2.
Here is a reinterpretation, in the language of complements, of the fact thatany linearly independent set of vectors can be extended to a basis.
Proposition 1.7 (Complementary extension). If X is a vector space with sub-
spaces M and N such that M ∩N = {0}, then X = M⊕Ñ for some subspace
Ñ ⊃ N.

Proof. If M+N = X there is nothing to prove, so suppose this is not the case.Take bases BM for M and BN for N and note that, since M∩N = {0}, the set
BM ∪BN is linearly independent. Thus we may choose a linearly independentset K of vectors so that BM∪BN∪K is a basis for X . Then Ñ := span (BN∪K )contains N, and when summed with M produces X . �

“External” direct sums. It is easy to check that X = X1⊕X2 if and only if each
x ∈ X is uniquely represented as a sum x = x1 + x2 where xj ∈ Xj (j = 1, 2).Thus the map that associates x with the ordered pair (x1, x2) is an isomorphismtaking X onto the cartesian product X1 × X2; a vector space when endowedwith coordinatewise operations.Conversely, we can think of a cartesian product X = X1 ×X2 of vector spaces(over the same field) as the direct sum X1 ⊕ X2 by identifying X1 with thesubspace X1 × {0} and X2 with {0} × X2. From now on we’ll use the nota-tion X1 ⊕ X2 to denote either the previously defined “internal” direct sum ofsubspaces, or the just-defined “external” cartesian product of vector spaces,relying on context to distinguish the two notions.
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Definition 1.8 (Codimension). If M is any proper subspace of X , then wheneverwe complete a basis of M to one for X , the span of the added vectors will bea complement for M, and any such complement can be viewed as arising inthis way. Thus the dimensions of all the complements of M are the same(possibly “infinity”). This common dimension is called the codimension of Min X , denoted by codim (M,X ). If there is no confusion about the ambientspace X , we’ll just write codim (M) and call it the “codimension of M.” In case
M = X we define codim (M,X ) = 0.
Exercise 1.9. Suppose F ∈ L (X, Y ) has finite rank, and that dimX = ∞.Show that kerF has infinite codimension in X . 2
Throughout these notes it will be crucial for us to be able to compute, or atleast to estimate, codimension. As a start, observe from the definition that if
X = M ⊕ N then codimM = dimN, even if “∞” is allowed; this yields thefollowing transitivity property of codimension, which holds even if some of thecodimensions involved are infinite:
If M and N are subspaces of a vector space X and M ⊂ N ⊂ X, then(2) codim (M,X ) = codim (M,N) + codim (N,X ).
In particular:
Corollary 1.10 (Transitivity of finite codimension). If M has finite codimension
in N and N has finite codimension in X then M has finite codimension in X.

It will be useful to have several different ways to get a handle on codimension.Here is an estimate that involves sums that are not necessarily direct.
Proposition 1.11 (Codimension and sums). Suppose M and N are subspaces
of X for which X = M +N. Then codimM ≤ dimN
Proof. Let B0 be a basis for M ∩ N and extend by vectors B1 to a basisfor N. Let N1 = spanB1. Then N1 is a subspace of N with N1 ∩ M =
N1∩(M∩N) = {0} (by the linear independence of B1∪B2). Thus X = M⊕N1,so codimM = dimN1 ≤ dimN. �

Corollary 1.12. Suppose M is a subspace of X and T ∈ L (X, Y ). Thencodim (T (M), T (X )) ≤ codim (M,X )
2For selected exercises: see Appendix B for hints and Appendix C for solutions.
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Proof. We have X = M⊕N with codimM = dimN. Thus T (X ) = T (M)+T (N),so by Proposition 1.11: codim (T (M), T (X )) ≤ dimT (N) ≤ dimN. �

Codimension also admits a characterization through quotient spaces.

Definition 1.13 (Quotient space). If M is a subspace of the vector space X the
quotient of X by M, written X/M, is the collection of cosets

x +M := {x +m :∈ M}.
The quotient space X/M, when endowed with the algebraic operations it in-herits from X , namely(x +M) + (y+M) := (x + y) +M and α(x +M) := (αx) +Mfor x, y ∈ M and α a scalar, becomes a vector space over the original scalarfield. The quotient map Q : x → x+M is then a linear transformation taking Xonto X/M, and having kernelM. Upon applying Theorem 1.1 (the FundamentalTheorem of Linear Algebra) to this map we obtain the promised quotient-spacecharacterization of codimension:
Proposition 1.14 (Codimension via quotients). If M is a subspace of a vector
space X, then codimM = dimX/M.

Proposition 1.14 provides an easy proof of a codimension calculation that we’llneed in §4.
Corollary 1.15. Suppose the vector space X is the (not necessarily direct) sum
of two subspaces M and N. Then codimM = codim (M ∩N,N).
Proof. According to Proposition 1.14, another way to phrase the desired con-clusion is: “dimX/M = dimN/(M ∩ N)”. To prove this we need only findan isomorphism between the featured quotient spaces. An obvious candidatesprings to mind: Since X = M + N, each coset of X modulo M has theform n + M for some vector n ∈ N. I leave it to you to check that the map
T : n + M → n + (M ∩ N) is “well-defined”, linear, and takes the quotientspace X/M onto N/(M ∩ N). That T is injective follows from the fact thatif T (n + M) := n + (M ∩ N) is the zero-vector of X/(M ∩ N), i.e., the coset(M∩N), then n ∈ M, hence the original coset n+M is just M, the zero-vectorof X/M. �

Exercise 1.16 (Alternate proof). Prove Corollary 1.15 by starting with a basisfor M ∩N and extending it two ways: to a basis for M and to a basis for N.
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We will meet up with quotient spaces in a different context when in §4 westudy the invertibility properties of Fredholm transformations.
Direct sums of linear transformations

Definition 1.17. Suppose X1, X2 are complementary subspaces of X , and Y1,
Y2 are complementary subspaces of Y . Then for Tj ∈ L (Xj , Yj ) with j = 1, 2we can define a linear transformation T : X → Y by T (x1 + x2) = T1x1 + T2x2.That this definition is unambiguous follows from the fact that each vector in Xis uniquely the sum of a vector in X1 and a vector in X2. We write T = T1⊕T2and refer to T as the direct sum of T1 and T2.
The notion of “external direct sum” of vector spaces (the cartesian product,endowed with coordinatewise algebraic operations) gives rise to a companiondirect sum construction for linear transformations. If Tj ∈ L (Xj , Yj ) for j = 1, 2,then we define T1 ⊕ T2 on the external direct sum X1 ⊕ X2 by(T1 ⊕ T2)(x1, x2) = T1x1 + T2x2 (x1 ∈ X1, x2 ∈ X2).As in the case of direct sums of vector spaces, we will rely on context todistinguish between the “external” and “internal” notions of direct sum forlinear transformations.
InvertibilityWe all know that a linear transformation T : X → Y is invertible (meaning:there exists a linear transformation S : Y → X such that ST = IX and
TS = IY ) if and only if T is both injective and surjective. Here is a result thatgeneralizes this in two different ways.
Theorem 1.18 (One-sided Invertibility). T ∈ L (X, Y ) is:

(a) Injective if and only if it is left-invertible (i.e., there exists S ∈ L (Y , X )
such that ST = IX ).(b) Surjective if and only if it is right-invertible (i.e., there exists S ∈
L (Y , X ) such that TS = IY ).

Proof. That left-invertibility (resp. right-invertibility) implies injectivity (resp.surjectivity) is trivial. The converses require a little work.(a) Suppose T is injective, so it is an invertible map when viewed as a trans-formation from X onto ranT . Let S0 : ranT → X be the inverse of this linear
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transformation. Let N be a subspace of Y complimentary to ranT , so that
Y = ranT ⊕N. Define S : Y → X by setting S equal to S0 on ranT and (forexample) equal to zero on N. Then S is a linear transformation Y → X with
ST = IX .(b) Suppose T is surjective, i.e., ranT = Y . Choose a subspace M of Xcomplementary to kerT ; then T |M is an isomorphism of M onto Y . Let Sdenote the inverse of this isomorphism, but now regarded as a map taking Yinto X . Then S : Y → X is a linear map with TS = IY . �

2. LINEAR FUNCTIONALS
Here we’ll continue the theme of finding different ways to compute codimension,this time via linear functionals.A linear functional is a scalar-valued linear transformation on a vector space.The collection of all linear functionals on the vector space X is called the
dual space of X , denoted herein by X ′. Clearly X ′, endowed with pointwiseoperations, is itself a vector space over the original scalar field.An important class of linear functionals arises whenever we encounter a basis.In order to cleanly generalize notions like “n-tuple” and “sequence” we usethe terminology “indexed set” {va : a ∈ A} to refer to a function v defined ona set A, where va denotes the value of v at a ∈ A.
Definition 2.1 (Coordinate functionals). Recall that a (possibly infinite) in-dexed set of vectors {ea : a ∈ A} is a basis for a vector space X if and onlyif: for every x ∈ X there is a unique indexed set {Λa(x) : a ∈ A} of scalars,all but a finite number of which are zero, such that x = ∑

a∈A Λa(x)ea. Thusfor each a ∈ A we have a function Λa : X → {scalars}, and it’s easily checkedthat this function is linear. The linear functionals {Λa : a ∈ A} are called the
coordinate functionals of the basis {ea : a ∈ A}.
Definition 2.2 (Biorthogonality). Indexed sets {ea} of vectors and {Λa} oflinear functionals are said to be biorthogonal whenever Λa(eb) = 0 if a 6= b,and = 1 if a = b.
In the above definition we also say the vectors are biorthogonal to the func-tionals, and vice versa.
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It’s easy to check that whenever {ea} and {Λa} are biorthogonal, then bothare linearly independent. In particular, the coordinate functionals for a basisform a linearly independent set in the dual space.An important property of linear functionals is their ability to separate pointsfrom subspaces.
Theorem 2.3 (Separation Theorem). Suppose M is a proper subspace of a
vector space X, and x ∈ X does not belong to M. Then there exists a linear
functional Λ on X that vanishes on M, but not at x.

Proof. Let M1 be the linear span of M and x, so M1 = M ⊕ span{x}. DefineΛ on M1 by Λ(m+ λx) = λ (m ∈ M, γ ∈ F).Thus Λ ≡ 0 on M and Λ(x) = 1. If M1 = X we are done. Otherwise let Nbe a subspace of X complementary to M1 (see Definition 1.6) and extend Λ toall of X , keeping the same name, by defining it to be zero, for example,3 on
N. �

The latter part of the argument above proves that:
Any linear functional on defined on a subspace can be extended
to the whole space.

Thus, for linear functionals the notions of separation and extension are inex-tricably entwined.We study next the connection between kernels of linear functionals and codi-mension of subspaces. The first of these shows that nontrivial linear functionalshave kernels of codimension one.
Proposition 2.4. Suppose Λ is a linear functional on X, and e ∈ X withΛ(e) 6= 0. Then X = ker Λ ⊕ span{e}.
Proof. By hypothesis ker Λ ∩ span{e} = {0}. If x ∈ X then

x − Λ(x)Λ(e) e ∈ ker Λ,
hence x ∈ ker Λ + span{e}. Thus X = ker Λ ⊕ span{e}. �

Corollary 2.5 (Kernel containment I). Suppose Λ and Λ1 are linear functionals
on X. Then ker Λ ⊃ ker Λ1 if and only if Λ = cΛ1 for some scalar c.

3... or, equally well, any other linear functional.
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Proof. If Λ is a scalar multiple of Λ1 then it’s clear that the kernel of Λ containsthat of Λ1, so the issue is to prove the converse.Suppose ker Λ ⊃ ker Λ1. If Λ1 is the zero-functional, then both kernels equal
X , so both functionals are identically zero and the result is trivially true.Suppose, then, that Λ1 is not identically zero, i.e., there exists e ∈ X withΛ1(e) 6= 0. Then according to Proposition 2.4, X = ker Λ1 ⊕ span{e}. Wemay, upon properly scaling e, assume that Λ1(e) = 1. Thus if x ∈ X we have
x = x1 + Λ1(x)e, where x1 ∈ ker Λ1. By our hypothesis on the containment ofkernels, x1 ∈ ker Λ, so Λ(x) = Λ1(x)Λ(e). Since this is true for all x ∈ X wehave shown that Λ = Λ(e)Λ1, hence the desired result holds with c = Λ(e). �

The next two results give significant generalizations of Corollary 2.5; the firstleads to a short proof of the second.
Proposition 2.6 (Kernel containment II). Suppose T ∈ L (X, Y ) and Λ ∈ Y ′.
Then kerT ⊂ ker Λ if and only if Λ = Λ̃ ◦ T for some Λ̃ ∈ Y ′.
Proof. If Λ = Λ̃◦T then the containment of kernels is obvious. For the converse,note that the hypothesis on kernel containment insures that the equationΛ̃(Tx) := Λ(x) (x ∈ X )defines a linear functional on ranT (the point being that if Tx1 = Tx2 then
x1 − x2 ∈ kerT ⊂ ker Λ, and so Λ(x1) = Λ(x2), i.e., the value of Λ̃(Tx) dependsonly on Tx, and not on x.) If ranT = Y we are done. Otherwise choose asubspace N complementary to ranT and extend Λ̃, as in the proof of Theorem2.3, to a linear functional on all of Y . The resulting functional, which we’ll stillcall Λ̃, does the job! �

Theorem 2.7 (Kernel containment III). Let E = {Λj : 1 ≤ j ≤ n} be a finite
subset of of X ′. Then Λ ∈ X ′ lies in span E if and only if ker Λ ⊃ ∩nj=1 ker Λj .
Proof. It’s clear that if Λ is a linear combination of the Λj ’s then its kernelcontains the intersection of the kernels of the Λj ’s.For the converse, suppose ker Λ ⊃ ∩nj=1 ker Λj . Let Y be the direct sum of ncopies of the scalar field, and define T ∈ L (X, Y ) by

Tx = (Λ1(x),Λ2(x), . . . Λn(x)) = n∑
j=1 Λj (x)ej (x ∈ X ),
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where, in the last equality, ej denotes the j-th standard basis vector for Y , i.e.,the vector whose j-th coordinate is 1, with all other coordinates equal to zero.Since the kernel of T is just the intersection of the kernels of the Λj ’s, ourhypothesis on the containment of kernels simply asserts that ker Λ ⊃ kerT ,whereupon Proposition 2.6 provides Λ̃ ∈ Y ′ such that Λ = Λ̃ ◦ T . Thus foreach x ∈ X :

Λx = Λ̃(Tx) = Λ̃∑
j

Λj (x)ej
 =∑

j
Λj (x)Λ̃(ej ) = ∑

j
cjΛj

(x)
where cj = Λ̃(ej ). Thus Λ = ∑j cjΛj , i.e., Λ lies in the span of the Λj ’s. �

Exercise 2.8 (Counterexample for n = ∞). Show that the nontrivial part ofTheorem 2.7 cannot be extended to the case of infinitely many linear functionalsΛn.
Suggestion: Work on the space ω of all scalar sequences, and for n ∈ Nlet Λn be the linear functional of “evaluation at n” (or the “n-th coordinatefunctional” if you prefer to think of sequences as lists): Λn(x) = x(n) for x ∈ ω.
Theorem 2.7 can be rephrased like this:

A finite set of linear functionals is linearly independent if and
only if the kernel of no one of these functionals contains the
intersection of the kernels of the others.

Equivalently, {Λ1, . . . Λn} ⊂ X ′ is linearly independent if and only if: for each
j between 1 and n there exists a vector ej such that Λj (ej ) = 1 and Λj (ek ) = 0if j 6= k (1 ≤ k ≤ n), i.e., the n-tuple of vectors (e1 . . . en) is biorthogonal tothe n-tuple of Λ’s (see Definition 2.2). The language of biorthogonality allowsa further rephrasing of Theorem 2.7:
Corollary 2.9 (Independence and biorthogonality). An n-tuple of linear func-
tionals is linearly independent if and only if it has a biorthogonal n-tuple of
vectors.

Given a biorthogonal system of vectors {eα : α ∈ A} and linear functionals
{Λα : α ∈ A}, we can reverse roles and regard the vectors as functionals onthe functionals, e.g., eα (Λβ) := Λβ(eα ). Thus Corollary 2.9 implies that notonly are the functionals linearly independent, so are the vectors (a fact which,as we noted on page 9, is easy to prove directly).
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The results established so far set the stage for our main result on the compu-tation of codimension via linear functionals.
Theorem 2.10 (Kernels and codimension). A subspace M of the vector space
X has codimension n (possibly = ∞) if and only if M is the intersection of
the kernels of a linearly independent set of n linear functionals on X.

Proof. We’ll consider finite and infinite codimension separately.CASE I: n < ∞. Suppose first that {Λ1,Λ2, . . .Λn} is a linearly independentsubset of X ′, and M := ∩nj=1 ker Λj . By Corollary 2.9 the n-tuple (Λ1, . . . Λn)has a biorthogonal n-tuple of vectors (e1, . . . en) which, as we have notedpreviously, forms a linearly independent subset of X . Thus the linear span Eof these vectors is a subspace of X having dimension n. Suppose x ∈ E ∩M.Then x = ∑n
j=1 Λj (x)ej since x ∈ E , but Λj (x) = 0 for all j since x ∈ M.Thus x = 0, i.e., E has trivial intersection with M. That X = M + E followsimmediately from the fact that, for each x ∈ X , the vector x−∑n

j=1 Λj (x)ej liesin M. Thus X = M ⊕E , hence codimM = dimE = n, as desired.4Conversely, suppose M is any subspace of X having codimension n. Thenthere is a subspace E of X having dimension n for which X = M ⊕ E . Let
{e1, e2, . . . en} be a basis for E , and let {Λ1,Λ2, . . . Λn} be the coordinatefunctionals for this basis, i.e.,

x = n∑
j=1 Λj (x)ej (x ∈ E).

Extend each Λj to a linear functional on X (keeping the same name) by definingit to be the zero-functional on M. The collection of extended Λj ’s inherits thelinear independence of the original one and, by the way we extended the Λj ’s,the subspace K := ∩nj=1 ker Λj contains M. In fact, K is equal to M. To seewhy, suppose x ∈ K , so x = m+e wherem ∈ M and e ∈ E . Now for any index
j , the definition of K and the fact that M ⊂ K imply that 0 = Λj (x) = Λj (e).Thus e = 0 (since the Λj ’s are coordinate functionals for a basis of N), hence
x ∈ M. Thus K both contains and is contained in M, i.e., K = M.CASE II: n = ∞. Suppose M is the intersection of the kernels of an infinitelinearly independent subset Λa : a ∈ A} of X ′. Given n ∈ N choose a subset
An of the index set A having cardinality n. Then the intersection of the kernels

4See Exercise 2.11 below for more on the expression ∑n
j=1 Λj (x)ej which appeared in thisargument.
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of the functionals Λa for a ∈ An contains M, and by CASE I has codimension
n. Thus codimM ≥ n. Since n is an arbitrary positive integer, codimM =∞.Conversely, suppose codimM = ∞. Then M has an infinite dimensionalcomplement N, which has a basis {ea : a ∈ A} for some infinite index set
A. Now proceed as in Case I: extend the coordinate functionals {Λα : α ∈
A} for this basis by defining each extension to be zero on M, observe thatthe extended functionals are linearly independent, and that M lies in theintersection K of their kernels. The same argument used in Case I (whosetransposition to the case n = ∞ I leave to the reader) now implies that
K = M, and completes the proof. �

Exercise 2.11 (Projections). Suppose M is a subspace of a vector space Xand P ∈ L (X ) is the identity operator on M, and the zero-operator on somecomplementary subspace E of M. We call P the projection of X onto M along
E.

(a) Make some sketches in R2 to illustrate this situation.(b) SupposeM and E are subspaces of the vector space X with X = M⊕E ,so that each x ∈ X has the unique representation x = e+m with e ∈ Eand m ∈ M. Show that the mapping P : x → e is the projection of Xonto E along M.(c) Show that P ∈ L (X ) is a projection (onto its range, along its kernel)if and only if P2 = P.(d) Suppose X = M ⊕ E and that {eα : α ∈ A} is a basis for E , withcoordinate functionals {Λαα ∈ A}. As in the proof of CASE I of Theorem2.10, extend each coordinate functional to X by defining it to be zeroon M. Show that the map P : x →∑
α Λα (x)eα is the projection of Xonto E along M.

PolarsFor a subset S of the vector space X , the polar of S, denoted S◦, is the setof linear functionals on X that take the value zero at each point of S. Onechecks easily that the polar of any subset of X is a subspace of X ′, and thatthe polar of a set coincides with the polar of its linear span.
Theorem 2.12 (Polars and codimension). Suppose X is a vector space and M
a subspace of X. Then codimM = dimM◦.
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Proof. First suppose codimM = n < ∞. Then by Theorem 2.10, M =
∩nj=1 ker Λj , where the set of functionals {Λj}n1 is linearly independent in X ′.Since each Λj annihilates M, it lies in M◦. Thus M◦ ⊃ span{Λ1,Λ2, . . . Λn}.On the other hand, if Λ ∈ M◦ then ker Λ contains in M, so Λ, by Theorem 2.7,is a linear combination of the Λj ’s. Thus span{Λ1,Λ2, . . . Λn} containsandis therefore equal toM◦, hence dimM◦ = n, as desired.If, on the other hand, codimM =∞, then Theorem 2.10 guarantees that M isthe intersection of the kernels of an infinite set of linearly independent linearfunctionals on X . Since each of these belongs to M◦ we see that M◦ hasinfinite dimension. �

Is there a similar connection between the codimension of M◦ in X ′ and thedimension of M? The next result provides the key.
Proposition 2.13 (Dual of a direct sum). If M and N are subspaces of X with
X = M ⊕N, then X ′ = M◦ ⊕N◦.

Proof. For Λ ∈ X ′, let Λ1 be the linear functional obtained by restricting Λ to
M, then extending this restriction to X by defining it to be zero on N. DefineΛ2 by similarly extending the restriction of Λ to N. Thus Λ1 ∈ N◦, Λ2 ∈ M◦,and Λ = Λ1 + Λ2. Consequently X ′ = M◦ +N◦.As for the “directness” of this sum, note that if Λ ∈ M◦ ∩ N◦ then Λ isidentically zero on both M and N, hence is identically zero on all of X . Thus
M◦ ∩ N◦ = {0}. �

Corollary 2.14 (Polars and codimension). If M is a subspace of a vector space
X, then dimM = codimM◦.
Proof. Choose a complementary subspace N of M, so that X = M ⊕ N anddimM = codimN. Theorem 2.12 asserts that codimN = dimN◦, while Propo-sition 2.13 provides the decomposition X ′ = M◦ ⊕ N◦, from which it followsthat dimN◦ = codimM◦.In summary: dimM = codimN = dimN◦ = codimM◦, as promised. �

AdjointsProposition 2.6 suggests that for T ∈ L (X, Y ) we might profitably study themap T ′ defined by T ′Λ = Λ ◦ T for Λ ∈ Y ′. Clearly T ′, called the adjoint of
T , is a linear transformation from Y ′ to X ′.
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Furthermore, in Proposition 2.6 the statement kerT ⊂ ker Λ asserts that thelinear functional Λ belongs to the polar of kerT . Part (a) of the next resultsimply rephrases Proposition 2.6 in the language of adjoints and polars.
Theorem 2.15 (Polars and adjoints). For T ∈ L (X, Y ):

(a) (kerT )◦ = ranT ′(b) (ranT )◦ = kerT ′
Proof. (a) As noted above, the statement kerT ⊂ ker Λ translates to: “Λ ∈(kerT )◦ ”, and the equivalent (according to Proposition 2.6) statement “Λ =
T ◦ Λ̃ ” becomes “Λ = T ′(Λ̃) ”.(b) The statement “Λ ∈ (ranT )◦ ” means that Λ takes the value zero on ranT ,i.e., that T ′(Λ)(x) := Λ(Tx) = 0 for every x ∈ X , i.e., that T ′Λ = 0. ThusΛ ∈ (ranT )◦ if and only if Λ ∈ kerT ′. �

Exercises 2.16. Suppose T : X → Y is a linear transformation.
(a) Show that T is invertible if and only if T ′ : Y ′ → X ′ is invertible.(b) Examine the connection between left and right invertibility for T andfor T ′.

3. STABILIZATION
In this section we’ll characterize the important class of linear transformationson a vector space that have the form “isomorphism ⊕ nilpotent.”For T ∈ L (X ) and n a non-negative integer let Rn := ranT n and Kn :=kerT n. Then the “range sequence” (Rn) is a decreasing sequence of subspacesof X :(3) X = R0 ⊃ R1 ⊃ R2 ⊃ · · ·while the “kernel sequence” (Kn) is an increasing sequence of subspaces:(4) {0} = K0 ⊂ K1 ⊂ K2 ⊂ · · ·More generally let’s say that say a monotonic sequence (En) of sets:

• Is stable at index N if EN = EN+1 = · · · ,
• Stabilizes at index N if N is the smallest index at which it is stable,and just plain . . .
• Stabilizes if it stabilizes at some index.
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Furthermore, let’s say that a transformation T ∈ L (X ) is stable if both itsrange and kernel sequences stabilize. Clearly any linear transformation on afinite dimensional vector space is stable. On the other hand, the forward andbackward shifts on the sequence space ω are not stable.Examples of stable transformations that will play important roles in our laterwork are the nilpotent ones (some positive power is zero) and transformationsof the form “finite-rank plus identity,” the so-called finite-rank perturbations
of the identity.

Proposition 3.1. Nilpotent transformations are stable.

Proof. Suppose T ∈ L (X ) and TN = 0 for some N ∈ N. Then for all integers
n ≥ N we have KN = X and RN = {0}. �

Proposition 3.2. Finite rank perturbations of the identity are stable

Proof. Suppose T = I + F where I is the identity transformation and F is afinite rank transformation, both acting on X . Then kerT ⊂ ranF and, since
T = I on kerF , we have ranT ⊃ kerF .Now for each n ∈ N the Binomial Theorem guarantees that T n = I + GnF =
I+FGn where Gn ∈ L (X ) commutes with F . Upon applying the result of theabove paragraph, with T n in place of T , we see that Kn ⊂ ranFGn ⊂ ranFand Rn ⊃ kerGnF ⊃ kerF . Since ranF is finite dimensional and kerFfinite codimensional, both the (decreasing) range sequence and the (increasing)kernel sequence of T must stabilize. �

Corollary 3.3. Any direct sum of a nilpotent linear transformation and an
isomorphism is stable.

Proof. Suppose V ∈ L (X ) is an isomorphism of X onto itself, and N ∈ L (Y )is nilpotent, say of order ν. Let T = V ⊕ N ∈ L (X ⊕ Y ). Then (adoptingthe “external” point of view) for all n ≥ ν we have ranT ν = X × {0} andkerT ν = {0} × Y . �

The following remarkable structure theorem provides the converse to Corollary3.3; it shows that stability is, in fact, equivalent to “isomorphism ⊕ nilpotent.”
Theorem 3.4 (The Stabilization Theorem). Suppose that for T ∈ L (X ) is
stable. Then:
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(a) Both the range and kernel sequences stabilize at the same indexcall

it ν.(b) X = Rν ⊕ Kν .(c) T = T1⊕T2, where T1 := T |Rν is an isomorphism of Rν into itself, and
T2 := T |Kν is nilpotent of order ν.

To say a linear transformation is nilpotent of order ν means that T ν = 0, but
T ν−1 6= 0.The proof is best broken into a number of steps, some of which are interestingresults in their own right. In the first two steps we do not assume the fullstability of T .
STEP I: Stabilization somewhere. It’s obvious from the definition Rn := T n(X )that if Rn = Rn+1 then Rn+1 = Rn+2. Thus, if the range sequence stabilizesat all, it stabilizes at the first place where there is equality between twosuccessive terms.A similar result for the kernel sequence follows from the fact that, in general,ker(ST ) = T−1(kerS). In particular, Kn+1 = T−1(Kn) for each n, hence

Kn+1 = Kn =⇒ T−1(Kn+1) = T−1(Kn) i.e., Kn+2 = Kn+1 .Thusjust as for the range sequenceif the kernel sequence stabilizes at all,it stabilizes at the first place where two successive terms are equal. �

STEP II: Equivalents to stabilization. For n = 0, 1, 2, . . . ,
(a) Kn = Kn+1 ⇐⇒ Kn ∩ Rn = {0}(b) Rn = Rn+1 ⇐⇒ Kn + Rn = X .

Proof. (i) Suppose Kn ∩ Rn = {0}; we wish to show that Kn = Kn+1. Since
Kn ⊂ Kn+1 we need only show the opposite containment. For this, suppose
x ∈ Kn+1, so T n+1x = 0. Then

T nx ∈ Rn ∩ K1 ⊂ Rn ∩ Kn = {0},so x ∈ Kn.Suppose, conversely, that Kn = Kn+1. Then if x ∈ Kn ∩ Rn we have T nx = 0and x = T nx′ for some x′ ∈ X . Thus x′ belongs to K2n which, by STEP I, isequal to Kn. So x = T nx′ = 0, hence Kn ∩ Rn = {0}, as desired.



18 J. H. SHAPIRO
(ii) Suppose X = Rn + Kn. Upon applying T n to both sides of this equationwe obtain Rn := T n(X ) = T n(Rn), that is, Rn = R2n. But R2n ⊂ Rn+1 ⊂ Rn.Trivially Rn ⊂ Rn+1, so Rn = Rn+1 as desired.Suppose, conversely, that Rn = Rn+1. Then by STEP I, Rn = R2n, so given
x ∈ X we have T nx = T 2nx′ for some x′ ∈ X , whereupon T n(x−T nx′) = 0, i.e.,
x−T nx′ ∈ Kn. Consequently x ∈ Kn+{T nx′} ⊂ Kn+Rn. Thus X = Kn+Rn,as desired. �

The next step shows that if the range sequence stabilizes from the very begin-ning, then so does the kernel sequence, and vice versa.STEP III: The “Fredholm Alternative-II” (cf. Corollary 1.2).
(i) If T is surjective and its kernel sequence stabilizes, then T is injective.(ii) If T is injective and its range sequence stabilizes, then T is surjective.

Proof. (i) Suppose T is surjective and (Kn) is stable at index N, i.e., KN =
KN+1 = · · · . By surjectivity, the range sequence is stable at index zero, i.e.,
Rn = X for all n, so by STEP II(ii), {0} = KN ∩ RN = KN . Therefore TN isinjective, hence so is T .(ii) Suppose T is injective, and that the range sequence is stable at index N.By STEP II(i) we have X = RN + KN . But KN = {0} since T , and hence TNis injective. Thus X = RN , i.e., TN is surjective, and therefore so is T . �

STEP IV: Completion of proof of Part (a). (i) Suppose the range sequence isstable at index N and the kernel sequence stabilizes. Then TN := TN |RNmaps RN onto itself, hence by “Fredholm Alternative-II” (STEP III above) it isinjective, i.e.,
{0} = kerTN = kerTN ∩ RN = KN ∩ RN .Thus by STEP II(i) the kernel sequence is stable at index N. Thus the kernelsequence stabilizes no later than the range sequence.(ii) Suppose the kernel sequence is stable at index N and the range sequenceis stable somewhere, say at index M, so by STEP II(ii) X = KM +RM . By part(i) above, N ≤ M, so

X = KM + RM = KN + RM ⊂ KN + RN ⊂ X,
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so there is equality throughout, i.e., X = KN + RN . STEP II(i) now guaranteesthat RN = RN+1, i.e., the range sequence can stabilize no later than the kernelsequence.(iii) Summarizing: If both the range and kernel sequences stabilize, thenthe kernel sequence can stabilize no later than the range sequence (part (i)above), and the range sequence can stabilize no later than the kernel sequence(part(ii)). Hence they must both stabilize at the same index. This completesthe proof of Part (a) of the Theorem. �

STEP V: Direct sum decomposition. The fact that X = Rν ⊕ Kν now followsimmediately from STEP II.
STEP VI: Isomorphism plus nilpotent. By STEP IV both the range and kernelsequences for T stabilize at the same index ν, and by STEP V we have X = Rν⊕
Kν . Since T1, the restriction of T to Rν , maps Rν onto itself and, since kerT ⊂
Kν , T1 is also injective, hence invertible on Rν . As for T2, the restriction of Tto Kν , the fact that Kν = {0} means that T ν2 = 0, while the strict containmentof Kν−1 in Kν means that T ν−12 6= 0. Thus T2 is nilpotent of index ν, and T isthe direct sum of T1 and T2. This completes the proof of Theorem 3.4. �

For a linear transformation T on a finite dimensional vector space the rangeand kernel sequences must stabilize. In this situation the above Corollaryprovides the first step in the Jordan decomposition of T . Here one works over analgebraically closed field, say the complex numbers, and given an eigenvalue
λ for T performs the decomposition of Theorem 3.4(c) on the transformation
T −λI. Having done that, one moves on to the isomorphic part of that operator,showing that its underlying subspace is also T -invariant. Then the process isrepeated for the next eigenvalue, and proceeds until T is decomposed into thedirect sum of operators of the form “nilpotent plus eigenvalue times identity”.The rest of the proof of the Jordan decomposition then involves decomposingthe nilpotent parts into cyclic sub-parts, see [1, Chapter 8] for example.

4. FREDHOLM TRANSFORMATIONS
In this section we develop the basic theory of Fredholm linear transforma-tions with emphasis on the connection between Fredholmness and invertibility,which we eventually encapsulate in the notion of Fredholm index.
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Definition 4.1 (Fredholm transformations). By a Fredholm transformation wemean a linear transformation between vector spaces X and Y whose kernel isfinite dimensional and whose range has finite codimension in Y . The class ofFredholm transformations from X into Y will be denoted Φ(X, Y ), with Φ(X, X )abbreviated to Φ(X ).
Examples 4.2 (Important Fredholm transformations). Clearly every linear trans-formation between finite dimensional vector spaces is Fredholm, as is every
invertible linear transformation between any two vector spaces. The zero trans-formation is Fredholm if and only if the underlying space is finite dimensional.Here are three further important examples.(a) The Forward Shift. This is the transformation S defined in §1.3(a) onthe vector space ω of all scalar sequences; it has trivial kernel and range ofcodimension one, and so is Fredholm.(b) The Backward Shift. This is the transformation B defined on ω in §1.3(b);it has range ω and kernel of dimension one, hence is Fredholm.
(c) Finite rank perturbations of the identity. In the proof of Proposition 3.2we observed that if T ∈ L (X ) has the form I + F where I is the identity on
X and F ∈ L (X ) has finite rank, then: ranT contains kerF , so has finitecodimension, and kerT is contained in ranF , and so has finite dimension.Thus T is Fredholm.
Exercise 4.3. Characterize those pairs of vector spaces (X, Y ) for which Φ(X, Y )is non-empty.
Exercise 4.4 (Direct sums). Suppose Tj ∈ L (Xj , Yj ) for j = 1, 2. Let X =
X1 ⊕ X2 as in §1.17. Show that T is Fredholm if and only if both T1 and T2are Fredholm.
Theorem 4.5 (The Product Theorem). If T ∈ Φ(X, Y ) and S ∈ Φ(Y , Z ),
then ST ∈ Φ(X, Z ).
Proof. We need to show that ST : X → Z has finite dimensional kernel andfinite codimensional range. The finite dimensionality of the kernel followsfrom Theorem 1.5. For the finite codimensionality of the range, note that sinceranT has finite codimension in X , Corollary 1.12 (with Y = ranS) guaranteesthat ranST = S(ranT ) has finite codimension in S(X ) = ranS. Since ranS
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has finite codimension in Z , the finite codimension of ranST in Z follows byCorollary 1.10 (transitivity). �

Here are a couple of exercises that explore the possibility of a converse to theProduct Theorem.
Exercise 4.6 (Fredholm Roots). Suppose T ∈ L (X ), k ∈ N, and T k ∈ Φ(X ).Show that T ∈ Φ(X ).
Exercise 4.7 (Fredholm Factors). Suppose S, T ∈ L (X ) with ST ∈ Φ(X ).Must S and T be Fredholm?
InvertibilityConsider once again the forward shift S and the backward shift B (see Exam-ples 1.3 and 4.2), both acting on the space ω of all sequences of field elements.Note that BS = Iω while SB differs from Iω by a rank-one transformation.Thus S and B are, in some sense, “invertible modulo finite rank transforma-tions.” The next two theorems, which make this notion precise, assert that such“almost-invertibility” is synonymous with being Fredholm.
Theorem 4.8 (First Invertibility Theorem). T ∈ L (X, Y ) is Fredholm if and
only if there exists a linear transformation S : Y → X such that both ST − IX
and TS − IY have finite rank.

Proof. (a) Suppose T is Fredholm. Let X1 be a complement for kerT in X ,and Y0 a complement for ranT in Y . Because T is Fredholm, kerT is finitedimensional and ranT finite codimensional. The diagram below summarizesthe situation; here T1, the restriction of T to X1, is an isomorphism taking X1onto ranT .
X T−→ Y Fredholm
‖ ‖kerT 0−→ Y0 Finite dim′l⊕ ⊕
X1 T1−→ ranT Isomorphism

The Fundamental Fredholm DiagramDefine S : Y → X as follows: S = T−11 on ranT and S = 0 on Y0. Thenone checks that ST is the identity map on the subspace X1, and ST ≡ 0 on
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kerT . In other words, ST is the “projection of X onto X1 along kerT .” Thus
F1 := IX − ST is the projection of X onto kerT along X1; it is a finite ranktransformation, so ST = IX − F1, a finite rank perturbation of the identity.Similarly: TS coincides with IY on ranT , and is ≡ 0 on Y0, so TS is theprojection of Y onto ranT along Y0. Thus F0 := IY − TS is the projectionof Y onto Y0 along ranT , another finite rank transformation, which reveals
TS = IY − F0 to be a finite rank perturbation of the identity.(b) For the converse we recycle the idea used in Proposition 3.2 and Example4.2(c). Suppose there exists S ∈ L (Y , X ) such that ST − IX = F1 and
TS−IX = F0, where F0 and F1 are finite-rank operators. Then kerT ⊂ ranF1so kerT has finite dimension, and ranT ⊃ kerF0 so (by Theorem 1.1) ranThas finite codimension. Thus T is Fredholm. �

Now that the Theorem is proved, note that it guarantees that the transformation
S in its hypothesis is necessarily Fredholm. More importantly, it guaranteesthat “Fredholmness is stable under finite rank perturbation:”
Corollary 4.9 (Finite-rank Perturbation Theorem I). If T ∈ Φ(X, Y ) and F ∈
F (X, Y ) then T + F ∈ Φ(X, Y ).
Proof. We know from Theorem 4.8 that there exists S ∈ L (Y , X ) that is an“almost-inverse” of T in the sense that there exist finite rank linear transforma-tions F1 : X → X , and F2 : Y → Y such that ST − IX = F1 and TS − IY = F2.The idea here is to show that S is also an “almost inverse” for T +F . Indeed,

S(T + F )− IX = ST − IX + SF = F1 + SF,and (T + F )S − IY = TS − IY + FS = F2 + FS,Since both SF and FS have finite rank, so do S(T +F )−IX and (T +F )S−IY ,hence T + F is Fredholm by the converse implication of Theorem 4.8. �

Quotient Algebra Interpretation. The vector space L (X ) of all linear trans-formations on X is an algebra over the scalar field, and the subspace F (X )of finite rank transformations is a two-sided ideal in that algebra. It followsthat the quotient space L (X )/F (X ) is an algebra over the same field. In thissetting the First Invertibility Theorem asserts that:
A linear transformation on X is Fredholm if and only if its coset
in L (X )/F (X ) is invertible.
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By paying a little more attention to the proof of the First Invertibility Theoremwe can considerably refine that result.
Theorem 4.10 (Second Invertibility Theorem). Suppose T ∈ Φ(X, Y ).

(a) If dim kerT = codim ranT , then some finite rank perturbation of T
is invertible(b) If dim kerT < codim ranT then some finite rank perturbation of T is
left-invertible(c) If dim kerT > codim ranT then some finite rank perturbation of T is
right-invertible

Proof. Referring to the “Fundamental Fredholm Diagram” on page 21:(a) If dim kerT = codim ranT then, in the diagram, kerT and dimY0 both havethe same (finite) dimension, so there is an isomorphism F taking kerT onto
Y0. Extend F to all of X (keeping the same name) by setting F ≡ 0 on X1.Thus F ∈ F (X, Y ), and T̃ := T + F is a linear transformation from X to Ythat is equal to T on X1, and to F on kerT . Consequently T̃ is an injectivelinear map taking X onto Y , so it is invertible.(b) Suppose dim kerT < codim ranT , i.e., dim kerT < dimY0. Then there isan injective linear map F : kerT → Y0. Define T̃ as before, and observe thatit is an injective linear map X → Y . Therefore, by Theorem 1.18(a), T̃ has aleft-inverse.(c) Suppose dim kerT > codim ranT , i.e., dim kerT > dimY0. Then there is afinite rank transformation F taking kerT onto Y0, so upon defining T̃ : X → Yas before we see that T̃ maps X onto Y . Thus, by Theorem 1.18(b), T̃ has aright-inverse. �

These arguments emphasize the fundamental property of Fredholm transfor-mations: their properties depend ultimately on finite dimensional phenomena.The Second Invertibility Theorem shows that, for a Fredholm transformation
T , the difference between the dimension of its kernel and the codimension ofits range gives a precise description of the “invertibility properties” of T . Let’snow formalize this difference and study its properties.
Fredholm Index
Definition 4.11 (Index). For T ∈ Φ(X, Y ) the (Fredholm) index of T is:

i(T ) := dim kerT − codim ranT .
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Before proceeding further, let’s take a look at some examples.
Exercise 4.12 (First examples). Compute the Fredholm index for each of ourthree primary examples: invertible transformations, and the forward and back-ward shifts of in §1.3 and §4.2.
Theorem 4.13. Every stable5 Fredholm transformation has index zero.

Proof. According to Theorem 3.4, if T is stable then it has the form V ⊕ Nwhere V is an isomorphism and N is nilpotent. Since T is Fredholm, its nilpo-tent summand is Fredholm, so must live on a finite dimensional subspace (cf.Exercise 4.24), and must therefore have index zero. The isomorphic summandis, of course, Fredholm of index zero, hence i(T ) = 0 by Exercise 4.17. �

Every finite-rank perturbation of the identity is Fredholm (Examples 4.2(c))and stable (Theorem 3.2). Thus by Theorem 4.13:
Corollary 4.14. Every finite rank perturbation of the identity has index zero.

Exercise 4.15 (Range of index function). Show that if X is an infinite dimen-sional vector space then for every integer n there exists a Fredholm transfor-mation T on X with i(T ) = n.
Exercise 4.16 (Index of adjoint). If T ∈ L (X, Y ) is Fredholm, show that theadjoint T ′ ∈ L (X ′, Y ′) is also Fredholm, with i(T ′) = −i(T ).
Exercise 4.17 (Index of direct sum). Continuing Exercise 4.4: Show that iflinear transformations Tj : Xj → Yj are Fredholm for j = 1, 2, then T1 ⊕ T2(which is Fredholm by Exercise 4.4) has index i(T1) + i(T2).
The notion of index allows a succinct restatement the Second InvertibilityTheorem of the last section.
Theorem 4.18. Suppose T ∈ Φ(X, Y ).

(a) If i(T ) = 0 then some finite rank perturbation of T is invertible.(b) If i(T ) < 0 then some finite rank perturbation of T is left invertible.(c) If i(T ) > 0 then some finite rank perturbation of T is right invertible.

It is natural to ask if, for each of the statements of Theorem 4.18, the converseis true. For example the converse of part (a) would assert that if T + F is
5see page 15
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invertible for some finite rank transformation F , then i(T ) = 0. Since T + Finvertible implies i(T + F ) = 0, the desired converse would be trivially true ifwe could prove that the Fredholm index is invariant under perturbation by afinite rank operator. In view of Exercises 4.19 and 4.20 below this would alsoprove the converses of parts (b) and (c).The desired invariance of the Fredholm index is indeed true. Its proof, whichtakes some work, will be be taken up later in this section.Here are some exercises, the first two of which generalize the fact that in-vertible transformations are Fredholm with index zero. The third is a resultthat will be needed when we prove the invariance of Fredholm index underfinite-rank perturbation.
Exercise 4.19 (Left invertibility). Suppose T ∈ Φ(X, Y ) is left invertible, i.e,
ST = IX for some S ∈ L (Y , X ). Show that i(T ) ≤ 0, that S ∈ Φ(Y , X ), andthat i(S) = −i(T ).
Exercise 4.20 (Right invertibility). State and prove the corresponding resultsfor right invertibility.
Corollary 4.21. For each T ∈ Φ(X, Y ) there exists S ∈ Φ(Y , X ) such that
i(S) = −i(T )
Every linear transformation between finite dimensional vector spaces is Fred-holm. What is the index of such a map?
Theorem 4.22 (Index in finite dimensions). If X and Y are finite dimensional
and T ∈ L (X, Y ), then i(T ) = dimX − dimY .

Proof. By Theorem 1.1, the “Fundamental Theorem of Linear Algebra,” for anylinear transformation T from X to Y , with both spaces finite dimensional:dimX = dim kerT + dim ranT = dim kerT + dimY − codim ranT ,where the last equality requires the finite dimensionality of Y . The finitedimensionality of X now allows us to write this last equation asdimX = i(T ) + dimY ,and then to obtain the desired result upon solving for i(T ). �

Note that this proof shows that Theorem 4.22 is simply a restatement of thefinite dimensional version of the Fundamental Theorem of Linear Algebra.
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Corollary 4.23. If dimX < ∞ then every T ∈ L (X ) is Fredholm of index zero.

Exercise 4.24 (Nilpotent Fredholm transformations). Show that a vector space
X supports a nilpotent Fredholm transformation if and only if dimX < ∞.

5. THE MULTIPLICATION THEOREM
Here we establish, via two different proofs, the multiplicative property of theindex (the index of a product is the sum of the indices), and use it to establishthe invariance of index under finite rank perturbation.According to Theorem 4.22, the index of a linear transformation between finitedimensional spaces does not depend on the transformation. In this sense thenotion of index seems trivial in the finite dimensional setting. Not so: preciselythis case lies at the core of our next result, the crucial Multiplication Theoremfor the Fredholm index.
Theorem 5.1 (The Multiplication Theorem). If T ∈ Φ(X, Y ) and S ∈ Φ(Y , Z )
then ST ∈ Φ(X, Y ) and i(ST ) = i(S) + i(T ).
Before moving on to the proof, I invite you to work out a few exercises. Thefirst illustrates the theorem in action for shift operators, the second asks youto prove the finite dimensional case, and the third provides an amusing appli-cation.
Exercise 5.2 (Index of a shift). Suppose S and B are the forward and backwardshifts of of §1.3. Show that i(Sn) = −n, i(Bn) = n, and i(SnBn) = i(BnSn) = 0.
Exercise 5.3 (Multiplication theorem in finite dimensions). Prove Theorem 5.1for finite dimensional spaces X , Y , and Z .
Exercise 5.4 (Square roots . . . or not). Let S and B be, respectively, the forwardand backward shifts on the vector space ω of all scalar sequences, as discussedin Examples 1.3 and 4.2. Show that neither S nor B has a square root; e.g.there exists no T ∈ L (ω) with T 2 = S. What about higher roots?
Regarding the statement of the Multiplication Theorem, we have alreadyproved that products of Fredholm transformations are Fredholm (Theorem 4.5),so what’s at stake here is the formula for the index of a product, and this isimportant enough to deserve more than one proof. Here I’ll present two. Thefirst one, due to Donald Sarason [5], illustrates dramatically that everything
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Fredholm is, at its core, finite dimensional. The second proof, which is a lessdramatic brute force calculation, illustrates the same principle less elegantly,but with more precision.
Sarason’s proof of the Multiplication theoremThe idea of this proof is to reduce the general case to the finite dimensional one(Exercise 5.3 above) by filling in the bottom two rows of the diagram below,where the subscripted transformations are restrictions of the unsubscriptedones.

X T−→ Y S−→ Z Fredholm
‖ ‖ ‖
X0 T0−→ Y0 S0−→ Z0 Finite dim′l⊕ ⊕ ⊕
X1 T1−→ Y1 S1−→ Z1 Isomorphisms

The Product Diagram

The desired result will then follow quickly from the finite dimensional version(Exercise 5.3) and the “Direct Sum Theorem” of Exercise 4.17, since all thetransformations on the bottom row are (surjective) isomorphisms, and so areFredholm with index zero.Our strategy for filling in the bottom two rows of the Product Diagram involvescommon sense and perhaps a bit of luck.Common sense suggests that to make S1T1 injective we should choose X0 :=kerST (finite dimensional by §1.5 above), and then take for X1 any subspacecomplementary to X0. This produces the first column of the Fundamental
Diagram, where T0 and T1 are the restrictions of T to X0 and X1 respectively.As for the second column note that, since X0 = kerST ⊃ kerT , the map
T1 := T |X1 is one to one. Thus it makes sense to take Y1 := T (X1), so that T1an isomorphism of X1 onto Y1. That Y1 has finite codimension in Y follows fromthe “transitivity of codimension” (see §1.8 above). More precisely: X1 has, byits definition, finite codimension in X , so Y1 = T (X1) has finite codimension in
T (X ), and T (X ) has, since T is Fredholm, finite codimension in Y .
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Now we must hope that S1, which is going to be the restriction of S to Y1,is one-to one, i.e., that Y1 ∩ kerS = {0}. This is easy to check: Fix y1 ∈
Y1 ∩ kerS, so y1 = T (x1) for some x1 ∈ X1, and also Sy1 = 0. Thus x1 ∈kerST = X0, so x1 ∈ X0∩X1 = {0}, hence x1 = 0, and therefore y1 = Sx1 = 0.Thus it’s natural to define Z1 := S(Y1), so S1 := S|Y1 is an isomorphism of Y1onto Z1 and, again by the transitivity of codimension, Z1 has finite codimensionin Z .So far we have produced these components of the Product Diagram:

X0 = kerST , T0 = T |X0 ,
X1 = any complement of X0, T1 = T |X1 ,
Y1 = T (X1), S1 = S|Y1 , and Z1 = S(Y1).It remains to find Y0 and Z0.Since Y1∩kerS = {0}, “complimentary extension” (Proposition 1.7) guaranteesthat Y1 has a complement Y0 (necessarily of finite dimension) that containskerS.To finish the argument we need to be able to choose Z0 complementary to Z1in such a way that Z0 ⊃ S(Y0). We can do this, again by “complementaryextension,” if we can show that S(Y0) ∩ Z0 = {0}. Indeed we can: Suppose

z1 ∈ S(Y0) ∩ Z1 = S(Y0) ∩ S(Y1). Then z1 = S(y1) for some y1 ∈ Y1 and also
z1 = S(y0) for some y0 ∈ Y0 hence y1 − y0 ∈ kerS ⊂ Y0. Thus y1 lies in Y0so ∈ Y1 ∩ Y0 = {0}. Thus y1 = 0, so z1 = S(y1) = 0, as desired.This completes the Product Diagram, and with it the proof of the multiplicationtheorem. �

The table below summarizes the proof, with the boxes numbered to indicatethe flow of the argument. In this table the notation M ⊥ N for subspaces
M and N of a vector space means M ∩ N = {0}, and M = N⊥ means that
X = M ⊕N.6

6In contrast to the situation in an inner product space, neither of these notations assumesany uniqueness for M.
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X Y Z

Finite dim’l 1© X0 = kerST 5© Y0 = Y⊥1 , Y0 ⊃ kerS 6© Z0 = Z⊥1 , Z0 ⊃ S(Y0)
Isomorphic 2© X1 = X⊥0 3© Y1 = T (X1) ⊥ kerS 4© Z1 = S(Y1)

Multiplication theorem: summary of proof.

Brute force proof of the Multiplication theoremAs above, let X , Y , and Z be vector spaces, with T : X → Y and S : Y → Zlinear transformations. For this proof we need explicit formulae for dim kerSTand codim ranST . The first of these we have already found; it is equation (1)in §1.5. The second goes like this7:
Proposition 5.5 (Codimension of the range of a product).(5) codim (ranST ) = codim (ranS) + codim (ranT + kerS)
Proof. Since ranST = S(ranT ) ⊂ ranS the transitivity of codimension (§1.8(b)above) tells us thatcodim (ranST ) = codim (ranST , ranS) + codim (ranS)Thus the desired result is equivalent to:(6) codim (ranT + kerS) = codim (ranST , ranS) .To prove this, let N be a subspace of Y complementary to ranT + kerS, sothat(7) codim (ranT + kerS) = dimNNow Y = (ranT + kerS)⊕N, hence upon applying S to both sides of thisequation we obtain(8) ranS = ranST + S(N)
CLAIM: ranST ∩ S(N) = {0}.

7Recall that, with the usual notion of addition in Z ∪ {∞}, equation (1) holds even if someor all of the quantities involved are infinite. The same will be true for the formulae developedbelow in §5.6–5.7
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Proof of Claim. Suppose z ∈ ranST ∩S(N). We wish to show that z = 0. Byhypothesis, z = STx = Ny for some x ∈ X and y ∈ N. Thus Tx −y ∈ kerS,hence

y ∈ (kerS + Tx) ∩ N ⊂ (kerS + ranT ) ∩ N = {0},i.e., y = 0. Thus z = Ny = 0, as desired. �

The CLAIM, along with (8), implies(9) codim (ranST , ranS) = dimS(N) = dim(N),the last equality following from the injectivity of S on N which, in turn, arisesfrom the fact that kerS is complementary to N. Equation (6) then followsfrom (7) and (9), andas pointed out abovethis establishes the desired result(5). �

Suppose for a moment that the transformations S and T of Proposition 5.5are Fredholm. The calculation of the product index i(ST ), upon employingequation (1) of §1.5, starts out like this:
i(ST ) := dim kerST − codim ranST= dim kerT + dim(kerS ∩ ranT )− codim ranST .Upon substituting (5) in this equation we obtain
i(ST ) = dim kerT + dim(kerS ∩ ranT )(10)

− codim (ranS)− codim (ranT + kerS)Thus further progress requires information about the codimension of a sum ofsubspaces. We already have a beginning in Corollary 1.15, which asserts thatif M and N are subspaces of X whose sum is X then the codimension of M in
X equals the codimension of M∩N in N. In our application we won’t assumethat the subspaces sum to X , but will replace X by that sum, thus obtaining:
Lemma 5.6 (Codimension of a sum I). If M and N are subspaces of a vector
space then(11) codim (M,M +N) = codim (M ∩N,N).
It’s now just a short step to obtain the result we really need:
Theorem 5.7 (Codimension of a sum II). If M and N are subspaces of a vector
space, then(12) codim (M +N) + dimN = codimM + dim(M ∩N)



ALGEBRAIC FREDHOLM THEORY 31
Proof. We havecodimM = codim (M,M +N) + codim (M +N)= codim (M ∩N,N) + codim (M +N) [by (11)],and the desired result follows upon adding dim(M ∩N) to both sides. �

Completion of “brute force” proof. Now we’re assuming that S and T are Fred-holm transformations, so all relevant dimensions and codimensions are fi-nite, hence subtraction is allowed. From equation (12) with M = ranT and
N = kerS we obtaincodim (ranT + kerS) = codim ranT + dim(ranT ∩ kerS)− dim kerSSubstitute this into the right-hand side of (10) to obtain:

i(ST ) = dim kerT + dim(kerS ∩ ranT )− codim ranS
− codim ranT − dim(ranT ∩ kerS) + dim kerS= i(T ) + i(S),the final equality reflecting the cancellation of both terms involving intersectionof ranT and kerS. �

Invariance IIWe showed in Theorem 4.9 that the notion of “Fredholmness” is invariant underfinite-rank perturbation. Now, thanks to the multiplication theorem, we cannow prove that the Fredholm index is invariant under finite-rank perturbation.More precisely:
Theorem 5.8 (Finite-rank perturbation theorem II). If T ∈ Φ(X, Y ) and F ∈
F (X, Y ) then i(T + F ) = i(T ).
One might hope that the proof of Theorem 4.9 might provide the precisionnecessary to prove Theorem 5.8. Alas, more work is required. The desiredresult turns out to be a consequence of the following special case, which isitself both a generalization of Corollary 4.14, and the converse of Theorem4.18(a).
Lemma 5.9 (Finite rank perturbation of an invertible). Suppose V is an
isomorphism of X onto Y and F ∈ F (X, Y ). Then i(V + F ) = 0.
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Proof. Given V and F as in the statement of the Lemma, we have

i(V + F ) = i(V (IX + V−1F )) = i(V (IX + F1)),where F1 = V−1F is a finite rank operator X → X which, by Corollary 4.14,is Fredholm of index zero. This, along with the Multiplication Theorem andthe fact that invertibles are Fredholm of index zero, yields
i(V + F ) = i(V ) + i(IX + F1) = 0 + 0 = 0,as desired. �

Proof of Theorem 5.8. Suppose T ∈ Φ(X, Y ) and F ∈ F (X, Y ). By Exercise4.21 there exists S ∈ Φ(Y , X ) with i(S) = −i(T ). By the MultiplicationTheorem, i(ST ) = 0, so by Theorem 4.18(a) there is a finite rank transformation
F1 : X → X and an invertible transformation V : X → X such that ST =
V + F1. Thus

S(T + F ) = ST + SF = V + F1 + SF = ST + F2with F2 ∈ F (X ).By Lemma 5.9, i(ST +F2) = 0, so this, along with the Multiplication Theoremand our choice of S yields:0 = i(S(T + F )) = i(S)i(T + F ) = −i(T )i(T + F )hence i(T + F ) = i(T ), as desired. �

6. SPECTRA
In this section we’ll apply Fredholm theory to study spectra of linear trans-formations. The spectrum of T ∈ L (X ) is the set σ (T ) of scalars λ for whichthe transformation T − λI fails to be invertible. Recall that for finite dimen-sional vector spaces the spectrum is nonempty whenever the underlying fieldis algebraically complete (e.g., the field of complex numbers), but otherwisemay be empty; nontrivial rotations of R2 have no eigenvalues, hence emptyspectrum. The next exercise shows that the spectrum may be empty even if theunderlying field is algebraically complete.
Exercise 6.1 (Empty spectrum). Let ω0(Z) denote the space of two-sided scalarsequences with all but a finite number of entries equal to zero. Alternatively,
ω0(Z) is the set of functions that take the integers into the scalars and have



ALGEBRAIC FREDHOLM THEORY 33
finite support. Let B be the backward shift on ω0(Z): the transformation thatshifts each sequence one unit to the left. More precisely,

Bx(n) = x(n+ 1) (x ∈ ω0(Z), n ∈ Z).Show that the spectrum of B is empty.
Spectral points: First classificationThe spectrum of T can be viewed as the union of two (not necessarily disjoint)subsets:

• The point spectrum, or eigenvalues σp(T ) consisting of those scalars λfor which T − λI fails to be injective, and
• The compression spectrum consisting of those scalars λ for which T−λIfails to be surjective.8

Suppose, for example, that dimX < ∞. Then every linear transformation on
X is Fredholm of index zero (by Theorem 4.22, for example), henceas provenin any beginning course in linear algebraa linear transformation T on X isinjective if and only if it is surjective. Thus σ (T ) = σp(T ) = σc(T ).
Exercises 6.2 (Spectra of adjoints). For T ∈ L (X ):

(a) Show that σ (T ) = σ (T ′).(b) Examine the relationship between the point and compression spectraof T and T ′.
Exercises 6.3 (Spectra of shifts). Determine the spectrum, point spectrum, andcompression spectrum for:

(a) The forward shift on the vector space ω of scalar sequences.(b) The backward shift on ω(c) The forward shift on the vector space ω0 consisting of scalar sequenceswith at most infinitely many nonzero entries.(d) The backward shift on ω0.
Exercise 6.4 (The spectral mapping theorem.). Suppose X is a vector spaceover C and T ∈ L (X ). Let f be a polynomial with complex coefficients. Showthat σ (f(T )) = f(σ (T )). Does your proof work for fields more general than C?

8Remember: this is the algebraic compression spectrum. In the setting of complex Banach
spaces, the compression spectrum is usually taken to be the set of complex numbers λ for which
T − λI is not bounded below.
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Fredholm decomposition of the spectrumOur theory of Fredholm transformations suggests a second classification ofspectral pointsthis time into two disjoint subsets. For T ∈ L (X ) we’ll saythat λ ∈ σ (X ) is in:

(a) The Fredholm spectrum σf (T ) if T − λI is a (non-invertible) Fredholmtransformation, and(b) The essential spectrum σe(T ) if T − λI is not Fredholm.
Thus σ (T ) is the disjoint union of σe(T ) and σf (T ). We’ll further classify eachpoint λ ∈ σf (T ) as having index equal to the index of T − λI.In case X is finite dimensional, note that σ (T ) = σf (T ), and σe(T ) is empty.
Exercise 6.5 (Empty essential spectrum). Give an example of a linear trans-formation whose essential spectrum is not empty.
Exercises 6.6 (Fredholm decomposition of spectrum). Determine the Fredholmand essential spectra of the operators of Exercises 6.3.
Recall the notation F (X ) for the collection of finite rank linear transforma-tions on the vector space X , i.e., those T ∈ L (X ) for which dim ranT < ∞.Recall from elementary linear algebra that if λ1, λ2, . . . , λn is a set of distincteigenvalues for T ∈ L (X ), and xi is an eigenvector for λi, then the set ofvectors {x1, x2, . . . xn} is linearly independent.
Theorem 6.7 (Finite-rank spectra). If F ∈ F (X ) then σ (F ) has finitely many
points; each nonzero one of which is a Fredholm point of index zero.

Proof. Any finite rank perturbation of the identity transformation is Fredholmof index zero (Theorem 5.8, or more specifically, Lemma 5.9, or even morespecifically, Corollary 4.14), so for F ∈ F (X ) and λ a non-zero scalar, F −
λI is injective if and only if surjective, hence non-invertible if and only ifan eigenvalue. Thus σ (T )\{0} consists entirely of eigenvalues, which areFredholm points of index zero. By the discussion preceding the statement ofthe Theorem, there can be at most dim ranT < ∞ of such eigenvalues. �

Exercise 6.8 (Number of eigenvalues). For an eigenvalue λ of a linear trans-formation T let’s call dim ker(T −λI) the (geometric) multiplicity of λ. Suppose
T ∈ F (X ). Show that the number of eigenvalues of T , with each counted as
many times as its multiplicity, is ≤ dim ranT .
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7. MULTIPLICATION OPERATORS

In this final section we’ll connect Fredholm theory with classical function the-ory by exploring the Fredholm properties of an important class of naturallyoccurring examples: multiplication operators on spaces of holomorphic func-tions. Our study will culminate in a connection between Fredholm index andthe notion of winding number.
Definition 7.1 (Holomorphic functions). By a plane domain we’ll mean a sub-set of the complex plane that is nonempty, open, and connected. Henceforththe generic plane domain will be denoted by the symbol “G”. A complexvalued function is said to be holomorphic (or analytic) on G if it is complex-differentiable at each point of G. The collection of holomorphic functions on
G, henceforth denoted by H (G), is easily seen to be a complex vector spaceunder pointwise operations.
Definition 7.2 (Multiplication operators). The complex vector space H (G) isclosed under pointwise multiplication, and so is an algebra over the field ofcomplex numbers. As such it has many interesting properties, but we willbe concerned here only with one: Each φ ∈ H (G) induces on H (G) a
multiplication operator Mφ, defined as follows:

Mφf(z) = φ(z)f(z) (f ∈H (G), z ∈ G).
Clearly Mφ is a linear transformation taking H (G) into itself, the variousproperties of which are somehow coded into the behavior of the holomorphicfunction φ. It is the goal of this section to unscramble this code.
Invertibility of multiplication operatorsFredholm properties are intimately involved with invertibility, so it makes senseto try to classify those φ ∈H (G) for which Mφ is invertible on H (G).First of all, note that (unless φ ≡ 0) Mφ is injective. This is a reflection of oneof the fundamental properties of holomorphic functions, the Identity Theorem[6, VII.14, page 89]:

If two functions holomorphic on G agree a sequence that has a
limit point in G, then those functions agree on all of G.

In particular, if two functions holomorphic on G agree on a nonvoid opensubset of G then they agree everywhere. Suppose now, for φ ∈ H (G)\{0},
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we have Mφf = Mφg for two functions f, g ∈ H (G). Then f = g on the set
{z ∈ G : φ(z) 6= 0}, which is nonempty (since we’re assuming φ is not thezero-function) and open (since holomorphic functions are continuous). Thus,by the Uniqueness Theorem, f = g at every point of G, so Mφ is injective.The question of invertibility, therefore, boils down to that of surjectiveness:when is ranMφ = H (G)?Suppose, for example, that 0 /∈ φ(G), i.e., that φ never takes the value 0 in
G. Then 1/φ is holomorphic in G (another important property of holomorphicfunctions), so clearly Mφ is invertible with inverse M1/φ.Conversely suppose ranMφ = H (G). Then, since the constant function 1 isin H (G), there exists ψ ∈ H (G) such that φψ = Mφψ = 1. Thus 0 /∈ φ(G)(so, by the way, 1/φ ∈H (G) and M−1

φ = M1/φ).With this we have proved:
Theorem 7.3 (Multiplier invertibility). Suppose φ ∈ H (G)\{0}. Then Mφ
is injective; it is invertible on H (G) if and only if 0 /∈ φ(G), in which case
M−1
φ = M1/φ

Note that for λ ∈ C we have Mφ − λI = Mφ−λ, so λ ∈ σ (Mφ) if and only if
φ − λ takes the value zero somewhere on G. That is:
Corollary 7.4 (Multiplier spectrum). For φ ∈ H (G), the spectrum of Mφ is
φ(G).
Fredholm properties of multiplication operatorsThe Fredholm properties of multiplication operators on H (G) reflect anotherfundamental property of holomorphic functions: the special nature of theirzeros. One of the cornerstones of the theory of holomorphic functions is thefact that each function f ∈ H (G) is infinitely differentiable on G (a property
not possessed by infinitely real-differentiable functions). Thus for each a ∈ Gthe function f has a formal Taylor series ∑∞n=0 f (n)(z − a)n. Remarkably, thisseries converges to f in a neighborhood of a (another property not possessedby infinitely real-differentiable functions).9 This power series representationquickly establishes the following fundamental result (see [4, Theorem 10.18,pp. 208–209] or [6, VII.13, pp. 87–88] for example):

9In fact, the series converges to f in the largest open disc in G with center at a.
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Theorem 7.5 (Zeros of holomorphic functions). Suppose φ ∈ H (G), a ∈ G,
and φ(a) = 0. Then there is a non-negative integer ν for which

φ(z) = (z − a)νφ1(z) (z ∈ G),
where g1 ∈H (G) and g1(a) 6= 0.

The integer ν = ν(a) = νφ(a) is called the order, or multiplicity, of the zero aof φ. Let’s extend the function νφ to the entire complex plane by defining itsvalue to be zero off the set of zeros of φ. Thus νφ(a) = 0 except for at most acountable set of points of G.Here is the main result of this section; note how its first part generalizesTheorem 7.3 above.
Theorem 7.6 (Fredholm multipliers). For φ ∈H (G):

(a) Mφ is Fredholm if and only if φ has at most finitely many zeros in G.(b) Each λ ∈ σ (Mφ) = φ(G) is a Fredholm point of index -νφ(λ).
We often think of νφ(a) as counting the “number of zeros φ has at a,” or “thenumber of times f covers zero by a,” and interpret νφ(a) = 0 to mean “f is notzero at a.” With this convention part (b) of the above result can be rephrased:

If φ ∈ H (G) has only finitely many zeros in G, then Mφ is
a Fredholm transformation on H (G) whose index is minus the
number of zeros (counting multiplicity) that φ has in G.

The proof of Theorem 7.6 will consist of several subsidiary results, each ofsome interest in its own right. The first of these states that ranMφ consists ofall those functions holomorphic on G whose zero-set, counting multiplicities,contains that of φ.
Lemma 7.7 (Multiplier ranges). ranMφ = {f ∈ H (G) : νf (a) ≥ νφ(a) ∀a ∈
G}.

Proof. Since ranMφ = φH (G), it’s clear that, counting multiplicity, f has atleast as many zeros as φ, i.e., that νf ≥ νφ on G. Conversely, if νf ≥ νφ on G,then h := f/φ is holomorphic on G, except possibly for the zeros of φ, where
h, initially holomorphic on G, except possibly at the zeros of φ, is extendableto be holomorphic on all of G (by Theorem 7.5). Thus f = φh ∈ φH (G). �
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As a consequence of Theorem 7.5 we can use derivatives to determine the orderof a zero of a holomorphic function. To make this more precise, let’s employthe notation f (k) for the k-th derivative of the function f , setting f (0) equal to
f . Then (see [6, §VII.13] for example):

Suppose f is holomorphic in a neighborhood of a point a ∈ C,
and f(a) = 0. Then νf (a) is the smallest positive integer k for
which f (k)(a) 6= 0.

For example, f(z) = z3 has a zero of order 3 at the origin, a point at whichboth it and its first two derivatives vanish, but at which its third derivativedoes not.As a consequence of this expression of zero-multiplicity in terms of derivatives,we can use linear functionals to characterize ranMφ. For each a ∈ G and ka non-negative integer, let’s define a linear functional Λ(k)
a on H (G) by:Λ(k)

a f = f (k)(a) .Then Lemma 7.7 can be rephrased succinctly as:(13) ranMφ =⋂{ker Λ(k)
a : a ∈ G, k < νφ(a)}where the only terms of the intersection on the right that are not the wholespace H (G) are the ones corresponding to points a in the zero-set of φ.Thus, in view of the injectivity of Mφ, to prove Theorem 7.6 we need onlybe able to calculate the codimension of an intersection of kernels of linearfunctionals, and for this we can use Theorem 2.7once we have establishedthe linear independence of the functionals involved.

Lemma 7.8 (Independence of derivatives). The set of linear functionals

{Λ(k)
a : a ∈ G, k = 0, 1, 2, . . .}

is linearly independent in the dual space of H (G).
Proof. Fix a finite subset A of G and a positive integer K . It’s enough to provethe independence of the finite set

{Λ(k)
a : a ∈ A, 0 ≤ k ≤ K}of linear functionals on H (G). To this end, suppose the linear combination(14) Λ :=∑{ca,kΛ(k)

a : a ∈ A, 0 ≤ k ≤ K}is identically zero on H (G). We want to show that all the coefficients ca,kare zero.
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The key is that for each λ ∈ C, the linear functional L annihilates the entirefunction z → exp(λz), resulting in the equations(15) 0 = ∑

a∈A
pa(λ)eλa ∀ λ ∈ C

where
pa(λ) := K∑

k=0 ca,kλ
k .

If A is the singleton {a} then the polynomial pa is identically zero on C, soall its coefficients are zero, as desired.Otherwise, let b denote the element of A whose modulus is maximum (if thereis more than one such element, pick any one). Let σ = b/|b|, so that σb = |b|.Then for λ = σt with t > 0 we have(16) 0 = ∑
a∈A\{b}

pa(σt)eσat + pb(σt)e|b|t ∀t > 0.
On the right-hand side of this equation the sum over a ∈ A\{b} is o(e|b|t) as
t → +∞. But this right-hand side has to vanish for all t > 0, and since nocancellation can be expected from the sum, both the sum and the last term mustvanish for all t > 0. Vanishing of the last term on the right means that thepolynomial t → pb(σt) is identically zero, hence all its coefficients are zero.Vanishing of the sum on the right means that we may repeat the argument,replacing A by A\{b} to get another of the polynomials pa, and hence itscoefficients, identically zero. Upon repeating the argument a finite number oftimes we conclude that all the coefficients ca,k are zero, as desired. �

Completion of the proof of Theorem 7.6. We are assuming that φ is not iden-tically zero, in which case Mφ is injective (Theorem 7.3). Thus Mφ is Fredholmif and only if ranMφ has finite codimension in H (G).If φ has at most finitely many zeros in G, then by Lemma 7.8 and Theorem 2.7the codimension of ranMφ in H (G) is finite, and equal to the number of thesezeros, counting multiplicities, i.e., to ∑a∈G νφ(a).If φ has infinitely many zeros in G, then given a positive integer n let An bea subset of these zeros having cardinality n (we are not counting multiplicityhere). Let Λa be the linear functional of evaluation at a ∈ An. ThenranMφ ⊂
⋂
a∈An

ker Λa .
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Since the set of functionals {Λa : a ∈n} is linearly independent (Lemma 7.8),the codimension of the intersection on the right-hand side of this display is
n. Thus ranMφ has codimension at least n. Since n is arbitrary, ranMφ hasinfinite codimension in H (G). �

Index and winding numberFor f ∈H (G) we have interpreted the order νf (a) of the zero f has at a ∈ Gas the “number of times f covers the origin by the point a.” Now it’s time toshift the emphasis from the point that does the covering to the point that getscovered. To this end let’s define for λ ∈ C

µf (λ) := ∑
a∈f−1(λ) νf−λ(a) ,

a quantity which should, in accordance with our covering interpretation of νf−λ,be interpreted as “the number of times λ is covered by f , or more succinctly,the “multiplicity of the value λ” (with µf (λ) = 0 if and only λ /∈ f(G)).With these conventions we can restate that last part of Theorem 7.6 as follows:
λ ∈ C is a Fredholm point of Mφ if and only if µφ(λ) < ∞, in
which case i(Mφ − λI) = −µφ(λ).For yet another interpretation another interpretation of the Fredholm index of

Mφ−λI we can turn to the Argument Principle (see [4, Theorem 10.43, pp. 225-6] or [6, X.11, pp. 137-8] for example). For simplicity let’s restrict to a specialcase: Let U denote the open unit disc of the complex plane, and suppose φis holomorphic on a neighborhood of the closure of U. Then φ can have onlyfinitely many zeros in U, so Mφ, acting on H (U), has spectrum φ(U), everypoint of which is a Fredholm point (i.e., Mφ − λI is a Fredholm transformationof H (U)). For this situation the Argument Principle states that
For each λ ∈ C\φ(∂U), the multiplicity Mφ(λ) is the number of
times the closed curve φ(∂U) winds counter-clockwise around
the point λ.

For example, if φ(z) = z2 then φ winds the unit circle twice around itself,which, according to the Argument Principle, reflects the fact that φ coverseach point of the unit disc twice (with the origin being covered twice thanksto our interpretation of “multiplicity two”).
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When applied to the Fredholm theory of the operator Mφ, the argument prin-ciple allows this reinterpretation of Theorem 7.6(b):
Theorem 7.9 (Fredholm points of multipliers). Suppose φ is holomorphic in a
neighborhood of the closed unit disc and λ ∈ C\φ(∂U). Then the transforma-
tion Mφ − λI has Fredholm index equal to “minus the number of times φ(∂U)
wraps counter-clockwise around the point λ.”

For a nontrivial example consider the function φ(z) = z2 + z. The mappingproperties of φ are best understood by writing
φ(z) = (z + 12

)2
− 14 ,

whereupon φ(U) = σ (Mφ) is revealed to be the region inside the outer cardioid-shaped curve in Figure 1.

−1

20−1

1

2

1

−2

FIGURE 1. φ(∂U) for φ(z) = z2 + z

In this picture the boundary of φ(U) is the image of the larger arc of ∂U thatlies between the points e±i2π/3, both of which φ maps to −1. The boundaryof the small interior loop is the image of the smaller arc of ∂U between thosesame two points. The domain φ(U) that lies outside this smaller loop is singlycovered by φ, while the points inside the inner loop are doubly covered. Thus
i(Mφ − λI) is equal to: zero for λ outside φ(U) and on its outer boundary (thecardioid), one between the outer boundary and the small loop, including thatloop, and two inside the small loop.
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APPENDIX A. HINTS FOR SELECTED EXERCISES
Exercise 1.9: Fundamental Theorem of Linear Algebra.
Exercise1.16: Fix a basis B0 for M∩N and extend B0 in two ”directions”:first by a set B1 of vectors (necessarily from N\M) to form a basis for
N, and then by adding a set B2 of vectors (necessarily from M\N) toform a basis for M.

Exercise 2.8: Continuing the Suggestion: It’s clear that ∩n ker Λn = {0},so any linear functional on ω will have kernel containing that inter-section. So the trick is to find one that isn’t in the span of the Λn’s.
Exercise 4.3: Dimension.
Exercise 4.6: Note that kerT k ⊃ kerT and ranT k ⊂ ranT .
Exercise 4.7: Look at a T ∈ L (ω) defined by Tx = (x(1), 0, x(2), 0, · · · )for x = (ξ1, ξ2, · · · ) ∈ ω. Alternatively, take T to be an appropriate“vector-valued” shift.
Exercise 5.3: Use Theorem 4.22
Exercise 5.4: You may wish to review Exercise 4.6.
Exercise 4.19: Being left invertible, T is injective. Show that, addition-ally, ST = IX implies also that Y = kerS ⊕ ranT .
Exercise 4.20: Being right invertible, T is surjective. Show that, addi-tionally, X = kerT ⊕ ranS.
Exercise 4.15: The various “inverses” (two-sided, left, right) produced inTheorem 4.18 for appropriate finite rank perturbations of T are Fred-holm with index −i(T ).
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Exercise 6.1: Clearly B is invertible, so 0 /∈ σ (B). For λ 6= 0 show thatthe equation

Sλ = ∞∑
n=0 λ

−(n+1)Bn
definesnotwithstanding absence of topologyan inverse on ω0(Z), for
B − λI.

Exercises 6.2: Cf. Exercises 2.16.
Exercises 6.3: (a) For S : ω → ω, σp(S) is empty, σ (S) = σc(S) = {0}.(b) For B : ω → ω: σ (B) = σp(B) is the entire scalar field, while σc(B)is empty.(c) Same answers as for part (a).(d) For B : ω0 → ω0: As in part (b), σc(B) is empty, and σ (B) = σp(B),but unlike part (b), σ (B) = σp(B) = {0}.
Exercise 6.6: Build on the results of Exercise 6.3.
Exercise 6.8: Suppose {λ1, λ2, . . . λn} are the distinct eigenvalues of ourfinite rank transformation T . Let Ej = ker(T − λI), a subspace ofdimension dj < ∞. Thus d1+d2+ · · ·+dn is the number of eigenvaluesof T , “counting multiplicities.”Let Ej be a basis for Ej , and E the union of all these bases. Showthat E is a linearly independent set, and so a basis for the subspace
E1 +E2 + · · · En. Consequence: number of eigenvalues of T , countingmultiplicities equals the dimension of E , which is ≤ dim ranT (since
E ⊂ ranT ).
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APPENDIX B. SOLUTIONS TO SELECTED EXERCISES

Exercise 1.16: Continuing the Hint: Let Vj = spanBj for j = 1, 2. Now
V1 ∩M = {0}, else some nontrivial linear combination from B1 wouldbelong to M, and so would also be a nontrivial linear combination ofvectors from B0, thus contradicting the linear independence of B0 ∪B1.Similarly V2 ∩ N = {0}.Thus we have N = (M ∩N)⊕ V1, so(∗) codim (M ∩N,N) = dimV1 ,and since N ∩ V2 = {0} we also have(∗∗) N +M = N ⊕ V2 = (M ∩N)⊕ V1 ⊕ V2 .But by definition, M = (M∩N)⊕V2, so (**) implies codim (M,M+N) =dimV1, which, along with (*) establishes (11).

Exercise 2.8: Continuing the Hint: For n ∈ N let en ∈ ω be defined by
en(k) = 0 if k 6= n and = 1 if k = n. Note that the lists of vectors andfunctionals (en) and (Λn) are biorthogonal in the sense that Λn(ek ) = 0if n 6= k and = 1 if n = k . Furthermore the linear span of the vectors
{en : n ∈ N} is the subspace ω0 consisting of sequences whose entriesare zero except for at finitely many. Since ω0 is a proper subspace of
ω there is a nontrivial linear functional Λ on ω that vanishes on ω0(see §2.3).CLAIM: Λ /∈ span{Λn : n ∈ N}.
Proof of Claim. Suppose for the moment that Λ is any linear functionalin the span of the Λn’s. Then Λ = ∑N

n=1 cnΛn for some N ∈ N,whereupon for each k ∈ N:
0 = Λ(ek ) = N∑

n=1 cnΛn(ek ) = ck .

Thus Λ is the zero-functional on ω. But our Λ was constructed to
not be the zero-functional, so it can’t lie in the span of the Λn’s, andtherefore provides the desired counterexample. �

Exercise 4.19: We have ST = IX , which implies that T is injective, i.e.,kerT = {0}. Thus i(T ) ≤ 0. As for S, note that it is surjective, so itsFredholmness, along with the desired result for its index (i(S) = −i(T ))will follow from:
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CLAIM: Y = kerS ⊕ ranT .

Proof of Claim. Indeed, ST = IX implies that S is injective on ranT ,hence kerS ∩ ranT = {0}. Next, observe that for y ∈ Y we have
y − TSy ∈ kerS, so

y ∈ T (Sy) + kerS ⊂ ranT + kerS,as desired. �

Exercise 4.20: TS = IY implies that T is surjective, so codim ranT = 0,hence i(T ) ≥ 0. As for S, note that it is injective, so its Fredholmness,along with the desired result for its index, will follow from:CLAIM: X = kerT ⊕ ranS.
Proof of Claim. Note first that if x ∈ kerT ∩ ranS then Tx = 0 and
x = Sy for some y ∈ Y . Thus 0 = Tx = TSy = y hence x (which= Sy) = 0.Next, suppose x ∈ X and observe that x − STx ∈ kerT , hence
x ∈ S(Tx) + kerT ⊂ ranS + kerT . Thus X = kerT + ranS, whichcompletes the proof. �

Exercises 6.3: (a) S : ω → ω. σp(S) is empty, since Sx = λx implies that
λ 6= 0 and that Snx = λnx for n ∈ N. Thus, for every n ∈ N the first
n coordinates of Snx vanish, hence the same must be true of x and so
x = 0.As for compression spectrum, since S is not surjective, 0 ∈ σc(S). Infact, σc(S) = {0}, i.e., S − λI is surjective for all scalars λ 6= 0. To seethis, fix y = ηn) ∈ ω and solve y = (S − λI)x for x = (ξn) ∈ ω. Thisvector equation is equivalent to the infinitely many scalar equations
ξn = ξn−1 − ηn)/λ for n = 1, 2, . . ., where in case n = 1 we set ξ0 = 0.The (unique) solution is

ξn = −(η1
λn + η2

λn−1 + · · · + ηn
λ

)
,which one checks does give the desired preimage for y.Summary: σp(S) is empty, while σ (S) = σc(S) = {0}(b) B : ω → ω: One checks easily that kerB consists of all vectorswhose coordinates vanish, except for the first one. So 0 ∈ σp(B).Furthermore, if λ is a nonzero scalar, and x = (1, λ, λ2, . . .), then Bx =

λx, so λ ∈ σp(B). Thus σp(B) = all scalars.
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As for compression spectrumthere isn’t any! Clearly B itself issurjective. As for B−λI with λ a nonzero scalar: fix y ∈ ω and choose

z ∈ ω (by surjectivity of B) so that Bz = −y/λ. Then by the surjectivityof S−λ−1I on ω (see part of (a) above, with λ replaced by its reciprocal)choose x ∈ ω so that (S − λ−1I)x = z. Apply B to both sides of thisequation, noting that BS = I; we obtain (I − λ−1B)x = Bz which, uponmultiplying both sides by −λ, becomes (B − λI)x = −λBz = y, asdesired.Thus: σp(B) = σ (B) = all scalars, while σc(B) is empty.(c) S : ω0 → ω0. By part (a), S − λI is injective for all scalars λ,hence just as in the ω setting, σp(S) is empty. Also, as in part (a), Sis not surjective on ω0, so 0 ∈ σc(S). But unlike the situation of part(a), there’s nothing more in the compression spectrum!Indeed, suppose λ is a nonzero scalar. Let e1 be the vector in ω0with 1 in the first coordinate and zeros elsewhere. Then by part (a)above, the equation e1 = (S − λI)x has, in ω, the unique solution
x = −(1λ, 1

λ2 , . . .)and this vector does not belong to ω0. Thus S − λI is surjective on ω0for no scalar λ.In summary: σ (S) = σc(S) = {0}, while σp(S) is empty.(d) Check that the operator Sλ = defined in the hint for Exercise6.1 gives an inverse on ω0 for B − λI when λ 6= 0. Thus σ (B) ⊂ {0}.Since B has nontrivial kernel on ω0 we have 0 ∈ σp(B). Thus on ω0:
σ (B) = σp(B) = {0}. Since BS = I on ω0 (S being the “forward shift”),
B is surjective, hence σc(B) is empty.

Exercise 6.6: (a) For S on ω, σ (S) = {0}: From Exercise 6.3(a) ranS =all scalar sequences with first coordinate zero. Since S is injective, 0is a Fredholm point of index -1. The essential spectrum is empty.(b) For B on ω: Fix a scalar λ. By Exercise 6.3(b), λ is an eigenvalueand T − λI is surjective. Now if you solve the equation Tx = λx for
x ∈ ω, you see quickly that the only solutions are constant multiplesof the eigenvector produced in Exercise 6.3(b), i.e., dim ker(B − λI) =1. Thus each scalar is a Fredholm point of index +1; the essentialspectrum is empty.(c) For S on ω0: Same as part (a).
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(d) For B on ω0: From Exercise 6.3(d), σ (B) = {0}. We already knowthat 0 is a Fredholm point of index +1, thus the essential spectrum of

B on ω0 is empty.
Exercise 6.8: Continuing from Hint A, We have a basis Ej = {ej,k}djk=1for ker(T −λj I), and desire to show that the union E of all these basesis linearly independent. Suppose some linear combination ∑aj,kej,kis zero. Split this sum up into sums first on k and then on j , thusobtaining vectors xj ∈ Ej (j = 1, 2, . . . n) that sum to zero. Any xjthat isn’t zero is an eigenvector for λj , and we know from basic linearalgebra that any collection of eigenvectors, each corresponding to adifferent eigenvalue, is linear independent. Thus each of the xj ’s mustbe zero. Since each Ej is linearly independent, this guarantees that,for each j , each of the coefficients aj,k is zero (k = 1, 2, . . . dj ). Thiscompletes the proof.
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