ALGEBRAIC FREDHOLM THEORY

JOEL H. SHAPIRO

ABSTRACT. These notes develop the purely algebraic parts of the basic theory
of Fredholm operators. The setting is vector spaces over arbitrary fields,
and linear transformations between these spaces. No topology is assumed
for the vector spaces and consequently no continuity is assumed for the
linear transformations. Within this reduced setting the notion of “Fredholm
transformation” is studied, emphasizing invertibility properties, expression of
these properties in terms of Fredholm index, invariance of these properties
under finite-rank perturbations, and implications for the study of spectra.
The exposition culminates in a Fredholm-inspired analysis of the spectra of
multiplication operators on spaces of holomorphic functions.

1. LINEAR SPACES

Throughout these notes the setting is an arbitrary, possibly infinite dimen-
sional, vector space—devoid of topology. In this initial section we'll discuss
the fundamental notions of dimension, codimension, and invertibility, empha-
sizing the computation and estimation of codimension.

Notation and terminology

In what follows, “vector space” will mean “vector space over a field F,” hence-
forth called “the scalar field,” or just “the scalars.” Since there is no topology
in sight, there will be no discussion of continuity. Symbols X, Y, and Z, possi-
bly with subscripts, will always denote vector spaces over F. The collection of
linear transformations X — Y will be denoted by Z(X,Y), or, if X =Y, just
by Z(X). The sub-collection of finite-rank transformations (those linear trans-
formations T for which ran T := T(X) is finite dimensional) will be denoted
by Z(X,Y), or, it X =Y, just by #(X) .

Basis and Dimension

Recall that a basis for a vector space is a maximal linearly independent set,
i.e., a linearly independent set whose span is the whole space. Every vector in
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the space is thus uniquely expressible as a (finite) linear combination of basis
vectors. If a linearly independent set does not span the whole space, vectors
can always be appended (often thanks to the Axiom of Choice) to extend the
original set to a basis (see , e.g., [2, §1.11, and §1.14 Exercise 2] or [3, Theorem
1.1(1), page 3)).

The dimension of a vector space is the cardinality of a basis; this number is
independent of the basis (see, e.g., [3, Theorem 1.1(ii)]). Here we will think of
the cardinality of an infinite set as just “c0”, ignoring any subtleties attached

to infinite cardinal numbers.’

In particular, dimensions of vector spaces will
be either finite or “infinite”. Thus, under the usual conventions for addition in
the set {Non-Negative Integers} U {oco}, the following fundamental result is

true even if some of the dimensions involved are infinite.

Theorem 1.1 (The “Fundamental Theorem of Linear Algebra”). If T € Z(X,Y)
then dim X = dimker T + dimran T.

Proof Fix K a basis for ker T and add a linearly independent set J of vectors
to extend this basis to one for X. Since T is injective on the span of J, it's
enough to prove that T takes J to a basis for ran T. Clearly T(J) CranT. To
see T(/) spans ran T, write an arbitrary vector in X as a linear combination
of the vectors in K U J and note that upon applying T to this vector, only
the terms involving T(J) survive. To see that T(J) is linearly independent,
suppose that the zero-vector of Y is a linear combination of vectors in T(J),
say Y_cx T(vk) = 0, where the vectors v lie in J, the ¢’s are scalars, and the
sum extends over just finitely many indices k. Let x = ) cxvk so that Tx = 0.
Thus x € (span/) Nker T = {0}, hence by the linear independence of the set
J, all the ¢ s are zero. O

Perhaps the best known application of Theorem 1.1 is the following result,
which we will encounter in increasing generality throughout the sequel.

Corollary 1.2 (Fredholm Alternative |). Suppose X is a finite dimensional
vector space and T € Z(X). Then T is injective if and only if it is surjective.

Proof. T is injective if and only if ker T = {0}. By Theorem 1.1 this is equiv-
alent to “dimran T = dim X." Since ran T is a subspace of X, and X is finite
dimensional, this last statement is equivalent to “ran T = X" O

"This informality comes at a price; not all vector spaces of “dimension co” are isomorphic.
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Examples 1.3 (Shift transformations). Here are two examples of linear trans-
formations that illustrate many of the phenomena that we are going to study.
Right now they show us that Corollary 1.2 is not true in infinite dimensional
spaces. For our vector space we'll take the collection w of all scalar sequences,
i.e., all functions from the natural numbers into the scalar field.

(@) The Forward Shift. This is the transformation S € £ (w) defined forn € N
and x € w by: Sx(n) =0ifn=1,and =x(n —1) if n > 1. That is:

Sx =(0,x(1), x(2),...) (x € w).

Thus S shifts each sequence one unit to the right, placing a zero in the newly
emptied first position. S is an injective linear transformation with range con-
sisting of those sequences with first coordinate zero, and so is not surjective.

(b) The Backward Shift. This is the transformation B € Z(w) defined by
Bx(n) = x(n + 1), e,

Bx = (x(2),x(3), ...) (X € w).

Thus B is a surjective linear transformation with kernel equal to those se-
quences that are zero except possibly in the first coordinate; it is surjective
but not injective.

Here are two further applications of the Fundamental Theorem of Linear Al-
gebra that will prove useful later on.

Corollary 1.4. Suppose T € Z(X,Y) has finite dimensional kernel, and V' is
a finite dimensional subspace of Y. Then T~(V) is finite dimensional.

Proof. Let Ty denote the restriction of T to T~'(V). ThenranTg =ranT NV
and ker Tgp = ker T (since ker T = T='{0} c T="(V)). By Theorem 1.1,
dim T='(V) = dimker To + dimran Tg = dimker T 4 dim(V Nran 7).

Since both summands on the right are finite, so is dim T='(V). g

Theorem 1.5 (Kernel of a product). Suppose T € Z(X,Y) and S € Z(Y, Z).
Then

0] dim(ker ST) = dim(ker T) + dim(ker SNran T)

Proof. The argument depends on these two facts about ker ST

(@) ker T C ker ST, and
(b) ker ST = T~ '(ker S).



4 J. H. SHAPIRO

Let To denote the restriction of T to ker ST. By (a) above, ker To = ker T, so
upon applying Theorem 1.1 to Ty : ker ST — Z we obtain:

dim(ker ST) = dim(ker Tp) + dim(ran Tg) = dim(ker T) + dim(T (ker ST))
from which follows (1), because
T(kerST) = T(T '(kerS)) = kerSnranT,
where the first equality follows from (b) above. O

Complements and Codimension

Definition 1.6 (Complements and direct sums). Subspaces X and X; of a vector
space X are called complementary if X = Xq + X2 and X1 N X3 = {0}. When
this happens we write X = X1 @ X3, call Xj and X5 (algebraic) complements
of each other, and call X the (algebraic) direct sum of X; and X.

Here is a reinterpretation, in the language of complements, of the fact that
any linearly independent set of vectors can be extended to a basis.

Proposition 1.7 (Complementary extension). If X is a vector space with sub-
spaces M and N such that MN'N = {0}, then X = M@ N for some subspace
N> N.

Proof. If M+ N = X there is nothing to prove, so suppose this is not the case.
Take bases By for M and By for N and note that, since MN N = {0}, the set
Bum U By is linearly independent. Thus we may choose a linearly independent
set K of vectors so that By;UBNUK is a basis for X. Then N := span (ByUK)
contains N, and when summed with M produces X. O

“External” direct sums. It is easy to check that X = X; & X, if and only if each
x € X is uniquely represented as a sum x = xq + x where x; € X; (j = 1,2).
Thus the map that associates x with the ordered pair (x1, x2) is an isomorphism
taking X onto the cartesian product X; x X; a vector space when endowed
with coordinatewise operations.

Conversely, we can think of a cartesian product X = X7 x X5 of vector spaces
(over the same field) as the direct sum X7 @ X, by identifying X; with the
subspace X; x {0} and X3 with {0} x X5. From now on we'll use the nota-
tion X1 @ X5 to denote either the previously defined “internal” direct sum of
subspaces, or the just-defined “external” cartesian product of vector spaces,
relying on context to distinguish the two notions.
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Definition 1.8 (Codimension). If M is any proper subspace of X, then whenever
we complete a basis of M to one for X, the span of the added vectors will be
a complement for M, and any such complement can be viewed as arising in
this way. Thus the dimensions of all the complements of M are the same
(possibly “infinity”). This common dimension is called the codimension of M
in X, denoted by codim (M, X). If there is no confusion about the ambient

space X, we'll just write codim (M) and call it the “codimension of M." In case
M = X we define codim (M, X) = 0.

Exercise 1.9. Suppose F € Z(X,Y) has finite rank, and that dim X = oc.
Show that ker F has infinite codimension in X. 2

Throughout these notes it will be crucial for us to be able to compute, or at
least to estimate, codimension. As a start, observe from the definition that if
X = M@ N then codimM = dim N, even if “c0” is allowed; this yields the
following transitivity property of codimension, which holds even if some of the
codimensions involved are infinite:

If M and N are subspaces of a vector space X and M C N C X, then

(2) codim (M, X) = codim (M, N) 4+ codim (N, X).

In particular:

Corollary 1.10 (Transitivity of finite codimension). /f M has finite codimension
in N and N has finite codimension in X then M has finite codimension in X.
It will be useful to have several different ways to get a handle on codimension.

Here is an estimate that involves sums that are not necessarily direct.

Proposition 1.11 (Codimension and sums). Suppose M and N are subspaces
of X for which X = M + N. Then codimM < dim N

Proof Let By be a basis for M N N and extend by vectors By to a basis
for N. Let Ny = spanBjy. Then Nj is a subspace of N with Ny N M =
Nin(MNN) = {0} (by the linear independence of B1UB;). Thus X = M@ N,
so codimM = dim Ny < dim N. O

Corollary 1.12. Suppose M is a subspace of X and T € Z(X,Y). Then
codim (T(M), T(X)) < codim (M, X)

2For selected exercises: see Appendix B for hints and Appendix C for solutions.
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Proof. We have X = M@®N with codimM = dim N. Thus T(X) = T(M)+T(N),
so by Proposition 1.11: codim (T (M), T(X)) < dim T(N) < dim N. O

Codimension also admits a characterization through quotient spaces.

Definition 1.13 (Quotient space). If M is a subspace of the vector space X the
quotient of X by M, written X/M, is the collection of cosets

x+M:={x+m: M}

The quotient space X/M, when endowed with the algebraic operations it in-
herits from X, namely

X+M+(y+M):=Kx+y)+M and a(x+M):=(ax)+M

for x,y € M and o a scalar, becomes a vector space over the original scalar
field. The quotient map Q : x — x+M is then a linear transformation taking X
onto X/M, and having kernel M. Upon applying Theorem 1.1 (the Fundamental
Theorem of Linear Algebra) to this map we obtain the promised quotient-space
characterization of codimension:

Proposition 1.14 (Codimension via quotients). /f M is a subspace of a vector
space X, then codim M = dim X/M.

Proposition 1.14 provides an easy proof of a codimension calculation that we'll
need in §4.

Corollary 1.15. Suppose the vector space X is the (not necessarily direct) sum
of two subspaces M and N. Then codim M = codim (M N N, N).

Proof. According to Proposition 1.14, another way to phrase the desired con-
clusion is: “dim X/M = dim N/(M N N)". To prove this we need only find
an isomorphism between the featured quotient spaces. An obvious candidate
springs to mind: Since X = M + N, each coset of X modulo M has the
form n 4+ M for some vector n € N. | leave it to you to check that the map
T:n+M—n+ MnN)is “well-defined”, linear, and takes the quotient
space X/M onto N/(M N N). That T is injective follows from the fact that
if T(n +M) :=n+ (MnN N) is the zero-vector of X/(M N N), ie. the coset
(MNN), then n € M, hence the original coset n+M is just M, the zero-vector
of X/M. O

Exercise 1.16 (Alternate proof). Prove Corollary 1.15 by starting with a basis
for M N N and extending it two ways: to a basis for M and to a basis for N.
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We will meet up with quotient spaces in a different context when in §4 we
study the invertibility properties of Fredholm transformations.

Direct sums of linear transformations

Definition 1.17. Suppose Xi, X2 are complementary subspaces of X, and Y;,
Y, are complementary subspaces of Y. Then for T; € Z(X;, Y}) with j = 1,2
we can define a linear transformation T : X — Y by T(x1 + x2) = T1x1 + Taxa.
That this definition is unambiguous follows from the fact that each vector in X
is uniquely the sum of a vector in X7 and a vector in X3. We write T = T1® T,
and refer to T as the direct sum of Ty and T>.

The notion of “external direct sum” of vector spaces (the cartesian product,
endowed with coordinatewise algebraic operations) gives rise to a companion
direct sum construction for linear transformations. If 7; € Z(Xj, Yiyforj=1,2,
then we define T1 @ T, on the external direct sum X7 & X3 by

(T1 fay) Tz)(X1,X2) =Tix1 + hxy (X1 e X1,x € Xz).

As in the case of direct sums of vector spaces, we will rely on context to
distinguish between the “external” and “internal” notions of direct sum for
linear transformations.

Invertibility

We all know that a linear transformation 7 : X — Y is invertible (meaning:
there exists a linear transformation S : Y — X such that ST = Ix and
TS = ly) if and only if T is both injective and surjective. Here is a result that
generalizes this in two different ways.

Theorem 1.18 (One-sided Invertibility). T € Z(X,Y) is:

(@) Injective if and only if it is left-invertible (i.e., there exists S € Z(Y, X)
such that ST = Ix).

(b) Surjective if and only if it is right-invertible (i.e., there exists S &
Z(Y,X) such that TS = ly).

Proof That left-invertibility (resp. right-invertibility) implies injectivity (resp.
surjectivity) is trivial. The converses require a little work.

(@) Suppose T is injective, so it is an invertible map when viewed as a trans-
formation from X onto ran 7. Let Sg: ran T — X be the inverse of this linear
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transformation. Let N be a subspace of Y complimentary to ran T, so that
Y =ranT @ N. Define S: Y — X by setting S equal to Sg on ran T and (for
example) equal to zero on N. Then S is a linear transformation Y — X with
ST =lx.

(b) Suppose T is surjective, i.e, ranT = Y. Choose a subspace M of X
complementary to ker T; then Ty is an isomorphism of M onto Y. Let S
denote the inverse of this isomorphism, but now regarded as a map taking Y
into X. Then S: Y — X is a linear map with TS = Iy. O

2. LINEAR FuUNCTIONALS

Here we'll continue the theme of finding different ways to compute codimension,
this time via linear functionals.

A linear functional is a scalar-valued linear transformation on a vector space.
The collection of all linear functionals on the vector space X is called the
dual space of X, denoted herein by X’. Clearly X’, endowed with pointwise
operations, is itself a vector space over the original scalar field.

An important class of linear functionals arises whenever we encounter a basis.
In order to cleanly generalize notions like “n-tuple” and “sequence” we use
the terminology “indexed set” {v, : a € A} to refer to a function v defined on
a set A, where v, denotes the value of v at a € A.

Definition 2.1 (Coordinate functionals). Recall that a (possibly infinite) in-
dexed set of vectors {e, : a € A} is a basis for a vector space X if and only
if: for every x € X there is a unique indexed set {Aq(x) : a € A} of scalars,
all but a finite number of which are zero, such that x = ) -, A4(x)eq. Thus
for each a € A we have a function A\, : X — {scalars}, and it’s easily checked
that this function is linear. The linear functionals {A, : @ € A} are called the
coordinate functionals of the basis {e, : a € A}.

Definition 2.2 (Biorthogonality). Indexed sets {e,} of vectors and {A,} of
linear functionals are said to be biorthogonal whenever A,(ep) = 0 if a # b,
and =1ifa =b.

In the above definition we also say the vectors are biorthogonal to the func-
tionals, and vice versa.
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It's easy to check that whenever {e,} and {Aq} are biorthogonal, then both
are linearly independent. In particular, the coordinate functionals for a basis
form a linearly independent set in the dual space.

An important property of linear functionals is their ability to separate points
from subspaces.

Theorem 2.3 (Separation Theorem). Suppose M is a proper subspace of a
vector space X, and x € X does not belong to M. Then there exists a linear
functional \ on X that vanishes on M, but not at x.

Proof. Let M; be the linear span of M and x, so M; = M & span{x}. Define
A on My by

A(m + Ax) = A (me M,y el).
Thus A = 0 on M and A(x) = 1. If My = X we are done. Otherwise let N
be a subspace of X complementary to M; (see Definition 1.6) and extend A to

all of X, keeping the same name, by defining it to be zero, for example,3 on
N. O

The latter part of the argument above proves that:

Any linear functional on defined on a subspace can be extended
to the whole space.

Thus, for linear functionals the notions of separation and extension are inex-
tricably entwined.

We study next the connection between kernels of linear functionals and codi-
mension of subspaces. The first of these shows that nontrivial linear functionals
have kernels of codimension one.

Proposition 2.4. Suppose A is a linear functional on X, and e € X with
A(e) # 0. Then X = ker A\ @ span{e}.

Proof. By hypothesis ker A N span{e} = {0}. If x € X then

A
X — /\23 e € kerA\,
hence x € ker A + span{e}. Thus X = ker A @ span{e}. O

Corollary 2.5 (Kernel containment I). Suppose A and /\1 are linear functionals
on X. Then ker A D ker Ay if and only if N\ = c¢/\1 for some scalar c.

3... or, equally well, any other linear functional.
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Proof. If A 'is a scalar multiple of /A1 then it's clear that the kernel of A contains
that of /A1, so the issue is to prove the converse.

Suppose ker A D ker Aq. If A1 is the zero-functional, then both kernels equal
X, so both functionals are identically zero and the result is trivially true.
Suppose, then, that /\1 is not identically zero, i.e., there exists e € X with
A1(e) # 0. Then according to Proposition 2.4, X = ker/\; @ span{e}. We
may, upon properly scaling e, assume that Aq(e) = 1. Thus if x € X we have
x = x1 + \(x)e, where x; € ker/\1. By our hypothesis on the containment of
kernels, x1 € kerA, so A(x) = A1(x)A(e). Since this is true for all x € X we
have shown that A = A(e)/\1, hence the desired result holds with ¢ = A(e). O

The next two results give significant generalizations of Corollary 2.5; the first
leads to a short proof of the second.

Proposition 2.6 (Kernel containment Il). Suppose T € Z(X,Y) and \ € Y'.
Then ker T C ker A if and only if A\=Ao T for some A € Y.

Proof. If A = AoT then the containment of kernels is obvious. For the converse,
note that the hypothesis on kernel containment insures that the equation

ATx):=AK)  (x € X)

defines a linear functional on ran T (the point being that if Tx; = Tx, then
x; —xz € ker T C ker A, and so A(x;) = A(x2), i.e., the value of A(Tx) depends
only on Tx, and not on x.) If ranT = Y we are done. Otherwise choose a
subspace N complementary to ran T and extend A, as in the proof of Theorem
2.3, to a linear functional on all of Y. The resulting functional, which we’ll still
call /~\, does the job! O

Theorem 2.7 (Kernel containment lll). Let & = {A\; : 1 < j < n} be a finite
subset of of X'. Then A\ € X’ lies in span & if and only if ker A\ D ﬂ}’:1 ker A\;.

Proof. It's clear that if A is a linear combination of the A;'s then its kernel
contains the intersection of the kernels of the /\j's.
For the converse, suppose kerA D N7 kerA;. Let Y be the direct sum of n

copies of the scalar field, and define T € Z(X,Y) by

Tx = (M), A2x), - Aal)) =Y Ai(xe;  (x € X),
j=1
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where, in the last equality, e; denotes the j-th standard basis vector for Y, ie.,
the vector whose j-th coordinate is 1, with all other coordinates equal to zero.
Since the kernel of T is just the intersection of the kernels of the A;'s, our
hypothesis on the containment of kernels simply asserts that ker A D ker T,
whereupon Proposition 2.6 provides A € Y’ such that A = Ao T. Thus for
each x € X:

A=ATx) = A[D Ae | =) ANAE) = | DA | (¥)
J J J

where ¢; = /\(ej). Thus A = Zj cj\\j, e, A lies in the span of the A/'s. (]

Exercise 2.8 (Counterexample for n = oco). Show that the nontrivial part of
Theorem 2.7 cannot be extended to the case of infinitely many linear functionals
Ap.

Suggestion: Work on the space w of all scalar sequences, and for n € N
let A\, be the linear functional of “evaluation at n” (or the “n-th coordinate
functional” if you prefer to think of sequences as lists): A,(x) = x(n) for x € w.

Theorem 2.7 can be rephrased like this:

A finite set of linear functionals is linearly independent if and
only if the kernel of no one of these functionals contains the
intersection of the kernels of the others.

Equivalently, {A1, ... Ay} C X’ is linearly independent if and only if: for each
Jj between 1 and n there exists a vector e; such that Aj(e;) =1 and Aj(ex) =0
if j # k (1 < k < n), Le, the n-tuple of vectors (e1 ... e,) is biorthogonal to
the n-tuple of A’s (see Definition 2.2). The language of biorthogonality allows
a further rephrasing of Theorem 2.7:

Corollary 2.9 (Independence and biorthogonality). An n-tuple of linear func-
tionals is linearly independent if and only if it has a biorthogonal n-tuple of
vectors.

Given a biorthogonal system of vectors {e, : @ € A} and linear functionals
{Ae¢ : @ € A}, we can reverse roles and regard the vectors as functionals on
the functionals, e.qg., eq(Ag) := Ag(eq). Thus Corollary 2.9 implies that not
only are the functionals linearly independent, so are the vectors (a fact which,
as we noted on page 9, is easy to prove directly).
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The results established so far set the stage for our main result on the compu-
tation of codimension via linear functionals.

Theorem 2.10 (Kernels and codimension). A subspace M of the vector space
X has codimension n (possibly = oo) if and only if M is the intersection of
the kernels of a linearly independent set of n linear functionals on X.

Proof. We'll consider finite and infinite codimension separately.

Case I: n < oo. Suppose first that {A1, A2, ... Ay} is a linearly independent
subset of X', and M := N7_q kerA;. By Corollary 2.9 the n-tuple (A1, ... Ay)
has a biorthogonal n-tuple of vectors (eq, ... e,) which, as we have noted
previously, forms a linearly independent subset of X. Thus the linear span £
of these vectors is a subspace of X having dimension n. Suppose x € E N M.
Then x = 3 7 Aj(x)e; since x € E, but Aj(x) = 0 for all j since x € M.
Thus x = 0, i.e.,, E has trivial intersection with M. That X = M + E follows
immediately from the fact that, for each x € X, the vector x — 27:1 Aj(x)e; lies
in M. Thus X = M @ E, hence codimM = dim E = n, as desired.*

Conversely, suppose M is any subspace of X having codimension n. Then
there is a subspace E of X having dimension n for which X = M @& E. Let
{e1,e2, ... ey} be a basis for E, and let {\1,/A2, ... A,} be the coordinate
functionals for this basis, iLe,,

x=Y Nxe; (x€E)
j=1

Extend each A; to a linear functional on X (keeping the same name) by defining
it to be the zero-functional on M. The collection of extended A;'s inherits the
linear independence of the original one and, by the way we extended the A;’s,
the subspace K := 07:1 ker A\; contains M. In fact, K is equal to M. To see
why, suppose x € K, so x = m+e where m € M and e € E. Now for any index
J, the definition of K and the fact that M C K imply that 0 = A;(x) = A;(e).
Thus e = 0 (since the A;'s are coordinate functionals for a basis of N), hence
x € M. Thus K both contains and is contained in M, i.e.,, K = M.

Caske Il: n = oo. Suppose M is the intersection of the kernels of an infinite
linearly independent subset A, : @ € A} of X". Given n € N choose a subset
Ap of the index set A having cardinality n. Then the intersection of the kernels

4See Exercise 2.11 below for more on the expression Z}]ﬂ Aj(x)e; which appeared in this
argument.



ALGEBRAIC FREDHOLM THEORY 13

of the functionals A, for a € A, contains M, and by Caske | has codimension
n. Thus codimM > n. Since n is an arbitrary positive integer, codim M = oo.

Conversely, suppose codinM = oo. Then M has an infinite dimensional
complement N, which has a basis {e, : @ € A} for some infinite index set
A. Now proceed as in Case I: extend the coordinate functionals {A, : a €
A} for this basis by defining each extension to be zero on M, observe that
the extended functionals are linearly independent, and that M lies in the
intersection K of their kernels. The same argument used in Case | (whose
transposition to the case n = oo | leave to the reader) now implies that
K = M, and completes the proof. O

Exercise 2.11 (Projections). Suppose M is a subspace of a vector space X
and P € Z(X) is the identity operator on M, and the zero-operator on some
complementary subspace E of M. We call P the projection of X onto M along
E.

(a) Make some sketches in R? to illustrate this situation.

(b) Suppose M and E are subspaces of the vector space X with X = M@E,
so that each x € X has the unique representation x = e+m withe € £
and m € M. Show that the mapping P : x — e is the projection of X
onto E along M.

(c) Show that P € Z(X) is a projection (onto its range, along its kernel)
if and only if P2 = P.

(d) Suppose X = M @ E and that {e, : a € A} is a basis for E, with
coordinate functionals {Aya € A}. As in the proof of CasE | of Theorem
210, extend each coordinate functional to X by defining it to be zero
on M. Show that the map P : x — ) Aq(x)eq is the projection of X
onto E along M.

Polars

For a subset S of the vector space X, the polar of S, denoted S°, is the set
of linear functionals on X that take the value zero at each point of S. One
checks easily that the polar of any subset of X is a subspace of X’, and that
the polar of a set coincides with the polar of its linear span.

Theorem 2.12 (Polars and codimension). Suppose X is a vector space and M
a subspace of X. Then codim M = dim M°.
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Proof. First suppose codimM = n < oo. Then by Theorem 210, M =
07:1 ker Aj, where the set of functionals {A;}{ is linearly independent in X’.
Since each A; annihilates M, it lies in M°. Thus M° D span{/A\1, /A2, ... Ay}
On the other hand, if A € M° then ker A contains in M, so A, by Theorem 2.7,
is a linear combination of the A;’s. Thus span{/A;,/A2, ... A,} contains—and
is therefore equal to—M?°, hence dim M° = n, as desired.

If, on the other hand, codim M = oo, then Theorem 2.10 guarantees that M is
the intersection of the kernels of an infinite set of linearly independent linear
functionals on X. Since each of these belongs to M° we see that M° has
infinite dimension. 0

Is there a similar connection between the codimension of M° in X’ and the
dimension of M? The next result provides the key.

Proposition 2.13 (Dual of a direct sum). If M and N are subspaces of X with
X=M®aN, then X' = M° & N°.

Proof. For A € X', let A1 be the linear functional obtained by restricting A to
M, then extending this restriction to X by defining it to be zero on N. Define
A2 by similarly extending the restriction of A to N. Thus Ay € N°, A\, € M°,
and A = A1 + Ap. Consequently X’ = M° + N°.

As for the “directness” of this sum, note that if A € M° N N° then A is

identically zero on both M and N, hence is identically zero on all of X. Thus
Me° n N° = {0}. O

Corollary 2.14 (Polars and codimension). If M is a subspace of a vector space
X, then dim M = codim M°.

Proof. Choose a complementary subspace N of M, so that X = M & N and
dim M = codim N. Theorem 2.12 asserts that codim N = dim N°, while Propo-
sition 2.13 provides the decomposition X’ = M° @ N°, from which it follows
that dim N° = codim M°.

In summary: dim M = codim N = dim N° = codim M°, as promised. O

Adjoints

Proposition 2.6 suggests that for T € Z(X, Y) we might profitably study the
map T’ defined by T’A =AoT for A € Y. Clearly T’, called the adjoint of
T, is a linear transformation from Y’ to X'.
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Furthermore, in Proposition 2.6 the statement ker T C ker A asserts that the
linear functional A belongs to the polar of ker 7. Part (a) of the next result
simply rephrases Proposition 2.6 in the language of adjoints and polars.

Theorem 2.15 (Polars and adjoints). For T € Z(X,Y):

(@) (kerT)° =ranT’
(b) (ranT)° =ker T’

Proof. (a) As noted above, the statement ker T C ker A translates to: “A &€

(ker T)°", and the equivalent (according to Proposition 2.6) statement “A =
T o A" becomes “A = T'(A)”.

(b) The statement “A € (ran 7)°"” means that A\ takes the value zero on ran T,
e, that T"(A)(x) := A(Tx) = 0 for every x € X, ie, that T'’A = 0. Thus
A € (ranT)° if and only if A € ker T". O

Exercises 2.16. Suppose T : X — Y is a linear transformation.

(@) Show that T is invertible if and only if 7' : Y — X’ is invertible.
(b) Examine the connection between left and right invertibility for T and
for T'.

3. STABILIZATION

In this section we’ll characterize the important class of linear transformations
on a vector space that have the form “isomorphism @ nilpotent.”

For T € Z(X) and n a non-negative integer let R, := ranT” and K|, :=
ker T". Then the “range sequence” (R,) is a decreasing sequence of subspaces
of X:

(3) X=RODRRDRyD ---
while the “kernel sequence” (K,) is an increasing sequence of subspaces:
(4) {0}=K()CK1CK2C~--

More generally let's say that say a monotonic sequence (E,) of sets:

e |s stable at index N it En = Enyq = -+,

e Stabilizes at index N if N is the smallest index at which it is stable,
and just plain ...

e Stabilizes if it stabilizes at some index.
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Furthermore, let’s say that a transformation T € Z(X) is stable if both its
range and kernel sequences stabilize. Clearly any linear transformation on a
finite dimensional vector space is stable. On the other hand, the forward and
backward shifts on the sequence space w are not stable.

Examples of stable transformations that will play important roles in our later
work are the nilpotent ones (some positive power is zero) and transformations
of the form “finite-rank plus identity,” the so-called finite-rank perturbations
of the identity.

Proposition 3.1. Nilpotent transformations are stable.

Proof. Suppose T € .Z(X) and TN = 0 for some N € N. Then for all integers
n > N we have Ky = X and Ry = {0}. O

Proposition 3.2. Finite rank perturbations of the identity are stable

Proof. Suppose T = | + F where [ is the identity transformation and F is a
finite rank transformation, both acting on X. Then ker T C ran F and, since
T =1on kerF, we have ran T D ker F.

Now for each n € N the Binomial Theorem quarantees that 7" =/ + G,F =
I+ F G, where G, € Z(X) commutes with F. Upon applying the result of the
above paragraph, with T" in place of T, we see that K, C ranFG, C ran F
and R, D kerG,F D kerF. Since ranF is finite dimensional and ker F
finite codimensional, both the (decreasing) range sequence and the (increasing)
kernel sequence of T must stabilize. (]

Corollary 3.3. Any direct sum of a nilpotent linear transformation and an

isomorphism is stable.

Proof. Suppose V € Z(X) is an isomorphism of X onto itself, and N € Z(Y)
is nilpotent, say of order v. Let T = V@& N € Z(X @ Y). Then (adopting
the “external” point of view) for all n > v we have ran TV = X x {0} and
ker T¥ = {0} x Y. O

The following remarkable structure theorem provides the converse to Corollary

3.3; it shows that stability is, in fact, equivalent to “isomorphism & nilpotent.”

Theorem 3.4 (The Stabilization Theorem). Suppose that for T € Z(X) is
stable. Then:
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(a) Both the range and kernel sequences stabilize at the same index—call
itv.

(b) X =R, ®K,.

(c) T=Ti® T, where Ty := T|g, is an isomorphism of R, into itself, and
T, := Tk, is nilpotent of order v.

To say a linear transformation is nilpotent of order v means that TV = 0, but
Tv1 + 0.

The proof is best broken into a number of steps, some of which are interesting
results in their own right. In the first two steps we do not assume the full
stability of T.

Step |: Stabilization somewhere. It's obvious from the definition R, := T"(X)
that if R, = Ry4+1 then R,41 = Ry42. Thus, if the range sequence stabilizes
at all, it stabilizes at the first place where there is equality between two
successive terms.

A similar result for the kernel sequence follows from the fact that, in general,
ker(ST) = T~ '(ker S). In particular, K,41 = T~'(K,) for each n, hence

Kns1 =Ky = T (K1) = T 1(Ka) e, Kpy2=Kng1.

Thus—just as for the range sequence—if the kernel sequence stabilizes at all,
it stabilizes at the first place where two successive terms are equal. (]

Step |l: Equivalents to stabilization. For n =0,1,2, ...,

(@) Ky, =Ky1 &= K,NnR,={0}
(b) Rh =Ry = Ky, +R,=X.

Proof. (i) Suppose K, N R, = {0}; we wish to show that K, = K, ;1. Since
K, C K41 we need only show the opposite containment. For this, suppose
x € Kpi1, 50 T"1x = 0. Then

T"x e Ry,NKy C R, NK, = {0},
so x € K.

Suppose, conversely, that K, = K, +1. Then if x € K, N R, we have T"x =0
and x = T"x’ for some x’ € X. Thus x’ belongs to K, which, by Step I, is
equal to K,. So x = T"x" =0, hence K, N R, = {0}, as desired.
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(it) Suppose X = R, + K. Upon applying 7" to both sides of this equation
we obtain R, := T"(X) = T"(R,), that is, R, = Ry,. But Ry, C Ryi1 C R,
Trivially R, C Rp+1, so R, = Ry4+1 as desired.

Suppose, conversely, that R, = R,+1. Then by Step |, R, = Ry, so given
x € X we have T"x = T2"x’ for some x’ € X, whereupon T"(x—T"x") =0, i.e,,
x—T"x" € K,. Consequently x € K, +{T"x'} C K, +R,. Thus X = K, +R,,
as desired. O

The next step shows that if the range sequence stabilizes from the very begin-
ning, then so does the kernel sequence, and vice versa.

Step lll: The “Fredholm Alternative-1I" (cf. Corollary 1.2).

(1) If T is surjective and its kernel sequence stabilizes, then T is injective.
(ii) If T is injective and its range sequence stabilizes, then T is surjective.

Proof. (i) Suppose T is surjective and (K,) is stable at index N, ie., Ky =
Knt1 = ---. By surjectivity, the range sequence is stable at index zero, i.e.,
R, = X for all n, so by Step Il(ii), {0} = Ky N Ry = Kn. Therefore TN is
injective, hence so is T.

(it) Suppose T is injective, and that the range sequence is stable at index N.
By Step lI(i) we have X = Ry + Kn. But Ky = {0} since T, and hence TN
is injective. Thus X = Ry, i.e, TN is surjective, and therefore so is T. O

Step IV: Completion of proof of Part (a). (1) Suppose the range sequence is
stable at index N and the kernel sequence stabilizes. Then Tn = TN|RN
maps Ry onto itself, hence by “Fredholm Alternative-II" (STep Ill above) it is
injective, i.e.,

{0} = ker Ty = ker TN N Ry = Kn N Ry.
Thus by Step ll(i) the kernel sequence is stable at index N. Thus the kernel
sequence stabilizes no later than the range sequence.

(il) Suppose the kernel sequence is stable at index N and the range sequence
is stable somewhere, say at index M, so by Step ll(il) X = Ky + Ry. By part
(i) above, N < M, so

X=Ky+Ru=Kny+RuCKn+ Ry CX,
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so there is equality throughout, i.e., X = Ky + Rn. STeP lI(i) now guarantees
that Ry = Rn4+1, Le., the range sequence can stabilize no later than the kernel
sequence.

(iii) Summarizing: If both the range and kernel sequences stabilize, then
the kernel sequence can stabilize no later than the range sequence (part (i)
above), and the range sequence can stabilize no later than the kernel sequence
(part(ii)). Hence they must both stabilize at the same index. This completes
the proof of Part (a) of the Theorem. O

Step V: Direct sum decomposition. The fact that X = R, & K, now follows
immediately from Step II.

Step VI: Isomorphism plus nilpotent. By Step IV both the range and kernel
sequences for T stabilize at the same index v, and by STer V we have X = R,®
K. Since Ty, the restriction of T to R,, maps R, onto itself and, since ker T C
Ky, Ty is also injective, hence invertible on R,. As for T, the restriction of T
to K, the fact that K, = {0} means that T; = 0, while the strict containment
of Ky_1 in K, means that Tz"_1 # 0. Thus T3 is nilpotent of index v, and T is
the direct sum of 77 and T,. This completes the proof of Theorem 3.4. O

For a linear transformation T on a finite dimensional vector space the range
and kernel sequences must stabilize. In this situation the above Corollary
provides the first step in the Jordan decomposition of T. Here one works over an
algebraically closed field, say the complex numbers, and given an eigenvalue
A for T performs the decomposition of Theorem 3.4(c) on the transformation
T —Al. Having done that, one moves on to the isomorphic part of that operator,
showing that its underlying subspace is also T-invariant. Then the process is
repeated for the next eigenvalue, and proceeds until T is decomposed into the
direct sum of operators of the form “nilpotent plus eigenvalue times identity".
The rest of the proof of the Jordan decomposition then involves decomposing
the nilpotent parts into cyclic sub-parts, see [1, Chapter 8] for example.

4. FREDHOLM TRANSFORMATIONS

In this section we develop the basic theory of Fredholm linear transforma-
tions with emphasis on the connection between Fredholmness and invertibility,
which we eventually encapsulate in the notion of Fredholm index.
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Definition 4.1 (Fredholm transformations). By a Fredholm transformation we
mean a linear transformation between vector spaces X and Y whose kernel is
finite dimensional and whose range has finite codimension in Y. The class of
Fredholm transformations from X into Y will be denoted ®(X, Y), with ®(X, X)
abbreviated to ®(X).

Examples 4.2 (Important Fredholm transformations). Clearly every linear trans-
formation between finite dimensional vector spaces is Fredholm, as is every
invertible linear transformation between any two vector spaces. The zero trans-
formation is Fredholm if and only if the underlying space is finite dimensional.

Here are three further important examples.

(@) The Forward Shift. This is the transformation S defined in §1.3(a) on
the vector space w of all scalar sequences; it has trivial kernel and range of
codimension one, and so is Fredholm.

(b) The Backward Shift. This is the transformation B defined on w in §1.3(b);
it has range w and kernel of dimension one, hence is Fredholm.

(c) Finite rank perturbations of the identity. In the proof of Proposition 3.2
we observed that if T € Z(X) has the form / + F where [/ is the identity on
X and F € Z(X) has finite rank, then: ran T contains ker F, so has finite
codimension, and ker T is contained in ran F, and so has finite dimension.
Thus T is Fredholm.

Exercise 4.3. Characterize those pairs of vector spaces (X, Y) for which ®(X, Y)
is non-empty.

Exercise 4.4 (Direct sums). Suppose T; € Z(X;,Y;) for j = 1,2, let X =
X1 @ Xy as in §1.17. Show that T is Fredholm if and only if both 77 and T,
are Fredholm.

Theorem 4.5 (The Product Theorem). If T € ®(X,Y) and S € d(Y,2),
then ST € ®(X, 2).

Proof. We need to show that ST : X — Z has finite dimensional kernel and
finite codimensional range. The finite dimensionality of the kernel follows
from Theorem 1.5. For the finite codimensionality of the range, note that since
ran T has finite codimension in X, Corollary 1.12 (with Y = ran S) guarantees
that ran ST = S(ran T) has finite codimension in S(X) = ran S. Since ran S
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has finite codimension in Z, the finite codimension of ran ST in Z follows by
Corollary 1.10 (transitivity). ]

Here are a couple of exercises that explore the possibility of a converse to the
Product Theorem.

Exercise 4.6 (Fredholm Roots). Suppose T € .Z(X), k € N, and Tk € ®(X).
Show that T € ®(X).

Exercise 4.7 (Fredholm Factors). Suppose S, T € Z(X) with ST € ®(X).
Must S and T be Fredholm?

Invertibility

Consider once again the forward shift S and the backward shift B (see Exam-
ples 1.3 and 4.2), both acting on the space w of all sequences of field elements.
Note that BS = [/, while SB differs from /, by a rank-one transformation.
Thus S and B are, in some sense, “invertible modulo finite rank transforma-
tions.” The next two theorems, which make this notion precise, assert that such
“almost-invertibility” is synonymous with being Fredholm.

Theorem 4.8 (First Invertibility Theorem). T € Z(X,Y) is Fredholm if and
only if there exists a linear transformation S : Y — X such that both ST — Ix
and TS — Iy have finite rank.

Proof. (a) Suppose T is Fredholm. Let X; be a complement for ker T in X,
and Yy a complement for ran T in Y. Because T is Fredholm, ker T is finite
dimensional and ran T finite codimensional. The diagram below summarizes
the situation; here T, the restriction of T to Xj, is an isomorphism taking Xj
onto ran T.

T

X — Y Fredholm
[ [
kerk T -5 Y Finite dim’l
S S
Xi Dy oranT Isomorphism

The Fundamental Fredholm Diagram

Define S : Y — X as follows: S = T1_1 onranT and S = 0 on Yy. Then
one checks that ST is the identity map on the subspace Xj, and ST = 0 on
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ker T. In other words, ST is the “projection of X onto X along ker T." Thus
Fq := Ix — ST is the projection of X onto ker T along Xj; it is a finite rank
transformation, so ST = [x — F4, a finite rank perturbation of the identity.

Similarly: TS coincides with Iy on ranT, and is = 0 on Yp, so TS is the
projection of Y onto ran T along Yp. Thus Fo := Iy — TS is the projection
of Y onto Yy along ran T, another finite rank transformation, which reveals
TS = ly — Fp to be a finite rank perturbation of the identity.

(b) For the converse we recycle the idea used in Proposition 3.2 and Example
4.2(c). Suppose there exists S € Z(Y, X) such that ST — Ix = F; and
TS —Ix = Fo, where Fp and F7 are finite-rank operators. Then ker T C ran F4
so ker T has finite dimension, and ran T D ker Fg so (by Theorem 1.1) ran T
has finite codimension. Thus T is Fredholm. O

Now that the Theorem is proved, note that it guarantees that the transformation
S in its hypothesis is necessarily Fredholm. More importantly, it quarantees
that “Fredholmness is stable under finite rank perturbation:”

Corollary 4.9 (Finite-rank Perturbation Theorem I). If T € ®(X,Y) and F €
F(X,Y) then T + F € &(X,Y).

Proof. We know from Theorem 4.8 that there exists S € Z(Y, X) that is an
“almost-inverse” of T in the sense that there exist finite rank linear transforma-
tions (4 : X —= X,and F2: Y — Y suchthat ST—Ix=Fiand TS—1Iy = F>.
The idea here is to show that S is also an “almost inverse” for T + F. Indeed,

S(T+F)—Ix=ST—Ix+SF =F +SF,
and

(T+FA)S—-Ily=TS—Iy+FS=F,+FS,
Since both SF and F S have finite rank, so do S(T+ F)—Ix and (T+F)S—1y,
hence T + F is Fredholm by the converse implication of Theorem 4.8. O

Quotient Algebra Interpretation. The vector space .Z(X) of all linear trans-
formations on X is an algebra over the scalar field, and the subspace .7 (X)
of finite rank transformations is a two-sided ideal in that algebra. It follows
that the quotient space Z(X)/.#(X) is an algebra over the same field. In this

setting the First Invertibility Theorem asserts that:

A linear transformation on X is Fredholm if and only if its coset
in L (X)|Z(X) is invertible.
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By paying a little more attention to the proof of the First Invertibility Theorem
we can considerably refine that result.

Theorem 4.10 (Second Invertibility Theorem). Suppose T € ®(X,Y).

(@) If dimker T = codimran T, then some finite rank perturbation of T
is invertible

(b) /f dimker T < codimran T then some finite rank perturbation of T is
left-invertible

(c) If dimker T > codimran T then some finite rank perturbation of T is
right-invertible

Proof. Referring to the “Fundamental Fredholm Diagram” on page 21:

(a) If dimker T = codimran T then, in the diagram, ker T and dim Yy both have
the same (finite) dimension, so there is an isomorphism F taking ker T onto
Yo. Extend F to all of X (keeping the same name) by setting F = 0 on Xj.
Thus F € Z#(X,Y), and T := T + F is a linear transformation from X to Y
that is equal to 7 on Xj, and to F on ker T. Consequently T is an injective
linear map taking X onto Y, so it is invertible.

(b) Suppose dimker T < codimran T, i.e., dimker T < dim Yy. Then there is
an injective linear map F : ker T — Y;. Define T as before, and observe that
it is an injective linear map X — Y. Therefore, by Theorem 1.18(a), T has a
left-inverse.

(c) Suppose dimker T > codimran T, i.e, dimker T > dim Yy. Then there is a
finite rank transformation F taking ker T onto Yp, so upon defining T : X — Y
as before we see that 7 maps X onto Y. Thus, by Theorem 1.18(b), T has a
right-inverse. (]

These arguments emphasize the fundamental property of Fredholm transfor-
mations: their properties depend ultimately on finite dimensional phenomena.
The Second Invertibility Theorem shows that, for a Fredholm transformation
T, the difference between the dimension of its kernel and the codimension of
its range gives a precise description of the “invertibility properties” of T. Let's
now formalize this difference and study its properties.

Fredholm Index
Definition 4.11 (Index). For T € ®(X, Y) the (Fredholm) index of T is:
i(T) := dimker T — codimran T.
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Before proceeding further, let's take a look at some examples.

Exercise 4.12 (First examples). Compute the Fredholm index for each of our
three primary examples: invertible transformations, and the forward and back-
ward shifts of in §1.3 and §4.2.

Theorem 4.13. Every stable® Fredholm transformation has index zero.

Proof. According to Theorem 3.4, if T is stable then it has the form V& N
where V' is an isomorphism and N is nilpotent. Since T is Fredholm, its nilpo-
tent summand is Fredholm, so must live on a finite dimensional subspace (cf.
Exercise 4.24), and must therefore have index zero. The isomorphic summand
is, of course, Fredholm of index zero, hence i(T) = 0 by Exercise 4.17. O

Every finite-rank perturbation of the identity is Fredholm (Examples 4.2(c))
and stable (Theorem 3.2). Thus by Theorem 4.13:

Corollary 4.14. Every finite rank perturbation of the identity has index zero.

Exercise 4.15 (Range of index function). Show that if X is an infinite dimen-
sional vector space then for every integer n there exists a Fredholm transfor-
mation T on X with i(T) = n.

Exercise 4.16 (Index of adjoint). If T € Z(X,Y) is Fredholm, show that the
adjoint T’ € Z(X’,Y’) is also Fredholm, with i(T") = —i(T).

Exercise 4.17 (Index of direct sum). Continuing Exercise 4.4: Show that if
linear transformations T] : Xj — Yj are Fredholm for j = 1,2, then T ® T,
(which is Fredholm by Exercise 4.4) has index i(T1) + i(T2).

The notion of index allows a succinct restatement the Second Invertibility
Theorem of the last section.
Theorem 4.18. Suppose T € ®(X,Y).

(@) If i{(T) =0 then some finite rank perturbation of T is invertible.
(b) If i(T) < O then some finite rank perturbation of T is left invertible.
(c) If i(T)> 0 then some finite rank perturbation of T is right invertible.

It is natural to ask if, for each of the statements of Theorem 4.18, the converse
is true. For example the converse of part (a) would assert that if T + F is

Osee page 15
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invertible for some finite rank transformation F, then i(T) = 0. Since T + F
invertible implies i(T + F) = 0, the desired converse would be trivially true if
we could prove that the Fredholm index is invariant under perturbation by a
finite rank operator. In view of Exercises 4.19 and 4.20 below this would also
prove the converses of parts (b) and (c).

The desired invariance of the Fredholm index is indeed true. Its proof, which
takes some work, will be be taken up later in this section.

Here are some exercises, the first two of which generalize the fact that in-
vertible transformations are Fredholm with index zero. The third is a result
that will be needed when we prove the invariance of Fredholm index under
finite-rank perturbation.

Exercise 4.19 (Left invertibility). Suppose T € ®(X, Y) is left invertible, i.e,
ST = Ix for some S € Z(Y, X). Show that i(T) < 0, that S € ®(Y, X), and
that i(S) = —i(T).

Exercise 4.20 (Right invertibility). State and prove the corresponding results
for right invertibility.

Corollary 4.21. For each T € ®(X,Y) there exists S € (Y, X) such that
i(S) = —i(T)

Every linear transformation between finite dimensional vector spaces is Fred-
holm. What is the index of such a map?

Theorem 4.22 (Index in finite dimensions). If X and Y are finite dimensional
and T € Z(X,Y), then i(T)=dimX —dimY.

Proof. By Theorem 1.1, the “Fundamental Theorem of Linear Algebra,” for any
linear transformation T from X to Y, with both spaces finite dimensional:

dim X = dimker T +dimran T = dimker T +dim Y — codimran T,

where the last equality requires the finite dimensionality of Y. The finite
dimensionality of X now allows us to write this last equation as

dimX =i(T) +dimY,
and then to obtain the desired result upon solving for i(T). (]

Note that this proof shows that Theorem 4.22 is simply a restatement of the
finite dimensional version of the Fundamental Theorem of Linear Algebra.
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Corollary 4.23. /[fdim X < oo then every T € Z(X) is Fredholm of index zero.

Exercise 4.24 (Nilpotent Fredholm transformations). Show that a vector space
X supports a nilpotent Fredholm transformation if and only if dim X < oc.

5. THE MuLTIPLICATION THEOREM

Here we establish, via two different proofs, the multiplicative property of the
index (the index of a product is the sum of the indices), and use it to establish
the invariance of index under finite rank perturbation.

According to Theorem 4.22, the index of a linear transformation between finite
dimensional spaces does not depend on the transformation. In this sense the
notion of index seems trivial in the finite dimensional setting. Not so: precisely
this case lies at the core of our next result, the crucial Multiplication Theorem
for the Fredholm index.

Theorem 5.1 (The Multiplication Theorem). If T € ®(X,Y) and S € d(Y, 2)
then ST € ®(X,Y) and i(ST) =i(S)+i(T).

Before moving on to the proof, | invite you to work out a few exercises. The
first illustrates the theorem in action for shift operators, the second asks you
to prove the finite dimensional case, and the third provides an amusing appli-
cation.

Exercise 5.2 (Index of a shift). Suppose S and B are the forward and backward
shifts of of §1.3. Show that i(S") = —n, i(B") = n, and i{(S"B") = i(B"S") = 0.

Exercise 5.3 (Multiplication theorem in finite dimensions). Prove Theorem 5.1
for finite dimensional spaces X, Y, and Z.

Exercise 5.4 (Square roots ... or not). Let S and B be, respectively, the forward
and backward shifts on the vector space w of all scalar sequences, as discussed
in Examples 1.3 and 4.2. Show that neither S nor B has a square root; e.g.
there exists no T € .Z(w) with T2 = S. What about higher roots?

Regarding the statement of the Multiplication Theorem, we have already
proved that products of Fredholm transformations are Fredholm (Theorem 4.5),
so what's at stake here is the formula for the index of a product, and this is
important enough to deserve more than one proof. Here I'll present two. The
first one, due to Donald Sarason [5], illustrates dramatically that everything
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Fredholm is, at its core, finite dimensional. The second proof, which is a less
dramatic brute force calculation, illustrates the same principle less elegantly,

but with more precision.

Sarason’s proof of the Multiplication theorem

The idea of this proof is to reduce the general case to the finite dimensional one
(Exercise 5.3 above) by filling in the bottom two rows of the diagram below,
where the subscripted transformations are restrictions of the unsubscripted

ones.

x L v =2 7 Fredholm

[ [ I

Xo 2% vy 2%z Finite dim’l
S%; SY) S

X R Y >, 4 [somorphisms

The Product Diagram

The desired result will then follow quickly from the finite dimensional version
(Exercise 5.3) and the “Direct Sum Theorem” of Exercise 4.17, since all the
transformations on the bottom row are (surjective) isomorphisms, and so are
Fredholm with index zero.

Our strategy for filling in the bottom two rows of the Product Diagram involves
common sense and perhaps a bit of luck.

Common sense suggests that to make S; 77 injective we should choose Xp :=
ker ST (finite dimensional by §1.5 above), and then take for X7 any subspace
complementary to Xp. This produces the first column of the Fundamental
Diagram, where To and T; are the restrictions of T to Xp and X respectively.

As for the second column note that, since Xo = kerST D ker T, the map
Ty := T|x, is one to one. Thus it makes sense to take Y; := T(Xj), so that Ty
an isomorphism of Xj onto Y4. That Y4 has finite codimension in Y follows from
the “transitivity of codimension” (see §1.8 above). More precisely: Xj has, by
its definition, finite codimension in X, so Y7 = T(X}) has finite codimension in
T(X), and T(X) has, since T is Fredholm, finite codimension in Y.
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Now we must hope that Sq, which is going to be the restriction of S to Y,
is one-to one, ie, that Y1 NkerS = {0}. This is easy to check: Fix y1 €
Yi NkerS, so y1 = T(x1) for some x1 € Xj, and also Syq1 = 0. Thus x4 €
ker ST = Xp, so x; € Xon X1 = {0}, hence x; =0, and therefore y1 = Sx; = 0.

Thus it’s natural to define Z; := S(Y3), so Sy := S|y, is an isomorphism of Y}
onto Z; and, again by the transitivity of codimension, Z; has finite codimension
in Z.

So far we have produced these components of the Product Diagram:

X() = ker ST, TO = T|X0'
X1 = any complement of Xo, Ty = Tlx,,
Yi=T(X1), Si1=Sly, and Z3=S5(V1).

It remains to find Yy and 2.

Since YiNker S = {0}, “complimentary extension” (Proposition 1.7) guarantees
that Y7 has a complement Yy (necessarily of finite dimension) that contains
ker S.

To finish the argument we need to be able to choose Zy complementary to Z;
in such a way that Zg O S(Yp). We can do this, again by “complementary
extension,” if we can show that S(Yp) N Zyp = {0}. Indeed we can: Suppose
z1 € S(Yo) N Z1 = S(Yo) N S(Y1). Then z1 = S(y1) for some y1 € Y; and also
z1 = S(yo) for some yo € Yy hence y1 — yo € ker S C Yp. Thus yq lies in Yo
so € V1N Yy ={0}. Thus y1 =0, so z1 = S(y1) = 0, as desired.

This completes the Product Diagram, and with it the proof of the multiplication
theorem. ]

The table below summarizes the proof, with the boxes numbered to indicate
the flow of the argument. In this table the notation M L N for subspaces
M and N of a vector space means M NN = {0}, and M = N+ means that
X=MeNP°

bIn contrast to the situation in an inner product space, neither of these notations assumes
any uniqueness for M.
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I x [ Y | Z |

Finite dim'L || D Xo =ker ST | ® Yo = Y-, Yo D kerS | ® Zy = Z+, Zy 5 S(Yo)

Isomorphic || @ Xi = X§" @Yi=TX))LkerS |@® 2Z =5M)

Multiplication theorem: summary of proof.

Brute force proof of the Multiplication theorem

As above, let X, Y, and Z be vector spaces, with T : X > Yand S: Y - 7/
linear transformations. For this proof we need explicit formulae for dimker ST
and codimran ST. The first of these we have already found; it is equation (1)
in §1.5. The second goes like this’:

Proposition 5.5 (Codimension of the range of a product).

(5) codim (ran ST) = codim (ran S) + codim (ran T + ker S)

Proof. Since ran ST = S(ran T) C ran S the transitivity of codimension (§1.8(b)
above) tells us that

codim (ran ST) = codim (ran ST, ran S) + codim (ran S)
Thus the desired result is equivalent to:
(6) codim (ran T + ker S) = codim (ran ST, ran S) .

To prove this, let N be a subspace of Y complementary to ran T + ker S, so
that

(7) codim (ran T + ker S) = dim N
Now Y = (ranT + kerS)® N, hence upon applying S to both sides of this

equation we obtain

(8) ranS =ranST + S(N)

Craim: ran ST N S(N) = {0}.

’Recall that, with the usual notion of addition in Z U {0}, equation (1) holds even if some
or all of the quantities involved are infinite. The same will be true for the formulae developed
below in §5.6-5.7
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Proof of Claim. Suppose z € ran ST N S(N). We wish to show that z = 0. By
hypothesis, z = STx = Ny for some x € X and y € N. Thus Tx —y € ker S,
hence

y e (kerS+Tx)NNC (kerS+ranT)n N = {0},

e, y =0. Thus z= Ny =0, as desired. O

The Craim, along with (8), implies

9) codim (ran ST, ran S) = dim S(N) = dim(N),

the last equality following from the injectivity of S on N which, in turn, arises
from the fact that ker S is complementary to N. Equation (6) then follows

from (7) and (9), and—as pointed out above—this establishes the desired result
(5). O

Suppose for a moment that the transformations S and T of Proposition 5.5
are Fredholm. The calculation of the product index i(ST), upon employing
equation (1) of §1.5, starts out like this:

i(ST) := dimker ST — codimranST
= dimker T + dim(kerSNranT) —codimran ST .
Upon substituting (5) in this equation we obtain
(10) i(ST) = dimkerT + dim(kerSNranT)
— codim (ran S) — codim (ran T + ker S)

Thus further progress requires information about the codimension of a sum of
subspaces. We already have a beginning in Corollary 1.15, which asserts that
if M and N are subspaces of X whose sum is X then the codimension of M in
X equals the codimension of MN N in N. In our application we won’t assume
that the subspaces sum to X, but will replace X by that sum, thus obtaining:

Lemma 5.6 (Codimension of a sum ). If M and N are subspaces of a vector
space then

(11) codim (M, M + N) = codim (M N N, N).

It's now just a short step to obtain the result we really need:

Theorem 5.7 (Codimension of a sum Il). If M and N are subspaces of a vector
space, then

(12) codim (M + N) + dim N = codim M + dim(M N N))
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Proof. We have
codimM = codim (M, M + N) + codim (M + N)
= codim (M N N, N) + codim (M + N) [by (11)],
and the desired result follows upon adding dim(M N N) to both sides. (]

Completion of “brute force” proof. Now we're assuming that S and T are Fred-
holm transformations, so all relevant dimensions and codimensions are fi-
nite, hence subtraction is allowed. From equation (12) with M = ran T and
N = ker S we obtain

codim (ran T + ker S) = codimran T + dim(ran T N ker S) — dimker S
Substitute this into the right-hand side of (10) to obtain:
i(ST) = dimkerT + dim(kerSNranT) — codimran$S
— codimran T — dim(ran T N ker S) + dimker S

= (1) +i(S),
the final equality reflecting the cancellation of both terms involving intersection
of ran T and ker S. U
Invariance |l

We showed in Theorem 4.9 that the notion of “Fredholmness” is invariant under
finite-rank perturbation. Now, thanks to the multiplication theorem, we can
now prove that the Fredholm index is invariant under finite-rank perturbation.
More precisely:

Theorem 5.8 (Finite-rank perturbation theorem Il). If T € ®(X,Y) and F
F(X,Y) then (T + F) = i(T).

One might hope that the proof of Theorem 4.9 might provide the precision
necessary to prove Theorem 5.8. Alas, more work is required. The desired
result turns out to be a consequence of the following special case, which is
itself both a generalization of Corollary 4.14, and the converse of Theorem
4.18(a).

Lemma 5.9 (Finite rank perturbation of an invertible). Suppose V is an
isomorphism of X onto Y and F € % (X,Y). Then i(V+F)=0.
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Proof Given V and F as in the statement of the Lemma, we have
i(v+F=iVix + v ) =i(V(lx + F1)),

where F; = V~'F is a finite rank operator X — X which, by Corollary 4.14,
is Fredholm of index zero. This, along with the Multiplication Theorem and
the fact that invertibles are Fredholm of index zero, yields

i(V+F)=iV)+i(lx+F)=0+0=0,

as desired. O

Proof of Theorem 5.8. Suppose T € ®(X,Y) and F € Z(X,Y). By Exercise
421 there exists S € ®(Y, X) with i(S) = —i(T). By the Multiplication
Theorem, i(ST) = 0, so by Theorem 4.18(a) there is a finite rank transformation
F1 : X — X and an invertible transformation V : X — X such that ST =
V + F1. Thus

S(T+F)=ST+SF=V+F +SF=ST+F,
with F> € Z(X).

By Lemma 5.9, i(ST + F2) = 0, so this, along with the Multiplication Theorem
and our choice of S yields:

0=iS(T+F)=iS)iT+F)=—i(T)iT+F)
hence i(T + F) = i(T), as desired. O

6. SPECTRA

In this section we'll apply Fredholm theory to study spectra of linear trans-
formations. The spectrum of T € £(X) is the set o(T) of scalars A for which
the transformation T — A/ fails to be invertible. Recall that for finite dimen-
sional vector spaces the spectrum is nonempty whenever the underlying field
is algebraically complete (e.g., the field of complex numbers), but otherwise
may be empty; nontrivial rotations of R? have no eigenvalues, hence empty
spectrum. The next exercise shows that the spectrum may be empty even if the
underlying field is algebraically complete.

Exercise 6.1 (Empty spectrum). Let wo(Z) denote the space of two-sided scalar
sequences with all but a finite number of entries equal to zero. Alternatively,
wo(Z) is the set of functions that take the integers into the scalars and have
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finite support. Let B be the backward shift on wo(Z): the transformation that
shifts each sequence one unit to the left. More precisely,

Bx(n) = x(n + 1) (x € wo(Z),n € Z).

Show that the spectrum of B is empty.

Spectral points: First classification

The spectrum of T can be viewed as the union of two (not necessarily disjoint)
subsets:

e The point spectrum, or eigenvalues agy(7) consisting of those scalars A
for which T — Al fails to be injective, and
e The compression spectrum consisting of those scalars A for which T —A/

fails to be surjective.®

Suppose, for example, that dim X < oo. Then every linear transformation on
X is Fredholm of index zero (by Theorem 4.22, for example), hence—as proven
in any beginning course in linear algebra—a linear transformation 7 on X is
injective if and only if it is surjective. Thus o(T) = 0,(T) = a.(T).

Exercises 6.2 (Spectra of adjoints). For T € Z(X):

(@) Show that o(T) = a(T’).
(b) Examine the relationship between the point and compression spectra
of T and T".

Exercises 6.3 (Spectra of shifts). Determine the spectrum, point spectrum, and
compression spectrum for:

(@) The forward shift on the vector space w of scalar sequences.

(b) The backward shift on w

(c) The forward shift on the vector space wq consisting of scalar sequences
with at most infinitely many nonzero entries.

(d) The backward shift on wy.

Exercise 6.4 (The spectral mapping theorem.). Suppose X is a vector space
over Cand T € Z(X). Let f be a polynomial with complex coefficients. Show
that o(f(T)) = f(a(T)). Does your proof work for fields more general than C?

8Remember: this is the algebraic compression spectrum. In the setting of complex Banach

spaces, the compression spectrum is usually taken to be the set of complex numbers A for which
T — Al is not bounded below.
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Fredholm decomposition of the spectrum

Our theory of Fredholm transformations suggests a second classification of
spectral points—this time into two disjoint subsets. For T € Z(X) we'll say
that A € o(X) is in:

(@) The Fredholm spectrum o¢(T) if T — Al is a (non-invertible) Fredholm
transformation, and
(b) The essential spectrum ge(T) if T — Al is not Fredholm.

Thus a(T) is the disjoint union of g.(T) and o¢(T). We'll further classify each
point A € g¢(T) as having index equal to the index of T — Al

In case X is finite dimensional, note that o(T) = d¢(T), and 0.(T) is empty.

Exercise 6.5 (Empty essential spectrum). Give an example of a linear trans-
formation whose essential spectrum is not empty.

Exercises 6.6 (Fredholm decomposition of spectrum). Determine the Fredholm
and essential spectra of the operators of Exercises 6.3.

Recall the notation .#(X) for the collection of finite rank linear transforma-
tions on the vector space X, i.e, those T € Z(X) for which dimran T < oo.
Recall from elementary linear algebra that if A1, A2, ..., A, is a set of distinct
eigenvalues for T € Z(X), and x; is an eigenvector for A;, then the set of
vectors {x1,x2, ... xp} is linearly independent.

Theorem 6.7 (Finite-rank spectra). If F € .7 (X) then a(F) has finitely many
points; each nonzero one of which is a Fredholm point of index zero.

Proof. Any finite rank perturbation of the identity transformation is Fredholm
of index zero (Theorem 5.8, or more specifically, Lemma 5.9, or even more
specifically, Corollary 4.14), so for F € #(X) and A a non-zero scalar, F —
Al is injective if and only if surjective, hence non-invertible if and only if
an eigenvalue. Thus o(T)\{0} consists entirely of eigenvalues, which are
Fredholm points of index zero. By the discussion preceding the statement of
the Theorem, there can be at most dimran T < oo of such eigenvalues. O

Exercise 6.8 (Number of eigenvalues). For an eigenvalue A of a linear trans-
formation T let’s call dim ker(T —Al) the (geometric) multiplicity of A. Suppose
T € .7 (X). Show that the number of eigenvalues of T, with each counted as
many times as its multiplicity, is < dimran T.
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7. MULTIPLICATION OPERATORS

In this final section we'll connect Fredholm theory with classical function the-
ory by exploring the Fredholm properties of an important class of naturally
occurring examples: multiplication operators on spaces of holomorphic func-
tions. Our study will culminate in a connection between Fredholm index and
the notion of winding number.

Definition 7.1 (Holomorphic functions). By a plane domain we'll mean a sub-
set of the complex plane that is nonempty, open, and connected. Henceforth
the generic plane domain will be denoted by the symbol “G". A complex
valued function is said to be holomorphic (or analytic) on G if it is complex-
differentiable at each point of G. The collection of holomorphic functions on
G, henceforth denoted by 7(G), is easily seen to be a complex vector space
under pointwise operations.

Definition 7.2 (Multiplication operators). The complex vector space J7(G) is
closed under pointwise multiplication, and so is an algebra over the field of
complex numbers. As such it has many interesting properties, but we will
be concerned here only with one: Each ¢ € JZ(G) induces on J7(G) a
multiplication operator M, defined as follows:

Mof(2) = p(2)f(z)  (f € #(G) 7 € G).

Clearly M, is a linear transformation taking J#Z°(G) into itself, the various
properties of which are somehow coded into the behavior of the holomorphic
function ¢. It is the goal of this section to unscramble this code.

Invertibility of multiplication operators

Fredholm properties are intimately involved with invertibility, so it makes sense
to try to classify those ¢ € J7°(G) for which M,, is invertible on JZ(G).

First of all, note that (unless ¢ = 0) M,, is injective. This is a reflection of one
of the fundamental properties of holomorphic functions, the I/dentity Theorem
[6, VII.14, page 89]:

If two functions holomorphic on G agree a sequence that has a
limit point in G, then those functions agree on all of G.

In particular, if two functions holomorphic on G agree on a nonvoid open
subset of G then they agree everywhere. Suppose now, for ¢ € 5(G)\{0},
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we have Myf = Myg for two functions f,g € J2(G). Then f = g on the set
{z € G : ¢(2) # 0}, which is nonempty (since we're assuming ¢ is not the
zero-function) and open (since holomorphic functions are continuous). Thus,
by the Uniqueness Theorem, f = g at every point of G, so M,, is injective.

The question of invertibility, therefore, boils down to that of surjectiveness:
when is ran M, = J7(G)?

Suppose, for example, that 0 ¢ ¢(G), i.e., that ¢ never takes the value O in
G. Then 1/¢ is holomorphic in G (another important property of holomorphic
functions), so clearly M, is invertible with inverse My,

Conversely suppose ran M, = (G). Then, since the constant function 1 is
in JZ(G), there exists ¢ € J2(G) such that o = My = 1. Thus 0 & ¢(G)
(so, by the way, 1/¢ € J7(G) and /\/I(;1 = Myy).

With this we have proved:

Theorem 7.3 (Multiplier invertibility). Suppose ¢ € H°(G)\{0}. Then M,
is injective; it is invertible on € (G) if and only if 0 & ¢(G), in which case
/\/l(;1 = Mq/(p

Note that for A € C we have M, — Al = M,_,, so A € g(M,) if and only if
@ — A takes the value zero somewhere on G. That is:

Corollary 7.4 (Multiplier spectrum). For ¢ € J(G), the spectrum of M, is
¢(G)-

Fredholm properties of multiplication operators

The Fredholm properties of multiplication operators on J#(G) reflect another
fundamental property of holomorphic functions: the special nature of their
zeros. One of the cornerstones of the theory of holomorphic functions is the
fact that each function f € J2(G) is infinitely differentiable on G (a property
not possessed by infinitely real-differentiable functions). Thus for each a € G
the function f has a formal Taylor series Y 52 f"/(z — a)". Remarkably, this
series converges to f in a neighborhood of a (another property not possessed
by infinitely real-differentiable functions).” This power series representation
quickly establishes the following fundamental result (see [4, Theorem 10.18,
pp. 208-209] or [6, VII.13, pp. 87-88] for example):

9n fact, the series converges to f in the largest open disc in G with center at a.
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Theorem 7.5 (Zeros of holomorphic functions). Suppose ¢ € 7#(G), a € G,
and @(a) = 0. Then there is a non-negative integer v for which

p(z) = (z—a)'¢i(2)  (z€ Q)
where g1 € 5 (G) and g1(a) # 0.

The integer v = v(a) = vy(a) is called the order, or multiplicity, of the zero a
of . Let's extend the function v, to the entire complex plane by defining its
value to be zero off the set of zeros of ¢. Thus v,(a) = 0 except for at most a
countable set of points of G.

Here is the main result of this section; note how its first part generalizes
Theorem 7.3 above.

Theorem 7.6 (Fredholm multipliers). For ¢ € 52(G):

(a) My, is Fredholm if and only if ¢ has at most finitely many zeros in G.
(b) Each A € a(My) = @(G) is a Fredholm point of index -v,(A).

We often think of v,(a) as counting the “number of zeros ¢ has at a,” or “the
number of times f covers zero by a,” and interpret vy(a) = 0 to mean “f is not
zero at a." With this convention part (b) of the above result can be rephrased:

If ¢ € (G) has only finitely many zeros in G, then M, is
a Fredholm transformation on ¢ (G) whose index is minus the
number of zeros (counting multiplicity) that ¢ has in G.

The proof of Theorem 7.6 will consist of several subsidiary results, each of
some interest in its own right. The first of these states that ran M,, consists of
all those functions holomorphic on G whose zero-set, counting multiplicities,
contains that of ¢.

Lemma 7.7 (Multiplier ranges). ranM, = {f € J(G) : vf(a) > vy(a) Va €
G}.

Proof. Since ran M, = @(G), it's clear that, counting multiplicity, f has at
least as many zeros as ¢, i.e,, that v; > v, on G. Conversely, if vi > v, on G,
then h := f/¢@ is holomorphic on G, except possibly for the zeros of ¢, where
h, initially holomorphic on G, except possibly at the zeros of ¢, is extendable
to be holomorphic on all of G (by Theorem 7.5). Thus f = ph € @7(G). U
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As a consequence of Theorem 7.5 we can use derivatives to determine the order
of a zero of a holomorphic function. To make this more precise, let's employ
the notation f*) for the k-th derivative of the function f, setting 0 equal to
f. Then (see [6, §VII.13] for example):

Suppose f is holomorphic in a neighborhood of a point a € C,
and f(a) = 0. Then v¢(a) is the smallest positive integer k for
which f¥)(a) # 0.

For example, f(z) = z> has a zero of order 3 at the origin, a point at which
both it and its first two derivatives vanish, but at which its third derivative
does not.

As a consequence of this expression of zero-multiplicity in terms of derivatives,
we can use linear functionals to characterize ran M,,. For each a € G and k
a non-negative integer, let's define a linear functional A on H(G) by:

AOf = (K (q).
Then Lemma 7.7 can be rephrased succinctly as:
(13) ranM, = ﬂ{ker/\gk) ra € G, k <vgyla)}

where the only terms of the intersection on the right that are not the whole

space S (G) are the ones corresponding to points a in the zero-set of ¢.

Thus, in view of the injectivity of My, to prove Theorem 7.6 we need only
be able to calculate the codimension of an intersection of kernels of linear
functionals, and for this we can use Theorem 2.7—once we have established
the linear independence of the functionals involved.

Lemma 7.8 (Independence of derivatives). The set of linear functionals
N geG k=012 ..}
is linearly independent in the dual space of 7€(G).

Proof. Fix a finite subset A of G and a positive integer K. It's enough to prove
the independence of the finite set

AV aeA0<k<K}
of linear functionals on JZ°(G). To this end, suppose the linear combination
(14) A=Y {caiNy) ia €A 0<k <K}

is identically zero on JZ(G). We want to show that all the coefficients ¢, «

are zero.
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The key is that for each A € C, the linear functional L annihilates the entire
function z — exp(Az), resulting in the equations
(15) 0=) paNe’® VieC
acA
where

K
Pa(A) :== Z Ca,k)\k .
k=0

If A is the singleton {a} then the polynomial p, is identically zero on C, so
all its coefficients are zero, as desired.

Otherwise, let b denote the element of A whose modulus is maximum (if there
is more than one such element, pick any one). Let o = b/|b|, so that ab = |b|.
Then for A = ot with t > 0 we have

(16) 0= >  palot)e” +py(at)el’’  vi>0.

acA\{b}

On the right-hand side of this equation the sum over a € A\{b} is o(el®l) as
t — +o00o. But this right-hand side has to vanish for all t > 0, and since no
cancellation can be expected from the sum, both the sum and the last term must
vanish for all ¢ > 0. Vanishing of the last term on the right means that the
polynomial t — pp(ot) is identically zero, hence all its coefficients are zero.
Vanishing of the sum on the right means that we may repeat the argument,
replacing A by A\{b} to get another of the polynomials p,, and hence its
coefficients, identically zero. Upon repeating the argument a finite number of
times we conclude that all the coefficients ¢, x are zero, as desired. O

Completion of the proof of Theorem 7.6. We are assuming that ¢ is not iden-
tically zero, in which case M, is injective (Theorem 7.3). Thus M, is Fredholm
if and only if ran M, has finite codimension in 77°(G).

If @ has at most finitely many zeros in G, then by Lemma 7.8 and Theorem 2.7
the codimension of ran M, in JZ(G) is finite, and equal to the number of these
zeros, counting multiplicities, Le, to ) ¢ Vy(a).

If ¢ has infinitely many zeros in G, then given a positive integer n let A, be
a subset of these zeros having cardinality n (we are not counting multiplicity
here). Let A, be the linear functional of evaluation at a € A,. Then

ran M, C ﬂ ker /A, .

ac€A,
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Since the set of functionals {A\, : @ €,} is linearly independent (Lemma 7.8),
the codimension of the intersection on the right-hand side of this display is
n. Thus ran M, has codimension at least n. Since n is arbitrary, ran M, has
infinite codimension in JZ(G). O

Index and winding number

For f € 7(G) we have interpreted the order v¢(a) of the zero f has ata € G
as the “number of times f covers the origin by the point a.” Now it's time to
shift the emphasis from the point that does the covering to the point that gets
covered. To this end let’s define for A € C
prd) == Y visala),

aef-1(3)
a quantity which should, in accordance with our covering interpretation of vy_,,
be interpreted as “the number of times A is covered by f, or more succinctly,
the “multiplicity of the value A" (with pr(A) = 0 if and only A & f(G)).

With these conventions we can restate that last part of Theorem 7.6 as follows:

A € C is a Fredholm point of My, if and only if py(A) < oo, in
which case i(My — Al) = —pp(A).

For yet another interpretation another interpretation of the Fredholm index of
M, —Al we can turn to the Argument Principle (see [4, Theorem 10.43, pp. 225-
6] or [6, X.11, pp. 137-8] for example). For simplicity let’s restrict to a special
case: Let U denote the open unit disc of the complex plane, and suppose ¢
is holomorphic on a neighborhood of the closure of U. Then ¢ can have only
finitely many zeros in U, so My, acting on .77°(U), has spectrum ¢(U), every
point of which is a Fredholm point (i.e., M, — Al is a Fredholm transformation
of 77(U)). For this situation the Argument Principle states that

For each A € C\¢(dU), the multiplicity M,(A) is the number of
times the closed curve @(dU) winds counter-clockwise around
the point A.

For example, if ¢(z) = z? then ¢ winds the unit circle twice around itself,
which, according to the Argument Principle, reflects the fact that ¢ covers
each point of the unit disc twice (with the origin being covered twice thanks

to our interpretation of “multiplicity two").
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When applied to the Fredholm theory of the operator M,, the argument prin-
ciple allows this reinterpretation of Theorem 7.6(b):

Theorem 7.9 (Fredholm points of multipliers). Suppose ¢ is holomorphic in a
neighborhood of the closed unit disc and A € C\¢(dU). Then the transforma-
tion My — Al has Fredholm index equal to “minus the number of times ¢(dU)
wraps counter-clockwise around the point A.”

For a nontrivial example consider the function ¢(z) = z? 4+ z. The mapping
properties of ¢ are best understood by writing

1% 1
o) =(z+3) 5
whereupon ¢(U) = g(M,) is revealed to be the region inside the outer cardioid-
shaped curve in Figure 1.

FIGURE 1. @(dU) for ¢(z) = z2° + z

In this picture the boundary of ¢(U) is the image of the larger arc of U that

lies between the points e*?27/3

, both of which ¢ maps to —1. The boundary
of the small interior loop is the image of the smaller arc of U between those
same two points. The domain ¢(U) that lies outside this smaller loop is singly
covered by ¢, while the points inside the inner loop are doubly covered. Thus
i(My — Al) is equal to: zero for A outside ¢(U) and on its outer boundary (the
cardioid), one between the outer boundary and the small loop, including that

loop, and two inside the small loop.
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APPENDIX A. HINTS FOR SELECTED EXERCISES

Exercise 1.9: Fundamental Theorem of Linear Algebra.

Exercise1.16: Fix a basis By for MNN and extend By in two "directions”:
first by a set By of vectors (necessarily from N\M) to form a basis for
N, and then by adding a set B, of vectors (necessarily from M\N) to
form a basis for M.

Exercise 2.8: Continuing the Suggestion: It's clear that N, ker A, = {0},
so any linear functional on w will have kernel containing that inter-
section. So the trick is to find one that isn’t in the span of the A,’s.

Exercise 4.3: Dimension.
Exercise 4.6: Note that ker T* D ker T and ranTK CranT.

Exercise 4.7: Look at a T € Z(w) defined by Tx = (x(1),0,x(2),0,---)
for x = (&4, &, ) € w. Alternatively, take T to be an appropriate
“vector-valued” shift.

Exercise 5.3: Use Theorem 4.22
Exercise 5.4: You may wish to review Exercise 4.6.

Exercise 4.19: Being left invertible, T is injective. Show that, addition-
ally, ST = Ix implies also that Y =kerS@ranT.

Exercise 4.20: Being right invertible, T is surjective. Show that, addi-
tionally, X = ker T @ ran S.

Exercise 4.15: The various “inverses” (two-sided, left, right) produced in
Theorem 4.18 for appropriate finite rank perturbations of T are Fred-
holm with index —i(T).
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Exercise 6.1: Clearly B is invertible, so 0 ¢ o(B). For A # 0 show that
the equation

S, = Z)\*(n+1)Bn
n=0

defines—notwithstanding absence of topology—an inverse on wo(Z), for
B — Al

Exercises 6.2: Cf. Exercises 2.16.

Exercises 6.3: (a) For S: w — w, 0,(S) is empty, o(S) = 0.(S) = {0}.
(b) For B: w — w: a(B) = 0gy(B) is the entire scalar field, while g.(B)
is empty.
(c) Same answers as for part (a).
(d) For B: wg — wo: As in part (b), a.(B) is empty, and o(B) = 0,(B),
but unlike part (b), o(B) = 0,(B) = {0}.

Exercise 6.6: Build on the results of Exercise 6.3.

Exercise 6.8: Suppose {A1, A2, ... Ay} are the distinct eigenvalues of our
finite rank transformation 7. Let E; = ker(T — Al), a subspace of
dimension d; < oo. Thus dy+d2+ - - - +d, is the number of eigenvalues
of T, “counting multiplicities.”

Let &; be a basis for E;, and & the union of all these bases. Show
that & is a linearly independent set, and so a basis for the subspace
Ei1+ Ey+ --- E,. Consequence: number of eigenvalues of T, counting

multiplicities equals the dimension of E, which is < dimran T (since
E CranT).
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APPENDIX B. SOLUTIONS TO SELECTED EXERCISES

Exercise 1.16: Continuing the Hint: Let V; = span B, for j = 1,2. Now
Vi N M = {0}, else some nontrivial linear combination from By would
belong to M, and so would also be a nontrivial linear combination of
vectors from By, thus contradicting the linear independence of By U Bj.
Similarly Vo N N = {0}.

Thus we have N = (M N N) @& V4, so

€3] codim(M N N, N) =dim Vy,
and since NNV, = {0} we also have
(#5) NTM=NoV=MnN @V, e

But by definition, M = (MNN)® V3, so (**) implies codim (M, M+N) =
dim V4, which, along with (*) establishes (11).

Exercise 2.8: Continuing the Hint: For n € N let e, € w be defined by
en(k) =0if k # n and =1 if kK = n. Note that the lists of vectors and
functionals (e,) and (A\,) are biorthogonal in the sense that A,(ex) =0
if n # k and =1 if n = k. Furthermore the linear span of the vectors
{en : n € N} is the subspace wq consisting of sequences whose entries
are zero except for at finitely many. Since wp is a proper subspace of
w there is a nontrivial linear functional A on w that vanishes on wy
(see §2.3).

Ciam: A & span{A, : n € N}.

Proof of Claim. Suppose for the moment that A is any linear functional
in the span of the A,’s. Then A = Z,/:/ﬂ cy/\, for some N € N,
whereupon for each k € N:

N
0=Alex) =) calnlex) = cx.
n=1

Thus A is the zero-functional on w. But our A was constructed to
not be the zero-functional, so it can't lie in the span of the A,’s, and
therefore provides the desired counterexample. O

Exercise 4.19: We have ST = Ix, which implies that T is injective, iL.e.,
ker T = {0}. Thus i(T) < 0. As for S, note that it is surjective, so its
Fredholmness, along with the desired result for its index (i(S) = —i(T))
will follow from:
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Ciamm: Y =kerSa@ranT.

Proof of Claim. Indeed, ST = Ix implies that S is injective on ran T,
hence kerS N ranT = {0}. Next, observe that for y € Y we have
y— TSy ekerS, so

y e T(Sy)+kerS CranT +kerS,

as desired. O

Exercise 4.20: TS = Iy implies that T is surjective, so codimran T = 0,
hence i(T) > 0. As for S, note that it is injective, so its Fredholmness,
along with the desired result for its index, will follow from:

Ciam: X =ker T @ran S.

Proof of Claim. Note first that if x € ker T N ranS then Tx = 0 and
x = Sy for some y € Y. Thus 0 = Tx = TSy = y hence x (which
= Sy) =0.

Next, suppose x € X and observe that x — STx € ker T, hence
x € S(Tx)+kerT CranS + kerT. Thus X = ker T + ran S, which
completes the proof. O

Exercises 6.3: (a) S: w — w. 0p(S) is empty, since Sx = Ax implies that
A # 0 and that S"x = A"x for n € N. Thus, for every n € N the first
n coordinates of S”x vanish, hence the same must be true of x and so
x =0.

As for compression spectrum, since S is not surjective, 0 € g,(S). In
fact, 0.(S) = {0}, i.e,, S — Al is surjective for all scalars A # 0. To see
this, fix y = n,) € w and solve y = (S — Al)x for x = (&,;) € w. This
vector equation is equivalent to the infinitely many scalar equations
& =& -1 —m)/Atorn=1,2,..., where in case n =1 we set & = 0.
The (unique) solution is
which one checks does give the desired preimage for y.

Summary: 0,(S) is empty, while o(S) = 0.(S) = {0}

(b) B : w — w: One checks easily that ker B consists of all vectors

whose coordinates vanish, except for the first one. So 0 € 0,(B).
Furthermore, if A is a nonzero scalar, and x = (1,/\,)\2, ...), then Bx =
Ax, so A € 0,(B). Thus g,(B) = all scalars.
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As for compression spectrum—there isn't any! Clearly B itself is
surjective. As for B— Al with A a nonzero scalar: fix y € w and choose
z € w (by surjectivity of B) so that Bz = —y/A. Then by the surjectivity
of S—A~"/ on w (see part of (a) above, with A replaced by its reciprocal)
choose x € w so that (S — A~"/)x = z. Apply B to both sides of this
equation, noting that BS = /; we obtain (/ — A~'B)x = Bz which, upon
multiplying both sides by —A, becomes (B — Al)x = —ABz = y, as
desired.

Thus: 0,(B) = d(B) = all scalars, while o.(B) is empty.

() S : wy — wo. By part (a), S — Al is injective for all scalars A,
hence just as in the w setting, 0,(S) is empty. Also, as in part (a), S
is not surjective on wg, so 0 € g,(S). But unlike the situation of part
(a), there’s nothing more in the compression spectrum!

Indeed, suppose A is a nonzero scalar. Let eq be the vector in wq
with 1 in the first coordinate and zeros elsewhere. Then by part (a)
above, the equation eq = (S — Al)x has, in w, the unique solution
11
STL o)
and this vector does not belong to wp. Thus S — Al is surjective on wp

x =~

for no scalar A

In summary: o(S) = o.(S) = {0}, while g,,(S) is empty.

(d) Check that the operator S, = defined in the hint for Exercise
6.1 gives an inverse on wg for B — Al when A # 0. Thus ¢(B) C {0}.
Since B has nontrivial kernel on wg we have 0 € 0,(B). Thus on wp:
0(B) = 0,(B) = {0}. Since BS =/ on wp (S being the “forward shift”),
B is surjective, hence o.(B) is empty.

Exercise 6.6: (a) For S on w, (S) = {0}: From Exercise 6.3(a) ranS =

all scalar sequences with first coordinate zero. Since S is injective, 0
is a Fredholm point of index -1. The essential spectrum is empty.

(b) For B on w: Fix a scalar A. By Exercise 6.3(b), A is an eigenvalue
and T — Al is surjective. Now if you solve the equation Tx = Ax for
X € w, you see quickly that the only solutions are constant multiples
of the eigenvector produced in Exercise 6.3(b), i.e., dimker(B — Al) =
1. Thus each scalar is a Fredholm point of index +1; the essential
spectrum is empty.

(c) For S on wp: Same as part (a).
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(d) For B on wg: From Exercise 6.3(d), o(B) = {0}. We already know
that 0 is a Fredholm point of index 41, thus the essential spectrum of
B on wy is empty.

Exercise 6.8: Continuing from Hint A, We have a basis & = {e/-,k}zjz1
for ker(T — A;/), and desire to show that the union & of all these bases
is linearly independent. Suppose some linear combination ) _aj e«
is zero. Split this sum up into sums first on k and then on j, thus
obtaining vectors x; € E; (j = 1,2,...n) that sum to zero. Any x;
that isn't zero is an eigenvector for A;, and we know from basic linear
algebra that any collection of eigenvectors, each corresponding to a
different eigenvalue, is linear independent. Thus each of the Xj’s must
be zero. Since each @‘"/ is linearly independent, this guarantees that,
for each j, each of the coefficients a; is zero (k = 1,2, ... d}). This
completes the proof.
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