
Motion Planning for Humanoid Robots

James Kuffner1,2, Koichi Nishiwaki3, Satoshi Kagami2, Masayuki Inaba3, and
Hirochika Inoue3

1 The Robotics Institute, Carnegie Mellon University
kuffner@cs.cmu.edu
http://www.kuffner.org/james

2 Digital Human Research Center
National Institute of Advanced Industrial Science and Technology (AIST)
{s.kagami,j.kuffner}@aist.go.jp
http://www.dh.aist.go.jp/

3 School of Information Science and Technology, The University of Tokyo
{nishi,inaba,inoue}@jsk.t.u-tokyo.ac.jp
http://www.jsk.t.u-tokyo.ac.jp/

In Proc. 11th Int’l Symp. of Robotics Research (ISRR 2003)

Abstract. Humanoid robotics hardware and control techniques have advanced rapidly during
the last five years. Presently, several companies have announced the commercial availability
of various humanoid robot prototypes. In order to improve the autonomy and overall func-
tionality of these robots, reliable sensors, safety mechanisms, and general integrated software
tools and techniques are needed. We believe that the development of practical motion plan-
ning algorithms and obstacle avoidance software for humanoid robots represents an important
enabling technology. This paper gives an overview of some of our recent efforts to develop
motion planning methods for humanoid robots for application tasks involving navigation,
object grasping and manipulation, footstep placement, and dynamically-stable full-body mo-
tions. We show experimental results obtained by implementations running within a simulation
environment as well as on actual humanoid robot hardware.

1 Introduction

Humanoid robotics technology has recently made rapid progress, and the commercial
availability of humanoid robot hardware will happen very soon. This will lead to
a rising demand for software and algorithms useful to improving the usability and
autonomy of humanoids. One important area of need will be software for safe,
autonomous operation in human environments such as homes and offices. Thus, the
development of general-purpose motion planning tools and methods for humanoid
robots represents a very challenging research area.

This paper presents an overview of our efforts to develop practical motion plan-
ning methods for humanoid robots for a variety of tasks. Specifically, we have
focused on tasks involving navigation, object grasping and manipulation, footstep
placement, and full-body motions. In the latter case, we consider the problem of
computing dynamically-stable, collision-free trajectories for the entire body. In the
sections that follow, we describe the algorithms developed for each task, and show
experimental results obtained by implementations running within a simulation envi-
ronment as well as on actual humanoid robot hardware.



2 J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue

Fig. 1. Simulation and video snapshots of planned full-body trajectories.

2 Footstep Planning

Global path planning and obstacle avoidance strategies for mobile robots and ma-
nipulators has a large and extensive history in the robotics literature (e.g. see [15,8]
for an overview of early work). Global navigation strategies for mobile robots can
usually be obtained by searching for a collision-free path in a 2D environment.
Because of the low-dimensionality of the search space, very efficient and complete
(or resolution-complete) algorithms can be employed. For humanoid robots, con-
servative global navigation strategies can be obtained by choosing an appropriate
bounding volume (e.g. a cylinder), and designing locomotion gaits for following
navigation trajectories computed by a 2D path planner. However, this always forces
the robot to circumvent obstacles. In contrast, legged robots (including biped hu-
manoids) have the unique ability to traverse obstacles by stepping over or upon them.
Since reliable, walking biped robots have been developed only recently, much less
research attention has been focused on this area.

Our approach is to build a search tree from a discrete set of feasible footstep
locations corresponding to available stepping motions. Using standard dynamic
programming techniques, we compute a sequence of footstep placements to reach
a goal region in an obstacle-cluttered environment. Optimal sequences of footstep
placements can be computed according to the encoded heuristics that minimize
the number and complexity of the steps taken. Such a strategy can be computed
efficiently on standard PC hardware (under one second for simple environments,
and in a few seconds for relatively complex, cluttered environments).

Biped Navigation Model: The biped model comes with a pre-determined set of
feasible footstep locations for each foot. For example, Figure 3 shows the continuous,
feasible footstep range FRright for the right foot while supported by the left foot, and
an example discrete set of foot placements. For symmetric bipeds, the placements
for the left foot can simply mirror the right foot placements. In selecting which
footstep placements to include in the discrete set used during the search, we chose a
distribution of placements along the edge of the reachable region at different relative
foot angles, as well as a few interior placements to allow the robot to maneuver
in tight areas. This choice represents a tradeoff between planning performance and
generality. The goal is to strike a balance between maximizing the navigation options,



Motion Planning for Humanoid Robots 3

REGION
GOAL

Fig. 2. left: Humanoid navigating in a cluttered office; right: planned footstep locations (Top
view).

while minimizing the total number of discrete placements (the branching factor of
the search tree). In our implementation, we selected a total of 15 placements for each
foot. In addition to the set of footstep placements, the planner also requires a method
to generate dynamically-stable motion trajectories for transitioning between them.
These trajectories can be either pre-calculated and stored [12], or generated using
an online algorithm [5].

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

FRright

FOOT
LEFT LEFT

FOOT

Initial Configuration

2

8

0

5 6 8 9 12

11 3

710

1

5

4

13

2

Fig. 3. Reachable placement positions for the right foot: (left: continuous region, and middle:
discrete placements. right: search tree with pruned successor states (red) that resulted in bad
foot placements or collisions.

Footstep Planning Algorithm: The planner accepts as input a discrete set of robot
footprint locations, a trajectory generator, and a heuristic cost function. Both 2D and
3D representations of the robot and environment model can be used for collision
checking (see [5]). If the planner successfully finds a solution, it outputs a sequence
of encoded footstep placements and transitions. A forward dynamic programming
approach to planning navigation strategies is adopted, which can also be generalized
to classic A* (A-star) search. Since an exhaustive search is too expensive, we employ
an heuristic evaluation function in order to prune the search tree. Starting from
an initial biped configuration Qinit, a search tree of possible footstep placements
is constructed. The planner maintains a priority queue of search nodes containing



4 J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue

footstep placements and cost values. The cost function L(Q) defines a simple greedy
heuristic:

L(Q) = wdD(NQ) + wρρ(NQ) + wgX (Q,Qg)

The first two terms define the cost of the path to configuration Q from Qinit. D(NQ)
is the depth of the node NQ in the tree. ρ(NQ) is a function that encodes the path
“goodness”, such as favoring “safe” overall foot placements, as well as paths which
incur few orientation changes (for detailed example path metrics, see [5]). These
terms have the combined effect of favoring paths with fewer steps, as well as slightly
favoring paths with long sequences of straight-line steps. The final term represents
an estimated cost from the current configuration to the goal region. X (Q,Qg)
approximates the minimum number of steps needed to traverse the straight-line
distance between the footprint location at Q, and a footprint in the center of the goal
region Qg . Each of the terms are weighted relative to each other by the factors wd,
wρ, and wg.

Fig. 4. Simulation snapshots during execution of footstep plan.

Figure 2 shows a cluttered office in which a model of the Humanoid robot “H6”
must navigate, and a top view of a footstep sequence computed to reach a circular
goal region in the center of the room. There were a total of 15 discrete foot placements
considered for each foot, and a total of 20 floor obstacles. The search tree contained
approximately 830,000 nodes. Considering that the number of nodes required for a
brute-force, breadth-first search on a footstep sequence length of 18 steps is more
than 1021, this is quite satisfactory. The path was computed in approximately 4
seconds on an 1.6 GHz Pentium4 running Linux. We used a 2D polygon-polygon
intersection test for the first phase of collision-checking, and the (V-clip) library (see
[18]) for fast minimum distance determination between the obstacles and the convex
hull of each leg link for the second phase.

3 Object Manipulation

Manipulation tasks are specified by identifying a target object to be moved and
its new location. The motion planning software will then attempt to compute three
trajectories: Reach: Position the robot to grasp the object; Transfer: After grasping,



Motion Planning for Humanoid Robots 5

move the object to the target location; and Return: Once the object has been placed
at the target location, release it and return the robot to its rest position. In this case,
the start and the goal are body postures that must be connected by a path in the
configuration space. If a path at each phase is successfully returned by the planner,
the robot executes the motion, possibly guided by visual or force feedback. There
are many potential uses for such software, with the primary one being a high-level
control interface for automatically solving complex object manipulation tasks.

Due to the complexity of motion planning in its general form [19], the use of
complete algorithms limited to low-dimensional configuration spaces. Even single-
arm manipulation planning (typically 6-7 DOFs) presents a computational challenge
due to the dimensionality of the search space. Since it is typically impractical to ex-
plicitly represent the configuration space, sampling techniques are often used in
order to discover free configurations, and build a data structure that approximates
their connectivity. The problem then becomes how to design practical and efficient
sampling schemes. This has motivated the development of numerous planning meth-
ods, many of which employ techniques such as randomization (e.g. [2,10,7,17,11]),
lazy evaluation of collision checking (e.g. [3,20]), deterministic sampling [4], or a
combination of techniques. Although these methods are often heuristic and incom-
plete, many have been shown to find paths in high-dimensional configuration spaces
with high probability.

Fig. 5. Manipulation planning for the ’H6’ robot.

We have adopted an efficient general path planning algorithm that is well-suited
for manipulation planning. The algorithm, RRT-Connect [11], was originally de-
veloped to plan collision-free motions for animated characters in 3D virtual en-
vironments[14]. It uses a randomized search strategy based on Rapidly-exploring
Random Trees (RRTs) [16]. Distinguishing features of this algorithm include no pre-
processing of the workspace (ideal for changing environments), greedy behavior that
solves simple queries very efficiently, and uniform coverage of any non-convex space
(For details and analysis, see [11]). This planner has been used to efficiently solve
several well-known motion planning benchmarks, such as the “Alpha 1.0 puzzle” and
“Flange 1.0 problem” (Figure 6), which are considered difficult due to the presence
of narrow passages in the configuration space. These examples have been analyzed
and made publicly available for research purposes[1]. Computation times for our



6 J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue

planner on the Alpha 1.0 puzzle range from 12 minutes to 3.5 hours on a 900 MHz
PC running Linux (without any parameter tuning). Many previous planners have
been unable to solve this problem without assistance.

3 54

2

1

Fig. 6. left: The “Alpha Puzzle” Benchmark. right: The “Flange” Benchmark.

Combined with an inverse kinematics algorithm, the planner facilitates a task-
level control mechanism for planning manipulation motions. Through a graphical
user interface, an operator can click and drag an object to a target location and issue a
move command. Figure 5 shows snapshots of a planned motion for the ’H6’ humanoid
repositioning a bottle from the lower shelf to the upper shelf. In the examples shown
in Figure 7, the simulated vision module is used in order to verify that a particular
target object is visible to a virtual humanoid prior to attempting to grasp it. If the
object is visible, the manipulation planner is invoked to plan a collision-free path
to grasp the object. If the target object is not visible, the humanoid will attempt to
reposition itself, or initiate a searching behavior in an attempt to find the missing
object.

HUMANOID VIEW HUMANOID VIEW

Fig. 7. left: Grasping a coffee pot. right: Answering the telephone.

4 Full-body Motions

Automatic, full-body motion planning for humanoid robots presents a formidable
computational challenge due to: 1) the high number of degrees of freedom, 2)



Motion Planning for Humanoid Robots 7

complex kinematic and dynamic models, and 3) balance constraints that must be
carefully maintained in order to prevent the robot from falling down. We have
developed a version of RRT-Connect that automatically generates collision-free,
dynamically-stable motions from full-body posture goals[13]. Obstacle and balance
constraints are imposed upon incremental search motions. Provided the initial and
goal configurations correspond to collision-free, statically-stable body postures, the
path returned by the planner can be smoothed and transformed into a collision-free
and dynamically-stable trajectory for the entire body.

Fig. 8. Dynamically-stable motion for retrieving an object (top: simulation, bottom: actual
hardware).

Robot Model and Assumptions: An approximate model of the humanoid, including
the kinematics and dynamic properties of the links, is used along with the following
assumptions:

1. Environment model: We assume that the robot has access to a 3D model of the
surrounding environment to be used for collision checking.

2. Initial posture: The robot is currently balanced in a collision-free, statically-
stable configuration supported by either one or both feet.

3. Goal posture: A full-body goal configuration that is both collision-free and
statically-stable is specified. The goal posture may be given explicitly by a
human operator, or computed via inverse kinematics or other means.

4. Support base: The location of the supporting foot (or feet in the case of dual-leg
support) does not change during the planned motion.



8 J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue

Full-body Trajectory Generation: The key idea of the planning algorithm is to
search the space of statically-stable configurations (Cstable) for a solution path that
also lies within the free configuration space (Cfree). Each incremental search motion
checks balance constraints while also checking for collisions with obstacles. Rather
than picking a purely random configurations as a target for every planning iteration,
we pick from a pre-generated set of statically-stable postures (i.e. qrand ∈ Cstable).
For a more detailed explanation, see [13].

If successful, the path search phase returns a continuous sequence of collision-
free, statically-stable body configurations. All that remains is to calculate a final
solution trajectory τ that is dynamically-stable and collision-free. Theoretically,
any given statically-stable trajectory can be transformed into a dynamically-stable
trajectory by arbitrarily slowing down the motion. However, we can almost invariably
obtain a smoother and shorter trajectory by performing the following two steps:

1. Smoothing: We smooth the raw path by making several passes along its length,
attempting to replace portions of the path between selected pairs of configu-
rations by straight-line segments that satisfy both obstacle and dynamic bal-
ance constraints. This step typically eliminates any potentially unnatural pos-
tures along the raw path (e.g. unnecessarily large arm motions). The resulting
smoothed path is transformed into an input trajectory using a minimum-jerk
model [6].

2. Filtering: A dynamics filtering function is used in order to output a final,
dynamically-stable trajectory. We use the online balance compensation scheme
described in [9], which enforces constraints upon the zero moment point (ZMP)
trajectory in order to maintain overall dynamic stability. The output configuration
of the filter is guaranteed to lie in Cstable. Collision-checking is used to verify
that the final output trajectory lies in Cfree, with the motion made slower in the
case of collision.

Dynamically-stable, Collision-free Motions: We have implemented a prototype
planner in C++ that runs within a graphical simulation environment An operator
can position individual joints or use inverse kinematics to specify body postures for
the virtual robot. The filter function can be run interactively to ensure that the goal
configuration is statically-stable. After specifying the goal, the planner is invoked to
attempt to compute a dynamically-stable trajectory connecting the goal configuration
to the robot’s initial configuration (assumed to be a collision-free, stable posture).

We have tested the output trajectories calculated by the planner on an actual
humanoid robot hardware platform. The “H6” humanoid robot (33-DOF) is 137cm
tall and weighs 51kg (including 4kg of batteries). Figure 8 shows a computed
dynamically-stable motion for the H6 robot moving from a neutral standing position
to a low crouching position in order to retrieve an object from beneath a chair.
Figure 9 shows a motion for positioning the right leg above the top of a box while
balancing on the left leg. Each of the scenes contains over 9,000 triangle primitives.
The total wall time elapsed in solving these queries ranges from under 5 seconds to
approximately 1.5 minutes on a 900 MHz Pentium III running Linux.



Motion Planning for Humanoid Robots 9

Fig. 9. Placing the right foot above the surface of an obstacle while balancing on the left leg.
(top: simulation, bottom: actual hardware).

5 Discussion

As humanoid robotics technology enters mainstream society during the next several
decades, safe operation and autonomy will be of highest importance. The develop-
ment of general-purpose autonomous motion generation tools and techniques for
humanoid robots represents a very challenging research area. We have given a brief
overview of some our efforts to develop practical motion planning software for
humanoids performing a variety of tasks. By using a graphical simulation environ-
ment, sophisticated motion generation algorithms can be efficiently developed and
debugged, reducing the costs and safety risks involved in testing software for hu-
manoid robots. We believe that through the use of such kinds of task-level planning
algorithms and interactive simulation software, the current and future capabilities of
humanoid and other complex robotic systems can be improved.

Acknowledgments

We thank Fumio Kanehiro and Yukiharu Tamiya for their efforts in developing the Auto-
Balancer software library. This research was supported in part by a Japan Society for the
Promotion of Science (JSPS) Postdoctoral Fellowship for Foreign Scholars in Science and
Engineering, and by JSPS Grant-in-Aid for Research for the Future (JSPS-RFTF96P00801),
and NSF grants ECS-0325383, ECS-0326095, and ANI-0224419.

References

1. N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo. Choosing good distance metrics
and local planners for probabilistic roadmap methods. IEEE Trans. Robot. & Autom.,
16(4):442–447, August 2000.



10 J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue

2. J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed representation
approach. Int. J. Robot. Res., 10(6):628–649, December 1990.

3. R. Bohlin and L. Kavraki. Path planning using Lazy PRM. In Proc. IEEE Int. Conf.
Robot. & Autom. (ICRA), April 2000.

4. Michael S. Branicky, Steven M. LaValle, Kari Olson, and Libo Yang. Quasi-randomized
path planning. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA), 2001.

5. J. Chestnutt, J.J. Kuffner, K.Nishiwaki, and S.Kagami. Planning biped navigation strate-
gies in complex environments. In Proc. IEEE Int. Conf. on Humanoid Robotics (Hu-
manoids’03), 2003.

6. T. Flash and N. Hogan. The coordination of arm movements: an experimentally confirmed
mathematical model. J. Neurosci., 5(7):1688–1703, 1985.

7. D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces.
Int. J. Comput. Geom. & Appl., 9(4-5):495–512, 1997.

8. Y. K. Hwang and N. Ahuja. A potential field approach to path planning. IEEE Trans.
Robot. & Autom., 8(1):23–32, February 1992.

9. S. Kagami, F. Kanehiro, Y. Tamiya, M. Inaba, and H. Inoue. AutoBalancer: An Online
Dynamic Balance Compensation Scheme for Humanoid Robots. In Proc. Int. Workshop
Alg. Found. Robot.(WAFR), 2000.

10. L. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration space. IEEE Trans. Robot. & Autom.,
12(4):566–580, 1996.

11. J.J. Kuffner and S.M. LaValle. RRT-Connect: An efficient approach to single-query path
planning. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA), April 2000.

12. J.J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep planning among
obstacles for biped robots. In Proc. IEEE/RSJ Int. Conf. Intell. Robot. & Sys. (IROS),
October 2001.

13. J.J. Kuffner, S.Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Dynamically-stable
motion planning for humanoid robots. Autonomous Robots (special issue on Humanoid
Robotics), 12(1):105–118, 2002.

14. J.J. Kuffner Jr. Autonomous Agents for Real-time Animation. PhD thesis, Stanford
University, Stanford, CA, December 1999.

15. J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,
1991.

16. S.M. LaValle and J.J Kuffner. Randomized kinodynamic planning. In Proc. IEEE Int.
Conf. Robot. & Autom. (ICRA), May 1999.

17. E. Mazer, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm. J. Artificial
Intell. Res., 9:295–316, November 1998.

18. B. Mirtich. VClip: Fast and robust polyhedral collision detection. ACM Transactions on
Graphics, 17(3):177–208, July 1998.

19. J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc. 20th IEEE
Symp. on Foundations of Computer Science (FOCS), pages 421–427, 1979.

20. G. Sanchez and J.C. Latombe. On delaying collision checking in prm planning – appli-
cation to multi-robot coordination. Int. J. Robot. Res., 21(1):5–26, January 2002.


