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Abstract

Clupeiform fishes are ecologically and economically important species contributing to

industrial and artisanal fisheries worldwide. They represent key links in food webs,

influencing the dynamic between trophic levels. The dietary interactions of these

species are poorly studied in many regions, yet essential for fisheries management.

To elucidate the role of these species in food webs of the Southern Brazilian Bight

pelagic fisheries, we used metabarcoding analysis of fish stomach contents of Clupei-

formes and possible predators. Onboard sampling from March to September 2016

allowed for processing of 87 stomach samples representing 31 species (including

12 samples representing three species of Clupeiformes). Links between trophic levels

showed the predominance of Sardinella brasiliensis and Engraulis anchoita as impor-

tant dietary items of a large range of fishes (28 species belonging to 18 families) and

representing the majority of the total prey read abundance assigned to clupeiform

fishes (�46% and �32%, respectively). Opisthonema oglinum contributed to the diet

of 16 species in 13 families and �18% of total read abundance of clupeiform fishes

as prey. The appearance of multiple clupeiform taxa in the diet of predators that are

not commonly associated with pelagic prey indicates that ecosystem-based fisheries

management should not be separated between pelagic and demersal fisheries. The

diet of Clupeiformes revealed an unexpectedly large diversity of fish species and a

low proportion of invertebrates (<5% of clupeiform prey reads). This was likely due

to a combination of both a limitation of the metabarcoding method (primer bias and

low success of invertebrate taxonomic identification) as well as a contribution of

early life stages (ichthyoplankton) to the diet of these fishes. The potential role of

clupeiform fish populations as a constraint to the recruitment from the
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ichthyoplanktonic phase of other ecologically or commercially important fishes

should be considered as an important direction for future studies.
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1 | INTRODUCTION

Clupeiformes are ecologically and economically important fishes, play-

ing a fundamental role in industrial and artisanal fisheries worldwide

(Anggoro & Saputra, 2019; Nelson et al., 2016; Souza-Conceição &

Schwingel, 2011). Members of this order are mainly pelagic marine

species inhabiting coastal areas, though some species live in estuaries

and freshwaters (Whitehead, 1985a; Whitehead et al., 1988). Their

bodies are laterally flattened or rounded, and they live in large shoals,

feeding mainly on plankton filtered from water using their branchial

arches (Whitehead, 1985a; Whitehead et al., 1988). In the Southern

Brazilian Bight (SBB, �22–28�S), ichthyoplankton records indicate

that the Brazilian sardine (Sardinella brasiliensis [Steindachner, 1879])

and Argentine anchovy (Engraulis anchoita [Hubbs and Marini, 1935])

are the dominant pelagic fishes (Katsuragawa et al., 2006). They

are known as near-shore, schooling, and filter-feeding fishes

(Whitehead, 1985b), and as small pelagic fish at middle trophic levels

are believed to exert major control on the dynamics of lower and

higher trophic levels through their transfer of nutrients and energy

(Castello, 2007; Cury et al., 2000; Frederiksen et al., 2006).

S. brasiliensis is the most important pelagic fishery resource in

Brazil in terms of biomass (Valentini & de Cardoso, 1991), with

catches totaling 74,100 t in 2011 (MPA, 2013). Its landings are

concentrated in the states of Rio de Janeiro, São Paulo, and Santa

Catarina (Figueiredo & Menezes, 1978; Paiva, 1997; Schroeder

et al., 2022). Periods when the mean landings of the Brazilian sardine

declined (Rossi-Wongtschowski et al., 1995) have been attributed to

overfishing (Valentini & de Cardoso, 1991), and some stocks are now

considered over-exploited (Cergole et al., 2005; Cergole &

Dias-Neto, 2011). This species is restricted to the SBB and spawns

during late-spring and summer (Matsuura et al., 1992), when the

water column in the bight shows a strong vertical stratification

(Kurtz & Matsuura, 2001). Most research on pelagic fisheries in this

region focus on S. brasiliensis (de Moraes et al., 2012; Dias

et al., 2014; Gigliotti et al., 2010; Matsuura, 1996, 1998; Schroeder

et al., 2022). However, 6 genera and 12 species of anchovies are also

found in the SBB. E. anchoita is the main economically important spe-

cies among these and has historically mainly been fished by the

Argentine and Uruguayan fleets (FAO, 2014). Despite its abundance,

E. anchoita has not been subjected to significant commercial exploita-

tion by southern Brazilian fleets (Buratti et al., 2020; Costa

et al., 2020). Instead, it is primarily used as bait, and the quantities

captured for this purpose are relatively low (Buratti et al., 2020). As a

result, most research has been focused on stocks from the Argentine

and Uruguayan coasts (Auad & Martos, 2012; de Ciechomski, 1965;

Garciarena & Buratti, 2013; Leonarduzzi et al., 2010, 2013; Madirolas

et al., 2013; Marrari et al., 2013; Padovani et al., 2011), with fewer

studies involving E. anchoita from southern Brazil (Carvalho &

Castello, 2013; Cooke & Madureira, 2012; Costa et al., 2016; de

Torquato & Muelbert, 2014; Weiss, 1977). These anchovies are

broadly distributed, spawn year-round in the SBB with a peak during

late-spring and beginning of summer (Matsuura et al., 1992). Their

eggs are important components (a major constituent of the ichthyo-

plankton) of the pelagic ecosystem, because they survive in different

oceanographic conditions resulting in a wide distribution

(Macedo-Soares et al., 2014). Opisthonema oglinum (Lesueur, 1818),

commonly referred to as the Atlantic thread herring, is another

common clupeiform species in the SBB. The species exhibits a

well-defined reproductive season, with distinct periods of gonadal

maturation and spawning, and its reproductive cycle overlaps with

that of S. brasiliensis, indicating potential interspecies interactions and

competition for resources during these periods (Petermann &

Schwingel, 2016). During the spring–summer period from 1995 to

2010, data from midwater trawls in the SBB showed that O. oglinum

was one of the most abundant species and strongly associated in the

combination of the Coastal Water and areas of mixing between

Coastal Water and South Atlantic Central Water, alongside two other

clupeiform species, S. brasiliensis and Harengula clupeola (Cuvier,

1829) Contente & Rossi-Wongtschowski, 2016.

The Brazilian fishing industry experienced significant growth in

the 1960s, primarily focusing on highly productive pelagic and demer-

sal resources (Paiva, 1997). However, overfishing and the subsequent

decline in fish stocks have led to a notable decrease in productivity,

resulting in the necessity of implementing conservation policies

(Dias-Neto, 2010; Freire et al., 2015). To understand stock dynamics,

ecosystem impacts, and human activities, the collection of data during

commercial fishing operations is essential (Cunha & Resgalla, 2016;

Tamanaha et al., 2016). This would further allow researchers to inves-

tigate the effects of changes in fishing fleets' behavior and catch tech-

nology, driven by ecological, market-oriented, and legal factors (Arana

et al., 2016). Indeed, integrating scientific research and data into fish-

eries management is crucial to achieve both ecological and economic

sustainability. There is a pressing need to update knowledge regarding

industrial fisheries in southeastern and southern Brazil while actively

identifying innovative solutions for fishing development and manage-

ment in the region. These efforts are essential for effective conserva-

tion practices (Arana et al., 2016). Species captured as bycatch in the

Brazilian sardine fishery between 2008 and 2010 indicated better

estimates of growth for small pelagic fish (including Clupeiformes)

than for larger or more benthic associated fishes, showing the
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importance of studies aiming at monitoring populations and treating

them accordingly (Vaz-dos-Santos & Rossi-Wongtschowski, 2013).

Traditional dietary studies use visual identification of food items,

but this method is dependent on the prey item (whole organism or

parts of larval or adult stages) and the level of digestion of the prey as

they determine which diagnostic characters are available often

limiting species level identification and often require a high level of

taxonomic knowledge for reliable characterization across many

taxa (Amundsen & Sánchez-Hernández, 2019; Sheppard &

Harwood, 2005). Dietary analysis using metabarcoding has been

proven to be an effective method for recovering species level interac-

tions in food webs and describing ecological effects associated with

habitat use (Hoenig et al., 2021; Leray et al., 2015; Pompanon

et al., 2012; Weber et al., 2023), providing a valuable alternative to

traditional morphological-based analysis (Alberdi et al., 2019; Cuff

et al., 2022). Metabarcoding enables detailed identification helping to

better evaluate the variety of dietary items and can provide relative

quantification of food items consumed allowing insights into diet

choices (Bessey et al., 2019; Casey et al., 2019; Cowart et al., 2015;

Dafforn et al., 2014; Elbrecht et al., 2017; Nielsen et al., 2017; Zurdo

et al., 2023). The comprehensive access to the wide range of food

items with accurate taxonomic identification and relative comparison

of abundance offers valuable data for both biodiversity research and

management (Ando et al., 2020; Deagle et al., 2019; Ficetola

et al., 2018; Kartzinel et al., 2015; Roffler et al., 2021).

Although clupeiform fishes are important in fisheries and aquacul-

ture, in comparison to other commercially important fish, there are

often gaps in basic biological information and fishing data at the

regional level that can support management decisions (Birge

et al., 2021). Because they play a key role in food webs, the knowl-

edge of the dietary interactions of these species is essential for fisher-

ies management (Roslin & Majaneva, 2016). However, obtaining this

knowledge can be challenging because (a) taxonomic identification of

many clupeiforms can be difficult (Whitehead, 1985a); (b) they eat a

diverse array of small organisms, which decreases the accuracy and

precision of identifying most of the species in their diets through mor-

phological approaches (Siegenthaler et al., 2019; Takahashi

et al., 2020); and (c) the digestive processes further impede the identi-

fication of small dietary items and fragments (Ribas et al., 2021). In

our study, we used metabarcoding analysis of fish stomach contents

to obtain better insights into the role of clupeiform species and their

potential predators in the food web of the SBB and help to fill the

knowledge gaps currently hampering sustainable fisheries

management.

2 | MATERIAL AND METHODS

2.1 | Sampling

Samples were collected from March to September 2016 during on-

board fishery monitoring of the pelagic sardine fishery in south-

eastern Brazil (between Barra Velha, Santa Catarina state, and Rio de

Janeiro, Rio de Janeiro state) (Figure 1) as part of a regional

ecosystem-based fisheries management project based at the

University of São Paulo Oceanographic Institute. Samples covered

seven capture events from three fishing embarkations of purse seine

fishing vessels (four capture events from one embarkation just west

of Ilha Grande, Rio de Janeiro; two capture events from one embarka-

tion just east of Ilha Grande, Rio de Janeiro; and one capture event

from an embarkation at Barra Velha, Santa Catarina—see the support-

ing information). These purse-seine caught samples are ideal for meta-

barcoding analyses, as they have not consumed bait and have little

time to eat co-collected taxa during their capture (Ribas et al., 2021).

Nonetheless, records of co-collected taxa were made to control for

their possible influence on dietary findings. We collected as many

individuals as possible from each species identified in the bycatch

(Table 1). A total of 87 samples from 31 species were collected

(see Table 1 for further details).

Whole fish were frozen until further processing in the laboratory

at the University of São Paulo, USP. Samples and equipment were

decontaminated prior fish dissection to remove their stomach con-

tents. Stomach contents were preserved in absolute ethanol in decon-

taminated storage vessel with external labeling and transferred to the

Federal University of Pará, UFPA, for further processing. Samples

were collected under SISBIO license number 53022-2 from the

“Instituto Chico Mendes de Conservação da Biodiversidade.” Work

was performed under approval of the UFPA Ethics Committee

(CEUA-UFPA—Permit 68/2015).

2.2 | DNA extraction, PCR, and sequencing

All procedures were performed following initial decontamination of all

materials and surfaces using bleach and/or UV light exposure. Individ-

ual stomach contents were separated from preservative by three

cycles of centrifugation, washed with ultrapure, and UV sterilized

water. Four 650 μl subsample replicates (a–d) were prepared and

stored in separate microcentrifuge tubes (Rosa et al., 2024). DNA

from all replicates was extracted using the CTAB/phenol/chloroform

protocol (Doyle & Doyle, 1987) in a decontaminated fume hood. Two-

hundred sixty-three subsamples representing all 87 samples across

31 species were successfully extracted and sequenced (successful

amplification of replicates a–d is indicated in Table S1 as some repli-

cates did not amplify, apparently because of PCR inhibition), as well as

multiple negative controls generated at various steps, from sample

processing (tubes opened and filled only with ethanol or water during

sample preparation—one control between each homogenized sample),

to DNA extraction (one negative control in each row of 12 tubes) and

amplicon production (a minimum of two spatially separated negative

controls on each PCR plate) steps (Rosa et al., 2024).

PCR amplifications of all subsamples and negative controls target-

ing the Cytochrome C oxidase subunit I marker (130 bp) were per-

formed using the primers Minibar-Mod-F and Minibar-Mod-R (Berry

et al., 2015), following index combinations as described in Fadrosh

et al. (2014). PCRs were carried out in 25 μl final volumes with final
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F IGURE 1 Sampling area covering seven capture events during on-board fishery monitoring of the pelagic sardine fishery in southeastern
Brazil, from March to September 2016. EIG, East of Ilha Grande, Rio de Janeiro; WIG, West of Ilha Grande, Rio de Janeiro; BV, Barra Velha, Santa
Catarina

TABLE 1 Fish taxa collected in the Southern Brazilian Bight sardine fishery for which diet was characterized with DNA metabarcoding

Order Family Species Sample size

Acanthuriformes Ephippidae Chaetodipterus faber (Broussonet, 1782) 1

Acanthuriformes Sciaenidae Cynoscion guatucupa (Cuvier, 1830) 2

Acanthuriformes Sciaenidae Cynoscion jamaicensis (Vaillant and Bocourt, 1883) 1

Acanthuriformes Sciaenidae Menticirrhus americanus (Linnaeus, 1758) 2

Acanthuriformes Sciaenidae Micropogonias furnieri (Desmarest, 1823) 4

Acanthuriformes Sciaenidae Paralonchurus brasiliensis (Steindachner, 1875) 3

Batrachoidiformes Batrachoididae Porichthys porosissimus (Cuvier, 1829) 5

Beloniformes Hemiramphidae Hemiramphus balao (Lesueur, 1821) 3

Carangiformes Carangidae Caranx crysos (Mitchill, 1815) 2

Carangiformes Carangidae Caranx latus (Agassiz, 1831) 3

Carangiformes Carangidae Chloroscombrus chrysurus (Linnaeus, 1766) 2

Carangiformes Carangidae Hemicaranx amblyrhynchus (Cuvier, 1833) 2

Carangiformes Carangidae Oligoplites saliens (Bloch, 1793) 5

Carangiformes Carangidae Selene setapinnis (Mitchill, 1815) 3

Carangiformes Carangidae Trachinotus carolinus (Linnaeus, 1766) 1

Carcharhiniformes Carcharhinidae Rhizoprionodon lalandii (Valenciennes, 1839) 1

Clupeiformes Clupeidae Brevoortia pectinata (Jenyns, 1842) 1

Clupeiformes Clupeidae Opisthonema oglinum (Lesueur, 1818) 6

4 DE QUEIROZ ET AL.
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concentration of 1X Q5 High-Fidelity master mix (New England Bio-

labs), 2X Q5 enhancer (New England Biolabs), 100 nM of each primer,

and 2–3 ng of template DNA (including unique combinations of dual-

indexing barcodes) (Ribas et al., 2021; Rosa et al., 2024). The PCR

amplification protocol was as follows: initial denaturation at 98�C for

30 s; followed by 30 cycles of denaturation at 98�C for 10 s, anneal-

ing at 45�C for 15 s, and extension at 72�C for 15 s; and final exten-

sion of 2 min at 72�C.

Amplicons were visualized on agarose gels and quantified using

ImageLab Software v6.0. (Bio-Rad Laboratory). Amplicons were then

normalized using a Biomek 4000 liquid handling robot (Beckman Coul-

ter). The DNA libraries were cleaned using 1.0X AMpure beads

(Beckman Coulter), and sequence adapters ligated to the dual-indexed

amplicons using the NEBNext Fast DNA Library Prep Set for Ion Tor-

rent (New England Biolabs). The amplified libraries were size selected

using BluePippin (Sage Science). The final libraries were quantified on

a Fragment Analyzer (Agilent) instrument using the High Sensitivity

Genomic DNA Kit (Agilent) and sequenced on two 530 chips on an

Ion GeneStudio S5 system (Thermo Fisher).

2.3 | Bioinformatics: Sequence data processing

We used the pipeline PIMBA (Oliveira et al., 2021) to process the

sequencing data. The raw sequencing data were first demultiplexed

using the dual-index barcodes. The demultiplexed FASTQ files were

then cleaned to remove low-quality bases (PHRED < 20) using PRIN-

SEQ (Schmieder & Edwards, 2011), with the pimba_prepare module.

Then, we used QIIME (Caporaso et al., 2010) and VSEARCH (Rognes

et al., 2016) pipelines in the pimba_run module to perform dereplica-

tion, discard singletons, trim sequences to 130 bases, remove chimeric

sequences, and cluster molecular operational taxonomic units

(MOTUs) using similarity thresholds of 97% and 99%. Using

pimba_run, MOTUs were aligned with the nt reference database from

NCBI using BLAST to perform taxonomic assignment, including the

use of LULU (Frøslev et al., 2017) to remove erroneous MOTUs and

PIMBA script to check for and exclude MOTUs representing nuclear

mitochondrial pseudogenes (NUMTs) based on descriptors consider-

ing the 10 most similar sequences identified by BLAST. Assignment

was performed using minimum thresholds of 90% similarity, and simi-

larity to the most similar taxon was recorded. This step was included

since extensive reference databases for much of the fauna in the sam-

pled geographic region are not available, and we aimed at identifying

as many taxa as possible in the diet during post-processing (see

below). The outputs from the different clustering levels were evalu-

ated to determine their effectiveness at recovering taxa without pro-

ducing multiple MOTUs with the same taxonomic assignment.

Rarefaction curves for each replicate were performed to assess

whether adequate sequencing depth had been achieved, using ran-

dom sampling of 999 sequences without replacement in the “rare-
curve” function from vegan (Oksanen et al., 2020) in R 4.1.0 (R Core

Team, 2021).

2.4 | Bioinformatics: Taxonomic assignment and
statistics

To remove false positives and possible contaminants or sequencing

errors, we applied the following rules: (i) the maximum number of

reads detected in the controls was removed for each MOTU from all

samples; (ii) MOTUs containing fewer than 10 reads were discarded;

and (iii) obvious non-target species or MOTUs likely originating from

carry-over contaminations were removed from the dataset (Ushio

et al., 2018; Ribas et al., 2021; Rosa et al., 2024). The final assign-

ments of dietary items were inferred based on similarity values and

knowledge on geographic distributions in the literature accessed

TABLE 1 (Continued)

Order Family Species Sample size

Clupeiformes Clupeidae Sardinella brasiliensis (Steindachner, 1879) 5

Gerreiformes Gerreidae Eucinostomus gula (Quoy and Gaimard, 1824) 5

Istiophoriformes Sphyraenidae Sphyraena tome (Fowler, 1903) 3

Lutjaniformes Haemulidae Orthopristis ruber (Cuvier, 1830) 3

Perciformes Priacanthidae Priacanthus arenatus (Cuvier, 1829) 2

Perciformes Sparidae Pagrus pagrus (Linnaeus, 1758) 1

Perciformes Triglidae Prionotus punctatus (Bloch, 1793) 1

Scombriformes Pomatomidae Pomatomus saltatrix (Linnaeus, 1766) 4

Scombriformes Scombridae Euthynnus alletteratus (Rafinesque, 1810) 2

Scombriformes Scombridae Scomber colias (Gmelin, 1789) 8

Scombriformes Trichiuridae Trichiurus lepturus (Linnaeus, 1758) 2

Syngnathiformes Dactylopteridae Dactylopterus volitans (Linnaeus, 1758) 3

Tetraodontiformes Monacanthidae Aluterus monoceros (Linnaeus, 1758) 1

Note: Clupeiform samples are in bold text.

DE QUEIROZ ET AL. 5
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through FishBase (Froese & Pauly, 2022) and SeaLifeBase

(Palomares & Pauly, 2022) to confirm the taxonomic identification.

Species identity was considered confirmed for similarities above 97%,

and the most probable geographically local representatives of the

same genus or family identified when similarities were between 90%

and 97% (Rosa et al., 2024). For example, a sample assigned with a

similarity of 90–97% could be subsequently assigned at family level,

genus level, or even a specific species in the genus known from the

region if only one species is known for the region. A minimum of 90%

similarity was used, as reassignment based on lower similarities than

this becomes unlikely. As no blocking primers were used in this study,

the predator's DNA was co-amplified alongside dietary items. These

data were used to confirm predator identification but removed for

subsequent dietary analyses.

Detection of prey taxa was normalized, and secondary consump-

tion of items was evaluated according to Rosa et al. (2024), by using

both thresholds of relative read abundance (RRA) within samples

(<1% for exclusion and 1–5% as a flag to assess secondary consump-

tion) and comparative data from the literature and from within the

global metabarcoding dataset produced in this study. The number of

reads was then averaged across subsamples (to avoid inflation of read

abundance in samples with more subsamples, e.g., 4 vs. 3 vs. 2 sub-

samples) (Rosa et al., 2024). The dietary links of clupeiform fishes

were visualized using Sankey diagrams. Figures were produced using

the ggplot2 package (Wickham, 2016) under R 4.1.2 (R Core

Team, 2021). R scripts are available as a file in the supporting

information.

3 | RESULTS

Raw sequencing data can be found in GenBank databases under the

Project accession ID PRJNA642914. The overall dataset shows satu-

ration in the number of MOTUs recovered per sample with increasing

sequencing coverage and recovery of all the same prey taxa using

clustering at the lower level of 97%. Our decontamination procedures

were successful, and we obtained fewer than 10 reads of human DNA

or other contaminants (i.e., other species being worked on elsewhere

by the researchers) in any given sample. Following contaminants and

sequencing errors removal as in Ribas et al. (2021), we confirmed the

taxonomic identification of the specimens from which the stomach

contents were analyzed using their most abundant MOTU. After the

rule-based automated data cleaning and manual curation, a few

remaining MOTUs were considered to represent likely secondary con-

sumption within each species and removed from further analysis.

Only a few identified dietary items were also caught in the same

net as the fish whose stomach contents were analyzed. These were

only maintained as probable dietary items when the RRA of the item

was greater than that of other items, which were not caught in the

same net as the same sample. Almost all these items were also identi-

fied in the diet of individual samples that were not collected from the

same net. A final table of accepted predators of Clupeiformes was

produced that included taxa belonging to 13 orders, 18 families,

29 genera, and 31 species (Table S2; Figure 2), and the accepted prey

items of Clupeiformes included taxa belonging to three phyla,

12 orders, 13 families, 22 genera, and 24 species (Table S3, Figure 3).

3.1 | Clupeiformes as dietary items

S. brasiliensis and E. anchoita were the principal prey items (dominant

read count and most frequently encountered across all samples of

potential clupeiform predators) and are found as either a probable die-

tary item or as a major component of the diet of fishes from 11 and

10 orders (14 and 13 families and 22 and 23 species each), respec-

tively, and represent the majority of the total RRA assigned to clupei-

form fishes (�46% and �32% each). S. brasiliensis was not found as a

prey item of the sampled fishes from the orders Carcharhiniformes

(family Carcharhinidae) and Istiophoriformes (family Sphyraenidae),

while E. anchoita was not found to be consumed in samples of fishes

from the orders Beloniformes (family Hemiramphidae), Perciformes

(families Priacanthidae, Sparidae, and Triglidae), and Syngnathiformes

(family Dactylopteridae). O. oglinum was found in the diet of fishes

from 12 orders, 13 families, and 16 species, contributing with a lower

percentage of the RRA (�18%); Harengula jaguana (Poey, 1865) was

consumed by fishes from two species (O. oglinum and Paralonchurus

brasiliensis [Steindachner, 1875]); and Anchoa sp. was found as a die-

tary item from only one fish species (Sphyraena tome Fowler, 1903—

Istiophoriformes: Sphyraenidae) (Figure 2).

3.2 | Clupeiformes diet

Many species identified in the diet of the clupeiform fishes (Figure 3)

likely represent the consumption of early life stages as they include

many fish taxa (including various members of the families Carangidae,

Sciaenidae, and Scombridae as well as the bluefish, Pomatomus salta-

trix [Linnaeus, 1766]; the largehead hairtail, Trichiurus lepturus [Lin-

naeus, 1758]; the flying gurnard, Dactylopterus volitans

[Linnaeus, 1758]; and the unicorn leatherjacket, Aluterus monoceros

[Linnaeus, 1758]) that when adults are much larger than the clupei-

form fishes whose stomachs were analyzed. Although invertebrate

zooplankton (a pteropod mollusk—Creseis virgula [Rang, 1828] and a

branchiopod crustacean—Penilia avirostris [Dana, 1849]) were identi-

fied in the diet of O. oglinum, they were found at very low RRA, and

only fish were identified in the diet of B. pectinata and S. brasiliensis.

The most diverse diet among the Clupeiformes was identified in

O. oglinum that included 12 orders, 15 families, and 20 species, com-

pared to 8 orders, 10 families, and 14 species in S. brasiliensis and only

three orders, three families, and three species in B. pectinata.

O. oglinum was found to consume three other Clupeiformes

(E. anchoita, H. jaguana, and S. brasiliensis), while S. brasiliensis con-

sumed E. anchoita and O. oglinum, and O. oglinum was also found in

the diet of B. pectinata. This reciprocal consumption between species

(Clupeiformes found to be predators and prey of each other) was

common. This further highlights the role of early life stages

6 DE QUEIROZ ET AL.
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(particularly eggs and larvae) as components of the diet of clupeiform

fishes in the SBB.

4 | DISCUSSION

The results of the present study confirm that clupeids are consumed

by many species. Such findings have been previously observed in

other taxon-specific dietary studies conducted in various habitats

(Arantes, 2014; Bornatowski et al., 2012, 2014; Braga et al., 2018;

Haluch et al., 2009; Lima et al., 2000; Lucena et al., 2000; Martins &

Haimovici, 2020; Paiva & Motta, 1999). We found exceptions (newly

identified predators) such as Chaetodipterus faber (Broussonet, 1782)

(Acanthuriformes: Ephippidae), previously only known to feed on a

variety of prey, but mainly on hydroids, anthozoans, and polychaetes,

but also showing herbivorous habits (Barros et al., 2013;

Bittencourt, 1990; Couto & de Vasconcelos, 1980; Hayse, 1990; Reid

et al., 1956). Eucinostomus gula (Quoy & Gaimard, 1824)

(Gerreiformes: Gerreidae), was previously only known to consume

polychaetes, copepods, amphipods, isopods, bivalves, ostracods, cni-

darians, hydrozoans, nematodes, and algae as prey items, but with tel-

eost fish parts (unidentifiable) also found in analyses (Bouchereau &

Chantrel, 2009; Brook, 1977; Cruz et al., 2018; Kerschner et al., 1985;

Marancik & Hare, 2007; Odum & Heald, 1972; Springer &

Woodburn, 1960). Other predator species investigated in our study,

but previously not known to feed on Clupeiformes included:

F IGURE 2 Clupeiform fishes identified as prey (right) of fishes caught as bycatch in the southern Brazilian sardine purse seine fishery (left)
based on COI minibar metabarcoding of stomach contents. Width of lines are related to read counts.

DE QUEIROZ ET AL. 7
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Micropogonias furnieri (Desmarest, 1823) (Carozza et al., 2004;

Figueiredo & Vieira, 2005; Morasche et al., 2010), Pagrus pagrus

(Linnaeus, 1758) (Capitoli & Haimovici, 1993; Goldman et al., 2016),

and P. brasiliensis (Steindachner, 1875) (Branco et al., 2005; de Robert

et al., 2007).

Since the previously unidentified predators of clupeiform fishes

identified above are all generally fishes that exhibit a benthic feeding

behavior or primarily feed near the bottom of the water column, this

indicates that the role of pelagic fish in the diet of fishes from lower

strata in the water column is probably overlooked and

molecular-based studies using metabarcoding identification of stom-

ach contents can provide additional and more accurate information of

predator diets that could be missed through traditional diet analysis

(Amundsen & Sánchez-Hernández, 2019). This is especially the case

when small or degraded food items present in the stomach cannot be

identified at the species level, such as the presence of larval stages or

eggs of clupeiforms with a rapid rate of digestion, so few identifiable

hard structures are left for carrying out a proper and effective identifi-

cation based on traditional methods (Amundsen & Sánchez-

Hernández, 2019).

In the present study, most of the items identified in the diet of

clupeiforms were other fishes, which initially appears to contradict

this existing knowledge. Clupeiforms are considered to be generalized

planktonic feeders, with many studies indicating that crustaceans,

such as adult copepods, are important food items for their growth and

successful recruitment (Chícharo et al., 2012; Quah et al., 2022).

F IGURE 3 Dietary items identified (right) for the Clupeiform species (left) caught as target or as bycatch of the southern Brazilian sardine
purse seine fishery using COI minibar metabarcoding of from stomach contents. Width of lines are related to read counts.

8 DE QUEIROZ ET AL.
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However, diet is recorded as varying considerably with food availabil-

ity, the size of the individuals sampled and the taxonomic groups to

which they belong. Larvae of the dorosomatid sardines S. brasiliensis

(Kurtz & Matsuura, 2001) and Sardina pilchardus (Yebra et al., 2019)

often consume the most abundant copepods in their environment. A

prevalence of copepods was also identified in the diet of adult

S. brasiliensis (Schneider & Schwingel, 1999), but in a recent study, this

species also showed the highest occurrence of ichthyoplankton, along

with zooplankton, phytoplankton, and fish in its gut contents, indicat-

ing a diverse diet (Olher & Gasalla, 2023).

In our study, fish were identified as the dominant source of prey

for S. brasiliensis, but the pteropod mollusk C. virgula was also found.

The dorosomatid O. oglinum has also been described as having a feed-

ing preference for crustaceans (Bomfim et al., 2020; Couto & de Vas-

concelos Filho, 1986; de Chaves & Vendel, 2008; Olher &

Gasalla, 2023; Vega-Cendejas et al., 1997), but some of the cited

studies found food items that were only classified as “unidentified
fish” (Couto & de Vasconcelos Filho, 1986; Vega-Cendejas

et al., 1997), or Teleostei remains (scales and bones), otoliths, juve-

niles, or animal matter (Bomfim et al., 2020; Olher & Gasalla, 2023). In

our study, fish were identified as the dominant source of prey for

O. oglinum, though some invertebrates (P. avirostris and C. virgula)

were also detected in its diet. A predominance of copepods is

recorded for the diet of engraulid anchovy species including

E. anchoita (Schwingel, 1998), but Anchoa tricolor and Anchoa lyolepis

were recorded to have also consumed bivalve mollusks, gastropods,

and polychaetes (Olher & Gasalla, 2023). The discrepancies between

known diets and the finding in this study indicate that the contribu-

tion of fish and their larval forms might be significantly underesti-

mated and that they could potentially constitute a large part or even

the majority of dietary items because they are soft, more quickly

digested and grouped into “unidentified fish remains” as they are dif-

ficult to identify because of the digestive processes.

The inconsistency of results here in comparison to expectations

from the literature may indicate that fish are preferentially targeted as

prey items. An alternative, though not mutually exclusive, explanation

for the mismatch between our results and previous morphological

analyses may be bias in our assays towards amplifying fish DNA.

There are limitations inherent in the metabarcoding technique

(i.e., primer bias, poor reference database for the region's fauna, and

low efficiency of taxonomic identification for invertebrates) (Carugati

et al., 2015; Elbrecht & Leese, 2015). Amplification bias exists within

taxonomic groups (Elbrecht et al., 2017), but stronger effects are

known between major taxonomic groups (Berry et al., 2015) so

greater amplification of vertebrate DNA compared to invertebrate

DNA may be related to primer matching, especially considering that

crustacean DNA is known to be difficult to amplify using some

primers for the COI fragment (Zhan et al., 2014). Reference databases

are generally more incomplete for invertebrate taxa than for verte-

brates (Keck et al., 2023), and there is also variation in terms of which

species are present in reference datasets for the different molecular

markers (Marques et al., 2021), with lower coverages in general for

species that are not commercially important and for geographic

regions where funding is traditionally limited (Ficetola et al., 2021;

Keck et al., 2023; Marques et al., 2021). The combination of amplifica-

tion bias and poor reference databases are factors that could explain

the contrast between our results and previous morphological analyses.

An important area for further investigation is the use of multiple

markers in metabarcoding studies to improve loss of false negative

taxa (Burian et al., 2023), and this should also help to improve the

accuracy of information on food webs. This does not detract from

the fact that many of the prey identified here using metabarcoding

would be difficult to identify using traditional morphological methods

due to the rapid digestion of food items.

We must also consider that if these results do represent true vari-

ation in diet, that this may be a result of the life stages of the sampled

specimens and/or the food available in the local environment at the

place and time of sampling, reflecting natural variability that is always

associated with the number of samples available, and considering that

our sampling is limited both spatially and temporally as well as by the

overall number of samples per species. Indeed, prey selection is a

complex behavioral response that depends on sensory bias

(i.e., search image), relative prey availability and many factors relating

to the state of the predator (gape size, feeding mechanism, current

satiation, and physiological demands for specific nutrients) (Croy &

Hughes, 1991; Einfalt & Wahl, 1997; Gill, 2003; Gill & Hart, 1994;

Strubbe & van Dijk, 2002). For example, the clupeid Clupea harengus

(Linnaeus, 1758) has been speculated to target fish eggs when other-

wise predominant crustacean prey were less abundant (Segers

et al., 2007).

Another issue is raised by the appearance of the shark Rhizoprio-

nodon lalandii in the diet of O. oglinum. The size difference between

the two at any life stage indicates that the consumption of a whole

shark by the sardine is impossible, as Rhizoprionodon are viviparous

(Motta et al., 2007). This raises the importance of consumption of

fragments of larger organisms as contributors to the diet of filter

feeders, either from natural causes or as a result of fisheries activities.

The role of fisheries discards has previously been shown to consider-

ably alter the diet of seabirds that consumed shark (especially shark

livers) from long-line fishery discards (Bugoni et al., 2010). Therefore,

independently from prey selection, it is also important to consider the

minimum filtration ability of the predator's gill rakers, as it directly

impacts the capacity to retain prey. Using plastic particles, different

minimum filtration sizes were previously estimated and measured

based on gill raker morphology for adults of three different Clupei-

formes (Collard et al., 2017). S. pilchardus and Engraulis encrasicolus

were estimated to filter smaller particles (214 or 216 μm, respectively)

than C. harengus (323 μm), but the smallest particles retained by

E. encrasicolus (�220 μm) were also generally smaller than those

retained by S. pilchardus by around 30 μm (Collard et al., 2017). These

minimum sizes are consistent with mesoplankton consumption,

including adult copepods, other crustaceans and fish eggs and larvae.

Reciprocal consumption follows findings in Carangidae (Rosa

et al., 2024) but is probably found much more frequently in

Clupeiformes than in other taxa due to their role as zooplankton filter

feeders. Previous research on Atlantic herring (C. harengus) has
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revealed cannibalistic interactions, particularly during certain life

stages, such as the larval and juvenile phases (Corten, 2013; Hourston

et al., 1981), and another study have reported cannibalism in spring-

spawning Norwegian herring, where juvenile and adult individuals

have been observed consuming early larvae, as evidenced by the pres-

ence of larval remains in their stomach contents (Holst, 1992). Our

findings support the ecological importance of zooplanktivory of early

life stages of fishes, most likely eggs, larvae in ichthyoplankton or

small juveniles, and raise its implications for recruitment and fisheries

dynamics, according to food availability in the environment. However,

we recognize that the generalization of these findings requires further

effort considering the limitations of sampling (sample size and spatio-

temporal variation in collections) and the possible variations in results

because of marker amplification bias and available reference

sequences.

5 | CONCLUSION

Our study conducting metabarcoding analysis on the stomach

contents of fishes found in the southwest Atlantic region revealed a

mix of known and previously unrecorded predators of Clupeiformes,

such as C. faber and E. gula. This showcases the potential of

molecular-based techniques for dietary assessment including a large

number of taxa identified to species level in the diet, in order to pro-

vide additional information on fish diets, particularly when traditional

methods fail to identify small or degraded prey items. The inclusion

of various clupeiform taxa in the diet of predators not typically

associated with pelagic prey highlights the need for integrated

ecosystem-based fisheries management that considers both pelagic

and demersal fisheries as interconnected components of the

ecosystem. Early life stages of other fishes (ichthyoplankton) are also

important food sources highlighting an important role in clupeiform

growth and recruitment. Future studies should place importance on

exploring the potential impact of clupeiform fish on the recruitment

of ecologically or commercially significant fishes from the ichthyo-

planktonic phase. The identified challenges related to vertebrate

DNA amplification bias and the limited taxonomic identification of

invertebrates in metabarcoding studies may contribute to the dis-

crepancy with previous literature. Furthermore, we associate filtra-

tion capability based on gill raker morphology to the consumption

and quick digestion of early life stages of fishes as a mechanism to

explain why consumption of fish as prey may have been previously

underestimated. The presence of reciprocal consumption and previ-

ous known cannibalistic interactions further elucidates the complex

feeding dynamics, particularly during specific life stages. Overall, our

study demonstrates the value of molecular approaches in unraveling

dietary patterns and advancing our understanding of fish feeding

ecology, providing insights into the role of clupeiforms in the food

web of the southwest Atlantic.
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