
Preprint Series in Global Variational Geometry 1
Lepage Research Institute, Czech Republic
1 (2011), 1–11.

The Helmholtz conditions for systems of second order
homogeneous differential equations1
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Abstract. Variationality of systems of second order ordinary differential equations is studied
within the class of positive homogeneous systems. The concept of a higher order positive ho-
mogeneous function, related to Finsler geometry, is represented by the well-known Zermelo
conditions, and applied to the theory of variational equations. In particular, it is shown that ev-
ery system of m+1 second order variational and positive homogeneous differential equations
is linearly dependent and admits subsystems of m differential equations which are variational
in sense of parameter-invariant variational problems, and vice versa. An example of a positive
homogeneous variational system of second order differential equations is given.
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1. Introduction

In this paper we study variationality of systems of second order ordinary differential equations
given by positive homogeneous functions. Euler-Lagrange equations associated with systems
of this class admit positive homogeneous Lagrangian, and they have solutions independent of
parametrization which preserves orientation. From this point of view Lagrangians of the class of
positive homogeneous and variational systems may represent fundamental functions for possible
higher order generalizations of Finsler geometry.

Recently in [10], we have analysed by means of the geometric theory of jet differential groups
(Grigore and Krupka [3], Krupka and Krupka [5], Krupka and Urban [6]), the concept of pos-
itive homogeneity for functions depending on curves and their derivatives up to an arbitrary
finite order. It appeared that this higher order positive homogeneity is equivalent with the well-
known Zermelo conditions (see e.g. Zermelo [11], McKiernan [8], Matsyuk [7]), generalizing
the standard Euler formula for positive homogeneous functions depending on curves and their
first derivatives only. On this basis, every solution of a system of differential equations with
left-hand sides given by positive homogeneous functions is an orientation-preserving solution.

1 The authors acknowledge support of National Science Foundation of China (grant No. 10932002), and
grant 201/09/0981 of the Czech Science Foundation.
The first author was supported at the University of Pardubice by institutional funds and by Project
CZ.1.07/2.3.00/30.0058 of the Ministry of Education, Youth and Sports of the Czech Republic. He also
wishes to thank Professor Donghua Shi for kind hospitality and discussions during his stay at Beijing Insti-
tute of Technology, China.
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In Section 2 we briefly recall basic concepts of the general theory of variational differential
equations (see e.g. Havas [4]). In Section 3 we give second order version of our results contained
in [10]; the Zermelo conditions for second order systems are given explicitly.

Our main results contained in Section 4 include: a) every positive homogeneous system of
m+ 1 second order equations of m+ 1 dependent variables is linearly dependent, b) variation-
ality of a system of m + 1 second order differential equations, defined by positive homogenous
functions, is equivalent with variationality of certain of its subsystem of m equations in sense of
parametrized variational problems, c) explicit relationship between Lagrangians of both of these
systems is given. Finally, we give an example of two second order equations whose solution is a
unit circle in R2, with analysis of variationality and positive homogeneity.

The methods can be extended to the theory of differential equations on manifolds, as well as
to higher order systems. Examples in higher order dimension can be constructed analogously.

Throughout the paper we denote by yK , K = 1, 2, . . . ,m + 1, the canonical coordinate
functions on the Euclidean space Rm+1, and by ẏK , ÿK and ...

yK their first, second and third order
derivatives, respectively. If γ : I → Rm+1, γ(t) = (γ1(t), γ2(t), . . . , γm+1(t)), is a curve, then
for every K, yK ◦ γ(t) = γK(t), ẏK ◦ γ(t) = D(yKγ)(t), ÿK ◦ γ(t) = D2(yKγ)(t), and...
yK ◦ γ(t) = D3(yKγ)(t).

2. The Helmholtz conditions

Suppose we are given a system of m+ 1 second order ordinary differential equations

εK(yQ, ẏQ, ÿQ) = 0, (1)

where K,Q = 1, 2, . . . ,m+ 1; the number of equations and the number of dependent variables
are both equalm+1. Solutions of the system (1) are differentiable regular curves γ : J→ Rm+1,
γ(t) = (y1γ(t), y2γ(t), . . . , ym+1γ(t)), in Rm+1, defined on an open interval of the real line
R, which satisfy the system (1).

In accordance with the general theory of variational differential equations, we shall say that
the system (1) is variational, if there exists a real-valued function L = L (yQ, ẏQ) for which
(1) is the system of Euler-Lagrange equations; this means that for every K,

εK =
∂L

∂yK
− d

dt

∂L

∂ẏK
=
∂L

∂yK
− ∂2L

∂yQ∂ẏK
ẏQ − ∂2L

∂ẏQ∂ẏK
ÿQ. (2)

If L exists, it is called the Lagrange function for the system (1) which coincide with the system
of equations for extremals of a certain variational functional, associated with L . We note that in
the definition above the system of equations is supposed to be as it stands: the functions defining
the left-hand sides are supposed to be fixed. All our assertions will be concerned with this system
of functions; for example, no variational integrating factors are considered. It is the standard
result that for a second order variational system of functions εK = εK(yQ, ẏQ, ÿQ) there exists
a second order Lagrangian L = L (yQ, ẏQ, ÿQ), namely the Vainberg-Tonti Lagrangian,

L (yQ, ẏQ, ÿQ) = yK
∫ 1

0

εK(syQ, sẏQ, sÿQ)ds (3)

(see e.g. Tonti [9]).
The necessary and sufficient conditions for variationality of systems of differential equations

are the well-known Helmholtz conditions. We formulate the Helmholtz conditions for second
order systems.

Theorem 2.1. [Helmholtz conditions] Suppose that we have a system of functions εK =
εK(yQ, ẏQ, ÿQ). The following two conditions are equivalent:

(a) The equation (2) has a solution.
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(b) The functions εK satisfy the system

∂εK
∂ÿM

− ∂εM
∂ÿK

= 0, (4)

∂εK
∂ẏM

+
∂εM
∂ẏK

− d

dt

(
∂εK
∂ÿM

+
∂εM
∂ÿK

)
= 0, (5)

∂εK
∂yM

− ∂εM
∂yK

− 1

2

d

dt

(
∂εK
∂ẏM

− ∂εM
∂ẏK

)
= 0. (6)

Proof. This result is standard; see e.g. Havas [4] and references therein.

We note that (4) and (5) immediately implies that the functions εK must be linear in second
derivative variables, i.e. εK = AK+BKQÿ

Q, whereBKQ = ∂CK/∂ẏ
Q = ∂CQ/∂ẏ

K = BQK .
The second order Lagrangian (3) can be then reduced to a first order Lagrangian by deleting
a total derivative term; namely

L0(y
Q, ẏQ) = yK

∫ 1

0

AK(syQ, sẏQ)ds− ẏK
∫ 1

0

CK(syQ, sẏQ)ds

− yK
∫ 1

0

(
∂CK
∂yP

ẏP
)

(syQ,sẏQ)

ds.

(7)

Clearly, the system of Helmholtz conditions can be rewritten to an equivalent system for the first
order functions AK , BKQ; however, we use in this paper the conditions given by Theorem 2.1.

3. Second order positive homogeneous systems

We wish to study in this work variationality of systems of second order ordinary differential
equations, which are given by second order positive homogeneous functions (in the Zermelo
sense). We studied the class of higher order positive homogeneous functions in [10]. Let us
briefly recall the basic facts. The concept of a positive homogeneous function we use, extends
the classical positive homogeneity for functions depending on curves t → yK(t) and their first
derivatives t→ ẏK(t), expressed by the standard Euler formula,

∂F

∂ẏM
ẏM = F,

to functions depending also on second derivatives t → ÿK(t). We shall say that a function
F = F (yK , ẏK , ÿK) is positive homogeneous in the variables ẏK and ÿK , or simply positive
homogeneous, if

F (yK , a1ẏ
K , a21ÿ

K + a2ẏ
K) = a1F (y

K , ẏK , ÿK) (8)

for all regular curves γ : J→ Rm+1, γ(t) = (y1γ(t), y2γ(t), . . . , ym+1γ(t)), in Rm+1, defined
on an open interval of the real line R, and for all numbers a1 > 0, a2 ∈ R. The condition (8)
has, however, a geometric meaning: an integral (variational) functional, associated with F , does
not depend on parametrization.

In [10], we proved the following two results on positive homogeneous functions of arbitrary
finite order; here we give their second order versions.

The next theorem shows that the Zermelo conditions are necessary and sufficient conditions
for a function F = F (yK , ẏK , ÿK) to be positive homogeneous.

Theorem 3.1. Let F = F (yK , ẏK , ÿK) be a function. The following conditions are equiv-
alent:
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(a) F is positive-homogeneous in the variables ẏK and ÿK .
(b) F satisfies the Zermelo conditions

∂F

∂ẏM
ẏM + 2

∂F

∂ÿM
ÿM = F, (9)

∂F

∂ÿM
ẏM = 0. (10)

Proof. The proof, for arbitrary finite order, can be found in [10].

The following result concerns solutions of systems of second order ordinary differential equa-
tions. Consider system (1), εK(yQ, ẏQ, ÿQ) = 0. We shall say that the system (1) is positive
homogeneous, if all functions εK are positive homogeneous in the sense of previous definition
(8). Let γ be a solution of the system (1), defined on an open interval I ⊂ R. Then γ is called
an orientation-preserving solution, if for every diffeomorphism τ : J → I of open intervals such
that Dτ > 0 on J , the regular curve γ ◦ τ is again a solution of (1).

If, moreover, γ ◦ τ is a solution of (1) for arbitrary reparametrization τ , we say γ is a set-
solution. In order that γ be a set-solution, it is sufficient that γ is orientation-preserving and
the curve t → γ(−t) is also a solution. This observation explains, in particular, the role of the
Zermelo conditions.

For second order equations, we have the following general result: the class of positive ho-
mogeneous systems of differential equations has solutions which do not depend on orientation-
preserving parametrization.

Theorem 3.2. Let εK(yQ, ẏQ, ÿQ) = 0 be a positive-homogeneous system of second order
differential equations. Then every solution of this system is an orientation-preserving solution.

Proof. This result is valid for arbitrary higher order positive homogeneous systems; see [10].
Nevertheless, we prove this proposition for second order systems explicitly. Suppose that the
functions εK , defining the system (1), are positive homogeneous, i.e. functions satisfying the
conditions (9) and (10). Let γ : I → Rm+1 be a curve in Rm+1, and let τ : J → I be
a diffeomorphism of open intervals in R. Choose t0 ∈ J , and we may suppose that Dτ(t0) > 0.
From positive homogeneity condition (8) we get for every K,

εK(yQ(γ ◦ τ)(t0), ẏQ(γ ◦ τ)(t0), ÿQ(γ ◦ τ)(t0))
= εK(yQγ(τ(t0)), D(yQγ)(τ(t0))Dτ(t0),

D2(yQγ)(τ(t0))(Dτ(t0))
2 +D(yQγ)(τ(t0))D

2τ(t0))

= εK(yQγ(τ(t0)), ẏ
Qγ(τ(t0))Dτ(t0), ÿ

Qγ(τ(t0))(Dτ(t0))
2 + ẏQγ(τ(t0))D

2τ(t0))

= Dτ(t0) · εK(yQγ(τ(t0)), ẏ
Qγ(τ(t0)), ÿ

Qγ(τ(t0))).

Hence γ ◦ τ is a solution if and only if γ is a solution, which completes the proof.

4. The Helmholtz conditions for second order positive homogeneous systems

In this section we study variationality of positive homogeneous systems of second order equa-
tions. Let us first recall a result we proved in [10]: the necessary and sufficient condition for a
variational system of second order equations to be positive homogeneous.

Theorem 4.1. Suppose that the system (1), εK(yQ, ẏQ, ÿQ) = 0, is variational. The follow-
ing two conditions are equivalent:
(a) The system (1) is positive homogeneous.
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(b) The system (1) admits a positive homogeneous Lagrangian L = L (yQ, ẏQ).

Proof. The proof can be found in [10].

For purpose of formulating and proving our main theorem let us comment on coordinate charts
in Rm+1 we shall use. Throughout, we consider regular curves in Rm+1 or, in other words,
curves with non-vanishing tangent vector at every point of a curve. In this case, there exists an
index L such that 1 ≤ L ≤ m + 1 and ẏL 6= 0 at every point of a curve. We introduce another
coordinates of regular curves in Rm+1, namely the adapted coordinates which arise from the
canonical coordinates and their derivatives in the following way:

wL = yL, ẇL = ẏL, ẅL = ÿL,

wν = yν , wν1 =
1

ẏL
ẏν , wν2 =

1

(ẏL)2

(
ÿν − ÿL

ẏL
ẏν
)
,

(11)

and conversely we have

yL = wL, ẏL = ẇL, ÿL = ẅL,

yν = wν , ẏν = wν1 ẇ
L, ÿν = wν2 (ẇ

L)2 + wν1 ẅ
L.

(12)

Remark 4.2. [Invariant coordinates] It is not difficult to see that the coordinateswL, wν , wν1 , w
ν
2 ,

defined by (11), are invariant under the composition of diffeomorphisms τ of a neighbourhood
of the origin 0 in R such that τ(0) = 0; i.e. we have wKγ = wK(γ ◦ τ), wσ1 γ = wσ1 (γ ◦ τ), and
wσ2 γ = wσ2 (γ ◦ τ). On the other hand, the coordinates ẇL and ẅL are not invariant. We remark
that in the geometric theory of jet differential invariants coordinates of this kind arise when we
study quotient spaces of regular velocities with respect to a differential group action; for futher
details we refer to Grigore and Krupka [3], M. Krupka and D. Krupka [5], Krupka and Urban
[6].

Remark 4.3. [Total derivative operator] For further need in proofs we find the transforma-
tion of the total derivative operator into the adapted coordinates. Suppose f = f(yK , ẏK , ÿK)

to be a function given in the canonical coordinates, and denote by f̃ a function in the adapted
coordinates defined by

f̃(wL, ẇL, ẅL, wν , wν1 , w
ν
2 ) = f(yL, ẏL, ÿL, yν , ẏν , ÿν).

Then we obtain

df

dt
=

∂f

∂yL
ẏL +

∂f

∂̇y
L
ÿL +

∂f

∂̈y
L

...
yL +

∂f

∂yν
ẏν +

∂f

∂̇y
ν ÿ

ν +
∂f

∂̈y
ν

...
y ν
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=
∂f̃

∂wL
ẇL +

(
∂f̃

∂ẇL
− ∂f̃

∂wν1

wν1
ẇL

+
∂f̃

∂wν2

(
wν1 ẅ

L

(ẇL)
3 − 2

wν2
ẇL

))
ẅL

+

(
∂f̃

∂ẅL
− ∂f̃

∂wν2

wν1

(ẇL)
2

)
...
wL +

∂f̃

∂wν
wν1 ẇ

L

+

(
∂f̃

∂wν1

1

ẇL
− ∂f̃

∂wν2

ẅL

(ẇL)
3

)(
wν2
(
ẇL
)2

+ wν1 ẅ
L
)

+
1

(ẇL)
2

∂f̃

∂wν2

(
wν3
(
ẇL
)3

+ 3wν2 ẇ
LẅL + wν1

...
wL
)

= ẇL
df̃

dwL
,

where
df̃

dwL
=

∂f̃

∂wL
+

∂f̃

∂ẇL
ẅL

ẇL
+

∂f̃

∂ẅL

...
wL

ẇL
+

∂f̃

∂wν
wν1 +

∂f̃

∂wν1
wν2 +

∂f̃

∂wν2
wν3

is the formal derivative of a function f̃ = f̃(wL, ẇL, ẅL, wν , wν1 , w
ν
2 ).

Now we formulate the main result of this paper.

Theorem 4.4. The following two conditions for the system (1) are equivalent:
(a) The system (1) is variational and positive homogeneous.
(b) For every index L, 1 ≤ L ≤ m+ 1, there exists a coordinate transformation, represented by
adapted coordinates wL, ẇL, ẅL, wν , wν1 , w

ν
2 (11), such that the functions ε̃K , defined by

ε̃K(wL, ẇL, ẅL, wν , wν1 , w
ν
2 ) = εK(yL, ẏL, ÿL, yν , ẏν , ÿν), (13)

are of the form ε̃K = µKẇ
L, where µK = µK(wL, wν , wν1 , w

ν
2 ), µL = −µσwσ1 , and the system

of m ordinary differential equations

µσ(w
L, wν , wν1 , w

ν
2 ) = 0, (14)

σ = 1, 2, . . . ,m+ 1, σ 6= L, is variational.

Proof. 1. We consider the system (1) satisfying conditions (4), (5), (6) (Helmholtz), and
conditions (9), (10) (Zermelo) for second order systems. Let L, 1 ≤ L ≤ m + 1, be a fixed
index, and let wL, ẇL, ẅL, wν , wν1 , w

ν
2 be the L-adapted coordinates, defined by (11).

First we wish to show that the transformed system ε̃K in adapted coordinates is of the form
ε̃K = µKẇ

L, for some functions µK = µK(wL, wν , wν1 , w
ν
2 ). Using the transformation equa-

tions (11), (12), between the canonical and the adapted chart we get

∂εK
∂yν

=
∂ε̃K
∂wν

,
∂εK
∂yL

=
∂ε̃K
∂wL

,

∂εK
∂ẏν

=
1

ẇL
∂ε̃K
∂wν1

− ẅL

(ẇL)3
∂ε̃K
∂wν2

,

∂εK
∂ẏL

=
∂ε̃K
∂ẇL

− wλ1
ẇL

∂ε̃K
∂wλ1

+

(
wλ1 ẅ

L

(ẇL)3
− 2

wλ2
ẇL

)
∂ε̃K
∂wλ2

,

∂εK
∂ÿν

=
1

(ẇL)2
∂ε̃K
∂wν2

,
∂εK
∂ÿL

=
∂ε̃K
∂ẅL

− wλ1
(ẇL)2

∂ε̃K
∂wλ2

.

(15)

Applying (15), we can directly transform the Zermelo conditions into the adapted coordinates.
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From (9) we get
∂ε̃K
∂ẇL

ẇL + 2
∂ε̃K
∂ẅL

ẅL = ε̃K , (16)

and from (10)
∂ε̃K
∂ẅL

ẇL = 0, (17)

(no summation through L). Since the coordinate function ẇL is non-vanishing, from (16) and
(17) we immediately get

∂ε̃K
∂ẇL

ẇL = ε̃K ,
∂ε̃K
∂ẅL

= 0; (18)

the Zermelo conditions for the system of functions ε̃K in adapted coordinates. These conditions
for ε̃K , however, can be solved, and we get

ε̃K = µKẇ
L, (19)

where µK = µK(wL, wν , wν1 , w
ν
2 ).

Now we apply the variationality of the system (1). Rewriting the Helmholtz conditions for
functions ε̃K in adapted coordinates, we obtain from (4)

∂ε̃σ
∂wν2

− ∂ε̃ν
∂wσ2

= 0,
∂ε̃L
∂wσ2

+
∂ε̃σ
∂wλ2

wλ1 = 0, (20)

from (5) we get

1

ẇL

(
∂ε̃σ
∂wν1

+
∂ε̃ν
∂wσ1

)
+

ẅL

(ẇL)3

(
∂ε̃σ
∂wν2

+
∂ε̃ν
∂wσ2

)
− 1

ẇL
d

dwL

(
∂ε̃σ
∂wν2

+
∂ε̃ν
∂wσ2

)
= 0,

1

ẇL
∂ε̃L
∂wσ1

+ 2
ẅL

(ẇL)3
∂ε̃L
∂wσ2

− 2
1

ẇL
d

dwL

(
∂ε̃L
∂wσ2

)
+

1

ẇL
ε̃σ −

wλ1
ẇL

∂ε̃σ
∂wλ1

− 2
wλ2
ẇL

∂ε̃σ
∂wλ2

= 0,

∂ε̃L
∂ẇL

− wλ1
ẇL

∂ε̃L
∂wλ1

−
(
wλ2
ẇL

+
wλ1 ẅ

L

(ẇL)3

)
∂ε̃L
∂wλ2

+
wλ1
ẇL

d

dwL

(
∂ε̃L
∂wλ2

)
= 0,

(21)

and from (6)

∂ε̃σ
∂wν

− ∂ε̃ν
∂wσ

+
1

2

ẅL

(ẇL)2

(
∂ε̃σ
∂wν1

− ∂ε̃ν
∂wσ1

)
− 1

2

d

dwL

(
∂ε̃σ
∂wν1

− ∂ε̃ν
∂wσ1

)
= 0,

∂ε̃L
∂wσ

− ∂ε̃σ
∂wL

− 1

2
ẇL

d

dwL

(
1

ẇL
∂ε̃L
∂wσ1

− ∂ε̃σ
∂wL1

+
wλ1
ẇL

∂ε̃σ
∂wλ1

+ 2
wλ2
ẇL

∂ε̃σ
∂wλ2

)
= 0.

(22)

Substituting for ε̃K from (19) in the variationality conditions (20), (21), and (22), then the con-
ditions for system of functions {µσ, µL} read

∂µσ
∂wν2

− ∂µν
∂wσ2

= 0, (23)

∂µσ
∂wν1

+
∂µν
∂wσ1

− d

dwL

(
∂µσ
∂wν2

+
∂µν
∂wσ2

)
= 0, (24)

∂µσ
∂wν

− ∂µν
∂wσ

− 1

2

d

dwL

(
∂µσ
∂wν1

− ∂µν
∂wσ1

)
= 0, (25)
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and

∂µL
∂wσ2

+
∂µσ
∂wλ2

wλ1 = 0,

∂µL
∂wσ1

− 2
d

dwL

(
∂µL
∂wσ2

)
+ µσ −

∂µσ
∂wλ1

wλ1 − 2
∂µσ
∂wλ2

wλ2 = 0,

µL −
∂µL
∂wλ1

wλ1 −
∂µL
∂wλ2

wλ2 + wλ1
d

dwL

(
∂µL
∂wλ2

)
= 0,

∂µL
∂wσ

− ∂µσ
∂wL

− 1

2

d

dwL

(
∂µL
∂wσ1

− µσ +
∂µσ
∂wλ1

wλ1 + 2
∂µσ
∂wλ2

wλ2

)
= 0.

(26)

To find µL = µL(w
L, wν , wν1 , w

ν
2 ) (L fixed) satisfying the previous conditions, we note that

it is possible to solve the conditions (26) directly. However, here we apply again the positive
homogeneity of the system εK(yQ, ẏQ, ÿQ). The Theorem 4.1 allow us to choose a positive
homogeneous Lagrangian L = L (yQ, ẏQ) for the system of functions εK(yQ, ẏQ, ÿQ). We
have

εK ẏ
K =

(
∂L

∂yK
− d

dt

∂L

∂ẏK

)
ẏK =

∂L

∂yK
ẏK − ∂2L

∂yQ∂ẏK
ẏQẏK − ∂2L

∂ẏQ∂ẏK
ÿQẏK .

But differentiating the positive homogeneity condition

L =
∂L

∂ẏK
ẏK ,

we get
∂L

∂ẏQ
=

∂2L

∂ẏQ∂ẏK
ẏK +

∂L

∂ẏQ

hence

εK ẏ
K =

∂L

∂yK
ẏK − ∂2L

∂yQ∂ẏK
ẏQẏK =

∂L

∂yK
ẏK − ∂

∂yQ

(
∂L

∂ẏK
ẏK
)
ẏQ = 0. (27)

From (27) and (19) we now obtain

0 = εK ẏ
K = ε̃σw

σ
1 ẇ

L + ε̃Lẇ
L = (ẇL)2(µσw

σ
1 + µL),

and thus µL is a linear combination of µσ of the form µL = −µσwσ1 .
Finally, from Theorem 2.1 we see that the conditions (23), (24) and (25) are the necessary and

sufficient conditions for the system µσ(w
L, wν , wν1 , w

ν
2 ) = 0 to be variational.

2. Conversely, suppose that in some L-adapted coordinates the system of functions ε̃K , de-
fined by (13), is of the form ε̃K = µKẇ

L, where µK = µK(wL, wν , wν1 , w
ν
2 ), µL = −µσwσ1 ,

and let the system of functions µσ satisfies conditions of variationality (23), (24) and (25). It is
now sufficient to verify the Helmholtz conditions (20), (21), (22), and the Zermelo conditions
(18) for the system ε̃K and apply the transformation equations into the canonical coordinates, or
equivalently, it is sufficient to verify conditions (26) for the function µL. This can be, however,
proceed by a direct calculation. This completes the proof.

Remark 4.5. Clearly, Theorem 4.4 shows that every positive homogeneous system of m+1
second order differential equations, εK(yQ, ẏQ, ÿQ) = 0, is linearly dependent. Moreover, if this
system is variational, then its subsystem of m equations is also variational in sense of parameter-
invariant variational problems (cf. Theorem 3.2, Theorem 4.1), and vice-versa. The result (b)
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means that there exists a function L = L(wL, wν , wν1 ) such that

µσ =
∂L

∂wσ
− d

dwL
∂L

∂wσ1
. (28)

It is worth to note that the adapted coordinates play a crucial role in variational analysis of
positive homogeneous systems.

Corollary 4.6. Suppose that system εK(yQ, ẏQ, ÿQ) = 0 is variational and positive homo-
geneous, with a positive homogeneous Lagrangian L = L (yQ, ẏQ) (cf. Theorem 4.1), and
let L̃ be a function defined in the adapted coordinates by L̃ (wL, ẇL, wν , wν1 ) = L (yQ, ẏQ).
Then variational system µσ(w

L, wν , wν1 , w
ν
2 ) = 0 (14) has a Lagrangian L = L(wL, wν , wν1 )

given by

L =
∂L̃

∂ẇL
=
∂L

∂ẏL
+
∂L

∂ẏσ
ẏσ

ẏL
.

Proof. Applying the transformation (11) from the canonical to adapted coordinates, we ob-
tain the system of Euler-Lagrange equations of the form

µσ =
1

ẇL
∂L̃

∂wσ
+

ẅL

(ẇL)3
∂L̃

∂wσ1
− 1

ẇL
d

dwL

(
∂L̃

∂wσ1

)

=
∂
(

1
ẇL L̃

)
∂wσ

− d

dwL

∂
(

1
ẇL L̃

)
∂wσ1

 .

We put L =(1/ẇL)L̃ , and because of the positive homogeneity of L̃ (cf. (18)), we get

L =
1

ẇL
L̃ =

1

ẇL
∂L̃

∂ẇL
ẇL =

∂L̃

∂ẇL
=
∂L

∂ẏL
+
∂L

∂ẏσ
ẏσ

ẏL
,

the first order Lagrangian of the system (14).

5. Example: Second order positive homogeneous variational equations

We consider an example of a system of two second order differential equations of two depen-
dent variables,

ẋy +
1

ẋ
y(ẏ2 + yÿ)− 1

ẋ2
y2ẏẍ = 0,

−yẏ − 1

ẋ2
yẏ(ẏ2 + yÿ) +

1

ẋ3
y2ẏ2ẍ = 0,

(29)

where x = x(t) and y = y(t) are the canonical coordinate functions in R2. A solution of this
system is a regular curve t → (x(t), y(t)) in R2, satisfying (29); we suppose that ẋ is a non-
vanishing function at every point of a solution. It can be easily checked that this system is positive
homogeneous; this means that the left-hand sides of (29) satisfy the Zermelo conditions (9), (10)
from Theorem 3.1. However, Theorem 4.4 shows that equations (29) must be linearly dependent
which can be, indeed, observed apparently. On the other hand, system (29) is variational; its left-
hand sides satisfy the Helmholtz conditions (4), (5) and (6) from Theorem 2.1. One can directly
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compute the Vainberg-Tonti Lagrangian (3) for system (29),

L =
1

3
y(yẋ− xẏ) + 1

3

1

ẋ
y2(ẏ2 + yÿ)− 1

3

1

ẋ2
yẏ
(
x(ẏ2 + yÿ) + y2ẍ

)
+

1

3

1

ẋ3
xy2ẏ2ẍ,

and its first order reduction (7),

L0 =
1

3
y(yẋ− xẏ)− 1

2

1

ẋ
y2ẏ2. (30)

In accordance with Theorem 4.4, we find now an equivalent system (14) with (29): the one
differential equation of one dependent variable in adapted coordinates which is variational in
sense of (28). We put wL = x, w1 = y, and using coordinate transformation we get from the
first equation of (29),

µ =
(
1 + (w1

1)
2 + w1w1

2

)
w1 = 0. (31)

Indeed, (31) satisfies the Helmholtz condition for one second order equation,

∂µ

∂w1
1

− d

dwL

(
∂µ

∂w1
2

)
= 0,

(cf. Theorem 2.1). The first order Lagrangian for (31), described in Corollary 4.6, is of the form

L =
1

3
w1(w1 − wLw1

1)−
1

2
(w1)2(w1

1)
2.

We note that there exists another first order Lagrangian of equation (31) which does not depend
on wL, namely

L0 =
1

2
(w1)2

(
1− (w1

1)
2
)
.

The solution of second order differential equation (31) is the unit circle in R2.
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