DIVERSITY, ECOLOGY AND SECONDARY METABOLITE OF LICHEN FAMILY GRAPHIDACEAE AT PHU LUANG WILDLIFE SANCTUARY, LOEI PROVINCE

<u>Vasun Poengsungnoen</u>,¹ Kansri Boonpragob,¹ Leka Manoch,² Klaus Kalb,³ Pachara Mongkolsuk^{1*}

¹Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University

²Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok

³ Lichenologisches Institut Neumarkt, Im Tal 12 D-92318, Neumarkt, Germany

*e-mail: vasun_poeng@hotmail.com

Abstract: Five hundred and thirty-one graphidacean specimens were collected at Phu Luang Wildlife Sanctuary from barks and rocks in seven forest types; coniferous forest (CF), dry dipterocarp forest (DDF), dry evergreen forest (DEF), lower montane scrub (LMS), lower montane rain forest (LMRF), mixed deciduous forest (MDF) and tropical rainforest (TRF). Ninety-one taxa of an unclear generic affiliation and 16 genera were identified; *Acanthothecis, Carbacanthographis, Diorygma, Dyplolabia, Glyphis, Graphis, Fissurina, Hemithecium, Leiorreuma, Pallidogramme, Phaeographis, Platygramme, Platythecium, Sarcographa, Thalloloma* and *Thecaria*. Thirty-five taxa were first records for Thailand and 17 taxa were expected to be new species to science. The lichen chemical compounds were analyzed by thin layer chromatography, 16 compounds were 63 species found in LMS and the second greatest taxa densities were 36 species in LMRF. The lowest diversity was found in DEF and CF, which represented 9 and 8 species respectively.

Introduction: The crustose lichen family Graphidaceae is formed from fungi in Ascomycota and green algae (Chlorophyta) of the genus *Trentepohlia* as a mutualistic association.^{1, 2, 3, 4, 5} The characteristics of the graphidioid members of lichen family Graphidaceae are; ± lirellate apothecia with usually simple paraphyses (or with only a few ramifications), functionally unitunicate asci and ascospores with lens-shaped lumina.² Normally, almost all of the Graphidaceae are predominantly corticolous, some are saxicolous and a few are foliicolous. These lichens are mainly distributed in tropical countries such as Mexico, Costa Rica, Brazil, India, parts of Australia, Thailand and the Philippines, and subtropical regions.^{6, 7} Some taxa are also found in temperate zones⁸ such as New Zealand.⁹ The purposes of this study are to investigate the diversity, ecology and their metabolites of graphidioid lichens at Phu Luang Wildlife Sanctuary.

Methodology: The diversity, ecology and secondary metabolite of lichen in family Graphidaceae at Phu Lung Wildlife Sanctuary were explored in seven forest types which were coniferous forest (CF), dry dipterocarp forest (DDF), dry evergreen forest (DEF), lower montane scrub (LMS), lower montane rain forest (LMRF), mixed deciduous forest (MDF) and tropical rainforest (TRF). Five hundred and thirty-one graphidacean specimens on barks and rocks in the seven forest types were examined with stereo compound microscrope (Olympus model SZ30) at 10-40 magnification and light microscope (OLYMPUS-CH) at $100-1000 \times$ magnification. Anatomical features studied on hand-cut sections of thallus and ascomata mounted in water, 10% KOH (K). The iodine reaction of the hymenium was studied in Lugol's iodine solution after pretreatment with K (KI). The secondary products of the specimens were characterized by spot test and thin layer chromatography (TLC)

according to White & Jame (1985).¹⁰ Taxa were determined according to Lücking et al. $(2009)^2$, Archer $(2006)^{11}$, Kalb et al. $(2004)^{12}$, Staiger $(2002)^5$ and Awasthi (1991).¹³

Results, Discussion and Conclusion: Ninety one taxa of lichen in family Graphidaceae at Phu Lung Wildlife Sanctuary belong to an unclear generic affiliation and 16 genera; *Acanthothecis, Carbacanthographis, Diorygma, Dyplolabia, Glyphis, Graphis, Fissurina, Hemithecium, Leiorreuma, Pallidogramme, Phaeographis, Platygramme, Platythecium, Sarcographa, Thalloloma* and *Thecaria.* The majority of the taxa were encountered in genera *Graphis* which compose of 32 species and 3 unidentified species and *Phaeographis* represented by 9 species and 8 unidentified species. Thirty-five taxa are first records for Thailand and 17 taxa were expected to be new species to science (Table 1).

The highest diversities of lichens found in LMS, 63 taxa from 14 genera, due to this forest consists of bush trees, such as *Lithocarpus recurvatus* Barnett, *Rhododendron lyi* H. Lev, high elevation 1000-1400 meters above sea level, strong high light intensities and good aeration circumstances which preference for graphidoid lichens setting in colonization.¹⁴ The lower taxa diversities were in DDF, DEF, LMRF, MDF, TRF. CF had the lowest taxa which only present 8 species (Figure 1) because it is very different from other forest types due to its wet and cool climate as well as strong and high light intensities, and finally pine as dominant trees. It is traditionally known that at mature, the pine stem barks are peeled out by its self before the lichens setting in colony.

Lichen substances were analyzed by TLC; 29% lacking lichen substances and 71% contains lichen substances which compose of 11 depsidones and 1 depside, 2 quinone, 1 xanthone; 21% of norstictic acid, 19% stictic acid and constictictic acid 9%. Other lichen substances which are present in less frequently including connorstictic acid, cryptostictic acid, echinocarpic acid, hyposalazinic acid, hypostictic acid, isohypocrellin, lecanoric acid, lichenxanthone, menegazziaic acid, peristictic acid, protocetraric acid, salazinic acid and unknown substances (Figure 2).

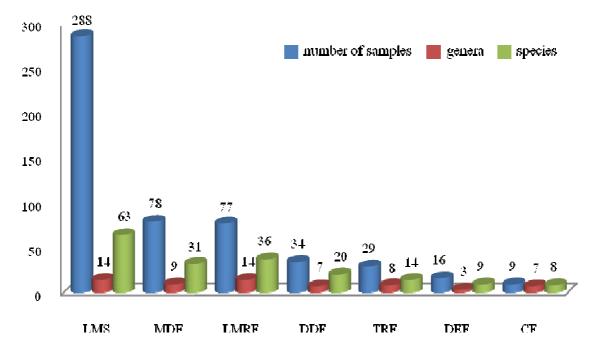


Figure 1. The number of specimens with genera and species in the seven forest types.

Recorded		New records		New species
Carbacanthographis candidata	Leiorreuma hypomelaenum	Acanthothecis clavulifera	Graphis rustica	Acanthothecis sp. 1
Carbacanthographis marcescens	Leiorreuma melanostalazans	Acanthothecis dialeuca	Graphis stenotera	Acanthothecis sp. 2
Diorygma hieroglyphicum	Pallidogramme chlorocarpoides	Carbacanthographis coccospora	Graphis subregularis	Fissurina sp. 1
Diorygma stiticum	Pallidogramme chrysenteron	Diorygma erythrellum	Graphis subvelata	Graphis sp. 1
Dyplolabia afzelii	Phaeographis brasiliensis	Diorygma macgregorii	Graphis subvittata	Graphis sp. 2
Fissurina incrustans	Phaeographis caesioradians	Diorygma magaspermum	Graphis urandrae	Graphis sp. 3
Glyphis cicatricosa	Phaeographis colligata	Fissurina cingalina	Graphis verminosa	<i>Leiorreuma</i> sp. 1
Graphis assimilis	Phaeographis dendroides	Graphis elongata	Graphis vittata	Phaeographis sp. 1
Graphis duplicata	Phaeographis intricans	Graphis furcata	Hemithecium implicatum	Phaeographis sp. 2
Graphis emersa	Phaeographis schizoloma	Graphis handelii	Hemithecium oryzaeforme	Phaeographis sp. 3
Graphis hossei	Phaeographis subdividens	Graphis longispora	Hemithecium rufopallidum	Phaeographis sp. 4
Graphis librata	Platygramme caesioprunosa	Graphis longula	Phaeographis decipiens	Phaeographis sp. 5
Graphis longiramea	Platygramme jambosae	Graphis marginata	Phaeographis quadrifera	Phaeographis sp. 6
Graphis nanodes	Platygramme pudica	Graphis nigrocarpa	Platygramme discurrens	Phaeographis sp. 7
Graphis pyrrhocheiloides	Platythecium dimorphodes	Graphis norstictica	Platythecium pertenellum	Phaeographis sp. 8
Graphis streblocarpa	Platythecium serpentinellum	Graphis novopalmicola	Sarcographa verrucosa	Platygramme sp. 1
Graphis subdisserpens	Sarcographa labyrinthica	Graphis rhizocola	Thalloloma anguinum	unknown genus
Graphis subserpentina	Thecaria montagnei	Graphis semirigida		
Graphis supracola	Thecaria quassiicola			
Graphis tenella				

 Table 1 Recorded, New records and New Species of the Lichen Family Graphidaceae at Phu Luang Wildlife Sanctuary

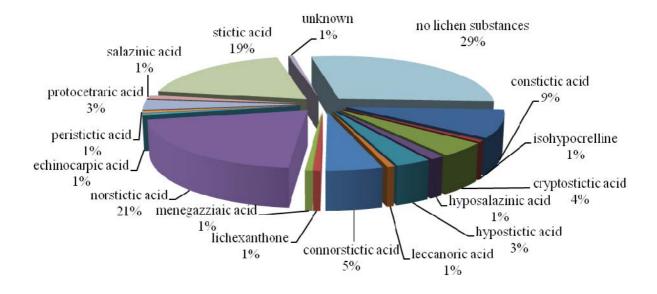


Figure 2. The proportion of lichen substances of Graphidaceae in Phu Luang Wildlife Sanctuary.

References:

- 1. Bock, C., Hauck, M. (2005) The Lichenologist, 37(2), 105-108.
- 2. Lücking, R. (2009) *The Lichenologist*, **41**, 319–362.
- 3. Mangold, A., Martín, M. P., Lücking, R., Lumbsch, H. T. (2008) Taxon, 57, 476-486.
- 4. Nakano, T. (1988) The Lichenologist, 20, 353–360.
- 5. Staiger, B. (2002) Bibliotheca Lichenologica, 85, 1–526.
- 6. Hale, M. E. (1983) The biology of lichen. London: Edword Arnold Maryland.
- 7. Hayward, G. C. (1977) New Zealand Journal of Botany, 15, 565-84.
- 8. Makhija, U. Adawadkar, B. (2007) The Lichenologist, 39, 165–185.
- 9. Archer, A. W. (2007) Systematics and Biodiversity, 5, 9–22.
- 10. White, F. J., James, P. W. (1985) British Lichen Society Bulletin, 57, 1-41.
- 11. Archer, A. W. (2006) Bibliotheca Lichenologica, 94, 1–191.
- 12. Kalb, K., Staiger, B., Elix, J. A. (2004) Symbolae Botanicae Upsalienses, 34(1), 133-181.
- 13. Awasthi, D. D. (1991) Bibliotheca Lichenologia, 40, 1–340.
- 14. Nash, T. H., III. (1996) Lichen biology. New York: Cambridge University Press.

Acknowledgements: We are grateful to the Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, for providing the necessary facilities for my work and also Prof. Dr. Klaus Kalb, who was very kind for helping with identification and confirmation of the materials. I also thank to staff of Phu Luang Wildlife Sanctuary for help during the fieldwork. I gratefully acknowledge the Royal Thai Government for the financial support.

Keywords: lichen, Graphidaceae, diversity, ecology, secondary metabolite

37th Congress on Science and Technology of Thailand