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Effective Heuristics for Large Euclidean TSP
Instances Based on Pseudo Backbones1

C. Dong, C. Ernst, G. J̈ager, D. Richter, P. Molitor

Computer Science Institute, University Halle, D-06120 Halle, Germany
{dong,ernstc,jaegerg,richterd,molitor}@informatik.uni-halle.de

Abstract

We present two approaches for theEuclidean TSPwhich compute high quality tours for
large instances. Both approaches are based on pseudo backbones consisting of all common
edges of good tours. The first approach starts with some pre-computed good tours. Using
this approach we found record tours for seven VLSI instances. The second approach is
window based and constructs from scratch very good tours of huge TSP instances, e. g., the
World TSP.

Key words: Euclidean Traveling Salesman Problem, Pseudo Backbone, Problem
Contraction, Iterative Approach, Window Based Approach

1. The overall approach

Given a set of cities and the distances between each pair of them, the Traveling
Salesman Problem (TSP) is theNP-hard problem of finding a shortest cycle vis-
iting each city exactly once. In this paper we considerEuclidean TSPwhose cities
are embedded either in the Euclidean plane using the Euclidean distance or a ball
using the spherical grid of latitude and longitude. Thebackboneof a TSP instance
consists of all edges, which are contained ineachoptimum tour of the instance, and
is an important criterion for the hardness of a TSP instance.The larger the back-
bone of an instance, the simpler is the remaining sub-instance. Unfortunately it is
usually hard to compute the backbone of an instance. An interesting observation is
that tours of an instance with good quality are likely to share many edges. We can
presume that these edges are also contained in optimum toursand call thempseudo
backbone edges. This basic observation is elaborated in detail in our approach. As-
sume that for a given TSP instance a set of pseudo backbone edges is computed.

1 This work is supported by German Research Foundation (DFG) with grant number MO
645/7-3.
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a b c
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Fig. 1. Illustration of the first approach. The instance has 12 points in the Euclidean plane.
By the three starting tours given in (a), (b), and (c), we receive the pseudo backbone edges
(d). From the maximal paths consisting only of pseudo backbone edges, only one has a
length greater than 1. Only this path contributes to the sizereduction. After contracting,
we receive a new instance with 8 points which contains 3p-edges (e). The threep-edges
are fixed while searching tours for the new instance. In (e) anoptimal tourt′ for the new
instance is shown. After re-contracting thep-edges by the corresponding paths, we receive
a tourt for the original instance (f). For this instance, the final tour is optimal.

Our idea is to contract maximal paths of pseudo backbone edges to single edges
which are kept fixed during the following process. By the contraction step, a new
TSP instance with smaller size is created which can be attacked more effectively.

2. Using good starting tours for pseudo backbone computation

Let a TSP instance be given as a complete graphG = (V,E) withE = V ×V .
Our first approach undergoes the following five steps (see Fig. 1). The first step is
to find a setΩ of good tours forG which are calledstarting tours. The second step
is to collect the pseudo backbone edges, i. e., compute the set B := {e ∈ E; e ∈
∩T∈ΩT} of edges which are contained in each tour ofΩ. Let VB be the set of
vertices which are endpoints of at least one edge ofB. The third step is to construct
all maximal paths consisting only of edges inB and contract each of these maximal
paths to an edge, the endpoints of which are that of the path. We denote them byp-
edges(path edges) and the set of all end points of thep-edges byVp. The contraction
step results in a new TSP instanceH = (W,F ) with W = (V \ VB) ∪ Vp ,
F = W ×W , where the weight of thep-edges can be chosen arbitrarily. The fourth
step is to find a good tourt′ for the new TSP instanceH subject to the condition
that allp-edges must be in the tour. Finally, the fifth step is to obtaina tourt for the
original TSP instanceG by re-contracting thep-edges by the corresponding paths in
the computed tourt′. The experimental results strongly demonstrate the effectivity
of the approach: for seven VLSI instances with sizes 13584, 17845, 19402, 21215,
28924, 47608 and 52057 we could find better tours than the besttours known so
far (see TSP homepage: http://www.tsp.gatech.edu/). The success of this approach
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strongly depends on having good starting tours generated bydifferent methods – for
the above mentioned results we used starting tours which hadbeen constructed by
different tolerance based algorithms presented in [3] (see[1] for more information
on tolerances).

3. Iterative window based pseudo backbone computation

Our second approach computes tours of large Euclidean TSP instances from
scratch, i. e., it does not require starting tours. In fact, computing multiple different
good starting tours for theWorld TSPwith 1,904,711 cities is hardly realizable in
reasonable time. The basic idea of our window based approachconsists of splitting
the bounding box of the vertices of the TSP instance in non-disjoint windows by
moving a window frame across the bounding box of the verticesof the TSP instance
with a step size of half the width (height) of the window frame(see Fig. 2). Thus
each vertex is contained in up to four windows. Each window defines a sub-instance
for which a good tour is computed, e. g., by Helsgaun’s LKH [2], independently of
the neighboring sub-instances. Now, the approach is based on the assumption that
an edge(u, w), which is contained in the same four windows and in each of thefour
tours, has high probability to appear in an optimal tour of the original TSP instance
– in some sense the four windows together reflect the surrounding area of(u, w)
with respect to the four directions. Such edges are declaredas pseudo backbone
edges (see Fig. 3(a)-3(c)). After the contraction of the maximum paths of pseudo
backbone edges, the approach is iterated with monotonically increasing window
frame. We applied the described algorithm to theWorld TSP and required about
4.75 days for computing from scratch a tour of length 7,569,766,108 which is only
at most 0.7661% greater than the length of an optimum tour. Currently, our ap-
proach is still dominated in some sense by LKH. By assigning the right values to
the parameters, LKH computes a tour for theWorld TSP in less than two days
which is at most 0,1174% greater than the length of an optimaltour [4].† How-
ever, note that till now we have used only default parametersfor LKH without any
parameter tuning. By detailed parameter tuning – as done by Helsgaun – the win-
dow frames of our approach can be chosen much larger which should lead to an
improvement of the computed tours and running times.

References

[1] B. Goldengorin, G. Jäger, and P. Molitor. Tolerances applied in combinatorial
optimization.J. Comput. Sci.2(9), 716-734, Science Publications, 2006.

† Note that the computation times, Helsgaun states in [2], do not include the computation
times of the starting tours [4].
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Fig. 2. Illustration of the window based technique of splitting large TSP instances into
sub-instances.

(a) Pseudo backbone edges
found by the four top left-hand
windows

(b) Pseudo backbone edges
found in the current iteration.

(c) Constrained ETSP after con-
traction of the paths shown in (b).

Fig. 3. Window based pseudo backbone computation and contraction.

[2] K. Helsgaun. An Effective Implementation of K-opt Movesfor the Lin-
Kernighan TSP heuristic.Writings on Computer Science109, Roskilde Uni-
versity, 2007.

[3] D. Richter, B. Goldengorin, G. Jäger, and P. Molitor. Improving the Effi-
ciency of Helsgaun’s Lin-Kernighan Heuristic for the Symmetric TSP.Proc.
of the 4th Workshop on Combinatorial and Algorithmic Aspects of Network-
ing (CAAN), Lecture Notes in Comput. Sci. 4852, 99-111, 2007.
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Efficient algorithms for the Double Traveling
Salesman Problem with Multiple Stacks

Marco Casazza,a Alberto Ceselli,a Marc Nunkesserb

aDept. of Information Technologies - University of Milan
{marco.casazza, alberto.ceselli}@unimi.it

bInst. of Theoretical Computer Science - ETH Zürich
mnunkess@inf.ethz.ch

Key words: Traveling Salesman Problem, LIFO constraints, efficient algorithms

1. Introduction

Routing is a key issue in logistics, and has been deeply studied in the liter-
ature; however, several practical applications require the loading of vehicles to
be explicitly considered. The Double Traveling Salesman Problem with Multiple
Stacks (DTSPMS) is one of the simplest examples of integrated routing and load-
ing problem: two cities are given, in whichN customers are placed. Items have to
be collected from the customers through a tour in the first city, and then delivered
through a tour in the second city. During the pickup tour, theitems have to be or-
ganized instackson the back of the vehicle; the delivery operations can startonly
from the top of the stacks. The DTSPMS is NP-Hard, as it includes the TSP as a
special case. Both heuristics [1] [2] and exact methods [3] have been proposed to
solve it.
The main aim of this paper is to investigate on theoretical properties of the DT-
SPMS; we also propose and test an efficient heuristic algorithm which exploits
such properties.

2. Formulation and properties

The DTSPMS can be modeled as the following graph optimization problem.
We are given a set of customers numbered1 . . .N and two (di-)graphsG+(N+,A+)
andG−(N−,A−) with weightsc+ andc− respectively on the arcs. The former is the
pickup graphand latter is thedelivery graph. Both setsN+ andN− consist of one
vertexn+

i andn−
i for each customeri, and an additional vertex0 which represents

a depot. Hence the number of vertices is the same in the two graphs. Each customer
i requires the pickup of an item in vertexn+

i and the delivery of the same item in
vertexn−

i .
We indicate aspickup tour(resp.delivery tour) any permutation of vertices of the

CTW09,École Polytechnique & CNAM, Paris, France. June 2–4, 2009



pickup graph (resp. delivery graph). Each tour starts from and ends at the depot.
Each tour has a cost, which is the cost for traveling from one vertex to the next,
according to the order indicated by the permutation. Given two customersi andj,
we say thati precedesj on the pickup tour ifn+

i appears to the left ofn+
j in the

corresponding permutation. In a similar way,i precedesj on the delivery tour ifn−
i

appears to the left ofn−
j in the corresponding permutation.

The vehicle has a given numberS of stacksavailable for transportation. Aloading
plan is a mappingl from each customeri to a pair(s, p), representing the arrange-
ment of the items in the stacks of the vehicle. In particular,l(i) = (s, p) if the item
of customeri occupies positionp on stacks, with (s, 1) representing the bottom of
stacks.
Each stack actually represents a Last-In-First-Out structure: a loading plan isfeasi-
ble with respect to a pickup tour (and vice versa) if, given any pair of customersi
andj such thati precedesj in the pickup tour, eitherl(i) = (s, p) andl(j) = (t, q)
with s 6= t, or p < q. That is, if itemi is picked up before itemj, i cannot be
placed on top ofj in the same stack. A similar definition holds for the deliverytour.
If i precedesj in both the pickup and the delivery tour, it must bel(i) = (s, p)
andl(j) = (t, q) with s 6= t, and we say that customersi andj are incompatible.
Hence, a solution of the DTSPMS is composed by two ingredients: a pair of pickup
and delivery tours and a loading plan; such solution is feasible if the loading plan
is feasible with respect to both tours.

In the following we show that, given one of the two ingredients of a feasible so-
lution, the remaining one can be found in polynomial time. This holds in particular
for an optimal solution. We present only a sketch of the proofs.

Problem (1): Given a pickup tour and a delivery tour, find a feasible loading
plan using the minimum number of stacks.

Proposition 1. Problem (1) can be solved in polynomial time.

We define aconflict graphC having one vertex for each customer, and one edge for
each pair of incompatible customers. Problem (1) can be re-stated as the problem of
coloring graphC with the minimum number of colors: different colors represents
different stacks; since no adjacent vertices can take the same color in a feasible
coloring, no incompatible customers can be assigned to the same stack. The or-
der of the items inside each stack can be chosen according to their order in one
of the tours. We show thatC is a permutation graph, which is a special case of
perfect graph. In these graphs coloring problems can be solved in polynomial time
by means of flow computations [4]. As far as efficiency is concerned, we show that
Problem (1) can be solved inO(N · logN) time by an adaptation of the algorithm
presented in [4].

Problem (2): Given a loading plan, find a delivery tour which is feasible with
respect to the loading plan and has minimum cost.
Problem (3): Given a loading plan, find a pickup tour which is feasible withrespect
to the loading plan and has minimum cost.
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Proposition 2. Problem (2) and Problem (3) can be solved in polynomial time.

In fact, once a feasible loading plan is given, suppose to incrementally build partial
delivery tours by choosing items on the top of the stacks. Letf(s1, . . . , sS, p) be
the minimum cost of a partial tour in whichs1 items are left in stack1, s2 items are
left in stack2 and so on, and in which the item on the top of stackp is the next to
be delivered. Leti be the customer corresponding to the item on top of stackp; if i
is the first customer to be visited, thenf(s1, . . . , sS, p) = c−0,i; otherwise, consider
any stackq, which has on top itemj: f(s1, . . . , sS, p) = minq=1..S{f(s1, . . . , sq +
1, . . . , sS, q) + c−j,i}. An optimal solution can be found inO(|N |S+1) time by com-
puting all the values forf() using dynamic programming recursion. Informally, the
computation can be repeated to solve Problem (3) by considering the items of each
stack in reverse order.

However, given two random tours, it might not be possible to find a loading
plan using at mostS stacks. Therefore we define aspartial loading plana loading
plan in which the items of a subset of customers do not appear,and we consider the
following:
Problem (5): Given a pickup and a delivery tour, find a feasible partial loading plan
using at mostS stacks, including the maximum number of items.
Proposition 3. Problem (5) can be solved in polynomial time.

We build a graph having a vertex for each customer and two vertices for the depot
(start and end), an arc between the vertex of each customer and the vertices of
its compatible customers, between the start depot vertex and each customer vertex,
and between each customer vertex and the end depot vertex. The start and end depot
vertices are respectively a source and a sink ofS units of flow. We assign capacity1
and cost0 to each arc, and cost−1 to each customer vertex. Problem (5) can be re-
stated as the problem of finding a minimum cost flow on a suitable modification of
this graph. Informally, theS units of flow define sequences of customers included
in the same stack. Every time a vertex receives flow, the corresponding customer is
inserted in a stack, and a value−1 is collected; therefore in an optimal solution the
maximum number of customers is included.

3. Algorithms
We elaborated on the previous results to obtain a heuristic algorithm for the

DTSPMS. The algorithm works in five steps: (a) find a pickup tour and a deliv-
ery tour (b) solve Problem (5), creating a feasible partial loading plan including
the highest number of customers (c) solve Problem (2) and Problem (3) consider-
ing only customers in the partial loading plan, creating optimal partial pickup and
delivery tours (d) create a feasible DTSPMS solution by including the remaining
customers in the stacks using a best insertion policy (e) create a candidate solution
for the next iteration of the algorithm by including the remaining customers in the
partial tours using a best insertion policy (f) repeat steps(b) – (f).
First we note that the number of customers which are insertedin the partial loading
plan, which is found in step (b), is always non decreasing from one iteration to the
next. In fact, customers whose items are included in a partial loading plan during
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iterationk appear in the tours according to the order given by the partial loading
plan; our insertion algorithm do not change that order; hence, during iterationk+1
it is always possible to rebuild the partial loading plan of iterationk. Therefore,
we stop the algorithm whenever no additional customer is inserted in the partial
loading plan during step (c). In order to obtain a feasible solution in step (d), we
consider the items which are not included in the loading planin a random order.
We try to place every item in each possible position in the stacks, and in each com-
patible insertion point in the tours. Then, we place each item in the position of the
loading plan giving minimum insertion cost. Instead, in order to obtain a candidate
solution in step (e), we consider in a random order each customer whose item is
not in the partial loading plan, and we perform a best insertion operation in both
the pickup and delivery tours. We keep the best solution found in step (d) during
the iterations of the main algorithm as final solution. In theliterature, it is common
to further constrain the problem by imposing a limit on the number of items which
can be placed in the same stack. When such a constraint is imposed, during step (d)
we remove from the partial loading plan each item exceeding the limit, and we care
not to insert additional items in full stacks.
We implemented our heuristic algorithm in C, using MCF library for the flow sub-
problems and CONCORDE to obtain tours in step (a). We considered the testbed of
10 instances involving33 customers proposed in [1] and [3]. We run experiments
on a1.83GHz notebook∗ . As a benchmark, we considered the results of the HVNS
metaheuristic [1], when let run for ten seconds. Our method provides in a fraction
of a second solutions whose quality is about8% worse than those given by HVNS.
This highlights as a promising research direction to combine our algorithm with
local search methods.

References
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∗ A full table is available at: http://www.dti.unimi.it/∼ceselli/DTSPMS.thml
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1. Introduction

Irregular parking is a scourge for most of the Italian citiesand in most of the
cases enforcement ([6]) is not effective. Unfortunately, municipalities have lim-
ited resources to hire a sufficient number of parking wardens, and the tours and
schedule of the existing wardens are not planned using quantitative models. For
the municipality of Como (Italy), we are studying how to re-configure the park-
ing system, considering both pricing and organizational aspects. Within this study,
we developed a model to improve the level of efficiency of the parking enforce-
ment optimizing the parking warden tours. The problem is thefollowing. The team
of parking wardens, the city road network, the link travel time, and the estimated
profit deriving from the sanctions applied to the cars irregularly parked are given.
We want to determine the tour of each warden (that is a cycle where both vertices
and edges may be repeated and having total duration less thanthe warden service
time), with the aim of maximizing the total profit collected.In the literature, we do
not find mathematical models that face this problem. This problem differs from the
Profitable Arc Tour problem [1] since in the latter both the arc profits and costs are
fixed whereas in our problem they depend on the moment of the day (the average
number of irregular parked cars can vary during the day) and on the time passed
from the previous inspection of a warden (the profit on a link slumps to zero if a
warden has just visited this link). This peculiarity occursin other different rout-
ing problems. For instance, in the snowplough vehicles routing problem the profit
collected is the amount of snow removed, which depends on thetime passed from
the previous transit of a snowplough, supposing that it is snowing during the op-
erations. At the best of our knowledge ( [1], [4] [5]), this isthe first study of an
arc routing problem where the arc profit depends also on the solution itself. For
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this new arc routing problem, we present a MILP formulation from which we also
develop a simple but effective heuristic approach.

2. Graph representation of the problem

Since the wardens inspect the road network by foot, the problem can be mod-
elled by way of an undirected graph where each edge represents a road link that can
be travelled in both the directions. In each road link the cars can be parked from
one to four sides according to the width of the road and the presence or not of a
traffic island. Each side is visited by the wardens in different moments, except the
two sides of the traffic islands. Therefore, we have to duplicate the ending vertices
of the original road links if they have two parking sides or triplicate the ending ver-
tices if in addition there is a traffic island, to avoid parallel edges. The edges linking
the copies of the same vertex represent the action of crossing the road to change the
side and no profit is associated to them.

3. Mixed Integer Linear Programming formulation

Beside the undirected graphG = (V,E) described in the previous section, we
suppose also given the following data:

W = parking warden set
T = parking warden service time
ce = travel time by foot of edgee
q = time needed to sanction one car
p = profit for one irregularly parked car
se = estimation of irregularly parked cars on edgee
Re = estimation of turn-over time on edgee

We assume that a team of wardens is available at a single depot, represented by
vertex 0, and they have to come back to depot at the end of the service. Moreover
we assume that the profit of an edgee slumps to zero when such edge is visited
by a warden. Afterwards, the profit increases linearly from 0to pse until the turn-
over timeRe is reached, after which it remains constant until the next visit. Under
these assumptions, we state that the Parking Warden Tour Problem (PWTP) can be
modeled by way of the following Mixed Integer Linear Program(MILP), whereK
is an upper bound on the number of edges that the wardens can visit along their
tour (for instanceK = T

mine∈E ce
) andδ(0) denotes the edges incident to the depot.
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max
∑

w∈W

∑K

k=1
πkw (3.1)

∑K

k=1

∑
e∈E

(cexekw + qsezekw) ≤ T ∀w∈W (3.2)∑
e∈δ(0)

xe1w = 1 ∀w∈W (3.3)
∑

e∈E
xekw ≤ 1 ∀k=2,...,K, ∀w∈W (3.4)

v01w = 1 ∀w∈W (3.5)∑K

k=2
v0kw = 1 ∀w∈W (3.6)∑

i∈V
vikw ≤ 1 ∀k=2,...,K + 1, ∀w∈W (3.7)∑

i:{i,j}∈E
vik+1w ≥ vjkw ∀j∈V, ∀k=1,...,K, ∀w∈W (3.8)

∑
i∈N

∑K+1

k′=k+1
vik′w ≤ (K − k + 1) (1 − v0kw)

∀k=2,...,K,∀w∈W (3.9)

xekw ≥ vikw + vjk+1w − 1 ∀e={i, j}∈E,∀k=1,...,K,∀w∈W (3.10)

xekw ≤ vikw ∀e={i, j}∈E,∀k=1,...,K,∀w∈W (3.11)

xekw ≤ vjk+1w ∀e={i, j}∈E,∀k=1,...,K,∀w∈W (3.12)

zekw ≤ xekw ∀e={i, j}∈E,∀k=1,...,K,∀w∈W (3.13)

t1w = 0 ∀w∈W (3.14)

tkw ≥ tk−1w +
∑

e∈E
(cexek−1w + qsezek−1w)

∀k=2,...,K + 1, ∀w∈W (3.15)

πkw ≤ p
∑

e∈E
sezekw ∀k=1,...,K,∀w∈W (3.16)

π
k
′′

w
≤ pse

t
k
′′

w
−t

k
′
w

Re
+ pS(2 − z

ek
′′

w
− z

ek
′
w

+

k
′′

−1∑

k=k
′
+1

zekw)

∀e∈E,∀k′, k′′=1,...,K :k′′>k′, ∀w∈W (3.17)

π
k
′′

w
′′ ≤ pse

t
k
′′

w
′′ −t

k
′
w

′

Re
+pS(1 +

T

Re

)(3 − z
ek

′′
w

′′ − z
ek

′
w

′ − y
k
′
k
′′

w
′
w

′′ )

∀e∈E,∀k′

, k
′′

=1,...,K,∀w′

, w
′′ ∈W : w

′

<w
′′

(3.18)

π
k
′
w

′ ≤ pse

t
k
′
w

′ −t
k
′′

w
′′

Re
+pS(1 +

T

Re

)(2 − z
ek

′′
w

′′ − z
ek

′
w

′ − y
k
′
k
′′

w
′
,w

′′ )

∀e∈E,∀k′

, k
′′

=1,...,K,∀w′

, w
′′ ∈W : w

′

<w
′′

(3.19)

y
k
′
k
′′

w
′
w

′′ ≤ 3 +
t
k
′′

w
′′ − t

k
′
w

′

T
− z

ek
′
w

′ − z
ek

′′
w

′′

∀e∈E,∀k′

, k
′′

=1,...,K,∀w′

,w
′′ ∈W : w

′

<w
′′

(3.20)

y
k
′
k
′′

w
′
w

′′ ≥ −2 +
t
k
′′

w
′′ − t

k
′
w

′

T
+ z

ek
′
w

′ + z
ek

′′
w

′′

∀e∈E,∀k′

, k
′′

=1,...,K,∀w′

,w
′′ ∈W : w

′

<w
′′

(3.21)

xekw ≥ 0 ∀e ∈ E,∀k=1, ...,K,∀w∈W (3.22)

yk′k′′w′w′′ ∈ {0, 1} ∀k′, k′′=1, ...,K,∀w′, w′′∈W : w′<w′′ (3.23)

vikw ∈ {0, 1} ∀i∈V, ∀k=1, ...,K + 1,∀w∈W (3.24)

zekw ∈ {0, 1} ∀e∈E,∀k=1, ...,K,∀w∈W (3.25)

πkw ≥ 0 ∀k=1, ...,K,∀w∈W (3.26)

0 ≤ tkw ≤ T ∀k=1, ...,K + 1, ∀w∈W (3.27)

Variablesπkw model the profit collected by wardenw when visiting thek-th
edge of his/her tour: these variables are settled by constraints (3.16) and bybig-M
constraints (3.17), (3.18) and (3.19), whereS = maxe∈E se. Therefore the objective
function (3.1) models the maximization of the total collected profit.
Variablesvikw are equal to 1 if vertexi is thek-th vertex visited by wardenw, 0
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otherwise. Thanks to constraints (3.10), (3.11) and (3.12), variablesxekw are binary
although not directly constrained to be so: in particular they are equal to 1 if edge
e is thek-th edge visited by wardenw in his/her tour (independently on the fact
that its profit is collected or not), are equal to 0 otherwise.Indeed (3.10), (3.11)
and (3.12) can be seen as McCormick linearization constraints ([3]) imposing that
variablesxekw have the same behaviour of bilinear termsvikwvjk+1w wheree is the
edge linking verticesi andj.
Variableszekw are equal to 1 if edgee is thek-th edge visited by wardenw in his/her
tour and its profit is collected, are equal to 0 otherwise.
Variablestkw model the time instant when thek-th edge is visited by wardenw;
variablesyk′k′′w′w′′ model the precedence relationships in the visit of the same edge
by different wardens: in particular when thek′-th edge travelled by wardenw′ and
thek′′-th edge travelled by wardenw′′ coincide, such variables are equal to 1 ifw′′

precedesw′ , are equal to 0 otherwise.

4. Some computational results

We notice that MILP (1)-(27) involvesO(|E|K|W | + K2|W |2) binary vari-
ables andO(|E|K2|W |2) linear constraints, therefore in practice we cannot think
of applying this model directly to the whole team of wardens,unless to consider
just small instances. Anyway from the MILP model we can builda simple but ef-
fective heuristic approach. It consists in iteratively solving, with the MILP (1)-(27),
|W | instances of PWTP with one warden, where, at each iteration,the profit collec-
tion of the edges already visited with profit in the previous iterations, is forbidden.
We have implemented the MILP (1)-(27) in AMPL [2] and considered random in-
stances with number of vertices between 10 and 50, number of edges between 30
and 150 and up to 4 wardens. The preliminary computational results obtained with
CPLEX11.0 solver show that the heuristic is able to find a solution always in few
seconds, whereas the MILP can require hundreds of seconds upto 2 wardens and
also several hours for 4 wardens. Concerning the solution quality, we have found
an average percentage gap between the heuristic and the optimal solution of about
5.8%.
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Abstract

A graph parameter isself-dualin some class of graphs embeddable in some surface if its
value does not change in the dual graph more than a constant factor. Self-duality has been
examined for several width-parameters, such as branchwidth, pathwidth, and treewidth. In
this paper, we give a direct proof of the self-duality of branchwidth in graphs embedded in
some surface. In this direction, we prove thatbw(G∗) ≤ 6 ·bw(G)+2g−4 for any graph
G embedded in a surface of Euler genusg.

Key words: graphs on surfaces, branchwidth, duality, polyhedral embedding.

1. Preliminaries

A surfaceis a connected compact 2-manifold without boundaries. A surfaceΣ
can be obtained, up to homeomorphism, by addingeg(Σ) crosscapsto the sphere.
eg(Σ) is called theEuler genusof Σ. We denote by(G,Σ) a graphG embedded
in a surfaceΣ. A subset ofΣ meeting the drawing only at vertices ofG is called
G-normal. If anO-arc isG-normal, then we call it anoose. Thelengthof a noose is
the number of its vertices.Representativity, or face-width, is a parameter that quan-
tifies local planarity and density of embeddings. The representativityrep(G,Σ) of
a graph embedding(G,Σ) is the smallest length of a non-contractible noose inΣ.
We call an embedding(G,Σ) polyhedralif G is 3-connected andrep(G,Σ) ≥ 3.
See [7] for more details. For a given embedding(G,Σ), we denote by(G∗,Σ) its
dual embedding. ThusG∗ is the geometric dual ofG. Each vertexv (resp. facer)
in (G,Σ) corresponds to some facev∗ (resp. vertexr∗) in (G∗,Σ). Also, given a set
X ⊆ E(G), we denote asX∗ the set of the duals of the edges inX.

? This work has been supported by IST FET AEOLUS, COST 295-DYNAMO, and by the
Project “Kapodistrias” (AΠ 02839/28.07.2008) of the National and Kapodistrian Univer-
sity of Athens (project code: 70/4/8757).
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Given a graphG and a setX ⊆ E(G), we define∂X = (
⋃
e∈X e)∩(

⋃
e∈E(G)\X e)

(notice that∂X = ∂(E(G)\X)). A branch decomposition(T, µ) of a graphG con-
sists of an unrooted ternary treeT (i.e., all internal vertices are of degree three) and
a bijectionµ : L → E(G) from the setL of leaves ofT to the edge set ofG. For
every edgef = {t1, t2} of T we define themiddle setmid(e) ⊆ V (G) as follows:
Let L1 be the leaves of the connected component ofT \ {e} that containt1. Then
mid(e) = ∂µ(L1). Thewidth of (T, µ) is defined asmax{|mid(e)| : e ∈ T}. An
optimal branch decomposition ofG is defined by a treeT and a bijectionµ which
give the minimum width, called thebranchwidthof G, and denoted bybw(G).

SupposeG1 andG2 are graphs with disjoint vertex-sets andk ≥ 0 is an integer.
For i = 1, 2, let Wi ⊆ V (Gi) form a clique of sizek and letG′

i (i = 1, 2) be
obtained fromGi by deleting some (possibly none) of the edges fromGi[Wi] with
both endpoints inWi. Consider a bijectionh : W1 → W2. We define aclique-sum
G1 ⊕ G2 of G1 andG2 to be the graph obtained from the union ofG′

1 andG′
2 by

identifyingw with h(w) for all w ∈W1.

Let G be a class of graphs embeddable in a surfaceΣ. We say that a graph
parameterCRRAP is (c, d)-self-dualon G if for every graphG ∈ G and for its
geometric dualG∗,CRRAP (G∗) ≤ c ·CRRAP (G) + d. Results concerning self-
duality of pathwidth can be found in [4; 1]. Branchwidth is(1, 0)-self-dual in planar
graphs that are not forests [9], while analogous results have been proven for other
parameters such as pathwidth [3; 1] and treewidth [5; 2; 6]. In this note, we give
a proof that branchwidth is(6, 2g − 4)-self-dual in graphs of Euler genus at most
g. We also believe that our result can be considerably improved. In particular, we
conjecture that branchwidth is(1, g)-self-dual.

2. Self-duality of banchwidth

If (G,Σ) is a polyhedral embedding, then the following proposition follows by
an easy modification of the proof of [4, Theorem 1].

Proposition 2.1. Let (G,Σ) and(G∗,Σ) be dual polyhedral embeddings in a sur-
face of Euler genusg. Thenbw(G∗) ≤ 6 · bw(G) + 2g − 4.

In the sequel, we focus on generalizing Proposition 2.1 to arbitrary embeddings. For
this we first need some technical lemmata, whose proofs are easy or well known,
and omitted in this extended abstract. Note that the removalof a vertex inG corre-
sponds to the contraction of a face inG∗, and viceversa.

Lemma 2.2. The removal of a vertex or the contraction of a face from an embed-
ded graph decreases its branchwidth by at most 1.

Lemma 2.3. (Fomin and Thilikos [3]) LetG1 andG2 be graphs with one edge or
one vertex in common. Thenbw(G1 ∪G2) ≤ max{bw(G1),bw(G2), 2}.

Theorem 2.4. Let (G,Σ) be an embedding withg = eg(Σ). Thenbw(G∗) ≤

20



6 · bw(G) + 2g − 4.

Proof. The proof uses the following procedure that applies a series of cutting
operations to decomposeG into polyhedral pieces plus a set of vertices whose size
is linearly bounded byeg(Σ). The input is the graphG and its dualG∗ embedded
in Σ.

1. SetB = {G}, andB∗ = {G∗} (we call the members ofB andB∗ blocks).
2. If (G,Σ) has a minimal separatorS with |S| ≤ 2, letC1, . . . , Cρ be the con-

nected components ofG[V (G) \ S] and, fori = 1, . . . , ρ, letGi be the graph
obtained byG[V (Ci) ∪ S] by adding an edge with both endpoints inS in
the case where|S| = 2 and such an edge does not already exist (we refer to
this operation ascuttingG along the separatorS). Notice that a (non-empty)
separatorS of size at most2 corresponds to a non-empty separatorS∗ of
G∗, and letG∗

i , i = 1, . . . , ρ be the graphs obtained by cuttingG∗ alongS∗.
We say that eachGi (respG∗

i ) is a block of G (resp.G∗) and notice that
eachG andG∗ is the clique sum of its blocks. Therefore, from Lemma 2.3,
bw(G∗) ≤ max{2,max{bw(G∗

i ) | i = 1, . . . , ρ}} (1). Observe that we
may assume that for eachi = 1, . . . , ρ, Gi andG∗

i are embedded in a sur-
faceΣi such thatGi is the dual ofG∗

i andeg(Σ) =
∑
i=1,...,ρ eg(Σi). Notice

thatbw(Gi) ≤ bw(G), i = 1, . . . , ρ (2), as the possible edge addition does
not increase the branchwidth, since each block ofG is a minor ofG. We set
B ← B \ {G} ∪ {G1, . . . , Gρ} andB∗ ← B∗ \ {G∗} ∪ {G∗

1, . . . , G
∗
ρ}.

3. If (G,Σ) has a non-contractible and non-surface-separating noose meeting a
setS with |S| ≤ 2, letG′ = G[V (G) \ S] and letF be the set of of faces in
G∗ corresponding to the vertices inS. Observe that the obtained graphG′ has
an embedding to some surfaceΣ′ of Euler genusstrictly smaller thanΣ that,
in turn, has some dualG′∗ in Σ′. Thereforeeg(Σ′) < eg(Σ). Moreover,G′∗

is the result of the contraction inG∗ of the |S| faces inF . From Lemma 2.2,
bw(G∗) ≤ bw(G′∗) + |S| (3). SetB ← B \ {G} ∪ {G′} andB∗ ← B∗ \
{G∗} ∪ {G′∗}.

4. Apply (recursively) Steps 2–4 for each blockG ∈ B and its dual.

We now claim that before each recursive call of Steps 2–4, it holds thatbw(G∗) ≤
6 · bw(G) + 2eg(Σ)− 4. The proof uses descending induction on the the distance
from the root of the recursion tree of the above procedure. Notice that all embed-
dings of graphs in the collectionsB andB∗ constructed by the above algorithm are
polyhedral, except from the trivial case that they are just cliques of size 2. Then the
theorem follows directly from Proposition 2.1.

Suppose thatG (resp.G∗) is the clique sum of its blocksG1, . . . , Gρ (resp.
G∗

1, . . . , G
∗
ρ) embedded in the surfacesΣ1, . . . ,Σρ (Step 2). By induction, we have

thatbw(G∗
i ) ≤ 6 ·bw(Gi)+ 2eg(Σi)− 4, i = 1, . . . , ρ and the claim follows from

Relations(1) and(2) and the fact thateg(Σ) =
∑
i=1,...,ρ eg(Σ).
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Suppose now (Step 3) thatG (resp.G∗) occurs from some graphG′ (resp.G′∗)
embedded in a surfaceΣ′ whereeg(Σ′) < eg(Σ) after adding the vertices inS
(resp.S∗). From the induction hypothesis,bw(G′∗) ≤ 6 ·bw(G′)+2eg(Σ′)−4 ≤
6 · bw(G′) + 2eg(Σ) − 2 − 4 and the claim follows easily from Relation(3) as
|S| ≤ 2 andbw(G′) ≤ bw(G).

3. Recent results and a conjecture

Very recently Mazoit [6] proved that treewidth is a(1, g + 1)-self-dual param-
eter in graphs embeddable in surfaces of Euler genusg. Using that the branchwidth
and the treewidth of a graphG, with |E(G)| ≥ 3, satisfybw(G) ≤ tw(G) + 1 ≤
3
2
bw(G) [8], this implies thatbw(G∗) ≤ 3

2
bw(G) + g + 2, improving the con-

stants of Theorem 2.4. We believe that an even tighter self-duality relation holds
for branchwidth and hope that the approach of this paper willbe helpful to settle
the following conjecture.

Conjecture 1. If G is a graph embedded in some surfaceΣ, then bw(G∗) ≤
bw(G∗) + eg(Σ).
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A simple linear-time recognition algorithm
for weakly quasi-threshold graphs1
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Abstract

Weakly quasi-threshold graphs form a proper subclass of thewell-known class of cographs
by restricting the join operation. In this paper we characterize weakly quasi-threshold
graphs by a finite set of forbidden subgraphs: the class of weakly quasi-threshold graphs co-
incides with the class of{P4, co-(2P3)}-free graphs. Moreover we give the first linear-time
algorithm to decide whether a given graph belongs to the class of weakly quasi-threshold
graphs, improving the previously known running time. Basedon the simplicity of our
recognition algorithm, we can provide certificates of membership (a structure that charac-
terizes weakly quasi-threshold graphs) or non-membership(forbidden induced subgraphs)
in additionalO(n) time. Furthermore we give a linear-time algorithm for finding the largest
induced weakly quasi-threshold subgraph in a cograph.

1. Introduction

The well-known class of cographs is recursively defined by using the graph op-
erations of ‘union’ and ‘join’ [4]. Bapat et al. [1], introduced a proper subclass of
cographs, namely the class ofweakly quasi-thresholdgraphs, by restricting the join
operation and studied theirLaplacian spectrum. In the same work they proposed
a quadratic-time algorithm for recognizing such graphs. Here we characterize the
class of weakly quasi-threshold graphs by the class of graphs having noP4 (chord-
less path on four vertices) or co-(2P3) (the complement of two disjointP3’s). This
characterization also shows that the complement of a weaklyquasi-threshold graph
is not necessarily weakly quasi-threshold graph. Moreoverwe give a tree represen-
tation for such graphs, similar to the cotrees for cographs,and propose a linear-time
recognition algorithm.

1 This research work is co-financed by E.U.-European Social Fund (75%) and the Greek
Ministry of Development-GSRT (25%).
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Fig. 1. (a) Subclasses of cographs and (b) a co-(2P3) and its cotree.

The class of cographs coincides with the class of graphs having no inducedP4

[5]. There are several subclasses of cographs.Trivially-perfectgraphs, also known
as quasi-thresholdgraphs, are characterized as the subclass of cographs having
no inducedC4 (chordless cycle on four vertices), that is, such graphs are{P4, C4}-
free graphs, and are recognized in linear time [3; 6]. Another interesting subclass of
cographs are the{P4, C4, 2K2}-free graphs known asthresholdgraphs, for which
there are several linear-time recognition algorithms [3; 6]. Clearly every threshold
graph is trivially-perfect but the converse is not true. Gurski introduced the class of
{P4, co-(2P3), 2K2}-free graphs in his study of characterizing graphs of certain re-
stricted clique-width [7]. Together with the class of weakly quasi-threshold graphs
(that are exactly the class of{P4, co-(2P3)}-free graphs as we show in this paper),
we obtain the inclusion properties for the above families ofgraphs that we depict
in Figure 1 (a).

For undefined terminology we refer to [3; 6]. A vertexx of G is universalif
NG[x] = V (G) and isisolatedif it has no neighbors inG. Two verticesx, y ofG are
calledfalse twinsif NG(x) = NG(y). A cliqueis a set of pairwise adjacent vertices
while an independent setis a set of pairwise non-adjacent vertices. A chordless
cycle onk vertices is denoted byCk and a chordless path onk vertices is denoted
by Pk. The complement of the graph consisting of two disjointP3’s is denoted by
co-(2P3). Given two vertex-disjoint graphsG1 = (V1, E1) andG2 = (V2, E2), their
union isG1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). Their join G1 + G2 is the graph obtained
fromG1 ∪G2 by adding all the edges between the vertices ofV1 andV2. The class
of cographs, also known ascomplement reducible graphs, is defined recursively as
follows:
(c1) a single vertex is a cograph;
(c2) if G1 andG2 are cographs, thenG1 ∪G2 is also a cograph;
(c3) if G1 andG2 are cographs, thenG1 +G2 is also a cograph.
The class of cographs coincides with the class ofP4-free graphs [5]. Along with
other properties, it is known that cographs admit a unique tree representation, called
a cotree[4]. For a cographG its cotree, denoted byT (G), is a rooted tree having
O(n) nodes. The vertices ofG are precisely the leaves ofT (G) and every internal
node ofT (G) is labelled by either 0 (0-node) or 1 (1-node). Two vertices are adja-
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cent inG if and only if their least common ancestor inT (G) is a1-node. Moreover,
if G has at least two vertices then each internal node of the tree has at least two
children and any path from the root to any node of the tree consists of alternating
0- and1-nodes. The complement of any cographG is a cograph and the cotree of
the complement ofG is obtained fromT (G) with inverted labeling on the internal
nodes ofT (G). Note that we distinguish between vertices of a graph and nodes of a
tree. Cographs can be recognized and their cotrees can be computed in linear time
[5; 8; 2].

2. A characterization of weakly quasi-threshold graphs

Bapat et al., introduced in [1] the class ofweakly quasi-threshold graphs(or
wqt graphsfor short) and defined the given class as follows:
(w1) a single vertex is a wqt graph;
(w2) if G1 andG2 are wqt graphs thenG1 ∪G2 is a wqt graph;
(w3) if G is a wqt then adding a universal vertex inG results in a wqt graph;
(w4) if G is a wqt graph then adding a vertex inG having the same neighborhood
with a vertex ofG results in a wqt graph.
By definition the class of cographs and wgt graphs have certain similarities. Clearly
every wqt graph is a cograph but the converse is not true. Properties c1,c2 and
w1,w2 completely coincide, whereas properties w3–w4 correspond to a restricted
version of c3. Moreover it follows that in a connected wqt graph there is either a
universal vertex or a false twin. Then it is not difficult to see that the class of wqt
graphs is closed under taking induced subgraphs, that is, the class of wqt graphs is
hereditary.

Lemma 2.1. The class of wqt graphs can be defined recursively as follows:
(a1) an edgeless graph is a wqt graph; (a2) ifG1 andG2 are wqt graphs then
G1 ∪ G2 is a wqt graph; (a3) ifG is a wqt graph andH is an edgeless graph then
G+H is a wqt graph.

Proof. Properties w2 and a2 are exactly the same. By properties w1 and w2
we have that edgeless graphs are wqt graphs. We need to show that property a3
can substitute both properties w3–w4. IfG is a wqt graph andH is an edgeless
graph then the graphG + H is obtained by first adding a universal vertex inG
and then by the addition of false twins. HenceG + H is a wqt graph. For the
converse letG be a connected wqt graph. First observe thatG can be reduced
to a disconnected wqt graphG[A] by repeatedly removing a universal vertex or
a false twin vertex. LetS be a set of the removal vertices. Letxn, . . . , xk be an
order ofS wherexi is either universal or false twin inGi = G[{xi, . . . , xk} ∪ A],
n ≤ i ≤ k. We show that there is such an order of{xn, . . . , xk} where all the false
twin vertices appear consecutive. If there is a universal vertexxj between two false
twin verticesxi andxk then swapping the positions ofxj andxk keeps the same
property for the resulting order. We apply this operation for every universal vertex
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between two false twin vertices and obtain an order of the vertices ofS where the
false twin vertices appear consecutive. Observe that the set of the false twin vertices
induces an edgeless graph inG. Thus the join operation between a wqt graph and
an edgeless graph is sufficient to construct a connected wqt graph.

Next we give a characterization of weakly quasi-threshold graphs through for-
bidden subgraphs based on Lemma 2.1.

Theorem 2.1. A graphG is weakly quasi-threshold if and only ifG does not con-
tain anyP4 or co-(2P3) as induced subgraphs.

3. A linear-time recognition algorithm

In this section we give a linear-time algorithm for decidingwhether an arbitrary
graph is wqt. LetG be the input graph. We first apply the linear-time recognition
algorithm for checking whetherG is a cograph [5]. IfG is not a cograph then we
know thatG is not a wqt graph as it contains aP4. OtherwiseG admits a cotree
T (G) that can be constructed in linear time [5; 8]. Now it suffices to efficiently
check an induced co-(2P3) onG by using the cotreeT (G). For that purpose, we
modify T (G) and obtainT ∗ from T (G) by applying the following two operations:
(i) delete the subtree rooted at a 0-node having only leaves as children and (ii)
remove a leaf that has 1-node as parent. Next we check if every1-node inT ∗ has
at most one child. In case of an affirmative answer we output thatG is a wqt graph;
otherwise, we output thatG is not a wqt graph. Correctness of the algorithm is
based on the following lemma.

Lemma 3.1. LetG be a cograph and letT ∗ be its modified cotree. ThenG is wqt
graph if and only if every 1-node ofT ∗ has at most one child.

Theorem 3.1. Weakly quasi-threshold graphs can be recognized inO(n+m) time.
Furthermore given a graphG there is anO(n+m) algorithm that reports either an
inducedP4 or co-(2P3) of G wheneverG is not a weakly quasi-threshold graph.

As already mentioned every wqt graph is a cograph but the converse is not neces-
sarily true. We show that the problem of removing the minimumnumber of vertices
from a cograph so that the resulting graph is wqt can be done inlinear time. Note
that the proposed algorithm can serve as a recognition algorithm as well. LetT (G)
be the cotree ofG and letT ∗ be the modified cotree. Our algorithm starts by travers-
ing bothT (G) andT ∗ from the leaves to the root and computes for each node of
T (G) a largest induced wqt subgraph; the one computed at the root of T (G) pro-
vides the largest induced wqt subgraph ofG. The computed graph is represented
by a cotreeT ′ that we construct during the traversal ofT (G). Let Hu be the in-
duced subgraph ofG corresponding to the leaves of the subtree rooted at a nodeu
of T (G). Every time the algorithm visits a nodeu of T (G) it computes the triple
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(n(u),MC(u),MI(u)) wheren(u) is the number of vertices ofHu, MC(u) is the
maximum clique ofHu, and MI(u) is the maximum independent set ofHu. Let
u1, u2, . . . , uk be the children ofu in T (G). If u is a 0-node or a 1-node with at
most one child then the algorithm assigns tou the correct triple by Lemma 3.1 and
copies nodeu in T ′. If u is a 1-node andu has at least two children inT ∗ then we
need to modify the subtree rooted atu. Let u∗1, u

∗
2, . . . , u

∗
` be the children ofu in

T ∗; note that each childu∗1 is a 0-node,1 ≤ i ≤ `. Based on Lemma 3.1 we mod-
ify every subtree inT (G) rooted atu∗i except thatu∗p having the maximum value
amongmin{n(u∗i ) − |MC(u∗i )|, n(u∗i )− |MI(u∗i )|}. For every other nodeu∗j 6= u∗p
we do the following operations: if|MC(u∗j)| > |MI(u∗j)| then we delete the subtree
rooted atu∗j and add the vertices of MC(u∗j) as children ofu; otherwise we remove
the nodes of the subtree rooted atu∗j and add the vertices of MI(u∗j) as children of
u∗j .

Theorem 3.2. Given a cographG there is anO(n + m) algorithm that finds a
largest induced weakly quasi-threshold subgraph ofG.
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theory in the twentieth century??

Harald Groppa

aHans-Sachs-Str. 6, D-65189 Wiesbaden
d12@ix.urz.uni-heidelberg.de

Key words: graph theory, Berge graph

1. Introduction

Dedicated toCLAUDE BERGE (1926-2002),

mathematician and man of culture

In 1926 the zeroth book on graph theory was published by A. Sainte-Laguë [9].
It collects the knowledge on graphs at this early stage and particularly focusses on
the French development of this new field in mathematics. The first French pioneer
in graph theory, Georges Brunel (see [7]) prepared the first decades of the last
century. Ten years after the zeroth book, in 1936, the first book on graph theory by
D. König [8] was published.

Sainte-Laguë’s life and work is discussed in [6]. His book [10] of 1937 (and
reprinted in 1994) contains the analysis of many mathematical games and famous
problems in combinatorics, e.g.La Tour d’Hanöı, Les quinze demoiselles, Les
trente-six officiers, La ville de KoenisbergandLe jeu d’Hamilton.

In theannexeof the new edition of 1994 Claude Berge discusses the starting
points of the abstract theory of graphs.

De très nombreux problèmes de ce livre ont été le point dedépart de théorèmes généraux.
Encore fallait-il poser les bases d’une théorie abstraite.

??This paper was not actually presented at the conference, as the author withdrew his par-
ticipation.
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One of the examples which Berge discusses is theProblème du loup, de la
chèvre, et du chou. Berge also displays a graph of the problem. The general back-
ground and the history of these river-crossing problems is further described in [5].

1926 is also the birth year of Claude Berge who died in 2002 andwas not only
the most influential man in French graph theory in the second half of the twentieth
century but also somebody very broadly interested in cultural fields like literature
and Oceanic art.

In 1958 Claude Berge published his first book on graph theory [1] which was
soon translated into several other languages.

2. Sainte-Lagüe’s zeroth book on graph theory

Sainte-Laguë’s book [9] is not much known today. It is not available in many
libraries. Even in France it is nearly forgotten. In König’s book [8] it is mentioned
as a reference several times. Claude Berge was one of the few mathematicians who
really made use of it. It should be discussed whether it wouldbe useful to reprint
the book, together with comments and perhaps a translation into English.

This short report does not replace my paper [6] but will just give a brief in-
troduction. André Sainte-Laguë was born in Saint-Martin-Curton (Dépt. Lot-et-
Garonne) on April 20, 1882. He died in Paris on January 18, 1950. After he had
studied mathematics till 1906 he became a teacher at different schools between
1906 and 1927 when he joined the CNAM ( Conservatoire National des Arts et
Métiers) in Paris. In 1937 he organized the mathematical presentations for the world
exhibition in Paris, and in 1938 he got the chair of mathematics and applications
at the CNAM. During the German occupation of France in World War II he was a
leading member of theRésistance.

Sainte-Laguë wrote his dissertation on graphs in 1924 which contained already
many proofs of theorems which he presented in his book of 1926. This book con-
tains of 9 chapters on 64 pages. The 9 chapters are as follows:Introduction and
definition, Trees, Chains and circuits, Regular graphs, Cubic graphs, Incidence ma-
trices, Hamiltonian graphs, Chess problems, and Knight’s move problems where
the titles are given in modern terminology and not in the words of Sainte-Laguë.
The list of 223 references is a good survey of the combinatorial literature earlier
than 1926.

Sainte-Laguë describes important sources for graph theory such as recreational
problems or physics or chemistry.
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3. Claude Berge’s books

In the following two of Claude Berge’s books will be further discussed in order
to show his attitude towards graph theory and combinatoricsand their history. A
third book will be briefly mentioned. It is not the aim of this short paper to give a
full survey on Claude Berge’s books. In this extended abstract the books will only
be briefly described.

3.1 Claude Berge: The Theory of Graphs and its applications (1962), French
1958

Claude Berge’s book of 1958 [1] was a breakthrough for the development of
the new mathematical field, called graph theory, not only in France, but for the
whole world. After the books of Sainte-Laguë (1926) [9] andKönig (1936) [8] who
for different reasons did not become widely circulated the book of Berge found a
broad acceptance and was soon translated into many other languages. In his in-
troduction of two pages Berge introduces graphs as applied in physics, chemistry,
economics, psychology etc. This close link to all possible areas of applications was
certainly one of the main aspects of Claude Berge’s graph theory.

3.2 Claude Berge: Principles of Combinatorics (1971), French 1968

What is Combinatorics ?

In the introduction of his bookPrinciples of Combinatorics[2] Claude Berge
describes the main characteristics of combinatorics by usingconfigurationsas com-
binatorial structures. Configurations are here just special objects with certain con-
straints, not configurations as defined by Reye and discussedin many of my papers
(e.g. see [6]).

3.3 Claude Berge: Graphes et Hypergraphes (1970)

It should not be forgotten that sometimes Claude Berge was called Monsieur la
théorie des hypergraphes. In fact he pushed forward this extended aspect of graph
theory very much, also as the author of his book on hypergraphs [4]. Hypergraphs
were only ”invented” around 1960, but similar concepts had already been around
much earlier. The real importance of these combinatorial structures will only be-
come clear in the future and will not be further discussed in this short paper.
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4. Claude Berge, literature and art

Last but not least let me mention here Claude Berge’s activities in literature and
art. He was a member of the groupOULIPO ( Ouvroir de Littérature Potentielle)
which was founded in 1960 and works on the connections between mathematics
and literature. Some prominent members as writers are Raymond Queneau and
Georges Perec. Claude Berge himself wrote the novelQui a túe le Duc de Densmore
? in 1994 [3] in which he used a combinatorial theorem of Hajósto tell a criminal
story.

It is generally known that Claude Berge was very much interested in the cul-
tures of the Pacific Ocean, in particular in the art of Papua - New Guinea. He himself
had sculptured similar objects and collected all kind of information on Oceanic Art.
As a small footnote let me mention here that he was in close contact to the Konrad
family in Mönchengladbach (Germany) who gave an importantAsmat collection
to theVölkerkundemuseumin Heidelberg. The Asmat are one of the many peoples
in Papua.

5. A few last words

Let me close this short paper which discusses two remarkableand unusual
French mathematicians of the twentieth century by explicitly mentioning the ex-
treme friendliness and kindness of Claude Berge. Although he became one of the
most prominent and important experts in his field he always stayed a man just very
much interested in many things, not only in mathematics and graph theory.

The very last words should just remind us of Claude Berge’s enormous influ-
ence on the graph theory of the twentieth century and expressour thanks (in the
French language, of course):

Merci beaucoup !
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Abstract

We study graphs with colored vertices and prove that it is NP-complete to decide if there
is an independent set in the graph containing at least one vertex of each color. The proof
immediately yields that the problem remains NP-complete even when restricting the graph
to the class of Unit Disk Graphs (UDGs).

We present and discuss also an application where the problemarises in the area of VLSI
routing: Conflict-free and thus disjoint wiring interconnects for a set of pins on a circuit
have to be chosen from a precomputed set of paths.

Key words: Colored Graphs, Unit Disk Graph, VLSI Design

1. Introduction

Given a graphG together with a colorκv ∈ {1, . . . , K} for each vertexv ∈
V (G), we seek anindependent setI ⊆ V (G) in G that maximizes the objective
function

c(I) := min
k∈{1,...,K}

|{i ∈ I|κi = k}|.

Clearly, if all vertices have the same color, this amounts tothe classical Max-
imum Independent Set problem, which is known to be NP-hard. The COLORED

INDEPENDENT SET decision problem is the following:

Given an r ∈ N, is there an independent setI ⊆ V (G) with c(I) ≥ r?

In the following, we restrict ourselves to the class of Unit Disk Graphs which
capture the same geometric property of the application presented next.

Definition 1. A graphG is called a UNIT DISK GRAPH (UDG) if there exists a
mapf : V (G)→ R2 satisfying:(u, v) ∈ E(G)⇔ ‖f(u)− f(v)‖ ≤ 1.

CTW09,École Polytechnique & CNAM, Paris, France. June 2–4, 2009



Fig. 1. Conflicting and conflict-free pin access paths (via and wiring on higher layer) for a
circuit with three pins (shaded on lower layer).

2. Application

We consider the following problem in detailed VLSI routing,where the above
COLORED INDEPENDENT SET problem occurs. Given a circuit (a collection of
pins) placed on the chip-area, we want to connect each pin by ashort access path
that legally connects it to the overall routing grid used to cover larger distances.

Usually, the routing is done sequentially, i.e. one connection after the next, in
order to create disjoint interconnects. Especially when the pins are situated very
dense, this gives frequent complications when a path blocksthe access to a not yet
connected pin (see Figure 1).

Our solution to this problem is to preprocess each circuit byfirst computing
a set of access paths for each pin of a given circuit, and then selecting a disjoint
and conflict-free subset that is used in the sequential routing phase. For the latter,
a conflict graph is built for a circuit so that each path connecting to a certain pin
receives the same color, and two paths are connected by an edge if they create a
short circuit when used at the same time.

Clearly, an independent set having a vertex (i.e. path) of each color (i.e. pin)
corresponds to a conflict-free pin access situation.
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Fig. 2. Example for a ’variable’ graphGxi
. Herexi ∈ Z1 andxi ∈ Z2. The color of the

vertices are enclosed in brackets.
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3. NP-Completeness

In this section we give our main result, formulated for Unit Disk Graphs.

Theorem 1. The COLORED INDEPENDENT SET IN UDGS decision problem is
NP-complete even forr = 1.

Membership in NP is obvious. We prove that 3SATISFIABILITY polynomially
transforms to COLORED INDEPENDENT SETS IN UDGS. Given a collectionZ of
clausesZ1, . . . , Zm overX = {x1, . . . , xn}, each clause containing three literals,
we shall construct a UDGG that contains an independent setI with c(I) ≥ 1 iff Z
is satisfiable.

The graphG contains for each variablexi ∈ X two verticesvi, vi of colorκiv,
and for pair of variablexi ∈ X and clauseZj ∈ Z two verticesvji , v

j
i of colorκi,jv .

These vertices indicate whether the variablesxi are true or false.

Additionally the graph contains for each variable in a clause xi ∈ Zj two

verticeslji , l
j

i of colorκi,jl linking the variables and the clauses.

Moreover we have for each clauseZj containing the variablesxa, xb, xc four
verticeszja, z

j
b , z

j
c andzj of color κjz showing if the corresponding literals and the

complete clause are satisfied or not.

Finally we have a ’satisfiability’ vertexs of colorκs indicating ifZ is satisfi-
able in total. Note that all defined colors are pairwise disjoint.

Based on these vertices, the graph contains three differenttypes of subgraphs
representing the variables, the clauses and the last one showing if the problem is
satisfiable.

The first type are the graphsGxi
representing the variablesxi ∈ X. LetAxi

:=

{vi, vi} ∪ {vji , vji |1 ≤ j ≤ m}, Bxi
:= {lji |xi ∈ Zj}, Bxi

:= {lji |xi ∈ Zj}. Then,

V (Gxi
) := Axi

∪ Bxi
∪ Bxi

and

E(Gxi
) := {(vi, v1

i ), (v
1
i , v

1
i ), (v

1
i , v

2
i ), . . . , (v

m
i , v

m
i ), (vmi , vi)}

∪{(lji , vji ) | xi ∈ Zj} ∪ {(l
j

i , v
j
i ) | xi ∈ Zj}.

It is easy to see that there is a UDG representation forGxi
(see Figure 2): The

subgraph induced byAxi
is a path fromvi to vi. We place the vertices of the path

on a horizontal line with distance1 between two intermediate vertices. The vertices
of Bxi

will be placed above and the vertices ofBxi
below their adjacent vertices of

Axi
, again at distance 1.
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Fig. 3. Example for a ’clause’ graphGZj
for Zj = xa ∨ xb ∨ xc.
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Fig. 4. GraphS for a 3SAT instance with6 clauses.

The second type of graphs are the graphsGZj
representing each clauseZj ∈ Z

(Figure 3). We set

V (GZj
) := {zji | xi ∈ Zj ∨ xi ∈ Zj} ∪ {l

j

i | xi ∈ Zj} ∪ {lji | xi ∈ Zj} and

E(GZj
) := {(zji , l

j

i )| xi ∈ Zj} ∪ {(zji , lji )| xi ∈ Zj}.

The last type just contains a complete graphS with V (S) := {z1, . . . , zj , s}
andE(S) := {(v, w)| v, w ∈ V (S), v 6= w} (Figure 4).

The graphG is the union of{Gxi
}1≤i≤n, {GZk

}1≤j≤m andS.

It is evident that this is a polynomial transformation, and it now remains to
show thatG correctly encodes the instanceZ.

• Z is satisfiable⇒ G contains an independent setI with c(I) ≥ 1.

Let T : X → {true, false} be a truth assignment that satisfiesZ. We show that
there exists an independent setI in G with c(I) ≥ 1. Set

I := {vi, v1
i , . . . , v

m
i | T (xi) = true} ∪ {vi, v1

i , . . . , v
m
i | T (xi) = false}

∪{lji | xi ∈ Zj ∨ xi ∈ Tj , T (xi) = true}
∪{lji | xi ∈ Zj ∨ xi ∈ Tj , T (xi) = false}
∪{zji | (xi ∈ Zj ∧ T (xi) = true) ∨ (xi ∈ Zj ∧ T (xi) = false)} ∪ {s}.
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It is easy to verify that this is indeed an independent set. Now we have to show
that each color is represented by an vertex ofI. Obviously there are vertices of
colorsκiv, κ

i,j
v , κ

i,j
l , κs, 1 ≤ i ≤ n, 1 ≤ j ≤ m in I.

It remains to show that for each1 ≤ j ≤ m there is a vertex of colorκjz in I.
As each clauseZj is satisfied, there is anxi ∈ Zj with T (xi) = true or anxi ∈ Zj
with T (xi) = false. This giveszji ∈ I in both cases.

• G contains an independent setI with c(I) ≥ 1⇒Z is satisfiable.

Let I be an independent setI with c(I) ≥ 1. The task now is to construct a truth
assignmentT : X → {true, false} that satisfiesZ.

SetPi = {vi, v1
i , . . . , v

m
i } andNi = {vi, v1

i , . . . , v
m
i } for 1 ≤ i ≤ n. Note that

all vertices ofPi ∪Ni are on a path and elements ofPi are only adjacent to vertices
of Ni and vice versa. By construction ofGxi

either (Pi ⊂ I andNi ∩ I = ∅) or
(Ni ⊂ I andPi ∩ I = ∅). In the first case we setT (xi) = true and in the second
caseT (xi) = false.

Now letZj ∈ Z be a clause. We claim thatZj is satisfied. Sincec(I) ≥ 1, the
vertexs must be inI as it is the only vertex of colorκs. The verticeszj ands are
adjacent andI is an independent set sozj /∈ I. But there must be a vertex of color
κiz in I, i.e. there exists ani with zji ∈ I. We have eitherxi ∈ Zj or xi ∈ Zj. In

the casexi ∈ Zj, the vertexzji is connected tol
j

i and thereforel
j

i /∈ I. From this
it follows that lji ∈ I as there must be a vertex of colorκi,jl in I. But thenvji /∈ I
which means that we have setT (xi) = true. The clauseZj is satisfied. Similar
arguments apply to the case thatxi ∈ Zj. Here we conclude thatT (xi) = false and
again get thatZj is satisfied.

ThereforeZ is satisfied, and the proof is complete. 2
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A note on the parameterized complexity of the
maximum independent set problem

Vadim V. Lozina

aDIMAP and Mathematics Institute, University of Warwick, Coventry, UK

Key words: Parameterized complexity, Independent set, Ramsey Theory

1. Introduction

We study theMAXIMUM INDEPENDENT SET problem parameterized by the
solution sizek, which we callk-INDEPENDENT SET. A parameterized problem
is fixed-parameter tractable(fpt for short) if it can be solved inf(k)nO(1) time,
wheref(k) is a computable function depending on the value of the parameter only.
In general, thek-INDEPENDENT SETproblem is W[1]-hard, which means it is not
fixed-parameter tractable unlessP = NP . On the other hand, fpt-algorithms have
been developed for segment intersection graphs with bounded number of directions
[6], triangle-free graphs [8], graphs of bounded vertex degree [5], planar graphs,
and more generally, graphs excluding a single-crossing graph as a minor [3]. A
common feature of all these classes is that all of them are hereditary (i.e., closed
under vertex deletion) and all of them are small in the following sense. It is known
(see e.g. [2]) that for every hereditary classX, the numberXn of n-vertex graphs in
X (also known as the speed ofX) satisfieslimn→∞

log2Xn

(n
2)

= 1− 1
k(X)

, wherek(X)

is a natural number called theindexof the class. The triangle-free graphs have index
2 and the index of all other classes mentioned above is 1 (see [7] for the speed of
minor-closed graph classes). In this paper, we focus on hereditary classes of index
k > 1. Each classX in this range can be approximated by a minimal class of the
same index. The main result of this paper is that the problem is fixed-parameter
tractable inall minimal classes of indexk for all values ofk.

We use the following notations. For a subsetU ⊆ V (G), we denote byG[U ]
the subgraph ofG induced byU . Kn stands for the complete graph onn vertices
andKn for its complement. Also,pK2 is the disjoint union ofp copies ofK2.
For a set of graphsM , we denote byFree(M) the class of graphs containing no
induced subgraphs isomorphic to graphs inM . It is known that a classX of graphs
is hereditary if and only ifX = Free(M) for a certain setM . For two graph classes
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X andY , denote byXY the class of graphs whose vertices can be partitioned into
two subsets, one of which induces a graph inX and another one a graph inY . Let
us denote byG1∨G2 the union of two graphsG1 = (V,E1) andG2 = (V,E2) with
a common vertex setV , i.e.,G1 ∨ G2 = (V,E1 ∪ E2). If A andB are two classes
of graphs, thenA ∨ B := {G1 ∨G2 : G1 ∈ A,G2 ∈ B}.

2. Complexity of the problem in classes of high speed

The main result of the paper is consequence of a series of technical lemmas.

Lemma 1. Let A, B be two classes of graphs such that (1)A ⊆ Free(pK2) for
some constantp, (2) B is a hereditary class of graphs admitting an fpt-algorithm
for thek-INDEPENDENT SETproblem, (3) there is an algorithm that for any graph
G ∈ A ∨ B, finds in polynomial time two graphsG1 ∈ A andG2 ∈ B such that
G = G1∨G2. Then thek-INDEPENDENT SETproblem is fixed-parameter tractable
in the classA ∨B.

Proof. An fpt-algorithm for graphs inA∨B can be outlined as follows. Given
a graphG ∈ A ∨ B, first, find two graphsG1 ∈ A andG2 ∈ B such thatG =
G1∨G2. Next, for each maximal under inclusion independent setI inG1, solve the
k-INDEPENDENT SETproblem inG2[I] ∈ Y by an fpt-algorithm. If the algorithm
finds an independent set of sizek in G2[I] ∈ Y , output this set for the graphG.
Otherwise (i.e., if the fpt-algorithm says NO for each graphG2[I] ∈ Y ), answer
NO for the graphG. Correctness of the procedure follows from the fact that every
independent set inG also is independent both inG1 andG2. To estimate its time
complexity, observe that the number of inclusionwise maximal independent sets in
pK2-free graphs is bounded by a polynomial [1] and all of them canbe found in
polynomial time [9].

Lemma 2. If XY is a class of graphs withX ⊆ Free(Km) andY ⊆ Free(Kn),
thenXY ⊂ Free(mK2) ∨ Free(Kn).

Proof. LetG = (V,E) be a graph inXY and letV = V1 ∪ V2 be a partition
of V such thatG[V1] ∈ X andG[V2] ∈ Y . DenotingG1 = (V,E − E(G[V2])) and
G2 = (V,E(G[V2])), we conclude thatG = G1 ∨G2. Obviously,G2 ∈ Free(Kn).
To see thatG1 ∈ Free(mK2) observe that ifM is an induced subgraph of degree
1 inG1 then at least one endpoint of each edge ofM belongs toV1 (becauseV2 is
independent inG1). SinceV1 can contain at mostm − 1 independent vertices, the
size ofM is at mostm− 1.

Lemma 3. For any constantq, thek-INDEPENDENT SETproblem is fixed-parameter
tractable in the classFree(Kq).
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Proof. It can be decided in timeO(nq) if G has an independent set of size
k ≤ q. Fork > q, we employ the Ramsey theory. LetR(t) be the diagonal Ramsey
number. It is known [4] thatR(t) ≤ 22t−3. Moreover, the proof given in [4] is
constructive and shows how to find in a graph withn ≥ 22t−3 vertices a subset
inducing an independent set or a clique of sizet in timeO(tn).

Let k > q. If the number of vertices of a graphG ∈ Free(Kq) is at most22k−3,
then we can check in timeO(2(2k−3)k) if G has an independent set of sizek. If G
hasn > 22k−3 vertices, we know thatG has an independent set of sizek (because
G isKq-free) and this set can be found in timeO(kn).

Lemma 4. For anyX ⊆ Free(Km) andY ⊆ Free(Kn), there exists a constant
τ = τ(X, Y ) such that for every graphG = (V,E) ∈ XY and every subsetB ⊆ V
with G[B] ∈ Y , at least one of the following statements holds:
(a)∃ A ⊆ V such thatG[A] ∈ Y ,G[V − A] ∈ X, and|A−B| ≤ τ ,
(b) ∃ C ⊆ V such thatG[C] ∈ Y , |C| = |B|+ 1, and|B − C| ≤ τ .

Proof. By Ramsey Theorem, for each positive integersm andn, there is a
constantR(m,n) such that every graph with at leastR(m,n) vertices contains
either aKm or aKn as an induced subgraph. Given two setsX ⊆ Free(Km) and
Y ⊆ Free(Kn), we defineτ = τ(X, Y ) to be equalR(m,n).

LetG = (V,E) be a graph inXY , andB a subset ofV such thatG[B] ∈ Y .
Consider an arbitrary subsetA ⊆ V such thatG[A] ∈ Y andG[V −A] ∈ X. If (a)
does not hold, then|A−B| > τ . In addition,G[B−A] ∈ X∩Y ⊆ Free(Km, Kn),
and hence|B−A| ≤ τ . Consequently,|A| > |B|. But then any subsetC ⊆ A such
thatA ∩B ⊆ C and|C| = |B|+ 1 satisfies (b).

Theorem 1. If m andn are constants andXY is a class of graph such thatX ⊆
Free(Km) andY ⊆ Free(Kn), then thek-INDEPENDENT SETproblem is fixed-
parameter tractable in the classXY .

Proof. We apply Lemma 1. Conditions (1) and (2) of the lemma followsfrom
Lemmas 2 and 3. For condition (3), we develop the following algorithm:

Input: A graphG = (V,E) ∈ XY with X ⊆ Free(Km) andY ⊆ Free(Kn)
Output: GraphsG1 ∈ Free(mK2),G2 ∈ Free(Kn) such thatG = G1 ∨G2.

(1) Find inG any maximal under inclusion subsetB ⊆ V inducing a graph in
Free(Kn).

(2) If there is a subsetC ⊆ V satisfying condition (b) of Lemma 4, then set
B := C and repeat Step (2).

(3) Find inG a subsetA ⊆ V such that|B − A| ≤ τ , |A − B| ≤ τ , G[A] ∈
Free(Kn),G1 = (V,E − E(G[A])) ∈ Free(mK2).

(4) OutputG1 = (V,E − E(G[A])) andG2 = (V,E(G[A])).
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Correctness of the algorithm follows from Lemmas 2 and 4. To estimate its
time complexity, observe that in Step (2) the algorithm inspects at most

(
|V |
τ

) (
|V |
τ+1

)

subsetsC and for each of them, verifies whetherG[C] ∈ Free(Kn) in timeO(|V |n).
Since Step (2) loops at most|V | times, its time complexity isO(|V |2τ+n+2). In

Step (3), the algorithm examines at most
(
|V |
τ

)2
subsetsA. For eachA, it verifies

whetherG[A] ∈ Free(Kn) in timeO(|V |n) and whetherG[V − A] ∈ Free(Km)
(and henceG1 ∈ Free(mK2)) in timeO(|V |m). Summarizing, we conclude that
the total time complexity of the algorithm isO(|V |2τ+m+n).

Denote byEi,j the class of graphs whose vertices can be partitioned into atmost
i independent sets andj cliques. Then the indexk(X) of a classX is the maximum
k such thatX contains a classEi,j with i+ j = k, i.e. the classesEi,j with i+ j = k
are the only minimal classes of indexk. Obviously,Ei,j ⊆ Free(Ki+1)FreeKj+1.
Therefore,

Corollary 1. For any naturali andj, thek-INDEPENDENT SETproblem is fixed-
parameter tractable in the classEi,j.
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1. Introduction

In this work we consider knapsack-like problems in a multi-agent setting.
These kinds of problems occur in several different application environments and
different methodological fields, such as artificial intelligence, decision theory, op-
erations research etc. We focus on the following situation:There are two agents,
each of them owning one of two disjoint sets of items. The agents have to select
items from their set for packing them in a common knapsack andthus sharing a
given common resource. Each agent wants to maximize a payofffunction which
is given by its own items’ profits. The problem is how to compute solutions which
take into account each agent’s payoff function, and that canbe used to support the
negotiation among the agents.

We present some results about two different classes of problems, namely, a
subset sum game and a special knapsack game with unitary weights. We character-
ize Pareto and global optima and provide solution algorithms both in the centralized
and multi-agent scenarios.

The problem that we address in this work is relatively new, however 0-1 knap-
sack problems (KP) in a multi-decision environment have been considered in the
literature for two decades: from game-theoretic to auctionscenarios there is a vari-
ety of papers dealing with this classical combinatorial optimization problem. Here-
after, we limit to report a few of them.
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A related problem in which different players try to fit their own items in a
common knapsack is the so calledknapsack sharing problemstudied by several
authors (see for instance [3; 4]). A single objective function that tries to balance the
profits among the players is considered in a centralized perspective.

An interesting game, based on the maximum 0-1 knapsack, interpreted as a
special on-line problem, is addressed in [5] where a two person zero-sum game,
calledknapsack game, is considered. Knapsack problems are also considered in the
context of auctions. For instance, in [1], an application for selling advertisements
on Internet search engines is considered. In particular, there aren agents wishing
to place an item in the knapsack and each agent gives a privatevaluation for having
an item in the knapsack, while each item has a publicly known size.

In the following,A andB indicate both the agents’ names and the correspond-
ing set of items, whilen(A) andn(B) denote the number of items of each agent.
Moreover,pAi , pBj are the profits andwAi , wBj are the weights of itemsi ∈ A and
j ∈ B, respectively. Finally, letc be the capacity of the knapsack.

2. Subset Sum game with rounds

Here we consider a subset sum game, i.e.pAi = wAi and pBj = wBj for all
itemsi = 1, . . . , n(A), j = 1, . . . , n(B). The aim of the game is for each agent
to select a subset of its items with maximum total weight. Thegame can be seen
as a sequence ofrounds, where in each roundA selects one of its items (which
was not selected before) and puts it into the knapsack. ThenB does the same. The
total weight of all selected items must not exceed the capacity c at any time. All
information is public. We adopt a sort of online perspective, in which we want to
determine the best strategy for agentA assuming thatB is rational and is pursuing
its own objective.

Given any deterministic strategy ofB an optimal strategy of agentA can be
computed via backward induction by enumerating all possible sequences of item
selection in a decision tree, similar to a game in extensive form. Naturally, this takes
exponential time.

In contrast to this intractable approach we provide a natural greedy algorithm
for this problem, where agentA simply selects in every round the item with the
largest weight that does not violate the capacity constraint. We show that such a
greedy algorithm may reach only half of the weight attained by an optimal strategy
but can not do worse than that.

It can also be shown that the price of anarchy, i.e. the ratio between a centrally
determined optimal solution maximizing the sum of weights selected by both play-
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ers over the sum of weights derived by a selfish optimization of each player, can be
arbitrarily high.

3. Multi-Agent Knapsack

In this section, we consider the multi-agent problem in another scenario. Here,
weightswAi = 1 andwBj = 1 for all items i = 1, . . . , n(A), j = 1, . . . , n(B).
Therefore, given the capacityc ∈ Z+, exactlyc items fit into the knapsack. We
may view the game as a set ofc rounds where, in each round, the two agents pick
one of their (unpacked) items and submit it for being packed in the knapsack. Only
one of the two agents items is packed (i.e. wins this round) and the item of the other
agent isdiscarded. At the end of thec rounds, each agent has a profit corresponding
to the total profit of its packed items. We assume the input list of available items
is public, but the submissions in each round occur simultaneously and in secret.
However most of the following results are sort of off-line centralized results.

Suppose agentA submits an itemi and agentB an itemj. Here, we consider
two possible rules for deciding which of the two submitted items wins and is packed
into the knapsack:

Rule 1: if pAi > pBj then A wins;

Rule 2: if pAi < pBj then A wins.∗

A graph model is useful to represent this problem. Each agent’s item is associ-
ated to a node of a complete bipartite graphG = (A ∪ B,EA ∪̇ EB). An arc(i, j)
belongs toEA or toEB depending on the rule, namely

Rule 1: (i, j), with profit pij = max{pAi , pBj }, belongs toEA if pAi ≥ pBj
(i.e. if A wins), otherwise it belongs toEB;

Rule 2: (i, j), with profit pij = min{pAi , pBj }, belongs toEA if pAi ≤ pBj
(i.e. if A wins), otherwise it belongs toEB.

Any solution may be represented as ac-matchingM onG, where the payoff ofA
is pA(M) =

∑
ij∈M∩EA

pij and that ofB is pB(M) =
∑
ij∈M∩EB

pij . Thus, deter-
mining a global optimum can be done in polynomial time by solving a weighted
cardinality assignment problem [2]. Note that matching problems on graphs with
edges partitioned into two sets are explicitly addressed in[6].

Obviously, in case of Rule 1 each agent will always submit itscmost profitable
items. For this case we prove the following results.

• There is nopreventivestrategy for the agents, i.e. for any possible strategy one

∗ In case of a tie we assume thatA always wins.
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agent, sayA, may choose, it cannot attain more than its worst solution since
B can always maximize its own payoff (thus minimizingA’s payoff).

• There are at mostc efficient solutions (Pareto optimal solutions) that can be
computed in polynomial time. Each of these solutions corresponds to the fact
that agentA wins inx rounds, with0 ≤ x ≤ c, and agentB wins the remain-
ing c− x rounds.

• There exist no Nash equilibria, except for trivial instances where only one
Pareto optimum exists.

• Thebest-worstratio, i.e. the ratio between the values of the global optimum
and the sum of the agents’ payoffs in any efficient solution, is no more than 2.

In case of Rule 2, when at each round the less profitable item wins, it is not
obvious for the agents how to select thec items to submit.

• Also in this case, there is no preventive strategy for an agent and no Nash
equilibria exist (except for trivial instances).

• However, differently from Rule 1, given an integerx, with 0 ≤ x ≤ c, ex-
ponentially manyPareto optimal solutions may exist such that the number of
winning rounds for agentA is equal tox.

• Given two arbitrary valuesQA andQB, it is NP-complete to find a solution
M such thatpA(M) ≥ QA andpB(M) ≥ QB.

• Under Rule 2, thebest-worstratio, as defined above, can be arbitrarily high.
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Introduction. LetG = (V,E) be an undirected graph whereV = {v1, · · · , vn} is
the vertex set andE is the edge set. We assume thatG is complete and associate to
each edge(i, j) the costsc1ij andc2ij. A treeT in G is said to be acaterpillar if the
subgraph remaining after removing all the leaves fromT is a path. Vertices in this
path are calledcentral. TheMinimum Spanning Caterpillar Problem(MSCP) con-
sists in finding a caterpillar containing all the vertices ofG whose cost is minimal.
The cost of an edge(i, j) in the caterpillar isc2ij if both its extremities are central
vertices andc1ij otherwise.

MSCP is NP-hard [10] and applications of it are found in simplifications of
complex real-world situations which, when considered in their full extent, are very
difficult to deal with (e.g., [1], [8]). This includes problems arising in vehicle rout-
ing in hierarchical logistics, telecommunication networks design and fiber optics
networks [2]. Not too much attention has been given to algorithms for theMSCP

and, to our knowledge, no exact methods are available. However, the minimum
ring-star problem (MRSP) is closely related to theMSCP and was investigated ear-
lier(see [11; 7]). In fact, it can be shown that any algorithmthat solves theMSCP

also computes theMRSP and vice-versa. The relationship between the two prob-
lems is equivalent to the one existing between Hamiltonian paths ant the traveling
salesman problems.

In [5] good results were achieved by adapting an integer programming (IP)
formulation for the minimum Steiner arborescence problem (MSAP) to a class of

1 First author is supported by grant # 2008/01497-8 fromFundaç̃ao de Amparòa Pesquisa
do Estado de S̃ao Paulo, Brazil. Second author is supported by a scholarship fromCAPES

(Brazilian Ministry of Education). Third author is partially supported byConselho Na-
cional de Desenvolvimento Cientı́fico e Tecnoĺogico , Brazil, grants # 301732/2007-8 and
# 472504/2007-0.
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problems involving the computation of optimal trees in graphs. In theMSAP we
are given a directed graph with costs associated to the edges, a special vertexr
and a setR of terminal vertices. The goal is to find a minimum cost arborescence
rooted atr and spanning all vertices inR. In this paper a similar idea is used to
reduce theMSCP to theMSAP in a layered graph. This reduction is the basis for
the development of an efficient branch-and-cut algorithm for the MSCP. In the se-
quel we formulate the problem as a Steiner problem and reporton our numerical
experiments.

IP model. We start by reducing theMSCP to the MSAP. To this end, we build a
directed graphGN = (VN , AN) from the graphG = (V,E) given at the input for
the MSCP. The graphGN has three layers numbered 0, 1 and 2. The first one is
composed solely by the special vertex0. Now, for every vertexi ∈ V , two vertices
are created inVN , namely, the vertexi1 and the vertexi2 in the second and third
layers, respectively. To each edge(i, j) inE, two arcs(i1, j1) and(j1, i1) are created
in AN . The remaining arcs ofAN are of the form(i1, i2) and(0, i1), for all i ∈ V ,
and(i1, j2), for all (i, j) ∈ E. As it can be seen, most of the arcs inGN go from
layerh to layerh + 1, h ∈ {0, 1}. As an abuse of language, we refer toGN as a
layered graph although the subgraph induced by the verticesin layer 1 is a complete
digraph.

We mean to use the arcs with both extremities in layer 1 to identify the central
vertices. Besides, the arcs from layer 1 to layer 2 are meant to identify the edges of
E joining a central vertex to a leaf of the caterpillar. Therefore, the costs of the arcs
in AN are computed as follows. For every vertexi ∈ V , the costs of arcs(0, i1) and
(i1, i2) are given byM and0, respectively. The value ofM is chosen to be large
enough to ensure that any optimal solution for theMSAP defined overGN contains
exactly one arc leaving vertex0. Now, given two distinct verticesi andj in V , the
cost of the arc(i1, j2) is set toc1ij while the costs of the arcs(i1, j1) and(j1, i1) are
both set toc2ij .

To cast theMSCPas anMSAP we have to define the root vertex and the setR of
terminals. This is done by assigning vertex0 to the root and all the vertices ofVN in
layer 2 to the setR. In addition, side constraints are created requiring that at most
one arc leaves a vertex in layer 1 to reach another vertex in this layer. Notice that
these constraints are not present in the classicalMSAP. Moreover, recall that, the
high costs attributed to the arcs emanating from the root forces any optimal solution
to have precisely one such arc. Together with the side constraints, this guarantees
that the subgraph induced by the vertices of layer 1 in an optimal solution is a path.

We now turn our attention to the development of an IP model forthe MSAP.
Initially, we define the binary variablesxuv for each arc(u, v) ∈ AN and set it
to one if and only if(u, v) belongs to the optimal Steiner arborescence. Then, the

49



MSAP for the graphGN derived fromG is formulated by the IP below:

(StM) min
∑

(u,v)∈AN
cuv xuv

s. t.
∑
j∈V−{i} xi1j1 ≤ 1, ∀ i ∈ V (0.1)

∑
u∈VN\S

∑
v∈S xuv ≥ 1, ∀ S ⊂ VN\{0}, S ∩R 6= {∅} (0.2)

xi1j1 ∈ {0, 1}, xi1j2 ≥ 0, ∀ i 6= j, (i, j) ∈ E
x0j1 ≥ 0, xj1j2 ≥ 0, ∀ j ∈ V

Constraints (0.1) forces the creation of a path joining the central vertices (those in
layer 1). Constraints (0.2) are the Steiner cuts which ensure that the terminal ver-
tices are spanned. Notice that in this formulation some of the integrality constraints
have been relaxed. One can show that they are satisfied as longas we impose the
integrality of the variables for arcs that are internal to layer 1. Besides the Steiner
cuts in (0.2), our branch-and-cut algorithm also uses the2-matching constraints
discussed in [3] and given in Theorem 1 below.

Theorem 1. ForH ⊂ V andT ⊂ δ(H), inequality (0.3) is valid forconv(StM)
if (i) {i, j} ∩ {k, w} = ∅, ∀(i, j) and(k, w) ∈ T ; and(ii) |T | ≥ 3 and odd.

∑

i∈H,j∈H,(i,j)∈E
xi1j1 +

∑

(i,j)∈T
xi1j1 ≤

∑

i∈H
xi1i2 +

|T | − 1

2
. (0.3)

Computational experiments.The StM model is the starting point for the devel-
opment of our branch-and-cut algorithm. The code is implemented inC++ and
usesXPRESS2008 as the IP solver. All tests were carried out on an Intel Core2
Quad processor with2.83GHz and8Gb of RAM. A fast polynomial-time algorithm
based on the minimum edge cut problem in graphs is used to separate the Steiner
cuts (0.2). Moreover, the heuristic proposed in [4] was implemented to compute
violated 2-matching inequalities from Theorem 1.

To test the algorithm, we modified24 instances fromTSPLIB 2.1 [9] with sizes
ranging from26 to 299 vertices. The edge costs were adapted from the originalTSP

instances through the following calculations. Letcij be the distance between ver-
ticesi andj in theTSP instance. The two costs assigned to edge(i, j) in theMSCP

instance are given by:c1ij = d(10 − α)cije andc2ij = dαcije for α ∈ {3, 5, 7, 9}.
Since eachTSP instance give rise to fourMSCP instances, one for each value ofα,
in total, our benchmark is composed of 96 instances. Notice that, for higher values
of α, the optimal solutions is expected to have many leaves while, for lower values,
most vertices are likely to be central.

The experimental results are summarized in Table 1. The relative gaps dis-
played are computed by(UB − LB)/LB, whereUB andLB denote, respectively, the
best upper and lower bounds achieved. The number of nodes explored during the
enumeration and the total time spent to solve the instances are shown too. The data
are also gathered by different values ofα and instance sizes.
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All α = 3 α = 5 α = 7 α = 9 |V | < 100 |V | < 200 |V | < 300

Avr Max Avr Max Avr Max Avr Max Avr Max Avr Max Avr Max Avr

gap (%) 0.11 0.85 0.31 0.32 0.10 0.33 0.04 0.03 0.00 0.33 0.05 0.85 0.15 0.41 0.08

nodes 90.9 1483 345.4 745 43.5 13 2.6 1 1 39 3.7 1483 120.6 1433 185.8

time(s) 1008 25893 1616 25387 1532 7025 369 8810 529 22 2.5 1602 132 25893 6564

Table 1. Summary of computational results.

The results revealed that our algorithm is capable to solve to optimalityMSCP

instances with up to 300 nodes in reasonable time. All those with at most 200
vertices were computed is less than 30 minutes. The linear relaxation at the root
node contributes for this success, providing very dual bounds in all cases. As a
matter of fact, 42 instances were solved at the root node. Thestrength of the linear
relaxations can also be assessed by the small number of nodesexplored by the
enumeration. One can see that the algorithm performs betterfor larger values ofα,
when more vertices are expected to be leaves.
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Abstract

The total chromatic number of a graph is the least number of colours sufficient to colour
the elements (vertices and edges) of this graph in such a way that no incident or adjacent
elements are coloured the same. The classC of graphs that do not contain a cycle with
a unique chord was recently studied by Trotignon and Vušković [5], who proved strong
structure results for these graphs. In the same work, the authors determine, for the class
C, the complexity of vertex-colouring problem (polynomial), maximum clique problem
(polynomial) and maximum stable set problem (NP-complete). The edge-colouring prob-
lem is NP-complete [3] when restricted toC. In the present work, we show that also the
total-colouring problem is NP-complete when restricted toC.

Key words: total chromatic number, cycle with a unique chord, regular graphs

1. Introduction

Let G = (V,E) be a simple graph. The maximum degree of a vertex inG is
denoted∆(G). A total-colouringofG is a functionπ : V ∪E → C such that no two
incident or adjacent elements receive the same colourc ∈ C. If C = {1, 2, ..., k},
we say thatπ is a k-total-colouring. The total chromatic numberof G, denoted
by χT (G), is the leastk for whichG has ak-total-colouring. The Total Colouring
Conjecture [1; 6], which states that every graphG is (∆(G) + 2)-total colourable,
is open since 1964.

The classC of graphs that do not contain a cycle with a unique chord was first
investigated by Trotignon and Vušković [5], who proved strong structure results for
these graphs. ClassC is of interest also because it is an example of aχ-bounded
class, that is, there exists a functionf : N→ N such that, for eachG ∈ C, χ(G) ≤
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f(ω(G)), whereχ(G) is the (vertex-) chromatic number ofG andω(G) is the
clique-number ofG. In the present work, we prove that the total-colouring problem
restricted toC is NP-complete. Additionally, we propose the study of the Total
Colouring Conjecture restricted to graphs inC.

2. NP-completeness result

The termTOTCHR(P ) (resp.CHRIND(P )) denotes the problem of determin-
ing the total chromatic number (resp. chromatic index) restricted to graph inputs
with propertyP . For example,TOTCHR(graph ofC) (resp.CHRIND(graph ofC))
denotes the problem whose instance is a graphG of C and that questions whether
χT (G) = ∆(G)+1 (resp.χ′(G) = ∆(G)). The problemTOTCHR(∆-regular bipar-
tite graph) is NP-complete [4] for each∆ ≥ 3. The problemCHRIND(∆-regular
graph) is NP-complete [2] for each∆ ≥ 3.

The NP-completeness gadget used in [4] has cycles with unique chords. The
goal of our proposed NP-completeness proof is to modify the gadget used in [4]
in order to have a gadget inC. The proposed modification leads to a non-regular
gadget. In order to obtain an NP-completeness result for regular graphs, we present,
in Theorem 2 a novel technique based on an induction on the minimum degree of a
graph.

GraphSt, t ≥ 3, is used in the present work exactly as defined in [4]:St is
obtained from the complete bipartite graphKt−1,t by addingt pendant edges to the
t vertices of degreet−1. We generalize the graphHt of [4] by defining graphHn,t,
t > n ≥ 1: H2,t = Ht, and, more generaly,Hn,t is constructed by putting together
two copies ofSt and identifyingt − n pendant edges of the first copy witht − n
edges of the second copy. (SeeSt andHn,t in Figure 1 at Appendix A.)

The original “replacement” graphR of [4] contains cycles with unique chords.
We modify and extendR to a familyRt, t ≥ 3, of “replacement” graphs inC.
Take t + 1 copies ofHn,t, with n = d(t + 1)/2e, and denote these copies by
H(1), H(2), ..., H(t+1). The “replacement” graphRt is such that each copy ofHn,t

in Rt has one pendant edge – which is calledreal – or two pendant edges – one of
which is calledreal. For, identify each oft pendant vertices ofH(i), i = 1, 2, ..., t+
1, with a distinctH(j), j 6= i, by choosing one of the pendant vertices ofH(j) (see
R3 andR4 in Figure 2 at Appendix A).

Lemma 1. Let π be a partial(t+1)-total-colouring ofRt, t ≥ 3, in which thet+1
real pendant edges have different colours and the pendant vertices of thet+ 1 real
pendant edges are also coloured (and nothing else is coloured). Thenπ extends to
a (t + 1)-total-colouring ofRt Moreover, in any(t + 1)-total-colouring ofRt the
t+ 1 real pendant edges have all different colours.
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The “forcer” graphFn,t, t > n ≥ 2, is used exactly as in [4]. GraphFn,t is
constructed by linkingn copies of the graphH2,t (see Figure 3 at Appendix A).

Lemma 2. (McDiarmid and Sánchez-Arroyo [4]) Letπ be a partial(t + 1)-total-
colouring ofFn,t, t > n ≥ 2, in which the pendant edges have the same colour
and the pendant vertices are also coloured (and nothing elseis coloured). Thenπ
extends to a(t+1)-total-colouring ofFn,t. Moreover, in any(t+1)-total-colouring
of Fn,t the pendant edges have all the same colour.

Theorem 2 proves the NP-completeness of total-colouring∆-regular graphs
that do not contain a cycle with a unique chord, for each fixed degree∆ ≥ 3. Before
proving Theorem 2 for regular graphs, we prove a weaker result: Lemma 3 proves
the NP-completeness of problemP∆,δ =TOTCHR(graph inC with maximum degree
∆, minimum degree≥ δ, and such that every edge is incident to a maximum-degree
vertex) forδ = 1. Theorem 2 obtains a regular graph based on a novel strategy of
induction on the minimum degree.

Lemma 3. For each∆ ≥ 3, P∆,1 is NP-complete.

Proof (Sketch).Let G be an instance of the NP-complete problemCHRIND
(∆-regular graph). We construct an instanceG′ of problemP∆,1 satisfying thatG′

is (∆+1)-total-colourable if and only ifG is ∆-edge-colourable. The construction
of graphG′ is carried out with the following procedure (see Figure 4 at Appendix A
for an example whereG = K4). Construct a graphL by replacing each vertexv of
Gwith a copy ofR∆. Two different copies of the “replacement” graph have pendant
edges identified according to the adjacencies in the original graphG. Observe that
L has|V (G)| pendant edges if∆ is odd – each of them is real – and(∆+2)|V (G)|
pendant edges if∆ is even –|V (G)| of which are real and(∆+1)|V (G)| of which
are not real. ConstructG′ by identifying the|V (G)| real pendant edges ofL with
|V (G)| pendant edges of a forcer graphFd|V (G)|/2e,∆. �

Theorem 2. For each∆ ≥ 3, TOTCHR(∆-regular graph inC) is NP-complete.

Proof (Sketch).By Lemma 3, the problemP∆,1 is NP-complete. Assume, as
induction hypothesis, that the problemP∆,k, k < ∆, is NP-complete. We prove
the theorem by induction onk. LetG be an instance of the problemP∆,k and con-
struct an instanceG′ of problemP∆,k+1 as follows. LetG1 andG2 be two graphs
isomorphic toG. Let H1, ..., Hx be as many graphs isomorphic toH1,∆ as there
are degree-k vertices inG. We prove that there is a(∆+1)-total-colouring ofH1,∆

such that its two pendant vertices receive the same colour and its two pendant edges
receive the same colour. Denote the degree-k vertices ofG1 (resp.G2) by v1, ..., vx
(resp. byw1, ..., wx). ConstructG′ by taking graphsG1 andG2 and, for eachHi,
identifying one pendant vertex withvi and the other pendant vertex withwi. Graph
G′ belongs toC, has maximum degree∆, minimum degree≥ k+1, and every edge
is incident to a maximum-degree vertex. Moreover,G′ is (∆ + 1)-total-colourable
if and only if G is (∆ + 1)-total-colourable. So,P∆,k+1 is NP-complete and the
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theorem follows by induction.�

Remark our proposed inductive strategy is not used in [4]. The gadgets con-
structed in [4] are regular, while the proposed gadgets inC are not.

3. Final remarks and current work

We consider the total-colouring problem restricted toC. We propose an induc-
tive strategy for NP-completeness proofs that may be applied to general regular
graphs. At the moment we investigate two additional problems on total-colouring.
First, we investigate whether it is possible to extend the NP-completeness proof
of the present work to bipartite graphs that do not contain a cycle with a unique
chord. Second, we investigate the validity of the Total Colouring Conjecture inC:
the upper boundχT (G) ≤ ∆(G) + 4 follows from the results of [5].
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Figures

Fig. 1. GraphsSt (left) andHn,t (right).

Fig. 2. GraphsR3 (left) andR4 (right).

Fig. 3. The forcer graph and its schematic representation.

Fig. 4. Construction ofG′ for the proof or Lemma 3, in the case whereG = K4.
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1. Introduction

In this paper, a(vertex) colouringof a graphG = (V,E) is any mapf :
V → Z+. Thecolour classesof a colouringf are the preimagesf−1(i), i ∈ Z+.
A colouring of a graph isproper if adjacent vertices receive distinct colours; how-
ever, in this paper, we will devote considerable attention to colourings that are not
necessarily proper, but that satisfy another condition. A colouring ofG is t-frugal
if no colour appears more thant times in any neighbourhood. The notion of frugal
colouring was introduced by Hind, Molloy and Reed [5]. They considered proper
t-frugal colourings as a way to improve bounds related to the Total Colouring Con-
jecture (cf. [6]). In Section 2, we studyt-frugal colourings for graphs of bounded
maximum degree.

In Section 3, we impose an additional condition that is well-studied in the
graph colouring literature (cf. [3]). A colouring ofV is acyclic if each of the bi-
partite graphs consisting of the edges between any two colour classes is acyclic. In
other words, a colouring ofG is acyclic ifG contains noalternating cycle(that is,
an even cycle that alternates between two distinct colours). For graphs of bounded
maximum degree, the study of acyclic proper colourings was instigated by Erdős
(cf. [2]) and more or less settled asymptotically by Alon, McDiarmid and Reed [3].
Extending the work of Alonet al., Yuster [9] investigated acyclic proper2-frugal
colourings. In Section 3, we expand this study to different values oft and colour-
ings that are not necessarily proper.

1 Part of this research was done while this author was a doctoral student at Oxford Univer-
sity. He was partially supported by NSERC of Canada and the Commonwealth Scholarship
Commission in the UK.
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Let us outline our notation. As usual, thechromatic numberχ(G) (resp.acyclic
chromatic numberχa(G)) denotes the least number of colours needed in a proper
(resp. acyclic proper) colouring. Analogously, fort ≥ 1, we define thet-frugal
chromatic numberϕt(G), proper t-frugal chromatic numberχtϕ(G), acyclic t-
frugal chromatic numberϕta(G) and acyclic propert-frugal chromatic number
χtϕ,a(G). We have designatedϕ as a mnemonic for frugal. We are interested in
graphsG of bounded degree, so letχ(d) denote the maximum possible value of
χ(G) over all graphsG with ∆(G) = d. We analogously defineχa(d); ϕt(d),
χtϕ(d), ϕ

t
a(d) andχtϕ,a(d) for t ≥ 1. Thesquareof a graphG, i.e. the graph formed

from G by adding edges between any two vertices at distance two, is denotedG2.
Note the following basic observations.

Proposition 1. For any graphG and anyt ≥ 1, the following hold:

(i) χ1
ϕ(G) = χ1

ϕ,a(G) = χ(G2);
(ii) ϕt(G) ≤ χtϕ(G), ϕta(G) ≤ χtϕ,a(G); ϕt(G) ≤ ϕta(G), χtϕ(G) ≤ χtϕ,a(G);
(iii) ϕt+1(G) ≤ ϕt(G),χt+1

ϕ (G) ≤ χtϕ(G),ϕt+1
a (G) ≤ ϕta(G),χt+1

ϕ,a (G) ≤ χtϕ,a(G);
and

(iv) ϕt(G) ≥ ∆(G)/t.

We may invoke basic probabilistic tools such as the Lovász Local Lemma,
details of which can be found in various references, e.g. Molloy and Reed [7].

2. Frugal colourings

As a way to improve bounds for total colouring (cf. [6]), Hindet al.[5], showed
thatχ(ln d)5

ϕ (d) ≤ d+ 1 for sufficiently larged. Recently, this was improved.

Theorem 1. (Molloy and Reed [8])χ50 lnd/ ln ln d
ϕ (d) ≤ d+ 1 for sufficiently large

d.

Sinceχtϕ(Kd+1) ≥ d + 1, it follows thatχtϕ(d) = d + 1 for t = t(d) ≥
50 ln d/ ln ln d. For smaller frugalities, Hindet al. [5] also showed the following.

Theorem 2. (Hind et al. [5]) For any t ≥ 1 and sufficiently larged, χtϕ(d) ≤
max

{
(t+ 1)d,

⌈
e3d1+1/t/t

⌉}
.

By Proposition 1(i),χ1
ϕ(d) ∼ d2. We note that an example based on projective

geometries due to Alon (cf. [5]), to lower boundχtϕ(d), is also valid forϕt(d).

Proposition 2. For anyt ≥ 1 and any prime powern, ϕt(nt + · · ·+ 1) ≥ (nt+1 +
· · ·+ 1)/t.
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The following consequence shows (by Proposition 1(ii)) that Theorem 2 is
asymptotically tight up to a constant multiple whent = o(ln d/ ln ln d).

Corollary 1. Suppose thatt = t(d) ≥ 2, t = o(ln d/ ln ln d), andε > 0 fixed.
Then, for sufficiently larged, ϕt(d) ≥ (1− ε)d1+1/t/t.

Theorems 1 and 2 determine the behaviour ofχtϕ(d) up to a constant multiple
for all t except for the range such thatt = Ω(ln d/ ln ln d) andt ≤ 50 ln d/ ln ln d.
Recall from Proposition 1(iv) thatϕt(d) ≥ d/t. For the caset = ω(ln d), we give a
tight upper bound forϕt(d).

Theorem 3. Supposet = ω(ln d) andε > 0 fixed. Then, for sufficiently larged,
ϕt(d) ≤ d(1 + ε)d/te .

proof 1. LetG = (V,E) be a graph with maximum degreed and letx = d(1 + ε)d/te.
Let f be a random colouring where for eachv ∈ V , f(v) is chosen uniformly
and independently at random from{1, . . . , x}. For a vertexv and a colouri ∈
{1, . . . , x}, letAv,i be the event thatv has more thant neighbours with colouri. If
none of these events hold, thenf is t-frugal. Each event is independent of all but at
mostd2x� d3 others. By a Chernoff bound,

Pr (Av,i) = Pr (BIN(d, 1/x) > t) ≤ Pr (BIN(d, 1/x) > d/x+ ct)

≤ exp
(
−c2t2/(2d/x+ 2ct/3)

)

wherec = ε/(1 + ε). Thus,ePr (Av,i) (d3 + 1) = exp(−Ω(t))d3 < 1 for large
enoughd, and by the Lovász Local Lemma,f is t-frugal with positive probability
for large enoughd.

3. Acyclic frugal colourings

Using the Lovász Local Lemma, Alonet al. [3] established ao(d2) upper
bound forχa(d), answering a long-standing question of Erdős (cf. [2]). Using a
probabilistic construction, they also showed this upper bound to be asymptotically
correct up to a logarithmic multiple.

Theorem 4. (Alonet al. [3]) χa(d) ≤ d50d4/3e, χa(d) = Ω(d4/3/(ln d)1/3).

Yuster [9] considered acyclic proper2-frugal colourings of graphs and showed
thatχ2

ϕ,a(d) ≤ dmax{50d4/3, 10d3/2}e. For acyclic frugal colourings, we first con-
sider the smallest cases then proceed to larger values oft. For t = 1, 2, 3, notice
that Corollary 1, Proposition 1(i) and Yuster’s result imply thatϕ1

a(d) = Θ(d2),
ϕ2
a(d) = Θ(d3/2), χ2

ϕ,a(d) = Θ(d3/2) andϕ3
a(d) = Ω(d4/3). Next, we show that

χ3
ϕ,a(d) = O(d4/3). This implies thatχtϕ,a(d) = O(d4/3) for anyt ≥ 3, a bound that
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is within a logarithmic multiple of the lower bound implied by Theorem 4. This
answers a question of Esperet, Montassier and Raspaud [4].

Theorem 5. χ3
ϕ,a(d) ≤ d40.27d4/3e.

proof 2. (Outline.) Our proof is an extension of the proof of Theorem 4in which
we add a fifth event to ensure that the random colouringf is 3-frugal:

V For verticesv, v1, v2, v3, v4 with {v1, v2, v3, v4} ⊆ N(v), letE{v1,...,v4} be the
event thatf(v1) = f(v2) = f(v3) = f(v4).

For acyclic frugal colourings which are not necessarily proper, for larger values
of t, we have adapted a result of Addario-Berryet al. [1] to show the following.

Theorem 6. For anyt = t(d) ≥ 1, ϕta(d) = O(d lnd+ (d− t)d).

This implies, for instance, thatϕd−1
a (d) andχd−1

ϕ,a (d) differ by a multiplicative
factor of order at leastd1/3/(ln d)4/3. The result is obtained by studyingtotal k-
dominating sets— givenG = (V,E), D ⊂ V is totalk-dominating if each vertex
has at leastk neighbours inD.

References

[1] Addario-Berry, L., Esperet, L., Kang, R. J., McDiarmid,C. J. H., and Pinlou,
A. Acyclic t-improper colourings of graphs with bounded maximum degree,
2009+. To appear inDiscrete Mathematics.

[2] Albertson, M. O. and Berman, D. M.The acyclic chromatic number, Proceed-
ings of the Seventh Southeastern Conference on Combinatorics, Graph Theory,
and Computing (Louisiana State Univ., Baton Rouge, La., 1976), 1976, pages
51–69.

[3] Alon, N., McDiarmid, C. J. H., and Reed, B.Acyclic coloring of graphs. Ran-
dom Structures and Algorithms,2 (1991), no. 3, pages 277–288.

[4] Esperet, L., Montassier, M., and Raspaud, A.Linear choosability of graphs.
Discrete Math.,308(2008), no. 17, pages 3938–3950.

[5] Hind, H., Molloy, M., and Reed, B.Colouring a graph frugally. Combinatorica,
17 (1997), no. 4, pages 469–482.

[6] Hind, H., Molloy, M., and Reed, B.Total coloring with∆+poly(log ∆) colors.
SIAM J. Comput.,28 (1999), no. 3, pages 816–821 (electronic).

[7] Molloy, M. and Reed, B.Graph Colouring and the Probabilistic Method. Al-
gorithms and Combinatorics,23, Springer-Verlag, Berlin, 2002.

[8] Molloy, M. and Reed, B.Asymptotically optimal frugal colouring. SODA ’09:
Proceedings of the Nineteenth Annual ACM-SIAM Symposium onDiscrete
Algorithms, 2009, pages 106–114.

[9] Yuster, R.Linear coloring of graphs. Discrete Math.,185(1998), no. 1-3, pages
293–297.

63



On resistance of graphs

P.A. Petrosyan,a,b H.E. Sargsyanb

aInstitute for Informatics and Automation Problems of NAS ofRA
pet petros@{ipia.sci.am, ysu.am, yahoo.com}

bDepartment of Informatics and Applied Mathematics,YSU
sargsyanhasmik@gmail.com

Key words: edge coloring, interval coloring, resistance of a graph

1. Introduction

The graph coloring problems play a crucial role in Discrete Mathematics. The
reason for that is the fact of existence of many problems in Discrete Mathemat-
ics which can be formulated as graph coloring problems (factorization problems,
problems of Ramsey theory, etc.), the tight relationship between graph coloring
problems and scheduling of various timetables. For example, the problem of con-
structing an optimal schedule for an examination session can be reduced to the
problem of finding the chromatic number of a graph. On the other hand, the sport
scheduling problems can be reduced to the problem of finding the chromatic index
of a graph, etc..

One of the aspects of the problems of scheduling theory is theconstruction
of timetables without “gaps”. For studying the coloring problems corresponding to
ones of constructing a timetable without a “gap”, a definition of an interval col-
oring of a graph was introduced [1]. Many bipartite graphs such as regular bipar-
tite graphs [1; 2], trees, complete bipartite graphs [11], subcubic bipartite graphs
[8], doubly convex bipartite graphs [3], grids [5], outerplanar bipartite graphs [7],
(2,∆)−biregular bipartite graphs [9; 13; 15] and some classes of(3, 4)−biregular
bipartite graphs [4; 16] have interval colorings. Unfortunately, it is known that not
all graphs have interval colorings, therefore, it is expedient to consider a measure
of closeness for a graph to be interval colorable. First attempt to introduce such a
measure was done in [6]. The deficiency [6] of a graph is the minimum number
of pendant edges whose attachment to the graph makes the resulting graph interval
colorable.

In this work we introduce a new measure of closeness for a graph to be interval
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colorable. We call it a resistance. More precisely, the resistance of a graph is the
minimum number of edges that should be removed from a given graph to obtain an
interval colorable graph.

2. Main results

All graphs considered in this work are finite, undirected andhave no loops
or multiple edges. LetV (G) andE(G) denote the sets of vertices and edges of
G, respectively. An edge coloring of a graphG with colors1, 2, . . . , t is called an
interval t−coloring if at least one edge ofG is colored byi, i = 1, 2, . . . , t, the
colors of edges incident to each vertex ofG are distinct and form an interval of
integers. The set of all interval colorable graphs is denoted byN [1; 12].

We define the resistance of a graphG (res(G)) in the following way:

res(G) ≡ minG\F∈N|F |.

Clearly,0 ≤ res(G) ≤ |E(G)| − 1 for every graphG, andres(G) = 0 iff
G ∈ N.

First, we give some general facts on resistance of graphs.

Proposition 1. Let G be a connected graph with|V (G)| = p, |E(G)| = q.
Then

res(G) ≤ q − p + 1.

Proposition 2. LetG be anr−regular graph with an odd number of vertices.
Then

res(G) ≥ r
2
.

Proposition 3. For anyk ∈ N there is a graphG such thatG /∈ N and
res(G) = k.

A.S. Asratian and R.R. Kamalian [1] proved that the problem “Does a given
regular graph is interval colorable or not?”isNP−complete. This immediantely
implies the following result:

Proposition 4. Let G be anr−regular (r ≥ 3) graph andk is a nonnegative
integer. Then the problem of decidingres(G) ≤ k isNP−complete.

In [18] S.V. Sevast’janov showed that it is anNP−complete problem to decide
whether a bipartite graph has an interval coloring. From here we have the following
result:
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Proposition 5.LetG be a bipartite graph andk is a nonnegative integer. Then
the problem of decidingres(G) ≤ k isNP−complete.

Next, we determine the exact value ofres(G) for simple cycles, wheels, com-
plete graphs, Schwartz’s graphs [17] and we obtain upper bounds for res(G) in
case of complete balancedk−partite graphs [14] and Hertz’s graphs [10; 6].

Proposition 6.For anyn ≥ 3

res(Cn) =





0, if n is even,

1, if n is odd.

Theorem 1.For anyn ≥ 4

res(Wn) =





0, if n = 4, 7, 10,

1, otherwise.

Theorem 2.For anyn ∈ N

res(Kn) =





0, if n is even,
⌊
n
2

⌋
, if n is odd.

Theorem 3.For anyn, k ∈ N

(1) res(Kn,n,...,n) = 0, if nk is even,

(2) (k−1)n
2
≤ res(Kn,n,...,n) ≤ (k−1)n2

2
, if nk is odd.

Theorem 4.For any oddk ≥ 3

res(S(k)) = k − 1.

Theorem 5.For anyp ≥ 4, q ≥ 3

(1) res(Hp,q) = 0, if p ≤ b2(q+1)
q−1
c

(2) res(Hp,q) ≤ p− b2(q+1)
q−1
c, if p > b2(q+1)

q−1
c.
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Potential Games are a widely used tool for modeling network optimization
problems under a non-cooperative perspective. Initially studied in [18] with the
introduction of congestion games and further extended in [15] in a more general
framework, they have been successfully applied to describeselfish routing in com-
munication networks (e.g. [19]). The advent of optical networks as the technology
of choice for surface communication has introduced new aspects of networks that
are not sufficiently captured by the models proposed so far. This work comes to
close this gap and presents a class of potential games usefulfor modeling selfish
routing and wavelength assignment in multifiber optical networks.

In optical networking it is highly desirable that all communication be carried
out transparently, that is, each signal should remain on the same wavelength from
source to destination. The need for efficient access to the optical bandwidth has
given rise to the study of several optimization problems in the past years. The most
well-studied among them is the problem of assigning a path and a color (wave-
length) to each communication request in such a way that paths of the same color
are edge-disjoint and the number of colors used is minimized. Nonetheless, it has
become clear that the number of wavelengths in commerciallyavailable fibers is
rather limited—and will probably remain such in the foreseeable future. Therefore,
the use of multiple fibers has become inevitable in large scale networks. In the con-
text of multifiber optical networks several optimization problems have been defined
and studied, the objective usually being to minimize eitherthe maximum fiber mul-
tiplicity per edge or the sum of these maximum multiplicities over all edges of the
graph.

1 This work has been funded by the project PENED 2003. The project is cofinanced 75% of
public expenditure through EC–European Social Fund, 25% ofpublic expenditure through
Ministry of Development–General Secretariat of Research and Technology of Greece and
through private sector, under measure 8.3 of Operational Programme “Competitiveness” in
the 3rd Community Support Programme.
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Preliminaries. We introduceColored Resource Allocation Games, a class of
games that can model non-cooperative versions of routing and wavelength assign-
ment problems in multifiber all-optical networks. They can be viewed as an exten-
sion of congestion games where each player has his strategies in multiple copies
(colors). When restricted to (optical) network games, facilities correspond to edges
of the network and colors to wavelengths. The number of players using an edge
in the same color represents a lower bound on the number of fibers needed to im-
plement the corresponding physical link. We consider both egalitarian (max) and
utilitarian (sum) player costs. For our purposes it sufficesto restrict our study to
identity latency functions.

Definition 1. (Colored Resource Allocation Games)A Colored Resource Allo-
cation Game is defined as a tuple〈F,N,W, {Ei}i∈[N ]〉, such thatF is a set of fa-
cilities,N is the number of players,W is the number of colors, andEi is a set of
possible facility combinations for playeri. For any playeri, Ei ⊆ 2F .

For any playeri, the set of possible strategies isSi = Ei × [W ]. We denote
byAi = (Ei, ci) the strategy that playeri actually chooses, whereEi ∈ Ei denotes
the set of facilities she chooses, andci denotes her color. Furthermore, we use
the standard notationA = (A1, . . . , AN) for a strategy profile for the game, and
the notationnf,c(A) for the number of players that use facilityf in color c in the
strategy profileA.

Definition 2. Depending on the player cost function we define two subclasses of
Colored Resource Allocation Games.Colored Congestion Games, with player cost
Ci(A) =

∑
e∈Ei

ne,ci(A), andColored Bottleneck Games, with player costCi(A) =
maxe∈Ei

ne,ci(A).

We use the price of anarchy (PoA) introduced in [11] as a measure of the
deterioration caused by lack of coordination. We estimate the PoA of our games
under three different social cost functions. Two of them arestandard in the liter-
ature (see e.g. [8]): the first (SC1) is equal to the maximum player cost and the
second (SC2) is equal to the sum of player costs (equivalently, the average player
cost). The third one is specially designed for the setting ofmultifiber all-optical
networks; it is equal to the sum over all facilities of the maximum color congestion
on each facility. Note that in the optical network setting this function represents the
total fiber cost needed to accommodate all players; hence, itcaptures the objective
of a well-studied optimization problem [17; 16; 1]. Let us also note that theSC1

function under the egalitarian player cost captures the objective of another well
known problem, namely minimizing the maximum fiber multiplicity over all edges
of the network (see e.g. [12]).

Related work. Bottleneck games have been studied in [7; 4; 9; 13]. In [7] the
authors study atomic routing games on networks, where each player chooses a path
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Table 2.The pure price of anarchy of Colored Congestion Games (utilitarian player cost).
Results for classical congestion games are shown in the right column.

Colored Congestion GamesCongestion Games

SC1(A) = max
i∈[N ]

Ci(A) Θ
(√

N
W

)
Θ
(√

N
)

[8]

SC2(A) =
∑

i∈[N ]

Ci(A) 5
2

5
2

[8]

SC3(A) =
∑

f∈F
max
a∈[W ]

nf,a(A) Θ
(√

W |F |
)

—

Table 3.The pure price of anarchy of Colored Bottleneck Games (egalitarian player cost).
Results for classical bottleneck games are shown in the right column.

Colored Bottleneck GamesBottleneck Games

SC1(A) = max
i∈[N ]

Ci(A) Θ
(
N
W

)
Θ(N) [7]

SC2(A) =
∑

i∈[N ]

Ci(A) Θ
(
N
W

)
Θ(N) [7]

SC3(A) =
∑

f∈F
max
a∈[W ]

nf,a(A) |EA|
|EOPT|

N
W

—

to route her traffic from an origin to a destination node, withthe objective of mini-
mizing the maximum congestion on any edge of her path. A further generalization
is the model of Banner and Orda [4], where they introduce the notion of bottleneck
games.

Selfish path coloring in single fiber all-optical networks has been studied in [6;
5; 10; 14]. Bilò and Moscardelli [6] consider the convergence to Nash Equilibria
of selfish routing and path coloring games. Bilò et al. [5] consider several infor-
mation levels of local knowledge that players may have and give bounds for the
PoA in chains, rings and trees. The existence and complexity of computing Nash
equilibria under various payment functions are consideredby Georgakopoulos et
al. [10]. In [14] they study thePoA of selfish routing and path coloring, under
functions that charge a player only according to her own strategy. Selfish path mul-
ticoloring games are introduced in [3] where it is proved that the pure price of an-
archy is bounded by the number of available colors and by the length of the longest
path; constant bounds for thePoA in specific topologies are also provided. In those
games, in contrast to the ones studied here, routing is givenin advance and players
choose only colors.

Our results. Our main contribution is the derivation of tight bounds on the
price of anarchy for Colored Resource Allocation Games. These bounds are sum-
marized in Tables 2 and 3. It can be shown that the bounds for Colored Congestion
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Games remain tight even for network games. Observe that known bounds for clas-
sical congestion and bottleneck games can be obtained from our results by simply
settingW = 1. On the other hand one might notice that our games can be casted
as classical congestion or bottleneck games withW |F | facilities. However, we are
able to derive better upper bounds for most cases by exploiting the special structure
of the players’ strategies. Finally, we provide a potentialfunction for Colored Bot-
tleneck Games in order to prove the existence and convergence to pure equilibria
and we show that the price of stability (as defined in [2]) is equal to1.
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Abstract

This paper proposes an algorithm to compute a lower bound forthe cutting stock prob-
lem subject to a limited numbers of open stacks. The algorithm employs an enumeration
scheme based on algebraic properties of the problem. Searchis shortened by bounds com-
puted via column generation and by symmetry breaking, implemented to avoid the repeated
evaluation of equivalent solutions. A preliminary computational experience confirms the
effectiveness of the method.

Key words: Cutting Stock Problem, Lower Bounds

1. The problem

Consider a sufficiently large set of stock items having standard lengthw, and a
finite setB ofm batches, thei-th consisting of a known amountdi of required parts
of lengthwi (i ∈ B). A cutting patternk specifies the numberaik ≥ 0 of items
of typei that are produced when the pattern is applied on a single stock item. The
Cutting Stock Problem (CSP ) calls for finding a setP of feasible cutting patterns
and deciding how many stock items must be cut according to each k ∈ P , with the
objective of satisfying the requirements of parts with a minimum total number of
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stock items [3].
Any CSP solutionP is in general implemented by applying its patterns in some
order π, but not all the orders are feasible if the cutting machine has ans-slot
outbuffer able to maintain up tos distinct batches at a time, and a slot occupied by
parts of some type can be released only if the relevant batch has been completed.
With this kind of technological constraint we speak of aCutting Stock Problem with
a Limited Number s of Open Stack(CSPs) [2].
More formally, we say that aCSP solutionP is schedulableif it can be sequenced
in an orderπ so that, at any time, the number of distinct batches which arenot
completed (open stacks) never exceedss. Then,CSPs can be stated as follows:

Problem 1. Find aschedulablecutting stock solution that produces all the required
batches with a minimum trim loss.

Let Q be a 0-1 matrix withm = |B| rows, none of which null. We callQ a track
for aCSP solutionP if, for any k ∈ P , there exists a columnt with qit > 0 for
all i ∈ B such thataik > 0. Reciprocally, we say thatP is supportedby Q, and
in particular that a single part typei is supported by a columnqt of Q if qit = 1.
A track Q is dominated by a trackR if the set ofCSP solutions supported byR
includes that supported byQ. With no loss of generality, from now on we assume
the columns ofQ mutually non-dominated, that is, no two columnsqr,qt are such
thatqir ≤ qit for all i ∈ B.
Let ω(Q) denote the largest number of non-zero elements in a column ofa track
Q. We then say thatQ is feasibleif

• it has theconsecutive one property(C1P) by rows, that is,qij = qik = 1 ⇒
qih = 1 for j < h < k and alli ∈ B;

• ω(Q) ≤ s.

Proposition 1. A CSP solutionP is schedulable if and only if it is supported by
a feasible trackQ.

Proposition 2. Every feasible trackQ with ω(Q) = s is dominated by a feasible
trackR having (i) each column with exactlys non-zero elements and (ii) any two
adjacent columns different for exactly two elements.

2. Computing a lower bound

Let CSP (s) indicate a cutting stock problem where no pattern can produce
more thans distinct types. The solution of (the linear relaxation of)CSP (s) pro-
vides a valid lower bound toCSPs. An improved lower boundzLB can be obtained
on the basis of Propositions 1 and 2 by enumerating all the non-dominated feasi-
ble tracks. In fact, letRk denote the submatrix consisting of the firstk columns
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of a trackR. An implicit enumeration can be performed by calling, for any 0-1
m-vectorr with s non-zeroes, the following recursive functiontrack_enum()
with parameters 1,r andB.

track_enum(k, Rk, Bk)
For all columnsr with s non-zeroes inBk and such thatr · rk = s− 1 do

(1) Rk+1 := [Rk|r]
(2) For i ∈ Bk do if rik > ri then Bk+1 := Bk − {i}
(3)if zLB(Rk+1) ≤ zLB then track_enum(k + 1, Rk, Bk)

Removing rowi fromBk at Step 2 corresponds to fixing to 0 thei-th element
of any columns generated from then on: this ensures that the resulting matrix has
the C1P. As soon asm− s + 1 elements have been fixed, non-dominated columns
with s non-zeroes cannot be added any longer. Step 3 performs fathoming: zLB is
the best lower bound found so far andzLB(Rk+1) is a lower bound to the optimum
attainable with patterns supported by the uncompleted track Rk+1.
CallK the set of the cutting patterns that either(i) are supported byRk+1, or (ii)
produce≤ s part types inBk+1. ThenzLB(Rk+1) is the optimum value of linear
program (2.1), which can be computed by a standard column generation procedure.

zLB(Rk+1) = min{
∑

k∈K
xk|

∑

k∈K
aikxk = di, i ∈ B, xk ≥ 0, k ∈ K} (2.1)

3. Symmetry breaking

Symmetry breaking means in general to fathom unnecessary equivalent tracks
in order to reduce the search space. Tracks corresponding tocolumn permutations
are equivalent in the sense that produce by program (2.1) identical optimal solutions
and lower bounds. A maximal set of equivalent tracks is anorbit of a permutation
groupG. Of course, we are not interested in all the column permutations ofG, but
only in those, called feasible, which preserve the C1P: one is for instance themirror
permutationµ that sends each columnj ∈ C into |C| − j. To this purpose, let us
introduce the following notion.

Definition 2. Let Q be a track with columns indexed inC. ThenS ⊆ C is said to
bepermutableif any permutationπ such thatπ(j) = j for j ∈ C − S is feasible.

Maximal permutable sets are defined in the obvious way. We call trivial a per-
mutable set consisting of a single column, and we say that a row i ∈ B of a track
Q is a unit row if it contains exactly one non-zero element. In order to identify
equivalent tracks we characterize permutable sets as follows.

Theorem 3. S ⊆ C is permutable if and only if for any rowi ∈ B eitherqij = qik
for all j, k ∈ S or i is a unit row ofQ.
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On the basis of Theorem 3 it can be observed that every non-trivial permutable
setSt hits at least|St| unit rows, for otherwiseC would have identical columns.
Thus a permutable set is identified as soon as a unit row is detected during the
generation of a track, i.e., when the current uncompleted trackRk contains a row
i for which rik−2 = 0, rik−1 = 1 andrik = 0. Hence to avoid tracks having the
same permutable set it is sufficient to apply the lexicographic order to the row-
subsequences 010.

4. Preliminary computational results

A preliminary computational test was done on a set of 80 random instances, of
which 40 withs = 2 and 40 withs = 3, and all withm = 10 part types. A feasible
solution was computed by thefirst-sequence-then-cutheuristic proposed by [1]. In
49 cases the lower bound obtained by the linear relaxation ofCSP (s) provided the
same value of the feasible solution, which therefore turnedout to be optimal. In the
remaining 31 cases our algorithm improved the bound, and in 3of these allowed
closing the gap.
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1. Introduction and Definitions

A Pd is a path of lengthd and therefore hasd + 1 vertices. APd-packingof a
graphG(V,E) is a set of vertex-disjoint copies of aPd in G. It is maximal if any
addition of a furtherPd would violate the vertex disjointness property. The problem
we investigate in this paper isPd-PACKING (d ≥ 3):
GivenG(V,E), and the parameterk.
We ask: Is there aPd-packing of sizek?

P. Hell and D. Kirkpatrick [5; 4] showed that general MAXIMUM H -PACKING is
NP-complete. Here,H is a graph with at least three vertices in some connected
component. A subcase ofH-packing is of course aPd-packing if d ≥ 2. d = 1
corresponds tothe classical matching problem.

For the special case ofP2-packing there have been already publications in
the fields of parameterized and approximation algorithms. The currently fastest
algorithm solvingP2-packing in time MCO∗(2.4823k) is the one of H. Fernau and
D. Raible [3]. This algorithm combines the7k-kernel of J. Wanget al. [8] together
with the idea to improve the recyclability of vertices in an inductive approach.
Although no linear kernels are known forPd-packing (ford > 2), we propose
here a similar approach that helps with the second, color-coding phase of hitherto
published packing algorithms.

More specifically, in [7] it was shown that for any maximal 3-set packing
CRRAP of sizej there is a packingQ of sizej + 1 reusing at least2j vertices
from CRRAP . We show that this result is also valid for general`-SET PACKING

and therefore also forPd-packing. Thus, the algorithm of [7] can easily be adapted
to Pd-PACKING. In [3], we showed that forP2-packings, we can reuse at least2.5j
vertices of aP2-packing of sizej. We prove similar results forPd-PACKING if
3 ≤ d ≤ 5. Namely, we show that one can reuse3j vertices ford = 3 andd = 5
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Algorithm-type P3-PACKING P4-PACKING P5-PACKING

`-SET PACKING MCO∗(6.994k) MCO∗(8.985k) MCO∗(10.66k)

Pd-PACKING MCO∗(4.184k) MCO∗(6.995k) MCO∗(6.996k)

Table 4. The tables gives the running times of ordinary`-SET PACKING-algorithm (see
Alg. 1) and their improvements due to better reusability results in case ofPd-packing.

and2.5j vertices ford = 4. Considering this results we can speed up the algo-
rithm for Pd-PACKING yielding run times of MCO∗(5.80064k), MCO∗(6.98575k)
and MCO∗(6.996k) for d = 3, d = 4 andd = 5, respectively. Table 4 lists our run
times, where forP3-packings we employed a refined analysis technique.

A path is an ordered set of verticesp1 . . . pj such that{pi, pi+1} ∈ E for 1 ≤
i ≤ j − 1. Generally, the pathsp1 . . . pj andpj . . . p1 are considered the same, as
their edge-sets are the same. Nevertheless, at some points we need to order the
considered path. We setE(p) := {{pi, pi+1} | 1 ≤ i < j} andV (p) := {pi | 1 ≤
i ≤ j}. For a set of setsS = {S1, . . . , Sm} we letV (S) =

⋃
1≤i≤m Si, i.e.,V (S)

comprises the elements of which theSi consist. A pathp is calledsubpathof a path
p′ if a E(p) ⊆ E(p′). Two pathsp andp′ intersect ifV (p) ∩ V (p′) 6= ∅.

2. Properties ofPd-Packings

The general strategy is that we use an already existent maximal solutionCRRAP
of a `-set packing instance of sizej to obtain a solutionQ of sizej + 1. For this
task it is of importance how many of thed · j vertices ofV (CRRAP ) appear also
in V (Q). Among all`-set-packings of size(j+1), we will consider those packings
Q that maximize

|CRRAP ∩ Q|. (2.1)

We subsume these packings under the name MCLd(1). In MCLd(1), we find those
packingsQ that ’reuse’ the maximum number of sets from the packingCRRAP .
The authors of [3] showed the next proposition with respect to P2-packings by
strengthening a proposition of [7]. But browsing their proof shows that it can be
generalized straightforward for`-set packings.

Proposition 2.1. If Q ∈ MCLd(1), then for anyp ∈ CRRAP with p 6∈ Q, there are
q1, q2 ∈ Q, q1 6= q2, with |V (p) ∩ V (qi)| ≥ 1 (i = 1, 2).

The algorithm of [7] for 3-SET-PACKING also serves for̀ -SET-PACKING if we
modify it slightly, see Alg. 1:

The color-coding and the dynamic programming part in Alg. 1 can be up-
perbound by MCO∗(6.1(`−2)k) and MCO∗(

∑j+1
z=1

(
2j(d−1)+d

dz

)
) ⊆ MCO∗(22k(`−1)),
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respectively.

Lemma 2.2. We can find à -set packing in time MCO∗(c`k` ) (c` =
√̀

24.4`−2 · 4).

Any Pd-PACKING instance can be transferred into a(d + 1)-SET-PACKING

instance. In the cases ofP3, P4 andP5-PACKING we will show that we can ’recycle’
more than2j vertices. Similar improvements have been achieved by [3] for P2-
PACKING. This accelerates Alg. 1 quite drastically.

Let CRRAP be a maximalPd-packing of sizej. Among allPd-packings of
sizej+ 1 we will only consider those who maximize property (2.1). We subsumed
them inQd

(1). Consequently, we haveQd
(1) = MCLd+1

(1) with respect to the corre-
spondingd + 1-SET-PACKING instance. Furthermore, from the setQd

(1) we only
comprise thosePd-packingsQ′, which maximize the following second property:

∑

p∈MCP

∑

q∈MCQ′

|E(p) ∩E(q)|. (2.2)

The set of the remainingPd-packings will be calledQd
(2). Q

d
(2) contains those pack-

ings fromQd
(1) which reuse the maximum number of edges inE(CRRAP ). We

further distinguish the packings inQd
(2) by considering only those minimizing

|MCP2(MCQ)|, where MCPi(MCQ) = {p ∈ MCP | i = |p∩V (MCQ)|}.(2.3)

These packings are referred to asQd
(3) and contain those packings fromQd

(2) with
the least number of paths fromCRRAP such that only two vertices are reused.

Path-packings can benefit from the flexibility of folding andshifting paths on
graph edges. We refrain from giving formal definitions due toreasons of space.

Lemma 2.3. (i) If q ∈ Q with Q ∈ Qd
(2) is `-shiftable onp ∈ CRRAP with

respect toq1 (qd+1, resp.) then there isp′ ∈ CRRAP such thatqd+1 . . . qd+1−`
(q1 . . . q`+1, resp.) is a subpath ofp′ 6= p.

(ii) If Q ∈ Qd
(2) then noq ∈ Q is `-foldable,` ≥ 1.

(iii) If Q ∈ Qd
(3) then noq ∈ Q is 2-shiftable onp ∈ CRRAP with |V (p) ∩

V (Q)| = 2.

Algorithm 1 An Algorithm for general path packing
1: Greedily find a maximal̀-set packingCRRAP of G.
2: if j := |CRRAP | ≥ k returnCRRAP .
3: Color the verticesV \ V (CRRAP ) with (`− 2)j + ` colors by color-coding.
4: ColorV (CRRAP ) by `j additional colors arbitrarily.
5: Check if there arè(j + 1) vertices with pairwisely different colors that can be per-

fectly packed by à-set packingCRRAP ′ using dynamic programming.CRRAP ←
CRRAP ′.

6: goto 2.
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3. P3, P4 and P5-packings

Henceforth, we will only considerPd-packings fromQd
(3). We show that if

CRRAP is a maximalPd-packing withd ∈ {3, 4, 5} of sizej, we can reuse more
than2j of its vertices. More formally: If there is aPd-packingQ of sizej + 1 we
can rely on|V (CRRAP ) ∩ V (Q)| ≥ 2.5j. Actually, in most cases we prove a
sharper statement. Namely, for allp ∈ CRRAP we have|V (p) ∩ V (Q)| ≥ 3.
Suppose a pathp = p1 . . . pd+1 ∈ CRRAP shares exactly one vertexpq′, pq′′
with pathsq′, q′′ ∈ Q each (i.e.,|V (p) ∩ V (Q)| = 2). Due to Proposition 2.1,
q′, q′′ must exist. Subsequently,pq′ , pq′′ are the cut vertices of theseq′, q′′ ∈ Q with
p ∈ CRRAP2(Q).
Let pi := pq′ andpj := pq′′; w.l.o.g., i < j. Thenpi andpj define three (possi-
bly empty) subpaths onp: Xq′ := p1 . . . pi−1, Xq′q′′ := pi+1 . . . pj−1 andXq′′ :=
pj+1 . . . pd+1. Subsequently, we write|Xi| for |V (Xi)|. Next we will discuss the
case wherepq′ andpq′′ are not end-points ofq′ andq′′, respectively. For any pathp
of lengthd themid-pointsis the set{pdd+1/2e, pbd+1/2c}. A vertexmq is aQ-mid-
point if there is aq ∈ Q with mq being a mid-point ofq.

Lemma 3.1. LetCRRAP be a maximalPd-packing,p ∈ CRRAP ,V (p)∩V (Q) =
{pq′, pq′′}.

(i) If d ∈ {3, 5} then one ofpq′, pq′′ must be aQ-end-point, w.l.o.g.,pq′ .
(ii) If d ∈ {3, 4, 5}, such thatpq′′ is not anQ-end-point butpq′ is. Thenpq′ is

1-shiftable ford = 4 and2-shiftable ford ∈ {3, 5}.
(iii) Ford ∈ {3, 5} pq′′ is aQ-end-point.

Lemma 3.1.(i) does not hold forP4-packings and anyPd-packing withd > 5. For
P5-packings, this lemma immediately gives the desired recycling:

Lemma 3.2. LetCRRAP be a maximalP5-packing of sizej. If there is a packing
of sizej + 1, then there is also a packingQ ∈ Q5

(3) such that for allp ∈ CRRAP
we have|V (p) ∩ V (Q)| ≥ 3.

P3-packings are more subtle. Among the packingsQ3
(3) are those packingsQ

that maximize
∑

p∈MCP

∑

q∈MCQ

|end(p) ∩E(q)| (3.4)

whereend(p) denotes the set of two end-edges, i.e., whenp = p1 . . . p4 is a path,
then{p1, p2} and{p3, p4} are comprised in the setend(p). We call thoseQ3

(4). In
Q3

(4) are those packings fromQ3
(3) such that greatest number of end-edges is reused.

We call a pathq ∈ Q end-1-shiftableon somep ∈ P if q is 1-shiftable and we can
shift q by one in a way that we cover an end-edge ofp.

Theorem 3.3. Let CRRAP be a maximalP3-packing of sizej. If there is aP3-
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packing of sizej + 1 then existsQ ∈ Q3
(4) such that for allp ∈ CRRAP we have

|V (p) ∩ V (Q)| ≥ 3.

Further speed-up techniques, using ideas from [8], are necessary to show the
claimed running time. We could only prove a weaker lemma forP4-packings:

Lemma 3.4. Let CRRAP be a maximalP4-Packing with sizej. If there is aP4-
packing of sizej + 1 then there is also a packingQ ∈ Q4

(3) such that we have
|V (CRRAP ) ∩ V (Q)| ≥ 2.5 · j.

4. Conclusion

Our algorithmic approach is of the iterative expansion type. Starting from a
maximal solution, investigate the relation to a possible larger solution. For path
packing problems, a certain amount of vertices in the old solution also appears in
the larger one, reducing the cost of the expansion step. The question of reusability
is an interesting issue in extremal combinatorics on its ownright. So, the following
type of questions should be explored independently of possible algorithmic conse-
quences: Given a maximization problem and a feasible solutionS of sizek to that
problem for a certain instance, is it possible to either construct a solution of size
(k + 1) (or larger), re-using as many elements fromS as possible, or to conclude
that no such larger solution exists?
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1. Problem Formulation

RECTANGLE PACKING as a decision problem, i.e. the question if a set of rect-
angles can be disjointly packed into a bounding box of given dimensions or area, is
easily seen to be NP-complete [1].

However, in practical applications it is often possible to restrict the instances
in one or another way. It might be possible to guarantee that the rectangles do not
have extreme aspect ratios, or do not differ very much in their area consumption.
Also, the bounding box could be a given percentage larger than the total size of
the rectangles in the instance. In [3], we parameterized RECTANGLE PACKING to
incorporate restrictions of these kinds and analyzed the computational complexity
of the resulting problems. The decision problem(α, β, γ)-PACKING is defined as
follows:

Instance: A set ofn rectangles with widthswi and heightshi and a real numberA
satisfying
• A ≥ α ·∑n

i=1wihi
• wihi ≤ β · wjhj for 1 ≤ i, j ≤ n
• max{wi, hi} ≤ γ ·min{wi, hi} for 1 ≤ i ≤ n

Question: Is there a disjoint packing of the rectangles such that theirbounding
box has an area of at mostA?

To simplify notation,(α, β,∞)-PACKING shall denote the version of the prob-
lem where only the first two conditions hold with the givenα andβ. Analogously,
(α,∞, γ)-PACKING stands for the version where only the first and last conditions
hold.
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2. Results

The parametersα, β, andγ can be varied in many ways to generate different
problems. The first one considered is the one withβ = 1, meaning that all rect-
angles in the instance have the same area, andγ = ∞, so that the aspect ratio
of single rectangles can be arbitrarily large. Theorem 1 states that this problem is
NP -complete even if the packing’s density is arbitrarily low:

Theorem 2.1. (α, 1,∞)-PACKING isNP -complete for everyα ≥ 1.

Corollary 1. (α, β,∞)-PACKING isNP -complete for everyα ≥ 1 andβ ≥ 1.

The next theorem considers squares (i.e.γ = 1) whose areas differ by a factor
of at most1 + ε:

Theorem 2.2. (1, 1 + ε, 1)-PACKING isNP -complete for everyε > 0.

We found a similar result for rectangles which are almost squares (aspect ratio
below1 + ε) and have the same area:

Theorem 2.3. (1, 1, 1 + ε)-PACKING isNP -complete for everyε > 0.

It becomes apparent that many versions of(α, β, γ)-PACKING are stillNP -
complete. But there are also some cases where the answer is trivial – the most
obvious one being(1, 1, 1)-PACKING, whose instances only contain squares of the
same size. As soon as the rectangles in the instance have similar size and bounded
aspect ratio, it is clear that packings with a certain density are possible. The first
result is achieved by simply arranging all rectangles in a row:

Theorem 2.4. If α ≥ √βγ, then the answer to (α, β, γ)-PACKING is yes.

We present a strip packing method to find a more elaborate result:

Lemma 2.5. Letr1, . . . , rn be the rectangle set from an instance of (α, β, γ)-PACKING

andP the output of the strip packing algorithm running on the input r1, . . . , rn. If
A denotes the area ofP ’s bounding box, thenA < (1 + β + βγ

n
) ·∑n

i=1wihi.

Theorem 2.6. If α > β+1, then (α, β, γ)-PACKING can be decided in timeO(1).

Pavel Novotný proved in [2] that any set of squares with a total area of 1 can
be packed into a rectangle of area 1.53. Hence, the followingtheorem holds:

Theorem 2.7. If α ≥ 1.53, then the answer to (α,∞, 1)-PACKING is yes.

To conclude, the following table shows a summary of the results on (α, β, γ)-
PACKING.

85



γ = 1 1 < γ <∞ γ =∞

α = 1 Trivial for β = 1 NPC NPC

NPC otherwise

α > 1 Trivial for α ≥ 1.53 Trivial for α > β + 1 NPC

Trivial for α ≥ √β Trivial for α ≥ √βγ
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Introduction. The Capacitated Arc Routing Problem (CARP) [1] is a well-
known combinatorial optimization problem in which, given an undirected graph
G(V,E) with non-negative costs and demands associated to the edges, we haveM
identical vehicles with capacityD that must traverse all edges with positive de-
mand. The vehicles must start and end their routes at a depot node, without trans-
gressing their capacity. The objective is to search a solution of minimum cost. This
work introduces the Open Capacitated Arc Routing Problem (OCARP), where ve-
hicle’s routes are not constrained to form cycles, therefore we are searching for
minimum cost paths.

Problem Definition. The Open Capacitated Arc Routing Problem (OCARP)
can be defined on an undirected graphG(V,E) with edge costscij = cji and de-
mandsdij = dji. Edges with positive demands are called required (R ⊆ E) and
must be serviced.M identical vehicles of capacityD are available.N(i) denotes
the nodes adjacent to nodei inG. There are two set of decision variables:xkij = 1 if
vehiclek traverses edge(i, j), xkij = 0 otherwise;lkij = 1 if vehiclek services(i, j),
lkij = 0 otherwise. The OCARP objective is to find a set of paths with minimum
total cost without overloading any vehicle capacity. The model uses the following
auxiliary variables:αki , β

k
i , ykS, ukS andvkS (i ∈ V, k ∈ {1, . . . ,M}, S ⊆ V ). An

integer linear programming model for the OCARP is given.

MIN
M∑

k=1

∑

(i,j)∈E
cijx

k
ij (0.1)

st
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∑

j∈N(i)

(xkji − xkij) 6 αki

∑

j∈N(i)

(xkji − xkij) > −βki





(i ∈ V, k ∈ {1, . . . ,M})

(0.2)
∑

i∈V
αki 6 1

∑

i∈V
βki 6 1





(k ∈ {1, . . . ,M})

(0.3)

xkij > lkij ((i, j) ∈ E, k ∈ {1, . . . ,M})
(0.4)

M∑

k=1

(lkij + lkji) = 1 ((i, j) ∈ R)

(0.5)
∑

i

∑

j

lkijdij 6 D (k ∈ {1, . . . ,M})

(0.6)
∑

(i,j)∈(S,S)

xkij − |S|2ykS 6 |S| − 1

∑

(i,j)∈(S,S̃)

xkij + ukS > 1

∑

(i,j)∈(S̃,S̃)

xkij − |S̃|2vkS 6 0

ykS + ukS + vkS 6 2





(S ⊆ V, S̃ = V \ S, k ∈ {1, . . . ,M})

(0.7)

xkij , l
k
ij ∈ {0, 1} ((i, j) ∈ E, k ∈ {1, . . . ,M})

(0.8)

αki , β
k
i ∈ {0, 1} (k ∈ {1, . . . ,M})

(0.9)

ykS, u
k
S, v

k
S ∈ {0, 1} (k ∈ {1, . . . ,M}, S ⊆ V )

(0.10)

The objective function (0.1) minimizes the solution cost. Constraints (0.2) and
(0.3) guarantee that the nodes visited by a vehicle will haveindegree equal to their
outdegree, except for at most two nodes, which can have an unitary difference be-
tween indegree and outdegree (likewise a path). Constraints (0.4) state that serviced
edges must be traversed; (0.5) force all required edges to beserviced; (0.6) are the
capacity constraints; finally, constraints (0.7) assures path connectivity.
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OCARP Applications. In this section, we consider some problems of practical
interest which can be easily modeled (i.e., polynomially reduced) into an OCARP.

The Routing Meter Reader Problem [2; 3] interesses major electric, water and
gas distribution companies which periodically meter read their clients. This prob-
lem inspired the conception of OCARP and concerns the creation of a set of open
routes for meter readers with limited amount of work time which visit all street
segments containing clients in minimum traversal time. A service time is incurred
always that a worker meter reads, while a shorter deadheading time is computed
when the worker is not reading. While all street segments have positive deadhead
time, some of them may have zero service time, which means there is no client on
that segment.

In the Cut Path Determination Problem [4] the trajectories of a set of blow-
torchs are defined on a rectangular steel plate in order to produce a pre-defined set
of polygonal shaped pieces in minimum time. A piece is produced when its shape is
fully traversed by one or more blowtorchs. The blowtorchs have a limited amount
of energy to spend and must not traverse the interior of any shape, but they may
deslocate above the plate level, which reflects additional elevating and lowering
maneuvers times.

In the Parallel Machine Scheduling with Resource Constraints [5], we have
a set of distinct jobs that must be executed by a number of identical machines,
with limited amount of resources. Each job has a processing time and demands an
amount of resources. Each job may not be processed in more than one machine
simultaneously and no machine can process more than one job at a time. The ob-
jective is minimize the schedule lenght (makespan).

Complexity Results.This section gives a polynomial reduction CARP6 OCARP,
which concludes OCARP NP-hardness. Given any CARP instanceG(V,E), with
M vehicles with capacityD, add2M dummy nodes (V0) and2M dummy required
edges (R0), with demandsd(r ∈ R0) = B > D, and zero cost. These dummy edges
link dummy nodes with the depotv0. The vehicles capacity should be increased to
D+ 2B. A new graphG1(V0 ∪ V,R0 ∪E) is then formed. This transformation has
complexityO(M), and assumingM 6 |R|, then it is linear with respect to the size
of G. The relationship between the CARP optimal solutionL∗

G and the OCARP
optimal solutionP ∗

G1
is the following:L∗

G = P ∗
G1
\ {R0∪V0} andc(L∗

G) = c(P ∗
G1

).

Solution Strategy.This work considers reducing OCARP into CARP and then
adopting a CARP heuristic to solve the former. The OCARP6 CARP reduction is
given next. Consider an OCARP instanceG(V,E) with M vehicles and capacity
D. Add a dummy depot nodev0 and a setN0 of non-required edges, with costs
c(e ∈ N0) = B � max

e∈E
[c(e)], linking v0 to every node inG. We then form a

new graphG1(v0 ∪ V,N0 ∪ E). This reduction has complexityO(|V |), hence is
linear with the size of G. The relationship between the OCARPoptimal solution
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P ∗
G and the CARP optimal solutionL∗

G1
is the following:P ∗

G = L∗
G1
\ {N0 ∪ v0}

andc(P ∗
G) = c(L∗

G1
)− 2B.

Computational Tests.The standard set of CARP instances∗ , which includes
23gdb, 34val and 24egl instances, was used to form the set of OCARP instances,
simply by considering the depot a regular node. Lower boundswere obtained by
summing the costs of all required edges. Upper bounds were achieved through a
path-scanning CARP heuristic [6], after applying the OCARP6 CARP reduction
of the previous section. The overall average deviation fromlower bounds were
15,1% (gdb0,61%,val 7,75%,egl 42,74%). From the set of 81 solutions, 19 solu-
tions fromgdbwere proven optimal.

Conclusions and Future Works.This work introduced a new NP-hard com-
binatorial problem belonging to the arc routing problems family. It has presented
many practical problems that can be modeled as an OCARP. A solving strategy has
been given by transforming an OCARP into a CARP. Computational experiments
were conducted with a set of 81 OCARP instances, using an efficient path-scanning
heuristic. The first lower and upper bounds are given, with some proven optimal so-
lutions. Future works should focus on specific OCARP heuristics design in order
to further tighten the upper bounds. Exact algorithms, using column generation and
cutting planes approaches, as well as lower bounding procedures, should also be
investigated.
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1. Introduction

In the shortest path problem [1] the exploitation of geographical coordinates is
a common mean to obtain shorter computational times.

However there are cases in which geographical coordinates are not known and
cannot be easily obtained. In other cases, when the objective to be minimized is
loosely coupled with the geographical displacement, straight-line distance can sim-
ply be a bad choice.

The contribution of this work is the introduction of a new model and a new
method for the generation of good artificial coordinates forgoal oriented algo-
rithms. The only previous work on the subject of generation of coordinates for
shortest path computation is [5].

In [5] coordinates are generated with two methods. The first method they use
is the barycentric one, which is very fast in the generation phase, but gives subop-
timal results. The second method proposed in the same article, the tailored model,
uses a Kamada-Kawai [7] like objective with fewer terms: they only consider mem-
bers directly connected by an edge. Both models could lead toeuclidean distances
between nodes greater than their effective distance. This kind of unconstrained ap-
proach forces them to scale the generated coordinates down so that the euclidean
distance is an admissible heuristic again (w.r.t. the goal oriented algorithm they
use). In their experiments, results from the tailored method yield results compara-
ble with real geographical coordinates.

Our contribution is reasonably fast in the preprocessing phase, yields admissi-
ble coordinates without the need for rescaling, and, to the best of our knowledge,
outperforms the previous techniques halving the average query time.

CTW09,École Polytechnique & CNAM, Paris, France. June 2–4, 2009



2. A constrained model for the assignment of coordinates to be used by goal
oriented searches

Given a graphG = (V,E) with |V | = n, |E| = m, whereV is the vertex set
with coordinatespi ∈ R2, andE ⊆ V ×V is the edge set with non-negative weights
w ∈ Rm, we are interested in finding the best admissible heuristich : V × V → R
such that, for every pair of nodes,h assigns an estimate distance near to, but not
exceeding, the cost of the shortest path between them.

We will refer to P ∈ R2×n as the coordinates matrix, so thatP =



pTx

pTy




wherepx andpy are vectors containing thex andy coordinates of the vertices and
P = [p1p2 . . . pn] so thatpi ∈ R2 is the vector containing the coordinates of thei-th
vertex.

Let dij be the cost of the shortest path fromi ∈ V to j ∈ V , our ideal objective
will be to haveh(i, j) = dij ∀(i, j) ∈ V × V so that the heuristic is exactly
accurate for every pair of nodes. This cannot be achieved in the general practice
since not all graphs are realizable in a limited number of dimensions [2]. We will
try to makeh(i, j) closest todij while posingh(j, j) ≤ dij to preserve admissibility.

A very simple model that has proved effective in practice canbe obtained using
an objective that maximizes the weighted sum of the squared euclidean distance
between all pairs of vertices.

maxP
∑

(i,j)∈V×V,i6=j
1
d2

ij

(‖pi − pj‖2),

s.t. ‖pi − pj‖2 ≤ w2
i,j ∀(i, j) ∈ E.

(2.1)

The resultant model is a convex maximization problem on a convex set, an
hard problem [4].

We solved our problem with up to about twenty thousand variables and ten
thousand constraints using the Frank-Wolfe method [3, 215-218]. Given a problem
in the form

max
x
f(x)

s.t.x ∈ X,

the Frank-Wolfe method [3, 215-218] is a way to generate a feasible directionxk−
xk that satisfies the descent condition∇f(xk)′((x)k − xk) < 0 to be used in the
update rule.

The sub-problem obtained applying the method has a linear objective func-
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tion, it’s quadratically constrained, and it can be solved efficiently with a dedicated
solver for QCQP (Quadratically Constrained Quadratic Program):

max
P
∇fx(pkx)Tpx +∇fy(pky)Tpy,

s.t.‖pki + pi − pkj − pj‖2 ≤ w2
i,j ∀(i, j) ∈ E.

3. Testing environment, computational results and conclusions

In our experiments we used two road networks, Florence and Lisbon (c.f.r.
table 5). We also generated a new set of coordinates for the timetable data used
in [8; 5] and, as they made their code publicly available, we were able to compare
with the original implementation on the original coordinates.

graph nodes edges

Florence 4 466 8 932

Lisbon 10 056 11 499

de-org 6 960 931 746

Table 5. The number of nodes and edges of the test graphs.

Sources was built with GNU Compiler Collection version 4.3.2. All the binary
was run on a Pentium4 processor running a32bit Linux 2.6.27 kernel at3GHz
equipped with1GiB of main memory.

We have generated new sets of coordinates for all the graphs in table 5. A
summary of results, including results from the graph of Lisbon, are presented in
table 6 and 7. In particular table 7 is a direct comparison with previous coordinate
generation approaches.

graph
ms expanded nodes

original generated original generated

Florence 0.34 0.25 553 378

Lisbon 0.25 0.13 5026 1847

Table 6. Average query response time and average number of nodes expanded by the goal
oriented algorithm on250 000 random queries (the same for all the runs) on the two cities
with original and generated coordinates.

In table 7 we used the original code in [8] to compare the average query time
and average number of expanded nodes of our coordinates (de-constrained),
the geographical ones (de-org) and the best result from the tailored model pre-
sented in [5] (de-tailored).
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graph ms edges

de-org 22.5 20 995

de-tailored − 20 052

de-constrained9.4 9 899

Table 7. Average query response time and number of nodes touched by the goal oriented
algorithm.de-org is the original Germany’s timetable,de-tailored reports results
from the best of the tailored models from Brandes et al., andde-constrained is the
same timetable with coordinates generated by our proposed method.

In conclusion we proposed a new model and a new solution approach for the
generation of nodes coordinates w.r.t. goal oriented shortest path calculation. This
approach does not require any change in the goal oriented algorithms: generated
coordinates can be used as a drop-in replacement for geographical ones in existing
implementations [6].
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1. Introduction

The problem of finding optimal administrative link weights in response to a
given network demand matrix has received immense attentionin the recent past,
see, e.g., [1-4]. In this paper, we address the problem of changing the link weights
for a specific demand (a single source-destination pair) to be rerouted through a
desired link or vertex not already on the shortest path of thegiven demand. Such
rerouting may be necessary in practice to satisfy the quality of service, as perhaps
warranted by a service-level agreement, or to meet a specialrequest of an impor-
tant business customer. For this rerouting, we require thatthe number of links on
which the weights are changed be as small as possible in orderto reduce the im-
plementation time of link weight changes within the currentOSPF-type network
environment [2]. We further require that the weight changes(increments) be as
small as possible in order to minimize the number of other shortest paths (routes of
other demands) that might be affected. The problem is treated as an uncapacitated
problem [3-4]. To our knowledge, it has not been dealt with before.

2. Problem Definition

Let G = (V,E) denote an undirected graph, representing a bidirectional net-
work (e.g., a single autonomous system);V is the set of vertices (or nodes), andE
is the set of weighted edges (or links); weights are non-negative integers; routing
of traffic demands from one point to another within the network takes place along
single shortest paths. We also make the assumption that graphG is biconnected (or
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2-connected), i.e., there always exists a simple path, which connects a given pair
of vertices,s andt, and includes a given arcpq [5]. A simple path refers to a path
in which a given vertex is not visited more than once. Unless otherwise stated, in
what follows, the term path refers to a simple path.

Let SP (s, t) denote a shortest path from vertexs to t in the given graph
G = (V,E). Let Γa denote a set of edges∈ E, whose weights are incremented
to change the shortest pathSP (st). Let xi, i = 1, .., |Γa| denote the corresponding
increments. The problem to solve can be stated as:

Given an undirected, weighted graphG = (V,E), and a pair of verticess, t ∈
V , and an edgepq ∈ E,

minimize |Γa| (2.1)

subject to arcpq (or arcqp) ∈ SP (s, t),

minimize xi, i = 1, ..,M (2.2)

subject to arcpq (or arcqp) ∈ SP (s, t); M = |ΓM |, the result obtained in Eq. (1)
above.

The problem in Eq. (2.1), which is the primary problem, is to identify the
minimum cardinality edge set whose weights should be incremented to alter the
given s − t flow path to include edgepq; the problem in Eq. (2), which is the
secondary problem, is a set of multiobjective functions to minimize the weight
increments on the edges found in Eq. (1). To solve it, it can bereformulated as a
minimization over the sum of the individual increments,xi ; this corresponds to
equal importance of all edges involved in the increment process.

It can be shown that the problem in Eq. (1) is equivalent to thefollowing prob-
lem:

minimize |Γc| (2.3)

subject to arcpq (or arcqp) ∈ SP (s, t),

where|Γc| is interpreted to mean a set of edges∈ E, which when cut, alters
SP (s, t). The optimal value in Eq. (3) is the same as in Eq. (1), i.e.,M = |ΓM |.

Problems, Eq. (3) and Eq. (2), are difficult problems, which appear to be NP-
hard. In this paper, we solve these problems, using simple heuristics (Section 3).
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3. The Sliding Shortest Path Algorithm

In a given, undirected, weighted graphG = (V,E), this algorithm determines
(in accordance with a certain cutting criterion) the minimal cardinality set of edges,
which, when cut, force the shortest path between verticess andt to include a given
constraint edgepq. Let Γ denote this set. Then the following steps determineΓ:

(i) AssignΓ = ∅
(ii) Compute the initial flow path, the shortest pathSP (s, t) from s to t. If this

path contains edgepq, terminate; otherwise, go to Step 3.
(iii) Compute the shortest pair of vertex-disjoint paths [6], onepath connectings to

p (or q) (call it SP1), and the other connecting vertext to q (orp) (call it SP2);
the vertex-disjoint path algorithms computeSP1 andSP2 simultaneously
and automatically determine whetherSP1 is a connection froms to p or s to
q; if SP1 turns out to be a connection froms to p, SP2 is a connection from
t to q, and vice versa.

(iv) Initialize i = 1
(v) AssignΓ(i) = ∅, whereΓ(i) denotes the ith set of cut edges.

(vi) Find the first edge ofSP (s, t), which does not overlap withSP1 (cut-edge
selection criterion); cut this edge from the graph; denote this edge byL.

(vii) SetΓ(i) = Γ(i) ∪ L.
(viii) Compute newSP (s, t) in the trimmed graph.
(ix) If the new path contains edgepq, terminate; otherwise go to Step 6.
(x) Seti = i+ 1

(xi) If i < 3, repeat Steps 5-9 in the original graph, replacingSP (s, t) with
SP (t, s), andSP1 with SP2; otherwise, terminate;SP (t, s) denotes the short-
est path fromt to s, which is taken to beSP (s, t) in the reverse order.

(xii) If |Γ(1)| < |Γ(2)|, setΓ = Γ(1); if |Γ(2)| < |Γ(1)|, setΓ = Γ(2); if |Γ(1)| =
|Γ(2)|, setΓ = Γ(1) or Γ(2).

If theSP (s, t) path already contains edgepq, the algorithm terminates, return-
ing Γ = ∅; otherwise it performs two runs of an iterative process. Theiterative
process consists of trimming the graph by cutting one edge ata time and recom-
puting the shortest path after each edge cut until the shortest path betweens andt
slides over the given constraint edgepq. The edge to cut is determined by an edge-
selection criterion (Step 6). In the first run (i = 1) of the iterative process, pathSP1
acts as the reference path for the cut-edge selection, and inthe second run (i = 2),
pathSP2 acts as the reference path for edge-cut selection (Step 6). The two runs
of the iterative process of the algorithm yield two cut-sets, Γ(1) andΓ(2), which
can be different. In Step 12, the desired setΓ is identified with the one, which has
fewer edges. If there is a tie,Γ is set equal to either of the two. Below we state some
theorems without proving them:
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Theorem 1: In a given graphG = (V,E), the shortest path froms to t, includ-
ing edgepq, is comprised of the edgepq (traversed along the arcpq or arcqp) and
the shortest pair of vertex-disjoint paths, one path connecting s to p (or q) and the
other connectingq (or p) to t.

Theorem 2: In the given algorithm, the process of cutting one edge at a time
until the shortest path froms to t slides over edgepq does not disconnectt from s,
i.e., the algorithm always converges to a feasible solution.

Theorem 3: PathSP (s, t) after termination of the algorithm comprises paths
SP1, SP2, and edgepq (arcpq or qp)

Once a solution is obtained, using the above heuristic, the problem, Eq. (2), is
solved as follows:

Instead of cutting the first non-overlapping edge (see Step 6of the algorithm),
increment its weight:

xj = l(Pf )− l(Pj) + e, (3.4)

wherexj is the weight increment for the first non-overlapping edge encountered in
the jth iteration of Steps 6-9 of the algorithm;l(Pj) is the length of the correspond-
ing shortest path (SP (s, t) or SP (t, s), as the case may be);l(Pf) is the length of
the final desired path;l(Pf ) = l(SP1) + l(SP2) +wpq, wherew indicates an edge
weight; e is an infinitesimally small positive number. For the integral weights,e
= 1. The incrementxj defined above is the minimal amount needed to make path
Pj greater (in length) than the desired pathPf ; as a result, the latter becomes the
shortest path in the final (modified) graph.

4. Discussion

The Sliding Shortest Path Algorithm is presented as a heuristic for the difficult
problem, Eq. (1). Its extension via Eq. (4) then solves the problem, Eq. (2). The
algorithm is easily extended to the case of rerouting over a specified vertex by
collapsing the constraint edge into a single vertex. The efficiency of the algorithm
is determined by the number of times the Dijkstra algorithm has to be run. In the
worst-case scenario, where almost all the edges have to be cut, the efficiency is i)
O(|V |2)ρ for dense graphs (almost fully connected), 2)O(|V |)ρ for sparse graphs
(almost tree-like), whereρ denotes the efficiency of the Dijkstra algorithm.ρ is
O(|V |2), and there are improvements due to more efficient implementations [7].
The heuristic is therefore very fast and its computer code has successfully run on
graphs consisting of as many as 200,000 vertices.

The edge cuts in the algorithm emanate from the reference path SP1 or SP2,
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depending upon whether it is the first run or the second. Larger the degree of the
vertices of the reference path, larger the number of edges that would be cut on
the average. As a result,|Γ(1)| and|Γ(2)| can be significantly different, depending
upon the densities (degrees of vertices) of the subgraphs the pathsSP1 andSP2
lie in. Furthermore, based on our initial theoretical studies of very small graphs
(10 vertices or so), we expect the algorithm to perform well (i.e., give a solution
close to the true solution) in graphs with approximately uniform density, but, in
those (uncommon) instances, where the density of the graph in the region between
the reference paths,SP1 andSP2, may drop sharply, we expect the performance
to degrade because the algorithm looks only along the pathsSP1 andSP2 for
cuts, and not away from them. One way to assess the performance of this heuris-
tic computationally is by comparing its results directly with the optimal solutions.
The optimal solution to the problem can be obtained in the following way: try all
possible cutsets, starting with cutsets of cardinality unity, then cutsets of cardinal-
ity two, and so on (at least one edge in the cutset always belonging to the initial
path,SP (s, t)) until the desired shortest path is obtained. Such a method,however,
quickly becomes exponential in run time. In the detailed version of the paper and
the talk, we will provide numerical results of the algorithms’s performance, keeping
in mind the inefficiency of the optimal solution method.
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1. Introduction

Consider a quadratic functionq : Rn → R given by:q(x) = xtQx, with Q ∈
Rn×n. An unconstrained(−1, 1)-quadratic optimization problem can be expressed
as follows:

(QP ) Z∗ = min{q(x) | x ∈ {−1, 1}n},
where{−1, 1}n denotes the set ofn-dimensional vectors with entries either equal to
1 or−1. We consider here that the matrixQ is symmetric and given by its spectrum,
i.e. the set of its eigenvalues and associated unit pairwiseorthogonal eigenvectors.

Problem(QP ) is a classical combinatorial optimization problem with many
applications, e.g. in statistical physics and circuit design [2; 8; 10]. It is well-known
that any (0,1)-quadratic problem expressed as:min{xtAx + ctx | x ∈ {0, 1}n},
A ∈ Rn×n, c ∈ Rn, can be formulated in the form of problem(QP ) and conversely
[9; 4].

The contribution of this work is 3-fold:

(i) We slightly extend the known polynomially solvable cases of(QP ) to when
the matrixQ has fixed rank and the number of positive diagonal entries is
O(log(n)).

(ii) We introduce a new (to our knowledge) polynomial-time algorithm for solving
problem(QP ) when it corresponds to such a polynomially solvable case.

(iii) Preliminary experiments indicate that the proposed methodmay be computa-
tionally efficient. [7] .
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2. Properties of optimal solutions for peculiar instances of (QP )

Let us firstly introduce some notation to be used hereafter. The eigenvalues
of the matrixQ will be notedλ1(Q) ≤ λ2(Q) ≤ . . . ≤ λn(Q) (or more simply
λ1 ≤ λ2 ≤ . . . ≤ λn when clear from the context) and the corresponding unit (in
Euclidean norm) and pairwise orthogonal eigenvectors:v1, . . . , vn. Thej-th entry
of the vectorvi is notedvij . Given some set of vectorsa1, . . . , aq ∈ Rn, q ∈ N, we
noteLin(a1, . . . , aq) the subspace spanned by these vectors.
In this section we shall make the following assumptions on the matrixQ:

(i) Q has rankp ≤ n,
(ii) Q has nonpositive diagonal entries only, and
(iii) Q is given by its set of rational eigenvalues and eigenvectors:Q =

∑p
i=1 λiviv

t
i .

Any optimal solutiony∗ to the problemminy∈{−1,1}n ytQy can be shown to
satisfy the following implication:

p∑

i=1

λiαivij > 0⇒ y∗j = −1 (2.1)

And analogously:

p∑

i=1

λiαivij < 0⇒ y∗j = 1. (2.2)

From this simple property we can namely show that in order to find an optimal solu-
tion of problem(QP ), it is sufficient to enumerate over all vectorsy ∈ {−1, 1}n for
which there exists a vectorα ∈ Rp such thatyj = −sign(

∑p
i=1 λiαivij) (or equiva-

lently yj = sign(
∑p
i=1 λiαivij), see hereafter),

∑p
i=1 λiαivij 6= 0, ∀j ∈ {1, . . . , n},

with sign(x) = 1 if x > 0 and−1 if x < 0. In the next section we focus on finding
such a set of vectors.

3. Determining cells in an arrangement ofn hyperplanes

Let v1, ..., vp ∈ Rn denotep independent vectors. LetV ∈ Rn×p denote the
matrix whose columns correspond to the vectorsv1, . . . , vp andVi thei-th row ofV .
From this set of vectors we definen hyperplanes inRp: Hj = {α ∈ Rp | Vj.α = 0}
with j ∈ {1, . . . , n}. Then we can notice that there is a one-to-one correspondence
between the set of vectors in{−1, 1}n for which there exists a vectorα ∈ Rp such
that yj = sign(

∑p
i=1 αivij), with

∑p
i=1 αivij 6= 0, ∀j ∈ {1, . . . , n} and the cells

(i.e. the full dimensional regions) inRp of the hyperplane arrangementA(H) that
is defined by the family of hyperplanes(Hj)

n
j=1. To see this just interpret the sign

vectory as the position vector of the corresponding cellc w.r.t. an orientation of
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the space by the vectorVj: cell c is abovehyperplaneHj iff yj > 0 andunder
otherwise.

For a general arrangement inRp that is defined byn hyperplanes (see e.g.
[6; 11] for further elements on arrangements), the number ofcells is upper bounded
by
∑p
i=0

(
n
i

)
(which is inO(np)). (For a proof we refer the reader e.g., to Lemma

1.2 in [6]). In our case, since all the hyperplanes considered contain the origin (i.e.
the arrangement iscentral), this number reduces toO(np−1) (see Section 1.7 in
[6]).

We have introduced [3] a simple procedure with time complexity lying be-
tween the time complexity of the incremental algorithm [6; 5] (in O(np−1)) and
that of the reverse search algorithm [1; 7] (inO(n LP (n, p) C) whereC denotes
the number of cells inA(H) andLP (n, p) is the time needed to solve a linear pro-
gram withn inequalities andp variables) in order to compute a set of vectors in
{−1, 1}n corresponding to a description of a set containing the cellsof the arrange-
mentA(H). Space complexity can be shown to be polynomially bounded bythe
ouput size. To our view the interest of the proposed method bycomparison with the
former ones is 2-fold:

(i) it is very easy to understand and implement,
(ii) computationally, by using proper data structures (to be specified latter) we

could solve instances of the same magnitude as the ones reported in [7], with-
out parallelization and substantially improved computation times.

The basic principle of the proposed method may be expressed as follows.
Given some integerq ∈ {1, . . . , n}, let Bq(H) denote the arrangement in the
subspace{α ∈ Rp | Vqα = 0} that is defined by the hyperplanes (inRp−1)
{Hj ∩ Hq | j ∈ {1, . . . , n} and j 6= q}. Any cell of Bq(H) (which is a region
of dimensionp− 1) corresponds to a facet of exactly two cells of the arrangement
A(H) i.e. one on each side of the hyperplaneHq. The other cells ofA(H) i.e. those
not intersectingHq, are cells of the arrangementCq(H) in Rp which is defined by
then− 1 hyperplanes{Hj | j ∈ {1, . . . , n} and j 6= q}. Since each cell ofA(H)
intersects at least one of the hyperplanes(Hj)

n
j=1, it follows that all the cells of

A(H) can be derived from the ones of all the arrangementsBq(H), q = 1, . . . , n.
A recursive use of this argument leads to the generation of all the cells ofA(H).

From a complexity study of the proposed method we can show thefollowing
result.

Theorem 3.1. For a fixed integerp ≥ 2, if the matrixQ (given by its nonzero
eigenvalues and associated eigenvectors) has rank at mostp andO(log(n)) positive
diagonal entries, then problem(QP ) can be solved in strongly polynomial time.
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4. Conclusion

We propose a new (up to our knowledge) approach for solving inpolynomial
time some unconstrained quadratic optimization problems.Preliminary computa-
tional results illustrate that the recursive procedure briefly presented here can be
a valuable approach on some instances by comparison with a reverse search w.r.t.
computation times.

Further computational studies are under work and could involve a paralleliza-
tion of the code in order to deal with larger instances.
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1. Introduction

A wide range of combinatorial optimization problems can be formulated as
Quadratic Semi-Assignment Problems (QSAP). The QSAP usually describes the
assignment of resources to consumers and is a generalization of the widely studied
Quadratic Assignment Problem (QAP).

Not only are both QAP and QSAP hard to solve in theory (the decision prob-
lems are NP-hard) but also in practice today’s computer systems are often unable
to solve even small instances to optimality. In order to get alower bound for the
solution, a Reformulation Linearization Technique (RLT) can be applied resulting
in a Linear Program that is much easier to solve, cf. [1] and [2].

In this paper we present a graph-theoretical analysis of theRLT applied to
the QSAP. A class of graphs is constructed the size of which can be proven to be
minimal. It is then used to determine the level of the RLT necessary for a tight
formulation of the problem. A tight formulation here means that for all possiblebij
andcijkl, the optimal objective function value of the RLT-t formulation equals the
optimal objective function value of the QSAP.

2. RLT formulation of the Quadratic Semi-Assignment Problem

Given the index setsM = {1, . . . , m} andNi = {1, . . . , ni} ∀i ∈ M , the
Quadratic Semi-Assignment Problem is to assign to eachi ∈ M exactly one ele-
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mentj ∈ Ni. It is defined by the Mixed Integer Program (MIP)

min
m∑

i=1

ni∑

j=1

bijxij +
m−1∑

i=1

m∑

k=i+1

ni∑

j=1

nk∑

l=1

cijklxijxkl

s.t.
ni∑

j=1

xij = 1 ∀i ∈M,

xij ∈ {0, 1}.

Note that we focus on the symmetric form wherecijkl = cklij. When we apply the
level-1 Reformulation Linearization Technique we introduce new variablesyijkl =
xij · xkl and some additional constraints. After relaxing all 0/1-variables we get the
linearized formulation

min
m∑

i=1

ni∑

j=1

bijxij +
m−1∑

i=1

m∑

k=i+1

ni∑

j=1

nk∑

l=1

cijklyijkl

s.t.
ni∑

j=1

xij = 1 ∀i ∈ M,

ni∑

j=1

yijkl = xkl ∀i, k ∈M (i < k), l ∈ Nk,

nk∑

l=1

yijkl = xij ∀i, k ∈M (i < k), j ∈ Ni,

xij ∈ [0, 1], yijkl ∈ [0, 1].

3. Level-t RLT

To obtain the general level-t RLT formulation for the QSAP, we add new vari-
ables and constraints to the level-(t − 1) formulation. Accordingly, the new con-
straints are of the form

nk∑

jk=1

ϑ
(t+1)
i1j1,...,it+1jt+1

= ϑ
(t)
i1j1,...,ik−1jk−1,ik+1jk+1,...,it+1jt+1

,

∀k ∈ {1, ..., t+ 1}, ∀i1, ..., it+1 ∈M (i1 < ... < it+1), ∀js ∈ Nis, s ∈M \ {k}.

To complete the recursive definition of the RLT-t formulation, we set

ϑ(0) = 1, ϑ
(1)
i1j1 = xi1j1 and ϑ(2)

i1j1,i2j2 = yi1j1i2j2.

Each feasible solution of the RLT can be transformed into a solution-graph. In this
duality, a variablexij corresponds to a vertexvij and the linearized variablesyijkl
with yijkl > 0 correspond to edgeseijkl = {vij, vkl}. By induction it is easy to prove
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that a solution-graph of a level-t RLT formulation contains at least one(t + 1)-
clique. Furthermore any solution-graph that contains anm-clique has a subgraph
that corresponds to a solution of the QSAP. Thus it follows that there is a finite
t for which the optimal objective function value of both the RLT and the original
MIP are identical. Note that any solution of the original MIPis also valid for the
RLT formulation since the additional constraints solely arise from multiplying both
sides of already existing constraints by certain variables.

4. Tightness of the RLT formulation

In this section we present a minimal graphGt
RLT and a correspondingϑ-

variable assignment that help to determine the minimal RLT-level that is necessary
for a tight RLT formulation. This graph satisfies the RLT-constraints up to levelt
but does not contain a clique of sizet + 2. We say that a graph satisfies the RLT-
constraints if there exists a correspondingϑ-variable assignment that satisfies the
constraints.

Fig. 1. GraphG2
RLT not containing a4-clique.

We define the graphGt
RLT = (V t

RLT , E
t
RLT ) by

V t
RLT = {vij : i ∈ {1, ..., t+ 2}, j ∈ {1, ..., t+ 1}} ,

Et
RLT = {eijkl : i, k ∈ {1, ..., t+ 2} (i < k), j, l ∈ {1, ..., t+ 1} (j 6= l)} .

The corresponding variable assignment that satisfies the RLT-constraints is

ϑ
(1)
ij = xij =

1

t+ 1
, if vij ∈ V t

RLT ,

ϑ
(v)
i1j1,...,ivjv =

v∏

s=1

1

(t+ 2− s) , ∀v ∈ {2, ..., t+ 1},

if ∃k, l ∈ {1, ..., v} (k < l) : eikjkiljl ∈ Et
RLT ,

and zero for all other variables. The following theorem deals with the minimality
of Gt

RLT in the context of the given problem.
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Theorem 4.1.Gt
RLT is the minimal graph that satisfies all RLT-constraints up to

level t and that contains no(t+ 2)-clique.

We omit the full proof due to space limitations. The main ideas are the following
four steps:

– show thatGt
RLT satisfies the RLT-t-constraints,

– show thatGt
RLT contains no(t+ 2)-clique,

– show that for any graph that satisfies the RLT-t-constraints and that contains
no (t+ 2)-clique∃S ⊆M, |S| ≥ t+ 2, such that∀i ∈ S : ni ≥ t+ 1,

– show that there is no graph with less edges than|Et
RLT | that satisfies the RLT-

t-constraints and that contains no(t+ 2)-clique.

As a result from Theorem1 we directly obtain for eachM and the corresponding
setsNi, i ∈ M , the smallest numbertmin for which the RLT-t formulation is tight.
If the setsNi are ordered according to their size(n1 < ... < nm), tmin is defined by

tmin = min{t ∈ N : nt+2 < t+ 1}.

5. Conclusion and future work

In this paper we presented some theoretical results on the tightness of the RLT-t
formulation for the QSAP. The gained insights can be used e.g. in a stepwise elim-
ination process of possible occurences of the minimal graphsGt

RLT in the problem
formulation. A first implementation of such an algorithm showed promising results
compared to established approaches. As future work we plan to transfer our results
to the QAP.
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1. Introduction

The study of problems modeled by edge-colored graphs has given rise to im-
portant developments during the last few decades. For instance, the investigation
of spanning trees for graphs provide important and interesting results both from a
mathematical and an algorithmic point of view (see for instance [1]). From the point
of view of applicability, problems arising in molecular biology are often modeled
using colored graphs, i.e., graphs with colored edges and/or vertices [6]. Given such
an edge-colored graph, original problems translate to extracting subgraphs colored
in a specified pattern. The most natural pattern in such a context is that of a proper
coloring, i.e., adjacent edges having different colors. Refer to [2; 3; 5] for a survey
of related results and practical applications. Here we dealwith some colored ver-
sions of spanning trees in edge-colored graphs. In particular, given an edge-colored
graphGc, we address the question of deciding whether or not it contains properly
edge colored spanning trees or rooted edge-colored trees with a given pattern.

Formally, letIc = {1, 2, . . . , c} be a given set of colors,c ≥ 2. Throughout,
Gc denotes an edge-colored simple graph, where each edge is assigned some color
i ∈ Ic. The vertex and edge-sets ofGc are denotedV (Gc) andE(Gc), respectively.
The order of Gc is the numbern of its vertices. A subgraph ofGc is said to be
properly edge-coloredif any two of its adjacent edges differ in color. Atree in Gc

is a subgraph such that its underlying non-colored graph is connected and acyclic.
A spanning treeis one covering all vertices ofGc. From the earlier definitions, a
properly edge-colored treeis one such that no two adjacent edges are on a same
color. A treeT in Gc with fixed rootr is said to beweakly properly edge-colored
if any path inT , from the rootr to any leaf is a properly edge-colored one. To
facilitate discussions, in the sequel a properly edge-colored (weakly properly edge-
colored) tree will be called astrong(weak) tree. Notice that in the case of weak
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trees, adjacent edges may have the same color, while this maynot happen for strong
trees. When these trees span the vertex set ofG, they are calledstrong spanning
tree(SST) andweak spanning tree(WST).

Here we prove that the problems of findingSST and WST in colored graphs
are both NP-complete. The problem ofSST remains NP-complete even when re-
stricted to the class of edge-colored complete graphs. We present nonapproximabil-
ity results by considering the optimization versions of these problems. We provide
polynomial time algorithms for these problems on the important class of colored
acyclic graphs, i.e. graphs without properly edge-coloredcycles. We also present
an interesting graph theoretic characterization of colored complete graphs which
haveSSTs.

2. NP-completeness and nonapproximability
TheSST problem is NP-complete forGc if c is a constant, because it general-

izes the degree-constrained spanning tree problem, which extends the Hamiltonian
path problem. Here, the degree constraint of a nodev is the number of different col-
ors used on its incident edges. The next result is a stronger one, and is proved using
a kind of self-reduction from theSSTproblem on a constant number of colors.

Theorem 2.1. TheSST is NP-complete even forc = Ω(n2).

The hardness result forWST stated below is obtained by a reduction from the 3-SAT

problem.

Theorem 2.2. Given a2-edge colored graphGc = (V,Ec) and a specified vertex
r of V , it is NP-complete to determine ifGc has aWST rooted atr.

We view the optimization versions of these problems as finding the corresponding
trees covering as many vertices as possible. The following results on nonapprox-
imability bounds are obtained by the gap-reduction technique using theMAX -3-SAT

problem.

Theorem 2.3. The maximum weighted tree(MWT) problem is nonapproximable
within 63/64 + ε for ε > 0 unlessP = NP .

Theorem 2.4. The maximum strong tree(MST) problem is nonapproximable within
53/54 + ε for ε > 0 unlessP = NP .

3. Colored trees in acyclic edge-colored graphs
In this section, we present results demonstrating that theSST andWST prob-

lems can be solved efficiently when restricted to the class ofedge colored-acyclic
graphs. We present a proof sketch and an algorithm for theSST problem on col-
ored acyclic complete graphs. The case ofSSTon general colored acyclic graphs is
similar, but more involved and appears in a longer version ofthe paper. We do not
provide the details of theWST problem either, due to space constraints.

An important tool we use is a theorem due to Yeo ([7],[4]), which states that
every colored acyclic graph has a vertexv, such that the edges between any com-
ponentCi of G \ v andv are monochromatic. We call such a vertex ayeo-vertex. If
in addition, the colors of the edges betweenv and the various components obtained
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by deleting it are all distinct, we call it arainbow yeo-vertex. It is easy to see that a
colored acyclic graph with a nonrainbow yeo-vertex has noSST.

For the rest of this section, we assume we are dealing with colored acyclic
complete graphs (Kc

n-acyclic). We compute a partial ordering of the vertices and
construct theSSTby incorporating the vertices in the reverse of this order. The first
blockconsists ofall the yeo-vertices of the graph. They induce a monochromatic
clique and the edges between this group of vertices and the rest of the graph are
also monochromatic with the same color. We repeat this procedure iteratively, by
considering the residual (also) acyclic complete graph obtained by deleting these
vertices from the original graph. The second block is also monochromatic but with
adifferentcolor.

We usek to denote the number of blocks in the above partial order and the
blocks themselves are denotedB1, . . . ,Bk. We useci to denote the associated color
of blockBi. Recall that the color associated with successive blocks differ. We de-
note the total number of vertices in the blocksBi, . . . ,Bk by ti and the number of
such vertices whose associated color isl by tli. We now state a lemma, which given
an acyclic edge colored complete graph determines whether or not it contains an
SST.

Lemma 3.1. (SST-Complete Acyclic)An acyclic edge colored complete graph has
an SST iff

(i) Last blockBk has two vertices, and
(ii) for eachi < k,

• IF blockBi has the same color as the last blockBk, THEN
tcii − 2 ≤ ti

2
.

• ELSEtcii ≤ ti
2
.

We now describe our algorithm to construct the SST. It is based on the previous
lemma. Its running time isO(n2), as it can be implemented by modifying the basic
Breadth-First-Search (BFS) procedure.
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Algorithm 1 SST for Kc
n-acyclic

1: compute the order described above
2: if last blockBk has more than two verticesthen return “No SST”
3: if last blockBk has two verticesthen connect the two vertices ofBk to get an

initial Strong Tree
4: for i = k − 1 to 1 do
5: if condition2 of Lemma 3.1 is truethen
6: join the vertices ofBi as leaves, to distinct vertices already incorporated

in the tree which have not used an edge of colorci in the partial strong
tree obtained in the previous iteration.

7: else
8: return ”NO SST”
9: end if

10: end for
11: return the SST

To conclude this section, we now state our more general result.

Theorem 3.2. The SST and WST problems can be solved efficiently for acyclic
colored graphs.

4. Properly edge-colored spanning trees in edge-colored complete graphs
TheSSTproblem remains hard even when stringently restricted, as the follow-

ing result states. The hardness is proved by a reduction fromthe SST problem in
general graphs.

Theorem 4.1. TheSST is NP-complete for complete graphsKc
n, colored with|c| ≥

3 colors.

Observe, that for the casec = 2, the SST problem reduces to the Hamilto-
nian Path problem, which is known to be polynomial [3]. Notice also that theWST

problem is trivial inKc
n as any spanning star is aWST. ConcerningSST, we pro-

vide below a graph-theoretic characterization for edge-colored complete graphsKc
n

which haveSSTs. This characterization is interesting from a mathematical point of
view, but the implied conditions cannot be computed in polynomial time, in view
of the hardness result above.

Theorem 4.2. Assume that the vertices ofKc
n are covered by a strong treeT and a

set of properly edge-colored cycles, sayC1, C2 · · · , Ck all these components being
pairwise vertex-disjoint inKc

n. ThenKc
n has a strong spanning tree.
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The intermediate spanning tree problem is: Given two distinct spanning trees,
T andT ′, of a graphG, is there another spanning tree,T ′′, ofG such that the degree
of each vertex inT ′′ is between its degree inT and its degree inT ′? More precisely,
is there a spanning treeT ′′ of G such that for each vertexv of G, eitherdegT (v) ≤
degT ′′(v) ≤ degT ′(v) or degT ′(v) ≤ degT ′′(v) ≤ degT (v), wheredegH(v) denotes
the degree of vertexv in H? Such a treeT ′′ is called anintermediate treeof T and
T ′.

The intermediate spanning tree problem is NP-hard in general.

A theorem of Ken Berman [1] implies that ifT andT ′ are edge-disjoint and
don’t have the same degree at each vertex, then an intermediate treeT ′′ exists.
Cameron and Edmonds [2] gave an algorithm which finds the intermediate tree in
this case.

Generally, some pairs of spanning trees in a graph will have an intermediate
tree and others won’t. For example, in the cycleC4 on four vertices,v1, v2, v3, v4, v1,
there are four spanning trees, and each is a hamiltonian path: T1 from v1 to v4, T2

from v2 to v1, T3 from v3 to v2, andT4 from v4 to v3. TreesT1 andT3 haveT2 and
T4 as intermediate trees, butT1 andT2 have no intermediate tree.

We have characterized the graphs in which no pair of spanningtrees has an in-
termediate tree. One such graph is the complete graph on three vertices,K3, which
has three spanning trees, no two of which have an intermediate tree. However, as

? Research supported by the Natural Sciences and EngineeringResearch Council of
Canada.
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the following theorem shows,K3 is essentially the only graph where no pair of
spanning trees has an intermediate tree.

Theorem 1.LetG be a simple connected graph with at least 3 vertices. No
pair of spanning trees ofG has an intermediate tree if and only ifG consists ofK3

together with a tree rooted at each vertex of theK3.

We are interested in characterizing the graphs in which every pair of spanning
trees has an intermediate tree.

Theorem 2. In the following classes of graphs, every pair of spanning trees
has an intermediate tree:

• Complete graphsKn wheren ≥ 5
• Complete bipartite graphsKm,n wherem,n ≥ 4

Note that each ofK4 andK3,4 contains a pair of spanning trees that have no
intermediate tree.

In most cases, we can find an intermediate tree of a given pair of spanning trees
in graphG by adding at most one edge toG.
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1. Introduction

In recent years,branch-and-cutalgorithms have become firmly established
as the most effective method for solving generic mixed integer linear programs
(MIPs). Methods for automatically generating inequalities valid for the convex hull
of solutions to such MIPs are a critical element of branch-and-cut. This paper ex-
amines the nature of the so-calledseparation problem, which is that of generating
a valid inequality violated by a given real vector, usually arising as the solution
to a relaxation of the original problem. We show that the problem of generating
a maximally violated valid inequality often has a natural interpretation as abilevel
program. In some cases, this bilevel program can be easily reformulated as a single-
level mathematical program, yielding a standard mathematical programming for-
mulation for the separation problem. In other cases, no reformulation exists. We
illustrate the principle by considering the separation problem for two well-known
classes of valid inequalities.

Formally, we consider a MIP of the form

min{c>x | Ax ≥ b, x ≥ 0, x ∈ ZI ×RC}, (1.1)

whereA ∈ Qm×n, b ∈ Qm, c ∈ Qn, I is the set of indices of components that must
take integer values in any feasible solution andC consists of the indices of the
remaining components. We assume that other bound constraints on the variables (if
any) are included among the problem constraints.
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The continuousor linear programming(LP) relaxation of the above MIP is
the mathematical program obtained by dropping the integrality requirement on the
variables inI, namely

min
x∈P

c>x, (1.2)

whereP = {x ∈ Rn | Ax ≥ b, x ≥ 0} is the polyhedron described by the linear
constraints of the MIP (1.1). It is not difficult to see that the convex hull of the
set of feasible solutions to (1.1) is also a polyhedron. Thismeans that in principle,
any MIP is equivalent to a linear program over this implicitly defined polyhedron,
which we denote asPI .

A bilevel mixed integer linear program (BMIP) is a generalization of a standard
MIP used to model hierarchical decision processes. In a BMIP, the variables are
split into a set ofupper-level variables, denoted byx below, and a set oflower-
level variables, denoted byy below. Conceptually, the values of the upper-level
variables are fixed first, subject to the restrictions of a setof upper-level constraints,
after which the second-stage variables are fixed by solving aMIP parameterized on
the fixed values of the upper-level variables. The canonicalinteger bilevel MIP is
given by

min
{
c1x+ d1y | x ∈ PU ∩ (ZI1 × RC1),

y ∈ argmin{d2y | y ∈ PL(x) ∩ (ZI2 ×RC2)}
}
,

where
PU =

{
x ∈ Rn1 | A1x ≥ b1, x ≥ 0

}

is the polyhedron defining theupper-level feasible region;

PL(x) =
{
y ∈ Rn2 | G2y ≥ b2 − A2x, y ≥ 0

}

is the polyhedron defining thelower-level feasible regionwith respect to a given
x ∈ Rn1 ; A1 ∈ Qm1×n1 ; b1 ∈ Qm1 ; A2 ∈ Qm2×n1, G2 ∈ Qm2×n2 ; andb2 ∈ Qm2 .
The index setsI1, I2,C1, andC2 are the bilevel counterparts of the setsI andC de-
fined previously. For more detailed information, [5] provide an introduction to and
comprehensive survey of the bilevel programming literature, while [14] introduce
the discrete case. [9] provides a detailed bibliography.

A valid inequalityfor a set§ ⊆ Rn is a pair(α, β), whereα ∈ Rn is the
coefficient vectorandβ ∈ R is theright-hand side, such thatα>x ≥ β for all x ∈ §.
Associated with any valid inequality(α, β) is the half-space{x ∈ Rn | αx ≥ β},
which must contain§. It is easy to see that any inequality valid for§ is also valid
for the convex hull of§.

For a polyhedronQ ⊆ Rn, the so-calledseparation problemis to generate
a valid inequality violated by a given vector. Formally, we define the problem as
follows.
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Definition 1. The separation problemfor a polyhedronQ is to determine for a
given x̂ ∈ Rn whether or not̂x ∈ Q and if not, to produce an inequality(ᾱ, β̄) ∈
Rn+1 valid forQ and for whichᾱ>x̂ < β̄.

A closely associated problem that is more relevant in practice is themaximally
violated valid inequality problem(MVVIP), which is as follows.

Definition 2. Themaximally violated valid inequality problemfor a polyhedronQ
is to determine for a given̂x ∈ Rn whether or not̂x ∈ Q and if not, produce an in-
equality(ᾱ, β̄) ∈ Rn+1 valid forQ and for which(ᾱ, β̄) ∈ argmin(α,β)∈Rn+1{α>x̂−
β | α>x ≥ β ∀x ∈ Q}.

It is well-known that both the separation problem and the MVVIP for a polyhedron
Q are polynomially equivalent to the associated optimization problem, which is to
determineminx∈Q d

>x [12] for a givend ∈ Rn. In the present context, this means
it is unlikely that the MVVIP forPI can be solved easily unless the MIP itself can
be solved easily.

Because the general MVVIP is usually too difficult to solve, valid inequalities
are generated by solving (either exactly or approximately)the MVVIP for one or
more relaxations of the original problem. These relaxations often come from con-
sidering valid inequalities in a specificfamily or class, i.e., inequalities that share
a special structure. [1] called this paradigm for generation of valid inequalities the
template paradigm. Generally speaking, a class of valid inequalities for a given set
§ is simply a subset of all valid inequalities for§. Such subsets can be defined in
a number of ways and may be either finite or infinite. Associated with any given
classC is its closureFC, consisting of the region defined by the intersection of all
half-spaces associated with inequalities in the class. If the class is finite, then the
closure is a polyhedron. Otherwise, it may or may not be a polyhedron.

Let us consider a given class of valid inequalitiesC. Assuming the closureFC
is a polyhedron, both the separation problem and the MVVIP for C can be identified
with the previously defined separation problem and MVVIP forFC. A number of
authors have noted that the MVVIP for certain classes of valid inequalities can be
formulated as structured mathematical programs in their own right and solved using
standard optimization techniques (see, e.g., [2], [4] and [10]). We wish to show that
the underlying structure of the MVVIP is inherentlybilevel.

The bilevel nature of the MVVIP for a classC arises from the fact that for
a given coefficient vectorα ∈ Rn, the calculation of the right-hand sideβ re-
quired to ensure(α, β) is a member of the class (if such aβ exists) may itself be
an optimization problem that we refer to as theright-hand side generation prob-
lem (RHSGP). The complexity of the separation problem depends strongly on the
complexity of the RHSGP. In cases where the RHSGP is in the complexity class
NP-hard, it is generally not possible to formulate the separation problem as a tradi-
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tional mathematical program. In fact, such separation problems may not even be in
the complexity classNP. Roughly speaking, the reason for this is that the problem
of determining whether a given inequality is valid is then itself a hard problem.

Putting these question aside for now, however, let us simplydefine the set
Cα ⊆ Rn to be the projection ofC into the space of coefficient vectors. In other
words,Cα is the set of all vectors that are coefficients for some valid inequality
in C. Then the MVVIP forC with respect to a given̂x ∈ Rn can in principle be
formulated mathematically as

min α>x̂− β (1.3)
α ∈ Cα (1.4)

β = minα>x (1.5)
x ∈ FC. (1.6)

The problem (1.3)–(1.6) is a bilevel program in which theupper-level objective(1.3)
is to find the maximally violated inequality in the class. Theupper-level con-
straints (1.4) require that the inequality is a member of theclass. The lower-level
problem (1.5)–(1.6) is to generate the strongest possible right-hand side associated
with a given coefficient vector.

It is easy to see that the above separation problem may be verydifficult to
solve in some cases. In fact, the complexity depends strongly on the complexity
of the RHSGP and whether the sense of the optimization “agrees” with that of the
MVVIP itself. Most of the separation algorithms appearing in the literature define
the setFC in such a way that the bilevel program (1.3)–(1.6) collapsesinto a single-
level program, generally linear or mixed integer linear.

In the remainder of the paper, we describe two well-known classes of valid in-
equalities and give a bilevel interpretation of their associated separation problems.
In Section 2, we consider the well-known class ofdisjunctive valid inequalitiesfor
general MIPs. For such a class, we show that it is quite straightforward to con-
vert the BMIP (1.3)–(1.6) into a single-level mathematicalprogram, though the
MVVIP might nevertheless remain difficult from a practical standpoint. In Section
3, we focus on the so-calledcapacity constraintsfor the classicalCapacitated Ve-
hicle Routing Problem(CVRP). There are several closely-related variants of this
class of valid inequalities and we show that for the strongest of these, there is no
straightforward way to convert the BMIP into a single-levelprogram. That is the
main contribution of the present paper, and to the best of ourknowledge, it is a new
result. Finally, some conclusions are drawn in Section 4.
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2. Disjunctive Valid Inequalities for general MIPs

Given a MIP in the form (1.1), [2] showed how to derive a valid inequality by
exploiting any disjunction of the form

π>x ≤ π0 OR π>x ≥ π0 + 1 ∀x ∈ Rn, (2.7)

whereπ ∈ ZI × 0C andπ0 ∈ Z. More precisely, the family of disjunctive inequal-
ities (also calledsplit cuts) are all those valid for the union of the two polyhedra,
denoted byP1 andP2, obtained fromP by adding inequalities(−π,−π0) and
(π, π0 + 1), respectively.

For a given disjunction of the form (2.7), the separation problem for the asso-
ciated family of disjunctive inequalities with respect to agiven vectorx̂ ∈ P can
be written as a the following bilevel LP:

min α>x̂− β (2.8)
αj ≥ u>Aj − uoπj j ∈ I ∪ U (2.9)
αj ≥ v>Aj + voπj j ∈ I ∪ U (2.10)
u, v, u0, v0 ≥ 0 (2.11)
u0 + v0 = 1 (2.12)
β = minα>x (2.13)

x ∈ P1 ∪ P2. (2.14)

Constraints (2.9) and (2.10) together with the non-negativity requirements on the
dual multipliers (2.11) ensure the coefficients constitutethose of a disjunctive in-
equality. (Constraint (2.12) is one of the possible normalizations to make the math-
ematical program above bounded, see, e.g., [11].) Once the coefficient vector and
the corresponding dual multipliers are known, the RHSGP is easy to solve. To ob-
tain a valid inequality, one has only to setβ to min{u>b−u0π0, v

>b+v0(π0 +1)},
which is the smallest of the right-hand sides obtained by thesets of multipliers
(u, u0) and(v, v0) corresponding to the constraints ofP1 andP2, respectively. It
is easy to reformulate the bilevel LP above into the following (single level) linear
program by a well-known modeling trick:

min α>x̂− β (2.15)
αj ≥ u>Aj − uoπj j ∈ I ∪ U
αj ≥ v>Aj + voπj j ∈ I ∪ U
β ≤ u>b− u0π0 (2.16)
β ≤ v>b+ v0(π0 + 1) (2.17)
u0 + v0 = 1

u, v, u0, v0 ≥ 0.
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Indeed, note that for given values of the remaining variables, any value of
β satisfying the two inequalities (2.16) and (2.17) above yields a valid disjunc-
tive constraint. Furthermore, these two inequalities ensure thatβ ≤ min{u>b −
u0π0, v

>b+v0(π0 +1)}, while the objective function (2.15) ensures that the largest
possible value ofβ is indeed selected, i.e.,β = min{u>b−u0π0, v

>b+v0(π0+1)}.
In other words, the objective function (2.15) gives for freethe best value of the
right-hand side, thus finding the strongest cut.

If the disjunction is not given a priori, i.e., one is searching among the set
of possible disjunctions for the one yielding the most violated constraint, the above
program can still be used, butπ andπ0 become integer variables. The same trick can
be applied to transform the bilevel separation problem intoa single-level one, but
the problem remains difficult because (i) some of the constraints contain bilinear
terms, and (ii) the program involves the integer variablesπ andπ0. The solution of
such a formulation has been addressed by [3] and [8].

3. Capacity Constraints for the CVRP

Here, we consider the classicalCapacitated Vehicle Routing Problem(CVRP),
as introduced by [7], in which a quantitydi of a single commodity is to be delivered
to each customeri ∈ N = {1, . . . , n} from a central depot{0} using a homoge-
neous fleet ofk vehicles, each with capacityK. The objective is to minimize total
cost, withcij ≥ 0 denoting the fixed cost of transportation from locationi to loca-
tion j, for 0 ≤ i, j ≤ n. The costs are assumed to besymmetric, i.e.,cij = cji and
cii = 0.

This problem is naturally associated with the complete undirected graph con-
sisting of nodesN ∪ {0}, edge setE = N ×N , and edge costscij, {i, j} ∈ E. In
this graph, a solution is the union ofk cycles whose only intersection is the depot
node and whose union covers all customers. By associating aninteger variable with
each edge in the graph, we obtain the following integer programming formulation:

min
∑

e∈E
cexe

∑

e={0,j}∈E
xe = 2k (3.18)

∑

e={i,j}∈E
xe = 2 ∀i ∈ N (3.19)

∑

e={i,j}∈E
i∈S,j 6∈S

xe ≥ 2b(S) ∀S ⊂ N, |S| > 1 (3.20)

0 ≤ xe ≤ 1 ∀e = {i, j} ∈ E, i, j 6= 0 (3.21)
0 ≤ xe ≤ 2 ∀e = {0, j} ∈ E (3.22)

xe integral ∀e ∈ E. (3.23)
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Constraints (3.18) and (3.19) are thedegree constraints. In constraints (3.20), re-
ferred to as thecapacity constraints, b(S) is any of several lower bounds on the
number of trucks required to service the customers in setS. These constraints can
be viewed as a generalization of the subtour elimination constraints from theTrav-
eling Salesman Problemand serve both to enforce the connectivity of the solution
and to ensure that no route has total demand exceeding the capacityK. The easily
calculated lower bound

∑
i∈S di/K on the number of trucks is enough to ensure the

formulation (3.18)–(3.23) is correct, but increasing thisbound through the solution
of a more sophisticated RHSGP will yield a stronger version of the constraints.

The MVVIP for capacity constraints with a generic lower bound b(S) can be
formulated as a BMIP of the form (1.3)–(1.6) as follows. Because we are looking
for a setS̄ ⊂ N for which an inequality (3.20) is maximally violated, we define the
binary variables

yi =





1 if customeri belong toS̄

0 otherwise
i ∈ N, (3.24)

and

ze =





1 if edgee belong toδ(S̄)

0 otherwise
e ∈ E, (3.25)

whereδ(S̄) denotes the set of edges inE with one endpoint in̄S, to model selection
of the members of the set̄S and the coefficients of the corresponding inequality.
Thus, the formulation is

min
∑

e∈E
x̂eze − 2b(S̄) (3.26)

ze ≥ yi − yj ∀e = {i, j} (3.27)
ze ≥ yj − yi ∀e = {i, j} (3.28)
max b(S̄) (3.29)

b(S̄) is a valid lower bound. (3.30)

For improved tractability, the RHSGP (3.29)–(3.30) can be replaced by the calcu-
lation of a specific bound. One of the strongest possible lower bounds is obtained
by solving to optimality the (stronglyNP-hard)Bin Packing Problem(BPP) with
the customer demands in setS̄ being packed into the minimum number of bins of
sizeK ([6] describe a further strengthening of the right-hand side, but we we do
not consider this bound here). The RHSGP based on the BPP can be modeled by
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using the binary variables

w`i =






1 if customeri is served by vehiclè

0 otherwise
(i ∈ N, ` = 1, . . . , k), (3.31)

and

h` =






1 if vehicle ` is used

0 otherwise
(` = 1, . . . , k). (3.32)

Then the full separation problem reads as follows:

min
∑

e∈E
x̂eze − 2b(S̄) (3.33)

ze ≥ yi − yj ∀e = {i, j} (3.34)
ze ≥ yj − yi ∀e = {i, j} (3.35)

b(S̄) = min
n∑

`=1

h` (3.36)

n∑

`=1

w`i = yi ∀i ∈ N (3.37)

∑

i∈N
diw

`
i ≤ Kh` ` = 1, . . . , n, (3.38)

where of course all variablesy, z, w andh are binary.

It is clear that the BMIP (3.33)–(3.38) cannot be straightforwardly reduced
to a single-level program because the sense of the optimization of the RHSGP is
opposed to that of the MVVIP. In other words, because of the upper-level objective
function (3.33), the absence of the lower-level objective would result in a BPP
solution using the largest number of bins instead of the smallest.

We can simplify the RHSGP by relaxing the integrality requirement onw and
h to obtain

b(S̄) = min
n∑

`=1

h` (3.39)

n∑

`=1

w`i = yi ∀i ∈ N (3.40)

∑

i∈N
diw

`
i ≤ Kh` ` = 1, . . . , n (3.41)

w`i ∈ [0, 1], h` ∈ [0, 1] i ∈ N, ` = 1, . . . , n, (3.42)

which is also a lower bound for the BPP. In this case, the RHSGPcan be solved in

132



closed form, with an optimal solution being

b(S̄) =

∑
i∈S̄ di
K

=

∑
i∈N diyi
K

. (3.43)

Hence, the MVVIP reduces to a single-level MIP that can in turn be solved in
polynomial time by transforming it into a network flow problem as proven by [13].

An intermediate valid lower bound is obtained by rounding the bound (3.43),

i.e., usingb(S) =
⌈∑

i∈N
diyi

K

⌉
. Although such rounding can be done after the fact,

relaxing the integrality onw, but noth, i.e., replacing conditions (3.42) by

w`i ∈ [0, 1], h` ∈ {0, 1} i ∈ N, ` = 1, . . . , n,

results in reduction of the MVVIP to the single-level MIP

min
∑

e∈E
x̂eze − 2b

ze ≥ yi − yj ∀e = {i, j}
ze ≥ yj − yi ∀e = {i, j}

b ≥
∑
i∈N diyi
K

b integral

yi ∈ {0, 1}, ze ∈ {0, 1} ∀i ∈ N, ∀e ∈ E,

which was shown by [6] to beNP-hard.

4. Conclusions

We have presented a conceptual framework for the formulation of general sep-
aration problems as bilevel programs. This framework reflects the inherent bilevel
nature of the separation problem arising from the fact that calculation of a valid
right-hand side for a given coefficient vector is itself an optimization problem. In
cases where this optimization problem is difficult in a complexity sense, it is gener-
ally not possible to formulate the separation problem as a traditional mathematical
program. We conjecture that the MVVIP for most classes of valid inequalities can
be thought of as having this hierarchical structure, but that certain of them can
nonetheless be reformulated effectively. This is either because the RHSGP is easy
to solve or because it goes “in the right direction” with respect to the MVVIP it-
self. We believe that the paradigm presented here may be useful for the analysis of
other intractable classes of valid inequalities. In a future study, we plan to further
formalize the conceptual framework presented here with a further investigation of
the complexity issues, additional examples of this phenomena, and an assessment
whether these ideas may be useful from a computational perspective.
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[6] G. Cornuéjols and F. Harche. Polyhedral Study of the Capacitated Vehicle
Routing Problem.Mathematical Programming, 60:21–52, 1993.

[7] G. B. Dantzig and R. H. Ramser. The Truck Dispatching Problem. Manage-
ment Science, 6:80–91, 1959.
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Stochastic programming models are derived from random optimization prob-
lems with information constraints. For instance, we may start out from the random
mixed-integer linear program

min{c>x+ q>y + q′>y′ : Tx+Wy +W ′y′ = z(ω),

x ∈ X, y ∈ Zm̄
+ , y

′ ∈ Rm′

+ }, (0.1)

together with the information constraint thatxmust be selected without anticipation
of z(ω). This leads to a two-stage scheme of alternating decision and observation:
The decision onx is followed by observingz(ω) and then(y, y′) is taken, thus
depending onx andz(ω). Accordingly,x and(y, y′) are called first- and second-
stage decisions, respectively.

Assume that the ingredients of (0.1) have conformable dimensions, thatW,W ′

are rational matrices, and thatX ⊆ Rm is a nonempty polyhedron, possibly involv-
ing integer requirements to components ofx.

The mentioned two-stage dynamics becomes explicit by the following refor-
mulation of (0.1)

min
x
{c>x + Φ(z(ω)− Tx) : x ∈ X}

where

Φ(t) := min{q>y + q′>y′ : Wy +W ′y′ = t, y ∈ Zm̄
+ , y

′ ∈ Rm′

+ }. (0.2)
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In this way, the random optimization problem (0.1) gives rise to the family of ran-
dom variables

(
c>x+ Φ(z(ω)− Tx)

)

x∈X
. (0.3)

Two principal alternatives arise at this point. Either the aim is to find “a best” el-
ement in this family of random variables or the aim is to single out “acceptable”
elements and optimize some objective function over the feasible set arising.

Traditional stochastic programming, see for instance [4],followed the first al-
ternative by judging the quality of the random variables in (0.3) according to their
expectations

QE(x) := Eω

[
c>x+ Φ(z(ω)− Tx)

]
.

leading to the optimization problem

min{QE(x) : x ∈ X}.

This model, however, is risk neutral. Introducing risk aversion into the first alterna-
tive of handling (0.3) leads to mean-risk models

min{QMR(x) : x ∈ X}

where

QMR(x) := (E + ρ · R)
[
c>x+ Φ(z − Tx)

]
= QE(x) + ρ ·QR(x)

with some fixedρ > 0. HereR denotes a statistical parameter reflecting risk (risk
measure). For a possible specification see for instance [5].

Partial orders of random variables provide a possibility toformalize the sec-
ond alternative of handling (0.3). A (real-valued) random variableX is said to
be stochastically smaller in first order than a random variable Y (X �1 Y) iff
Eh(X) ≤ Eh(Y) for all nondecreasing functionsh for which both expectations
exist. X is said to be stochastically smaller thanY in increasing convex order
(X �icx Y) iff Eh(X) ≤ Eh(Y) for all nondecreasing convex functionsh for which
both expectations exist.

Equivalent formulations read as follows (see,e.g., [3]):

X �1 Y iff P[{ω : X(ω) ≤ η}] ≥ P[{ω : Y(ω) ≤ η}] ∀η ∈ R (0.4)

and

X �icx Y iff Eω[X(ω)− η]+ ≤ Eω[Y(ω)− η]+ ∀η ∈ R (0.5)
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with [.]+ denoting the non-negative part.

With a prescribed reference random variabled(ω), “acceptance” of a random
variablef(x, ω) := c>x+ Φ(z(ω)− Tx) can be formalized as

f(x, ω) �ι d(ω), with eitherι = 1 or ι = icx.

This means that only thosex ∈ X are acceptable whose associated cost profile
f(x, ω), in a stochastic sense, is not worse than the prescribed (critical) random
profile d(ω). With an objective functiong : Rm → R this leads to the following
stochastic optimization problem with dominance constraints

min{g(x) : f(x, ω) �ι d(ω), x ∈ X}, ι = 1, icx. (0.6)

Stochastic optimization problems with dominance constraints involving general
random variables were pioneered in [1; 2], with first resultson structure, stability,
and algorithms for (0.6) if general random variables replace f(x, ω). The random
variablesf(x, ω) are more specific, since essentially given by the mixed-integer
value function in (0.2). Nevertheless, the results from [1;2] are not applicable here
sinceΦ in (0.2) fails to be smooth, let alone linear, and often even turns out discon-
tinuous.

The talk will address the following:

- (departing from (0.4) and (0.5)) equivalent mixed-integer linear programming
formulations for (0.6) if the probability distributions ofz andd are discrete
with finitely many realizations,

- branch-and-bound based decomposition algorithms for solving these mixed-
integer linear programs,

- cutting plane based decomposition algorithms if there areno integer variables
in the second stage.
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1. Introduction

The knapsack problem is a widely studied combinatorial optimization prob-
lem. Special interest arises from the numerous real life applications for example in
logistics and scheduling. The basic problem consists in choosing a subset out of a
given set of items such that the total weight (or size) of the subset does not exceed
a given limit (the capacity of the knapsack) and the total benefit of the subset is
maximized.
However, most real life problems are non-deterministic in the sense that some of
the parameters are not known in the moment when the decision has to be made. We
will study the case where the item weights are random. This case entail the problem
that we cannot be sure that the total weight of the items chosen in advance (i.e. be-
fore the revealing of the actual weights) will respect the capacity. Depending on the
situation given, the resulting stochastic problem can be modeled in two different
ways: Either using a single stage problem which means that the final decision has
to be made before the random parameters are revealed ([3], [2]); or by a two- or
multi-stage problem that allows later corrections of the decision made in the first
stage ([2]).
In this paper, we discuss a two-stage stochastic knapsack problem (see section
2) and we assume the item weights to be independently distributed following a
(known) normal distribution. The first aim of this paper is toshow how to obtain
upper bounds on the overall problem or on subproblems (i.e. with some of the first
stage variables already fixed). The second aim is to compute high probable lower
bounds on the overall problem, given a first stage decision. These upper and lower
bounds could afterwards be used in a branch-and-bound framework such as pre-
sented in [1] or [3] in order to search the solution space of the first stage variables
for good lower bounds on the overall problem.
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2. Mathematical formulation

We consider a stochastic knapsack problem of the following form: Given a
knapsack with fixed weight capacityc > 0 as well as a set ofn items. Each item
has a weight that is not known in the first stage and that comes to be known be-
fore the second stage decision has to be made. We handle the weights as random
variables and assume that weightχi of item i is independently normally distributed
with meanµi > 0 and standard deviationσi. Furthermore, each item has a fix re-
ward per weight unitri > 0.
In the first stage, items can be put in the knapsack (first stageitems) and we as-
sume that, in case of an overload, these items can be removed in the second stage.
However, removing items entails a penalty that is proportional to the total weight
of the removed items. We restrict the percentage of cases where the first stage items
lead to an overload by introducing a probabilistic constraint in the first stage. In the
second stage, the weights of all items are revealed and the aim is to minimize the
total penalty.

(TSKP ) max
x∈{0,1}n

E [
∑n
i=1 riχixi]− d · E [Q(x, χ)]

s.t. P{∑n
i=1 χixi ≤ c} ≥ p (2.1)

Q(x, χ) = miny∈{0,1}n

∑n
i=1 χiyi, (2.2)

s.t. yk ≤ xk, k = 1, . . . , n. (2.3)
∑n
i=1(xi − yi)χi ≤ c, (2.4)

whereP{A} denotes the probability of an eventA, E [·] the expectation,d > 1 and
p ∈ (0.5, 1].

3. Computing upper and lower bounds

3.0.0.1 Upper bounds: Given a first stage solutioñx, the expectation of the
second stage solution can be bounded (from below) by

E[Q(x̃, χ)] ≥ E

[
[
n∑

i=1

x̃iχi − c]+
]

The right hand side of the inequality equals the expectationof the optimal solution
of the second stage problem in case of continuous second stage variables. For nor-
mally distributed weights, it has a deterministic equivalent closed form ([1],[3]).
An upper bound on the optimal solution of theTSKP (2.1) is thus given by the
optimal solution of the following simple recourse problem:

(SRKP ) max
x∈{0,1}n

E [
∑n
i=1 riχixi]− d · E [[

∑
xiχi − c]+]
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s.t. P{∑n
i=1 χixi ≤ c} ≥ p (3.5)

(3.6)

This problem can be solved by the method presented in [3].

3.0.0.2 Lower bounds: If we are not able to solve the second stage problem to
optimality (given a first stage decision), we need good lowerbounds on the overall
problem (i.e. good upper bounds on the second stage problem)to be able to exclude
subtrees in a branch-and-bound framework.
Given a first stage solutioñx, the expectation of the optimal second stage solution
E[Q(x̃, χ)] can be written

E[Q(x̃, χ)] = E

[
[
n∑

i=1

x̃iχi − c]+
]

+ E

[
∑

i∈S
y∗i χi − [

n∑

i=1

x̃iχi − c]+
]

wherey∗ = y∗(x̃) is a corresponding optimal second stage decision andS ⊆
{1, . . . , n} such thati ∈ S if and only if x̃i = 1.

∑
i∈S y

∗
i χi − [

∑n
i=1 x̃iχi − c]+ is

the amount of weight we remove from the knapsack in addition to the overweight.
This amount can be bounded independently of the second stagesolutiony∗ as in
the worst case the knapsack weight might fallmaxi∈S χ̂i− ε under the capacity due
to the removal of items in the second stage (whereε > 0 and, for alli = 1, . . . , n,
χ̂i is the actual outcome of random variableχi). As items have to be removed in at
most 1−p

100
percent of all cases, we get the following lemma:

Lemma 3.1. E

[
∑

i∈S
y∗iχi − [

n∑

i=1

x̃iχi − c]+
]
< (1− p) · E[max

i∈S
χi]

Lemma 3.2. If the probability for any item to have twice the size of another item
is at mostπ, it follows

E

[
∑

i∈S
y∗i χi − [

n∑

i=1

x̃iχi − c]+
]
< (1− p)

(
(1− π) · E

[
min
i∈S

χ̂i

]
+ π ·E

[
max
i∈S

χi

])

In the case of normally distributed weights, neitherE [maxi∈S χi] norE [mini∈S χi]
are easily computable. Let us define the random variablesχSmax := maxi∈S χi and
χSmin := mini∈S χi. Let Φi be the cumulative distribution function ofχi, andΦS

max

and ΦS
min the cumulative distribution functions ofχSmax andχSmin, respectively.

Then one can easily show thatΦS
max =

∏
i∈S Φi andΦS

min = 1−∏i∈S(1− Φi).
Furthermore, if there exists aβ < ∞ such thatP{maxi∈S χi ∈ (−∞, β]} = 1
(resp.P{mini∈S χi ∈ (−∞, β]} = 1), we can boundE [maxi∈S χi] (resp.E [mini∈S χi])
by splitting the interval(−∞, β] in K disjunct intervals (K scenarios)(αk, βk],
k = 1, . . . , K, and it follows

E [maxi∈S χi] ≤
∑K
k=1 βkP{maxi∈S χi ∈ (αk, βk]} =

∑K
k=1 βk(Φ

S
max(βk)− ΦS

max(αk))
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E [mini∈S χi] ≤
∑K
k=1 βkP{mini∈S χi ∈ (αk, βk]} =

∑K
k=1 βk(Φ

S
min(βk)− ΦS

min(αk))

Of course, in the case of normally distributed weights no suchβ exists. However, as
for everyε there exists aβ such thatP{∃i ∈ S|χi ≥ β} < ε, we can approximate
the upper bound by definingβ in such a way thatP{∃i ∈ S|χi ≥ β} is (sufficient)
small.

Proposition 3.3. Let β such thatP{∃i ∈ S|χi > β} = 0 and define(αk, βk]
(k = 1, . . . , K) such that(−∞, β] = ∪Kk=1(αk, βk]. Let the probability for any item
to have twice the size of another item be at mostπ. Then, given a first stage solution
x̃, the following lower bound on theTSKP (2.1) hold:

E

[
n∑

i=1

riχix̃i

]
− d · E [Q(x̃, χ)] >

n∑

i=1

riµix̃i − d · E
[
[
n∑

i=1

x̃iχi − c]+
]

+(1− p)

(1− π) ·

(
K∑

k=1

βk

(
∏

i∈S
(1− Φi(αk))−

∏

i∈S
(1− Φi(βk))

))

+π · βk(
∏

i∈S
Φi(βk)−

∏

i∈S
Φi(αk))




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1. Extended abstract

In this paper we consider the Mixed Integer Linear Program instandard form:

min c>x

Ax = b

x ≥ 0

∀j ∈ NI xj ∈ Z,






P (1.1)

wherec ∈ Rn, b ∈ Rm, A ∈ Rm×n andNI ⊂ N = {1, . . . , n}. The LP relax-
ation of (1.1) is the linear program obtained by dropping theintegrality constraints,
and is denoted bȳP . The Branch-and-Bound algorithm makes an implicit use of
the concept of disjunctions [1]: whenever the solution of the current relaxation is
fractional, we divide the current problemP into two subproblemsP1 andP2 such
that the union of the feasible regions ofP1 andP2 contains all feasible solutions to
P. Usually, this is done by choosing a fractional componentx̄i (for somei ∈ NI)
of the optimal solution̄x to the relaxationP̄, and adding the constraintsxi ≤ bx̄ic
andxi ≥ dx̄ie toP1 andP2 respectively.

Within this paper, we take the more general approach wherebybranching can
occur with respect to a directionπ ∈ Rn by adding the constraintsπx ≤ β0,
πx ≥ β1 with β0 < β1 to P1 andP2 respectively, as long as no integer feasible
point is cut off. Karamanov and Cornuéjols [2] proposed using disjunctions arising

CTW09,École Polytechnique & CNAM, Paris, France. June 2–4, 2009



from Gomory Mixed-Integer Cuts generated directly from therows of the optimal
tableau. We consider split disjunctions arising from Gomory Mixed-Integer Cuts
generated from linear combinations of the rows of the simplex tableau; by comput-
ing combinations that yield a stronger intersection cut, wegenerate split disjunc-
tions that cut deeply into the feasible region, thereby reducing the total number of
nodes in the enumeration tree. By combining branching on simple disjunctions and
on general disjunctions, we obtain an improvement over traditional branching rules
on the majority of the test instances.
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1. Introduction

There is a wide range of graph theoretical questions that is aspecial case of the
following very general question:LetΠ be a graph property so that ifH ∈ Π andH
is a subgraph ofG thenG ∈ Π. (i. e. being non-Π is a hereditary graph property.)
What is the minimum number of edges in a graphG ∈ Π onn vertices if removing
anyk edges or vertices from the graph still preservesΠ?

A few examples:

• What is the minimum number of edges in ak-connected ork-edge connected
graph?

• What is the miminum number of edges in hypo-hamiltonian graph?
• What is the mininum number of edges in graph that is still Hamiltonian after

removingk edges (or vertices)? [2]

In the present paper we will concentrate on the problem whereΠ is the property
thetG contains a given fixed subgraphH. We only consider simple, undirected
graphs.

1 Research partially supported by the Hungarian National Research Fund and by the Na-
tional Office for Research and Technology (Grant Number OTKA67651)
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Definition 1. (Stability) Let H be a fixed graph. If the graphG has the property
that removing anyk edges ofG, the resulting graph still contains (not necessarily
spans!) a subgraph isomorphic withH, then we say thatG is k-stable.

By S(n, k) we denote the minimum number of edges in ak-stable graph onn
vertices, and byS(k) the minimum number of edges in anyk-stable graph (that is,
S(k) = minn S(n, k)).

For clarity, we do not includeH in the notation, instead just keep in mind
that a graphH is always fixed. We regard calculating the value ofS(k) a separate
question for eachH.

Note that ifn is fixed, thenS(n, k) is decreasing ink, because if there is a
k-stable graph onn vertices, one can add isolated vertices to getk-stable graphs on
n + 1, n + 2, . . . vertices. This implies that for any fixedk, S(n, k) = S(k) if n
is large enough. In the present paper, we settle this question for severalH graphs.
Our main concern isH = P4 (the path of 3 edges on 4 distinct vertices), but other
graphs are of interest in their own right.

If H = P2 (that is, a single edge containing 2 vertices), then naturally S(k) =
k + 1 and any graph withk + 1-edges isk-stable. We can state a general remark.

Remark 1. If H is fixed, thenS(k) ≥ k + |V (H)|.

Proposition 1.

(a) If H = P3, thenS(k) = k + |V (H)| = k + 3.
(b) If H is the graph on 4 vertices with two nonadjacent edges, thenS(k) = k +
|V (H)| = k + 4.

A general upper bound for the value ofS(k) holds too.

Proposition 2. For any fixedH, S(k) ≤ (|V (H)|+ 3)k if k is large enough.

The main morale of these propositions is that for any choice of H, S(k) is
of a linear order. Of course, identifying the exactS(k) functions is a completely
different matter.

From now on, we fixH = P4.

The question ofP4 was raised in [1] during the examination of Hamiltonian
chains in hypergraphs. The authors calculated the value ofS(k) for k ≤ 8 and
posed a conjecture for largerk’s ([1], Conjecture 13). In the present paper we prove
this conjecture.
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2. Main result

Our main result is the following:

Theorem 1. S(1) = 4, and ifk ≥ 2, thenS(k) = k +
⌈√

2k + 9
4

+ 3
2

⌉
.

Although it is written in an explicit form above, the following alternative defi-
nition may be easier to understand and just as useful.

Proposition 3. The above formula forS(k) is equivalent with the following:S(1) =
4, S(2) = 6, and ifk ≥ 3, then

S(k) =






S(k − 1) + 2 if k =
(
l
2

)
for somel

S(k − 1) + 1 otherwise.

Now let us take a look at the graphs containing noP4.

Proposition 4. If the graphG contains noP4 as a subgraph, then all of its compo-
nents are triangles and stars.

Proposition 5. If G hase edges onn vertices, thenG is k-stable⇐⇒ G cannot
be covered byk + n− e stars and any number of triangles.

In order to prove Theorem 1, we use the following theorem.

Theorem 2. Let G be a graph withe ≥ 5 edges. Ife ≥
(
l−1
2

)
+ 1, then there are

l − 1 edges of the graph which contain noP4 as a subgraph.

The extremal graphs are shown fork = 1, . . . , 12 on Figure 1.
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Fig. 1. A display of the values ofS(k) and the minimalk-stable graphs for smallerk’s. The
values ofk whereS(k) jumps 2 are marked. Note that the examples are almost-Kn graphs
except where3|n.
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1. Preliminaries and notation

Packingandcoveringgames defined by0, 1 matrices were introduced in [1] as
particular classes of combinatorial optimization games. The authors left open for
both cases the problem of characterizing matrices definingtotally balancedgames,
that is, games for which every induced subgame is balanced.

Van Velzen [4] showed that the only matrices defining totallybalanced cov-
ering games are clique-node matrices of perfect graphs, proving that they may be
recognized in polynomial time. In contrast, a complete characterization of matrices
defining totally balanced packing games remains open.

Given a0, 1 matrixA with column setM , G(A) denotes theassociated graph
of A, that is, the graph with vertex setM and where two vertices are adjacent if
there is a row inA with two 1’s in their corresponding positions.

In Escalante et al. [2] it is proved that given a matrixA, theedge-perfectionof
G(A) gives a sufficient condition forA to define a totally balanced packing game.
In caseA has exactly two ones per row, this condition is also sufficient. The authors
left open the problem of characterizing edge-perfect graphs.

In this work we give two characterizations of edge-perfect graphs, present
some known classes of graphs in which the edge-perfection recognition is poly-

1 Partially supported by grants of ANPCyT-PICT2005 38036 andCONICET PIP 5810.
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nomial and derive sufficient conditions for a graph in order to be polynomially
edge-perfect recognized.

Throughout this work, graphs are simple and connected. Mostnotation and
conventions are similar to those in [5].

LetG = (V (G), E(G)) be a graph. Forv ∈ V (G), NG(v) denotes the neigh-
borhood ofv in G anddG(v) = |NG(v)|, the degree ofv. A vertexv ∈ V (G) is
a pendantif dG(v) = 1. Verticesv andw are twins, if NG(v) = NG(w). We call
two-twin pair, a pair of twins inG of degree exactly two.

Fig. 1. A scheme of graphs with a two-twin pair:{v,w}.

GivenT ⊆ V (G), G \ T denotes theinducedsubgraph ofG by the vertices
in V (G) \ T , that is, the subgraph obtained by the deletion of the elements in T .
Following the terminology introduced in [2],G′ = G \ T with T ⊆ V (G) is an
edge-subgraphif T is the union of the endpoints of the edges in some subset of
E(G).

Denoting byα(G) andρ(G) the stability andedge-coveringnumbers ofG,
respectively, it is known thatα(G) ≤ ρ(G). When the equality holds,G is called
edge-good. Besides,G is edge-perfectif G′ is edge-good, for every edge-subgraph
of G. From Knig’s edge cover theorem [3], bipartite graphs are edge-good. Hence,
we have that bipartite graphs are edge-perfect.

2. Characterizations of edge-perfect graphs

Let us first characterize those induced subgraphs ofGwhich are edge-subgraphs.

Proposition 2.1. LetG be a graph andG′ = G \ T with T ⊆ V (G) . Then,G′ is
an edge-subgraph ofG if and only if for all v ∈ T ,NG(v) ∩ T 6= ∅.

Given an induced subgraphG′ = G \ T of G, we will say that a vertexv is a
saviorof G′ if v ∈ T andNG(v) ∩ T = ∅, or equivalently,NG(v) ⊆ V (G′).

The following simple result will become a fundamental property on the way of
finding a characterization of edge-perfect graphs.
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Lemma 2.2. LetG be an edge-perfect graph andG′ a edge-subgraph ofG which
is not edge-good. Then there exists a savior ofG′.

We state a first characterization for edge-perfect graphs, whose proof is based
on lemma 2.2 together with some technical results, the most relevant listed below.

Theorem 2.3. A graphG is edge-perfect if and only if for every odd chordless
cycleC of G, C has a pendant savior, or there exists a two-twin pair{v, w} with
NG(v) = NG(w) ⊆ V (C).

The proof makes use of the following results:

(i) Let v ∈ V (G) be a pendant vertex. IfNG(v) = {w} andG′ = G \ {v, w},
thenG is edge-good if and only ifG′ is edge-good.

(ii) If {v, w} is a two-twin pair ofG with NG(v) = NG(w) = {s, t}, it holds:
• G is edge-good if and only ifG′ = G \ {v, w, s, t} is edge-good.
• Let u ∈ V (G) with u 6= v such that{u, w} is a two-twin pair ofG. Then,
G is edge-perfect if and only ifG \ {w} is edge-perfect.

(iii) If G is an edge-perfect graph, then every triangle induced subgraphT of G
has a pendant savior, or one of its edges is the diagonal of a kite like the one
induced by{v, s, w, t} in the first picture of figure 1.

The condition given by the theorem above does not seem to be easy to check for
an arbitrary non bipartite graph. This motivates us to analyze further the structure
of certain edge-subgraphs of a given graph.

Given a graphG, let us denote by{w1
j , w

2
j} for j = 1, · · · , k, all pairs of two-

twins and by{zj} for j = 1, · · · , h, all pendant vertices ofG. Also, denote by
Pj = NG(w1

j ) = NG(w2
j ), for j = 1, · · · , k, {rj} = NG(zj), for j = 1, · · · , h,

W =
⋃k
j=1{w1

j , w
2
j}, Z =

⋃h
j=1{zj}, P =

⋃k
j=1 Pj andR =

⋃h
j=1{rj}.

Consider the edge-subgraphG∅ = G \ (W ∪ P ∪ Z ∪ R) and, forK ⊆ P
denote byGK , the subgraph induced by the vertices inV (G∅) ∪K.

We may state another characterization for edge-perfect graphs:

Theorem 2.4.G is edge-perfect if and only ifGK is bipartite, for allK ⊆ P with
|K ∩ Pj| ≤ 1, for all j = 1, . . . , k.

3. Polynomial instances

Since the edge-perfection of a graph with at most four vertices is easily veri-
fied, we consider graphs with at least five vertices.
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Although checking the condition in each of the characterizations given by the-
orems 2.3 and 2.4 could be exponential, we study some families of graphs for which
this task becomes polynomial. Clearly we have the following:

Lemma 3.1. If G has no two-twin pair, thenG is edge-perfect if and only ifG∅ is
bipartite.

From this result it is clear that, for every graph with minimum degree at least
three, we can decide in polynomial time if it is edge-perfector not. Moreover, we
can derive the polinomiality of the edge-perfection recognition problem on some
known classes of graphs. For example,quasi-linegraphs andouterplanargraphs.

On the other hand and based on the result in theorem 2.3, families of graphs
with a polynomial number of odd chordless cycles also define instances where the
edge-perfection recognition problem is polynomial. For example, the well-known
class of perfect graphs.

Finally, some other polynomial instances may be derived from certain connec-
tivity conditions.

Theorem 3.2. Let G be a graph such that for everyv ∈ P with dG(v) ≥ 4,
NG{v}(v)∩V (G∅) 6= ∅. If there existsK ⊆ P with |K∩Pj | ≤ 1 for all j = 1, . . . , k
andGK bipartite and connected, then recognizing ifG is edge-perfect is polyno-
mial.

We have presented a wide family of instances where the edge-perfection recog-
nition problem is polynomial. Even though, its computational complexity remains
open.
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1. Introduction

LetG = (V,E) be a simple graph onn vertices. Thesignless Laplacian matrix
of G is Q(G) = A(G) + D(G), whereA(G) is its adjacency matrix andD(G) =
diag(d1, . . . , dn) is the diagonal matrix of the vertex degrees inG [1]. The charac-
teristic polynomial ofQ(G),PQ(G, x), is called theQ-polynomial ofG and its roots
are theQ-eigenvalues ofG. Thespectrum of Q(G), SpQ(G) = (q1, . . . , qn−1, qn),
is the sequence of the eigenvaluesqi, i = 1, · · · , n, of Q(G) displayed in non-
increasing order. Recently, studies about the signless Laplacian matrix have been
appeared in the literature and some results related toQ(G) and its spectrum can be
found in [1], [2] and [3].

If all Q- eigenvalues ofG are integer numbers,G is called aQ-integral graph
and we can find some few classes of these graphs in [2; 3]. Our aim in this paper
is to build new families ofQ-integral graphs, obtained by three different opera-
tions: double graph, inserting edges between two copies of complete graphs and
hierarchial products of graphs.

2. Infinite families of Q-integral graphs

For i = 1, 2, letGi = (Vi, Ei) be graphs onni vertices. TheunionofG1 andG2

is the graphG1 ∪G2 such that the vertex set isV1 ∪ V2 and the edge set isE1 ∪E2.
Thecartesian productof G1 andG2 is the graphG1 × G2, such that the vertex set
is V = V1× V2 and where two vertices(u1, u2) and(v1, v2) are adjacent if and only
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if u1 is adjacent tov1 in G1 andu2 = v2 or u1 = v1 andu2 is adjacent tov2 in G2. It
is well known that the operations of union and cartesian product of graphs preserve
the property of integrality and Laplacian integrality of graphs. As consequence of
our result below, we have that these operations also preserve theQ-integrality of
graphs.

Theorem 4. For i = 1, 2, letGi be graphs onni vertices, withQ-eigenvalues
qi,1, . . . , qi,ni

. Then theQ-eigenvalues ofG1 ∪ G2 andG1 × G2 areq1,1, . . . , q1,n1 ,
q2,1, . . . , q2,n2 andq1,j + q2,k, j = 1, . . . , n1, k = 1, . . . , n2, respectively.

It is clear that one can generate infinitely many examples ofQ-integral graphs
by successive applications of the operations above betweenQ-integral graphs. On
the next results we show other ways of buildingQ-integral graphs.

If G = (V,E) is a graph onn vertices, thedouble graphof G, D[G], is the
graph whose vertex set isV (D[G]) = V × {0, 1} and where two vertices(i1, j1)
and(i2, j2) are adjacent if and only if the verticesi1 andi2 are adjacent inG [5].
Figure 1 shows the graphD[K3].

Fig. 1.D[K3]

TheKronecker productof matricesA andB, A ⊗ B, is the block matrix ob-
tained by replacing each enteraij of A by the matrixaijB for all i and j. The
adjacency matrix ofD[G] can be represented asA(D[G]) = J2 ⊗ A(G), whereJ2

is the all ones2 × 2 matrix. Then the signless Laplacian matrix ofD[G] is given
byQ(D[G]) = I2 ⊗ (Q(G) + D(G)) + (J2 − I2) ⊗ A(G), whereQ(G) the sign-
less Laplacian matrix ofG andD(G) = diag(d1, . . . , dn) is the diagonal matrix of
vertex degrees inG.

In [5], the spectra ofA(D[G]) andL(D[G]) = A(D[G]) − D(D[G]) were de-
termined in terms of the vertex degrees ofG andA(G) andL(G)-spectra. It was
shown thatD[G] is an integral (Laplacian integral) graph if and only ifG is an in-
tegral (Laplacian integral) graph. We prove that this property can also be extended
toQ-integral graphs.

Theorem 5. TheQ-spectrum ofD[G] is given by2d1, . . . , 2dn, 2q1, . . . , 2qn, where
d1, . . . , dn are the vertex degrees ofG andq1, . . . , qn are theQ-eigenvalues ofG.
Consequently,D[G] is aQ-integral graph if and only ifG isQ-integral.

LetD1[G] = D[G] and, fori ∈ N, Di+1[G] = D[Di[G]]. Based on the theorem
above, for eachQ-integral graphG, {Di[G], i ∈ N} is an infinite family ofQ-
integral graphs.
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Let KKj
n be the graph obtained from two copies of the complete graphKn

by addingj edges between one vertex of a copy ofKn andj vertices of the other
copy. Forj = 2, we obtain the graphKKn, which was introduced in [4]. Figure 2
displays the graphKK2

6 .

Fig. 2.KK2
6

Theorem 6. If j ≤ n ∈ N, n ≥ 3, the characteristic polynomial ofQ(KKj
n) is

PQ(KKj
n, x) = (x−2n+2)(x−n+1)j−1(x−n+2)2n−j−2(x2− (3n+ j−3)x+

2(n2 + n(j − 2)− 2j + 1)).

As an immediate consequence of the above theorem, we have thefollowing
characterization:

Corollary 1. The graphKKj
n is Q-integral if and only if(n − j − 1)2 + 8j is a

perfect square.

The next result provides new infinite families ofQ-integral graphs.

Corollary 2. Forn, k, j ∈ N, if one of the conditions bellow is satisfied, theKKj
n

graph isQ-integral:

(i) n = 3j;
(ii) n = 2j − 1;
(iii) n = 5k − 2 andj = 3k;
(iv) n = 3k + 6 andj = 2k + 6;
(v) n = j= k(k+1)

2
.

In [6], thehierarchical productH =G2 uG1 of two graphsG1 andG2 having
root vertices, labeled 0, is defined as the graph whose the vertex set isV = V2 × V1

such that(u2, u1) is adjacent to(v2, v1) if and only if u1 is adjacent tov1 in G1 or
u1 = v1 = 0 andu2 is adjacent tov2 in G2. Note that this definition depends on the
specified root ofG1. Figure 2 shows the graphK3 uK4.

Fig. 3.K3 uK4

Under some appropriated labelling of its vertices, the adjacency matrix ofG2u
G1 can be given byD1⊗A(G2)+A(G1)⊗ In2 , wheren2 is the order ofG2 andD1

= diag(1, 0, . . . , 0) has sizen2×n2. Then the signless Laplacian matrix ofG2uG1
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is represented byQ(G2 u G1) = D1 ⊗ Q(G2) + Q(G1) ⊗ In2. In the special case
whereG1 = K2, we obtain the following result.

Theorem 7. Let G be a graph onn vertices whoseQ-eigenvalues areq1, . . . , qn.

Then theQ-eigenvalues ofG uK2 are
qi + 2± n

√
q2
i + 4

2
, for i = 1, . . . , n.

As a immediate consequence of this, we have thatG uK2 is not aQ-integral
graph, for every connected graphG onn ≥ 2 vertices.

Theorem 8. Let j, n ∈ N, n ≥ 3. The characteristic polynomial ofQ(Kj u Kn)
is PQ(Kj uKn, x) = (x− n+ 2)(n−2)j(x2 − (3n + j − 6)x+ 2n2 − 10(n− 1) +
j(2n− 3))j−1(x2 − (3n+ 2j − 6)x+ 2n2 − 10(n− 1) + 2j(2n− 3)).

From the theorem above, we obtain the following characterization:

Corollary 3. Let j, n ∈ N, n ≥ 3. The graphKj uKn isQ-integral if and only if
(n− j + 2)2 + 4(j − 2) and(n− 2j + 2)2 + 8(j − 1) are perfect squares.

Based on the last corollary, we can see that hierarchical product of complete
graphs can beQ-integral graph or not. For example,{Ki(i+1) uKi(i+1)+1, i ∈ N} is
an infinite family ofQ-integral graphs, while, for everyn ≥ 2, the graphKn uKn

is notQ-integral.
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1. Introduction

Duplication, co-submission and plagiarism are rising phenomena in modern
scientific publishing, as the number of peer-reviewed journals and the perceived
chances of escaping detection are increasing. On the other side, electronic indexes
and new text-searching tools such as the search engine eTBLASTmight provide
an effective deterrent of unethical publications. Though manual inspection is un-
avoidable in the end, automatic detection might strongly reduce the work required.
However, the size of online databases makes a full search impractical even by al-
gorithmic tools. In this paper, we consider the problem of structuring a textual
database so as to optimize queries for potential duplicates.

2. Formulations and properties

The database is modelled as a setN of n elements, with a distance function
d : N × N → R+ enjoying symmetry and triangle inequality (dij = dji and
dij ≤ dik + dkj for all i, j, k ∈ N). A trivial duplication check would compare
the new itemi to each elementj ∈ N , to ascertain whether their distancedij
exceeds or not a suitable thresholdδ. To reduce the effort one can selects “centres”
j1, . . . , js, partitionN into clustersCj1, . . . , Cjs associated to the centres and assign
a “radius”rj = maxk∈Cj

dkj to each cluster. Then,i can be compared to each centre
j: if dij > rj + δ, the triangle inequality guarantees thati is not a duplicate of any
element inCj. Otherwise, one should comparei to all elements inCj.

Definition 3. Ordering constraint: if an elementi is assigned to a centrej, all
elementsk such thatdkj ≤ dij + δ (that is, closer or sligtly farther from the centre)
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must also be assigned toj. Therefore, all elementsk such thatdkj ≤ rj + δ are
assigned toj.

For the sake of simplicity, in the following we assumeδ = 0, thus searching
only for exact duplicates under the given metric.

Proposition 1. Under the ordering constraint withδ = 0, a duplicate itemi satis-
fies conditiondij ≤ rj + δ for a single centrej.

In this case, then, at most one cluster must be fully exploredand the total worst-
case computational effort is given by the comparisons to thecentres (proportional
to the number of clusterss), plus the comparison to the only candidate cluster
(proportional to the largest cardinality).

The resulting problem consists in partitioning setN into clusters under the
ordering constraint and minimizing the sum of the number of clusters plus the
maximum cardinality of a cluster. One can formulate the problem as follows: let
zij = 1 if elementi is the farthest element of a cluster centred in elementj; zij = 0
otherwise; letη be the cardinality of the largest cluster.

min f =
∑

i∈N

∑

j∈N
zij + η (2.1a)

∑

j∈N

∑

k∈Eij

zkj = 1 i ∈ N (2.1b)

∑

i∈N
|Iij | zij ≤ η j ∈ N (2.1c)

zij ∈ {0, 1} i, j ∈ N (2.1d)

whereEij = {k ∈ N : dkj ≥ dij} andIij = {k ∈ N : dkj ≤ dij}.

But one can also setxij = 1 if elementi belongs to a cluster centred in element
j; xij = 0 otherwise, and setη as the cardinality of the largest cluster.

min f =
∑

i∈N
xii + η (2.2a)

∑

j∈N
xij = 1 i ∈ N (2.2b)

∑

i∈N
xij ≤ η j ∈ N (2.2c)

xij ≤ xkj i ∈ N, j ∈ N, k ∈ Iij (2.2d)
xij ∈ {0, 1} i, j ∈ N (2.2e)

Proposition 2. Formulations (2.1) and (2.2) are equivalent.

Formulation (2.1) is much faster to solve because it hasO (n2) constraints
instead ofO (n3). Both formulations are, most of the time, very weak: the lower
bound is just slightly larger than2. However, they can easily be strengthened by

164



additional linear constraints and by fixing to zero a number of variables.

Proposition 3. The continuous relaxation of Formulation (2.1) can be strength-
ened by including the linearization of constraintηs ≥ n, wheres =

∑
i,j∈N zij.

Proposition 4. For all feasible solutions whose cost is strictly lower thanfH

zij = 0 for all i, j ∈ N : |Iij | >
fH − 1 +

√
(fH − 1)2 − 4n

2

Proposition 5. The problem is
√
n-approximable by two trivial algorithms: a) build

a single cluster ofn elements, b) buildn singleton clusters.

Proposition 6. If N is a set of points on a line, i. e.∃πi : N → R such that
dij = |πj − πi| for all i, j ∈ N , then the problem can be solved inO (n3) time.

3. Algorithms

The exact solution of the problem is strongly supported by the availability of
good heuristic solutions, which allow to prune branching nodes and force to zero
some decision variables (Proposition 4). We implemented a greedy algorithm and
a Tabu Search to obtain such solutions and applied the commercial MIP solver
CPLEX 11.0 to Formulation (2.1), strengthened as described.

Greedy algorithm Each step of the greedy algorithm builds a feasible cluster by
selecting a pair(i, j) and settingi as the farthest element of a new cluster centred
in j (i.e., zij = 1). The chosen pair maximises the cardinality|Iij| of the result-
ing cluster. In case of ties, the algorithm selects the pair which leaves the highest
number of feasible pairs after the fixing. To avoid building excessively large clus-
ters, and to reduce the computational complexity, it is forbidden to select pairs with
|Iij| > α

√
n whereα ≥ 1 is a suitable coefficient. The purpose is to build as many

clusters as possible with a size as close as possible to the ideal value
√
n.

Tabu Search algorithm The Tabu Search algorithm is based on the following
neighbourhood: each pair(i, j) corresponds either to shrinking a current cluster (if
j is a centre andi is already assigned to it) or to inflating it (possibly, to creating
a new cluster). In the first case, after shrinking the selected cluster, we apply the
greedy heuristic to obtain a complete solution. In the second case, we first shrink
all cluster which include the elements assigned to the inflated (or newly created)
cluster and then complete the solution with the greedy heuristic. All pairs (i, j)
with |Iij| > β

√
n (whereβ ≥ α) are forbidden, to avoid building excessively
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large clusters and to reduce the computational complexity.Thus, the neigbourhood
includesO (n

√
n) solutions. The tabu mechanism saves for each pair(i, j) the last

iteration in which the current solution included cluster(i, j). For a specified number
of iterationsL (tabu tenure), the move based on pair(i, j) is forbidden, unless the
resulting solution improves the best known one (aspiration criterion). At each step,
the whole neighbourhood is visited and the best non tabu solution (or the best tabu
solution respecting the aspiration criterion) is acceptedas the incumbent one. The
algorithm terminates after a specified total number of iterationsI.

4. Results

We have generated25 Euclidean3D instances, of five different sizes (from50
to 250 elements by steps of50) and25 instances (with the same sizes) in which
random distances are generated and the triangle inequalityis enforced by replacing
direct distances by the lengths of shortest paths.

Parameterα proves relevant for the greedy algorithm: the gap with respect to
the best known result decreases from23.8% for α = 0.8 to 19.5% for α = 1.1, then
increasing up to25.5% for α = 1.2 (it is better to start with clusters slightly larger
than the ideal value). The computational time on a1.59GHz Intel Core 2 laptop
with 2 GB of RAM is always lower than0.1 seconds.

Parameterβ has a similar influence on the Tabu Search: the gap decreases
from 2.0% (β = 1.1) to 1.4% (β = 1.2), then increasing up to1.7% (β ≥ 1.4).
The total number of iterationsI has been fixed to200 and the tabu tenureL to
10 (lower values induced cyclic behaviours on some instances). The computational
time for the largest instances ranges from about10 minutes (β = 1.1) to about25
(β = 1.5). Presently, the role of Tabu Search is not fully clarified: the objective
decreases in the first steps, usually stabilizing on the finalvalue with few (if any)
intermediate increases. This suggests that the problem might be characterized by
large plateaus, in which, besides avoiding cycles, some further guiding mechanism
might be relevant.

The formulation strongly gains from the additional cuttingplanes and variable
fixings: all Euclidean instances up ton = 100 and all but two of the random in-
stances withn ≤ 200 could be solved exactly in a limit time of10 minutes. The
average final gap is about12%. The truncated branch-and-bound improved the re-
sult produced by Tabu Search on13 of the50 instances.

As a final test, we have created an instance from real-world data by selecting
five papers from the combinatorial optimization literature, including a paper by
J.B. Shearer plagiarized by D. Marcu. We have split these papers in subsections,
keeping only alpha-numeric characters, obtaining an instance of55 blocks. We have
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defined the distance between two blocksi andj, respectively consisting ofI andJ
characters, as follows:

dij = max{I, J} − LCS(i, j)

where LCS(i, j) denotes the length of the Longest Common Subsequence of char-
acters betweeni andj. This distance function showed some predictive power, being
able to correctly identify the plagiarism by Marcu.

We have been able to find the optimal solution of value18 to this instance in
few seconds by using model (2.1a) – (2.1d) and CPLEX 11. Our Greedy and Tabu
Search algorithms found respectively a value of20 and18 in fractions of a second,
confirming our former computational experience.
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Appendix (Proofs of the propositions)

Proposition 1 Under the ordering constraint withδ = 0, a duplicate itemi satis-
fies conditiondij ≤ rj + δ for a single centrej.

proof 1. Let δ = 0 andi be a duplicate of elementk ∈ N . By contradiction, let
i be close to two centres (dij1 ≤ rj1 + δ = rj1 anddij1 ≤ rj2 + δ = rj2). Then
dkj1 ≤ dki+dij1 ≤ rj1 anddkj2 ≤ dki+dij2 ≤ rj2. The ordering constraint requires
to assignk to both centres, which is unfeasible.

Proposition 2 Formulations (2.1) and (2.2) are equivalent.

proof 2. Start from any feasible solution to Formulation (2.2) and define xij =∑
k∈Eij

zkj .

min f =
∑

i∈N

∑

k∈Eii

zki + η

∑

j∈N

∑

k∈Eij

zkj = 1 i ∈ N
∑

i∈N

∑

k∈Eij

zkj ≤ η j ∈ N
∑

k∈Eij

zkj ≤
∑

k∈Elj

zkj i ∈ N, j ∈ N, l ∈ Iij
∑

k∈Eij

zkj ∈ {0, 1} i, j ∈ N

SinceEii = N and
∑
i∈N

∑
k∈Eij

zkj =
∑
k∈N

∑
i∈Ikj

zkj

min f =
∑

i∈N

∑

k∈N
zki + η

∑

j∈N

∑

k∈Eij

zkj = 1 i ∈ N
∑

k∈N

∑

i∈Ikj

zkj ≤ η j ∈ N
∑

k∈Eij

zkj ≤
∑

k∈Elj

zkj i ∈ N, j ∈ N, l ∈ Iij
∑

k∈Eij

zkj ∈ {0, 1} i, j ∈ N

The third constraint is redundant (Elj ⊇ Eij for l ∈ Iij) and the fourth can be
reduced tozkj ∈ {0, 1}. Suitably changing the names of some indexes, one ob-
tains Formulation (2.1). Therefore, any feasible solutionto Formulation (2.2) cor-
responds to a feasible solution of identical cost to Formulation (2.1).
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The converse is also true. Start from any feasible solution to Formulation (2.1)
and definezij = xij − xσij whereσi is the successor ofi in the list of the elements
sorted by increasing distances fromj (let zij = xij wheni is the farthest element
from j).

min f =
∑

i∈N

∑

j∈N
(xij − xσij) + η

∑

j∈N

∑

k∈Eij

(xkj − xσkj) = 1 i ∈ N
∑

i∈N
|Iij | (xij − xσij) ≤ η j ∈ N

(xij − xσij) ∈ {0, 1} i, j ∈ N

Since
∑
i∈N (xij − xσij) = xjj and

∑
k∈Eij

(xkj − xπkj) = xij

min f =
∑

j∈N
xjj + η

∑

j∈N
xij = 1 i ∈ N

∑

i∈N
|Iij | (xij − xσij) ≤ η j ∈ N

(xij − xσij) ∈ {0, 1} i, j ∈ N

Since|Iσij| = |Iij|+ 1

min f =
∑

j∈N
xjj + η

∑

j∈N
xij = 1 i ∈ N

∑

i∈N
[|Iij |xij − (|Iσij | − 1) xσij] ≤ η j ∈ N

xij ≥ xσij i, j ∈ N
xij ∈ {0, 1} i, j ∈ N

which yields Formulation (2.1).

Proposition 3 The continuous relaxation of Formulation (2.1) can be strength-
ened by including the linearization of constraintηs ≥ n, wheres =

∑
i,j∈N zij .

proof 3. Sinces is the number of cluster andη their maximum cardinality, con-
straintηs ≥ n states that the number of elements does not exceed their product.
The convex hull of the integer points respecting this condition is a politope provid-
ing valid inequalities for the problem.
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Proposition 4 For all feasible solutions whose cost is strictly lower thanfH

zij = 0 for all i, j ∈ N : |Iij | >
fH − 1 +

√
(fH − 1)2 − 4n

2

proof 4. If the solution is better thanfH , then it satisfies boths+ η ≤ fH − 1 and

ηs ≥ n. This implies thatη ≤
fH − 1 +

√
(fH − 1)2 − 4n

2
. As no cluster includes

more thanη elements,i cannot be assigned to centrej when|Iij | > η.

Proposition 5 The problem is
√
n-approximable by two trivial algorithms: a)

build a single cluster ofn elements, b) buildn singleton clusters.

proof 5. Sinceηs ≥ n, the objective isf = s + η ≥ s + n/s. The minimum of
s + n/s for s ≥ 0 is 2

√
n. Since both trivial algorithms provide a solution costing

fapx = n + 1 ≤ 2n, the optimum is at leastf ∗ ≥ 2
√
n andfapx ≤

√
nf ∗.

Proposition 6 If N is a set of points on a line, i. e.∃πi : N → R such that
dij = |πj − πi| for all i, j ∈ N , then the problem can be solved inO (n3) time.

proof 6. Due to the ordering constraint, each cluster corresponds toan interval
[πi, πj] along the line. Let̃πi andπ̃j be the coordinates of the elements precedingi
and followingj, respectively (withπ̃i = −∞ if i is the first element and̃πj = +∞
if j is the last). Not all such intervals are feasible: to be feasible, an interval must
admit a central elementk ∈ N such that(π̃i + πj) /2 ≤ πk ≤ (πi + π̃j) /2. All the
unfeasible intervals can be filtered out inO (n2 logn) time (actuallyO (n2) if thery
are scanned lexicographically).

Now, build an auxiliary graph with a vertexi for each element and an arc(i, j)
for each pair of elements such that the interval betweeni and the element preceding
j is feasible. There is a one-to-one correspondence between the paths from the first
to the last vertex in this graph and the partitions ofN into feasible clusters. For
each fixed value ofη ∈ {1, . . . , n}, one can remove the arcs corresponding to the
clusters of size exceedingη and determine inO (n2) time, by a simple breadth-first
visit, the shortest path from the first to the last vertex withrespect to the number of
arcs. By repeating this procedure for all values ofη, one can solve the problem to
optimality inO (n3) time.
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1. Abstract

We propose a Lagrangian-based heuristic approach to obtainrobust solutions
to the Train Timetabling Problem (TTP) on a corridor (i.e. a single one-way line
connecting two major stations). Roughly speaking, we definea solution to be ro-
bust if it allows to avoid delay propagation as much as possible. In particular, in
the planning phase that we are considering the aim is to buildtimetables charac-
terized bybuffer timesthat can be used to absorb possible delays occurring at an
operational level. In the TTP, we are given a set of stationsS along the corridor, a
set of trainsT , and for each train an ideal timetable (i.e. the timetable suggested by
the Train Operator). In the nominal TTP the aim is to change the ideal timetables
for the trainsas little as possible, while satisfying thetrack capacity constraints
consisting of:

- departure constraints (imposing a minimum headway between two consecu-
tive departures from a station);

- arrival constraints (imposing a minimum headway between two consecutive
arrivals at a station);

- overtaking constraints (avoiding overtaking between consecutive stations, since
we are considering a single one-way line).

In order to obtain feasible timetables we are allowed to change the departure of any
train from its first station (shift) and/or to increase the minimum stopping time in
one or more of the visited stations (stretch). Each train is assigned an ideal profit
which is gained if it is scheduled according to its ideal timetable. The profit is de-
creased (according to a linear function) if shift and/or stretch are applied; if the
profit becomes null or negative the train is cancelled. A common approach to deal
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with the nominal TTP is to discretize the time horizon and to formulate the prob-
lem on a space-time graphG = (V,A). Each node of the setV corresponds to a
possible time instant at which a train can depart from or arrive at a station. Each arc
in A represents the travel of a train from a station to the next one(segment arcs) or
the stop of a train at a station (station arcs). Furthermore,each timetable for a train
corresponds to a suitable path inG. We refer the reader to [1] for further details
on the space-time graph representation. Given the graphG, a common Integer Lin-
ear Programming (ILP) formulation based on arc binary variables (see [1]) is the
following:

max
∑

t∈T

∑

a∈At

paxa (1.1)

∑

a∈δ+(σ)∩At

xa ≤ 1, t ∈ T (1.2)

∑

a∈δ−(v)∩At

xa =
∑
a∈δ+(v)∩At xa, t ∈ T, v ∈ V \ {σ, τ} (1.3)

∑

a∈C
xa ≤ 1, C ∈ C, (1.4)

xa ∈ {0, 1}, a ∈ A (1.5)

where:

- At is the set of arcs inA that may be used by the path for traint;
- xa is a binary variable which assumes value1 if arc a ∈ At is selected in the

solution for traint ∈ T , and0 otherwise;
- pa is the profit gained if arca ∈ At is in the solution
- C is the collection of all the cliques of incompatible arcs, with respect to track

capacity constraints.

The drawback of the nominal problem is that it does not take into account pos-
sible delays that can occur in the operational phase and thatcan affect the feasibility
and the quality of the solution. We describe how to change themodel so as to move
towards robust solutions, that take into account the possible presence of delays.
Namely, we want to introducebuffer timesfor absorbing delays: this is obtained
by favoring longer stops at the stations with respect to the minimum stopping time,
so that, if a “short” delay occurs, it will not be propagated to the following trains.
On the other hand, allowing for buffer times that can absorb any reasonable delay
would be too conservative and produce solutions which are not acceptable from a
practical point of view. The aim of the robust problem is thenbi-objective: to max-
imize the profits of the scheduled trains (efficiency) while maximizing the buffer
times (robustness). The new objective function reads:

max
∑

t∈T

∑

a∈At

paxa +
∑

t∈T

∑

a∈At
B

baxa (1.6)
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whereAtB ⊆ At is the set of arcs corresponding to buffer times for traint ∈ T and
ba is the profit achieved if we select buffer arca ∈ AtB. We consider the Lagrangian
relaxation of the constraints (1.4) of the model (1.6), (1.2)-(1.5), and solve it within
a subgradient optimization framework. In particular, the Lagrangian objective is:

max
∑

t∈T

∑

a∈At

paxa +
∑

t∈T

∑

a∈At
B

baxa +
∑

C∈C
λC(1−

∑

a∈C
xa) = (1.7)

=
∑

t∈T

∑

a∈At
B

p̄axa +
∑

C∈C
λC (1.8)

Here, fort ∈ T anda ∈ At, p̄a := pa −
∑
C∈Ca

λC + ba (we assumeba = 0 for
a ∈ At \AtB), whereCa ⊆ C denotes the subfamily of cliques containing arca. The
Lagrangian relaxation thus calls for finding the maximum profit path in the graph
G for each train, in an analogous way as in [1].

We present some preliminary computational results on real-life instances of
the corridor Modane-Milan with100 and200 trains, respectively, used for a com-
parison between the described approach and the method proposed in [3]. In [3],
Fischetti et al. develop different methods for improving the robustness of a given
TTP solution. In particular, they propose an event-based model (by adapting the
Periodic Event Scheduling Problem for the periodic case), and investigate different
approaches to get robust solutions: stochastic models and alight robustness ap-
proach (see [2]). In order to evaluate the robustness of a given solution in a more
realistic way, rather than simply considering the second objective above, an exter-
nal validation method method is used in [3]. Given a TTP solution, the validation
method considers different realistic external delay scenarios and, assuming that all
the trains in the solution have to be scheduled and all train precedences are fixed,
adapts the solution to make it feasible with the given external delays, evaluating the
overall resulting delay.

In Table 8, we perform a comparison between our method and themethod
of [3], by considering the solutions obtained by [3] when theprecedences are left
unfixed, as is the case in our approach. The comparison is doneon the efficiencyEff.
of the solutions found (the first objective above) and the outcome of the validation
method, which provides the cumulative delayDelay in the scenarios considered.
Our heuristic is run for1000 iterations, which take less than2000 seconds, and the
method [3] is run with a time limit of2 hours. The best nominal solutions obtained
with the Lagrangian heuristic algorithm of [1] have efficiencies equal to9297 and
18542, respectively. We mention that the Lagrangian approach obtains one solution
per iteration and we report in Table 8 only the values of threeselected solutions.

As it can be observed, the Lagrangian-based approach finds solutions of com-
parable efficiency producing smaller cumulative delays than in [3] (in slightly shorter
computing times). Note that the cumulative delay is not necessarily increasing
when efficiency increases (e.g., this can be due to a better distribution of the buffer
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Instance #trains Eff. ([3]) Delay ([3]) Eff. Delay

MdMI1 100 9209 16683 9220 14331

MdMI1 100 8837 14070 9020 14728

MdMI1 100 8372 12675 8889 14508

MdMI2 200 18437 36376 18041 32962

MdMI2 200 17692 32355 17848 31653

MdMI2 200 16761 29716 16911 24723

Table 8. Comparison between the solutions in [3] and our solutions.

times in a solution with higher efficiency value). Ongoing work consists of testing
other instances and different parameter settings in order to produce more robust
solutions.
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1. Introduction

Recommender systems exploit a set of established user preferences to pre-
dict topics or products that a new user might like [2]. Recommender systems have
become an important research area in the field of informationretrieval. Many ap-
proaches have been developed in recent years and the interest is very high. How-
ever, despite all the efforts, recommender systems are still in need of further de-
velopment and more advanced recommendation modelling methods, as these sys-
tems must take into account additional requirements on userpreferences, such as
geographic search and social networking. This fact, in particular, implies that the
recommendation must be much more “personalized” than it used to be.

In this paper, we describe the recommender system used in the“DisMoiOu”
(“TellMeWhere” in French) on-line service (http://dismoiou.fr), which
provides the user with advice on places that may be of interest to him/her; the
definition of “interest” in this context is personalized taking into account the geo-
graphical position of the user (for example when the serviceis used with portable
phones such as the Apple iPhone), his/her past ratings, and the ratings of his/her
neighbourhood in a known social network.

Using the accepted terminology [6], DisMoiOu is mainly a Collaborative Fil-
tering System (CFS): it employs opinions collected from similar users to suggest
likely places. By contrast with existing recommender systems, ours puts together
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the use of a graph theoretical model [4] and that of combinatorial optimization
methods [1]. Broadly speaking, we encode known relations between users and
places and users and other users by means of weighted graphs.We then define
essential components of the system by means of combinatorial optimization prob-
lems on a reformulation of these graphs, which are finally used to derive a ranking
on the recommendations associated to pairs (user,place).

We remark that this is work in progress relating the first few months of work
in an industrial Ph.D. thesis. Preliminary computational results on the three clas-
sical evaluation parameters for recommender systems (accuracy, recall, precision
[3]) show that our system performs well with respect to accuracy and recall, but
precision results need to be improved.

2. Formalization of the problem

We employ the usual graph-theoretical notation, e.g. for a vertexv of a graph
G, δ+

G(v), δ−G(v) are the set of vertices adjacent to incoming and respectively out-
going arcs. For verticesu, v of G we also let∆G(u, v) = δ+

G(u) ∩ δ+
G(v).

We are given two finite setsU (the users) andP (the places), and a vertex set
V = U ∪ P . We are also given two directed graphs as follows.

• A ratings bipartite digraphR = (V,A) whereA ⊆ U × P is weighted by a
functionρ : A→ [−1, 1], which expresses the ratings of users with respect to
the places.

• A social networkS = (U,B) weighted by a functionγ : B → [0, 1] which
encodes a confidence coefficient between users.

The union of the two graphsG = R ∪ S is a mixed ratings/social network
which is used to establish new arcs inU ×U or to change the values thatγ takes on
existing arcs: a missing relation of confidence between two users can be established
if both like (almost) the same places in (almost) the same way. Moreover, even
when a confidence relation is already part ofB, its strength can change according
to similar shared preferences situations. This is encoded by the reformulated graph
G′ described below.

We define a graphG′ with vertex setV ′ = U ∪ P and arc setB′ (weighted by
a functionγ′ : B′ → [0, 1]) defined in the following way.

(i) For everyk, ` ∈ U such that(k, `) 6∈ B and subgraphH = (VH , AH)
of R induced by the vertex setVH = {k, `} ∪ ∆R(k, `) (see Fig. 1) such
that AH 6= ∅, B′ contains the arc(k, `) weighted byγ′k` = f(ϑ), where
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k `

∆R(k, `)
Fig. 1. A subgraphH of R.

ϑ =
1

|∆R(k, `)|
∑

i∈∆R(k,`)

|ρki−ρ`i|.(2.1)

ϑ represents the difference between users. The bigger it is, the lower the con-
fidenceγ′k`. γ

′
k` is obtained as a function f ofϑ.

(ii) For everyk, ` ∈ U such that(k, `) ∈ B and subgraphH = (VH , AH) of
R induced by the vertex setVH = {k, `} ∪ ∆R(k, `) such thatAH 6= ∅, B′

contains the arc(k, `) weighted byγ′k` = g(γk`, ϑ).

We letX = (U × P ) rA be the set of all recommendations that the system is
supposed to be able to make.

2.1 Identification of maximum confidence paths

Given(k∗, i∗) ∈ X, we consider the graphZ = (W,C) whereW = U ∪ {i∗}
andC = B′ ∪ {(k, i∗) | k ∈ δ−R(i∗)}. Our aim is to compute a ranking for the
known ratings{ρki∗ | k ∈ δ−R(i∗)} by means of the confidence relations encoded
in the networkZ, using paths (or sets thereof) ensuring maximum confidence.By
convention, we extend the confidence functionγ to arcs inC adjacent toi∗ as
follows: ∀k ∈ δ−R(i∗) (γki∗ = 1).

We make the assumption that for a pathp ⊆ C in Z, γ(p) = min
(k,`)∈p

γk`, i.e. that

the confidence on a path is defined by the lowest confidence arc in the path. This
implies that finding the maximum confidence path betweenk∗ andi∗ is the same as
finding a path whose arc of minimum weightγ is maximum (among all pathsk∗ →
i∗). ConsideringZ as a network whereγ are capacities on the arcs, a maximum
confidence path is the same as amaximum capacity pathbetweenk∗ and i∗, for
which there exists an algorithm linear in the number of arcs [5]. The mathematical
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programming formulation for the MAXIMUM CAPACITY PATH (MCP) problem is:

max
x,t

t

s.t.
∑

`∈δ+
R

(k∗)

xk∗` = 1

∀` ∈ W r {k∗, i∗} ∑

h∈δ−
R

(`)

xh` =
∑

h∈δ+
R

(`)

x`h

∀(k, `) ∈ C t ≤ γk`xk` +M(1− xk`)
x ∈ {0, 1}, t ≥ 0,





(2.2)

whereM ≥ max
(k,`)∈C

γk`. Let p̄ ⊆ C be the maximum confidence path (i.e. the set

of arcs(k, `) such thatxk` = 1), andα(p̄) = argmin{γk` | (k, `) ∈ p̄}. Remov-
ing α(p̄) from C1 = C yields a different set of arcsC2 with associated network
Z2 = (W,C2), in which we can re-solve (2.2) to obtain a pathp̄2 as long asZ2 is
connected (otherwise, definēp2 = ∅): this defines an iterative process for obtaining
a sequence of triplets(Zr, p̄r). Given a confidence thresholdΓ ∈ [0, 1] and an inte-
gerq > 0, we define the setΩ = {p̄r | p̄r 6= ∅ ∧ r ≤ q ∧ γα(p̄r) ≥ Γ} of all high
confidence paths fromk∗ to i∗.

2.2 Ranking the ratings

Recall eachp ∈ Ω ends ini∗, so we can defineλ : Ω → δ−R(i∗) such thatλ(p)
is the last arc ofp. Thus, we extendρ to Ω as follows:

ρ(p) = ρ(λ(p)).

Let Θ = {σ ∈ [−1, 1] | ∃p ∈ Ω (σ = ρ(p))} be the set of ratings fori∗ available
to k∗. We evaluate each rating by assigning it the sum of the confidences along the
corresponding paths. Letv : Θ→ R+ be given by

∀σ ∈ Θ v(σ) =
∑

p∈Ω
ρ(p)=σ

γ(p).

We usev to define a ranking onΘ (i.e. an order< on Θ): for all σ, τ ∈ Θ (σ <
τ ↔ v(σ) < v(τ)). Naturally, this set-up rests on the fact that|Θ| < |Ω|, which
is exactly what happens in DisMoiOu’s implementation. The recommender system
then picks the greatestσ in Θ (i.e. the rating with highest associated cumulative
confidence) as the recommendations to userk∗ concerning the placei∗. Finally, the
output of the recommender system is a set of high confidence recommendations for
userk∗ asi∗ ranges inP .
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3. Extensions

One of the troubles with the recommender system described inSect. 2 is that
paths inΩ might be too long: although in our formalization paths are only weighted
by the value of the arc of minimum confidence, in practice it also makes sense to
require that the paths should either be shortest or at least of constrained cardinality,
for confidence usually wanes with distance in social networks. Enforcement of the
first idea yields a bi-criterion path problem as (2.2) with anadditional objective
function:

min
x,t

∑

(k,`)∈C
xk`. (3.3)

Enforcement of the second idea (say with paths having cardinality at mostK) yields
the corresponding constraint:

∑

(k,`)∈C
xk` ≤ K. (3.4)
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1. Introduction

The organization and management of an emergency health caresystem re-
quires decisions at different levels and involves several stake-holders and decision-
makers, with different and possibly conflicting objectives. The service is typically
provided by a fleet of ambulances which are dispatched to the patients’ homes upon
arrival of phone calls to an operating center. The availableambulances are parked in
specially equipped areas, scattered in the territory so as to reach the patient within a
limit time (in urban environments, a few minutes). The parking areas must be built
in advance, and this is a strategic decision taken by the municipality. Part of the
areas are selected to host the available ambulances, and this is a tactical decision
taken by the managers at the operating center; the problem isknown as Maximum
Covering Location Problem [2]. This problem is made harder by the variability of
the resources (number of available ambulances) and of the demand, both in time
and space: the demand is typically stronger at daytime and during working days
than by night or during week-ends; it is more concentrated inresidential areas dur-
ing the night, in areas with working places during the working days.

Furthermore, the number of available ambulances changes along the day as
some get busy servicing new calls and others become available again after termi-
nating their service. A compelling operational problem is to optimally cover the
territory when some ambulances are busy by re-locating the available ones. In large
cities, the calls and the consequent operational decisionsare very frequent, and it is
advisable to pre-compute optimal solutions for a number of possible scenarios as a
useful guideline. This problem has been considered for instance in [3].
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In this paper we consider an integrated approach to three decision problems,
usually tackled at different levels: the choice of parking areas (strategic level), the
location of ambulances in each time slot (tactical level) and the relocation of the
available ambulances according to their number (operational level). We present an
integer linear programming formulation and some preliminary computational re-
sults with general-purpose solvers.

2. Mathematical models

2.1 Model n.1: Parking areas construction and ambulance location

Model 1 integrates the strategic and tactical levels. LetT denote the set of time
slots andI the set of demand points, where service requests are concentrated;dit
is the amount of demand for each pointi ∈ I and time slott ∈ T , At ambulances
are available in time slott. Let C denote the set of candidate parking areas andC
the number of areas which can be built. The ambulances can only be assigned to
parking places that have been built. Each demand pointi can be covered within a
prescribed maximum intervention time from a known subsetCi of parking areas.
The problem of selecting the parking areas to build and allocating to them the
ambulances available in each time slot, in order to provide maximum coverage to
the population, can be modelled by the following binary variables:xc indicates
whether a parking area is built or not in candidate locationc ∈ C; yct whether an
ambulance is assigned or not to parking areac ∈ C during time slott; zit whether
demand pointi is covered or not during time slott.

maximize v =
∑

i∈I

∑

t∈T
ditzit (2.1a)

s.t. zit ≤
∑

c∈Ci

yct ∀t ∈ T (2.1b)

yct ≤ xc ∀c ∈ C ∀t ∈ T (2.1c)
∑

c∈C
yct ≤ At ∀t ∈ T (2.1d)

∑

c∈C
xc ≤ C (2.1e)

xc ∈ {0, 1} ∀c ∈ C (2.1f)
yct ∈ {0, 1} ∀c ∈ C ∀t ∈ T (2.1g)
zit ∈ {0, 1} ∀i ∈ I ∀t ∈ T . (2.1h)
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2.2 Model n.2: Ambulance location and relocation

Model 2 integrates the tactical and operational levels. In this problem, there is a
single time slot and the parking areas have already been chosen. On the other hand,
the number of available ambulancesa varies between1 andA and they must be
relocated, depending on the value ofa, to maximize coverage in all scenarios, under
the constraint that only one ambulance can be relocated eachtimea varies. So, the
locations ofa anda + 1 ambulances must havea parking areas in common. The
model can be easily generalized to allow for more relocations, but here we neglect
this extension since it is unrealistic. The binary variables yac indicate whether an
ambulance is assigned or not to parking areac whena ambulances are available;
variableszia indicate whether demand pointi is covered or not whena ambulances
are available. The datumwa represents the weight attributed to the configuration
with a available ambulances and it depends on the fraction of time for which exactly
a ambulances are available. This is estimated by a queuing theory model.

maximize v2 =
∑

i∈I

A∑

a=1

diwazia (2.2a)

s.t. zia ≤
∑

c∈Ci

yac ∀a = 1, . . . , A (2.2b)

∑

c∈C
yac = a ∀a = 1, . . . , A (2.2c)

yac ≤ ya+1 c ∀c ∈ C ∀a = 1, . . . , A (2.2d)
yac ∈ {0, 1} ∀a = 0, . . . , A ∀c ∈ C (2.2e)
zia ∈ {0, 1} ∀i ∈ I ∀a = 1, . . . , A. (2.2f)

We also considered a third model, resulting from the fusion of the two models
above, where all three decision levels are integrated. In such a model we have vari-
ablesycta, indicating whether an ambulance is assigned to parking area c in time
slot t when there area ambulances available, andzita, indicating whether demand
point i is covered in time slott whena ambulances are available.

3. Computational results

We have performed some preliminary experiments with the models introduced
above on real-world instances referring to the city of Milan. Five time slots have
been identified, based on the profiles of the phone calls and the ambulance speed
along the day, as recorded in the database of the emergency health care system. The
demand points (|I| ≈ 12 000) have been located on the street graph of Milan and
each one is associated with a demanddit in each time slot, derived from the his-
torical data. Smaller instances have been produced by selecting only 5000 or 8000
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demand points from the larger instances. The number of ambulances ranges from
20 to 30 to 40, corresponding approximately to the current availabilityof public
and private ambulances offering the service in Milan. Correspondingly, the num-
ber of parking areas to be built has been fixed to twice the number of ambulances
(hence,40, 60, or 80), chosen among100, 150 or 200 candidate sites, according
to the number of demand points. These sites have been locatedby maximizing
the total distance between each other with a Maximum Diversity algorithm [1]. We
consider instances with a single time slot,3 time slots or5 time slots. This produces
3 · 3 · 3 = 27 different instances.

All instances have been submitted to CPLEX 11.0 with a time limit of one
hour. It could solve most problem instances with 5000 demandpoints and some
with 8000 demand points, sometimes at the root node, sometimes after branching.
For the instances not solved to optimality it could achieve avery small gap between
the upper and the lower bounds (from about5% to less than1%). When confronted
with instances with 12442 demand points CPLEX could solve the linear relaxation
at the root node only with the barrier method and it could not solve any instance to
proven optimality. This suggests the development of alternative ad hoc approaches,
such as Lagrangian relaxation, which is the subject of ongoing research.
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Introduction. LetG = (V,E) be a undirected graph, whereV is the set of vertices,
E is the set of edges, andQ = (V1, . . . , Vq) is a partition ofV into q disjoint sets.
ThePartition Coloring Problem (PCP) consists of finding a subsetV ′ of V with
exactly one vertex from each setVk ∈ Q and such that the chromatic number of the
graph induced inG by V ′ is minimum.

This problem was first introduced in [5], motivated by the routing and wave-
length assignment problem in optical networks. The authorsproved that PCP is
NP-hard and proposed heuristics extending classical methods for the vertex color-
ing problem (VCP). Different integer programming formulations were proposed
to model the VCP. Mehrotra and Trick developed a column generation algorithm
based on the classical independent set (IS) formulation [6]. Campêlo et. al. [2]
proposed an alternative formulation in which arepresentativevertex is chosen to
identify each color. Later, Campêlo et. al. [1] unified bothformulations into a cut
and price method to handle the VCP.

In this work, we explore this same idea of [1] to introduce a new integer pro-
gramming (IP) formulation for the PCP. To the best of our knowledge, the only
exact algorithm available for the PCP to date is thebranch-and-cutapproach based
on therepresentativesformulation presented in [3]. An experimental comparison
between these algorithms is also carried out here.

IP formulation. Let P be the set of all independent sets ofG. Each independent
setp in P can be represented by the characteristic vectorap, whereapi = 1 if and

1 First and second authors are supported by scholarships fromCapes (Brazilian Ministry
of Education). Third author is partially supported by CNPq –Conselho Nacional de De-
senvolvimento Cientı́fico e Tecnológico – Grants # 301732/2007-8 and # 472504/2007-0.
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only if the vertexi belongs top. We now associate a binary variableλp to each
independent setp in P . The formulation of the PCP that combines the IS and the
representativesformulations is described below:

(PCPr) min
∑

p∈P
λp (0.1)

subject to
∑

p∈P
rpi λp ≤ 1, ∀i ∈ V (0.2)

∑

p∈P
apiλp ≤ 1, ∀i ∈ V (0.3)

∑

p∈P
(
∑

i∈Vk

api )λp = 1, ∀ Vk ∈ Q (0.4)

λp ∈ {0, 1}, ∀p ∈ P (0.5)

whererpi = 1 if, and only if i is the representative vertex of the independent set
related top. The objective function (0.1) counts the number of independent sets,
i.e., the number of colors. Constraints (0.2) state that a vertex can represent at most
one independent set. A constraint in (0.3) forbids a vertex to be in two or more
independent sets simultaneously. Finally, constraints (0.4) enforce that, in each set
Vk ∈ Q, precisely one vertex is colored.

Let π, µ andα be the dual variables related to constraints (0.2), (0.3) and (0.4),
respectively, in the linear relaxation of the (PCPr). Thus,the reduced cost of an
independent setp is cP = 1−∑i∈V (µi+αQ[i])a

p
i −

∑
i∈V πir

p
i , whereQ[i] is the set

of the partition that contains the vertexi, i.e., i ∈ VQ[i]. Now, for every vertexi in
V , letP (i) = {p ∈ P : i is the representative vertex ofp}. Clearly, these sets form
a partition ofP . Therefore, a solution to the pricing problem can be computed by
solving independently|V | subproblems of the form:

(IS(i)) πi + max
∑

j∈N(i)

(µj + αQ[j])xj

subject to xu + xv ≤ 1, ∀ (u, v) ∈ Ẽ andu, v ∈ N(i),

x ∈ {0, 1}|N(i)|,

whereẼ =
⋃q
k=1{(u, v) ∈ Vk × Vk} ∪E andN(i) = {j ∈ V \ VQ[i] : (i, j) 6∈ E}.

It is not difficult to prove that the relaxation of (PCPr) provides dual bounds
which are at least as good as those given by therepresentativesmodel described
in [3], even when the latter is amended with all theexternal cutsintroduced in
that paper. Because these inequalities were claimed to be the most effective ones
in cutting plane approaches, we were not compelled to implement abranch-cut-
and-pricealgorithm. Indeed, our results showed that a simplerbranch-and-priceis
already quite efficient.

Empirical analysis. We developed abranch-and-pricealgorithm using the model
presented above. The code was implemented inC++ andXPRESS(version 2008)
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was used as the linear programming solver. We applied the same branching strategy
and primal heuristic described in [3]. The dual bound of Lasdon [4] was computed
at each node of the branch-and-bound tree. To this end, we included the constraint∑
p∈P λp ≤ UB in the formulation (PCPr), whereUB is the best known primal

bound at that current node.

We experimented our algorithm with the same instance classes reported in [3].
The classRAND consists of80 randomized instances while the classNSF contains
49 instances related to the routing and wavelength assignmentproblem. The tests
were ran on a Pentium Core2 Quad2.83 GHz with8Gb of RAM. We established a
limit of 1800 seconds on the running time for all experiments.

First, we analyzed four algorithms to solve the pricing problem: (1)TRICK, (2)
SOLVER, (3) ADAPTIVE, and (4)ADAPTIVE*. The first one consists of the algo-
rithm proposed in [6] by Mehrotra and Trick to compute the maximum weighted
independent set. The second algorithm uses an ILP solver. The methodADAPTIVE

decides betweenTRICK andSOLVER depending on the density of the input graph.
Finally, ADAPTIVE* uses pricing heuristics to solve the pricing first and, if itfails,
theADAPTIVE algorithm is called. Table 9 shows the average performance in each
case to solve the linear relaxation at the root node for the40 instances in class
RAND. Line opt exhibits the total number of instances solved at optimality. Con-
sider now just the instances solved at optimality by the fouralgorithms. Linefast
shows the number of instances that were solved faster for each algorithm while
line speed-up presents the average speed-up rate defined as the ratio between
the running times of the slower and the current method, respectively.

SOLVER TRICK ADAPTIVE ADAPTIVE*

opt 40 30 40 40

fast 0 25 0 5

speed-up 1.01 15.29 12.38 12.18

Table 9. Comparison among different algorithms to solve thepricing problem.

We can see from Table 9 thatTRICK’s algorithm solved more instances faster
than the others, but it could not solve all instances to optimality. The difficulty
for this method is related to graphs with low density (≤ 30%). Overall, the best
performance was achieved by theADAPTIVE* algorithm.

The performance of ourbranch-and-pricealgorithm withADAPTIVE* pricing
(BP) is now compared to that of thebranch-and-cut(BC) from [3], whose code was
made available to us. The results are summarized in Table 10.Columnsopt,fast,
andspeed-up have the same meaning as in Table 9. Columndual represents
the total of instances with better dual bound at the root node. It came as no surprise
that the dual bounds from BP surpassed those from BC since, asmentioned earlier,
the linear relaxation of the former is at least as good as the one used in the latter.
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Inspecting columnopt, we can see that BP solved more instances to optimality
than BC. Moreover, the improvement in the speed-up rate using the BP code was
far more impressive. However, BC presented a slight better performance for the
NSF class.

BC BP

instance opt fast dual speed-up opt fast dual speed-up

RAND 47 15 6 3.22 64 29 73 36.9

NSF 37 28 3 6.17 49 9 23 4.17

Table 10. Comparative between BC and BP.

Conclusions.We proposed a new formulation for the Partition Coloring Problem
which combines the IS and the representatives models. Abranch-and-pricealgo-
rithm was developed to compute this model exactly. Experiments showed that our
approach is highly competitive with abranch-and-cutalgorithm proposed earlier,
outperforming the latter for random graphs. The development of the branch-and-
pricealgorithm is still on going and we plan to test the code on other classes which
include practical instances.
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1. Introduction

Processor cache memory management is a challenging issue asit deeply im-
pact performances and power consumption of electronic devices. It has been shown
that allocating data structures to memory for a given application (as MPEG en-
coding, filtering or any other signal processing application) can be modeled as a
minimumk-weighted graph coloring problem, on the so-called conflictgraph. The
graph coloring problem plays an important role as a particular case of the minimum
weighted graph coloring problem, and providing upper bounds on the minimum
number of colors to be used is an important issue for addressing these memory al-
location problems.
A coloring of graphG = (X,U) is a functionF : X → N∗; where each node
in X is allocated an integer value that is called a color. A propercoloring satisfies
F (u) 6= F (v) for all (u, v) ∈ U [2]. Thechromatic numberofG, denoted byχ(G),
is the smallest number of colors involved in any proper coloring. Determiningχ(G)
for any graphG is aNP-hard problem [1] however there are some well known par-
ticular cases:χ(G) = 1 if and only ifG is a totally disconnected graph,χ(G) = 2
for any exactly bipartite graphs (including trees and forests) andχ(G) = |X| if G
is complete.

In this paper, we focus on upper bounds forχ(G) for any simple undirected
graphG. The following bounds on the chromatic number can be found in[1].
• χ(G) ≤ δ(G) + 1 = d, whereδ(G) is the highest degree onG.
• χ(G) ≤ b1+

√
8m+1
2
c = l, wheren = |X| is the number of vertexes andm = |U |

1 Corresponding author:maria.soto@univ-ubs.fr
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is the number of edges.

This paper is organized as follows. The next section introduces two new up-
per bounds for the chromatic number, without making any assumption on the graph
structure. The first boundξ is based on the number of the edges and nodes, and is to
be applied to any connected component of the graph. The second boundζ is based
on the degree of the nodes in the graph. Section three briefly sketches the results
obtained on a large set of instances used for assessing the quality of these bounds.
This section will be widely extended in the full paper version of this abstract. Sec-
tion four provides some conclusions and directions for future work.

2. Two new upper bounds on the chromatic number

Lemma 2.1. The following inequality holds for any connected, simple, undirected
graph.

χ(G) ≤
⌊3 +

√
9 + 8(m− n)

2

⌋
= ξ (2.1)

Proof of Lemma 2.1. There exists at least one edge between anypair of colors [1].
Such an edge joins nodeu and nodev with F (u) 6= F (v). SinceG is not directed,
(u, v) = (v, u), there are at leastχ(G)(χ(G) − 1)/2 such edges. The minimum
number of nodes connected byχ(G)(χ(G) − 1)/2 edges are theχ(G) nodes of a
clique. Then, theseχ(G)(χ(G) − 1)/2 edges must connect at leastχ(G) nodes in
X (because the structure that involvesk nodes andk(k− 1)/2 edges is ak-clique,
that is a complete partial graph ofG). AsG is connected, at leastn − χ(G) other
edges are required for connecting the othern − χ(G) nodes to theχ(G) nodes
previously considered. Thereforem can be lower bounded as follows:

m ≥ χ(G)(χ(G)− 1)

2
+ n− χ(G)

This inequality leads to a second degree polynom in the variableχ(G), and solving
it leads to (2.1). 2

Lemma 2.2. The chromatic number of any non directed, simple graph has the fol-
lowing property:
χ(G) ≤ ζ whereζ is the greatest integer such that there exist at leastζ nodes inX
which degree is greater than or equal toζ − 1.
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The second bound is indirectly based on the degree of saturation † of nodes,DS(v)
and its proof relies on Theorem 2.3. The following notation are used in this paper.
• C = {1..χ(G)} is the minimum set of colors used in any valid coloring.
• A valid (or proper) coloring using exactlyχ(G) colors is said to be a minimal
coloring.
• The neighborhood of nodev denotedN(v) is the set of all nodesu such that
(u, v) belongs toU .

Theorem 2.3. LetF be a minimal coloring ofG. For all colork inC, there exists a
nodev colored withk,(i.e.F (v) = k), such that its degree of saturation isχ(G)−1,
i.e.DS(v) = χ(G)− 1.

Proof of Theorem 2.3. The theorem is shown by contradiction.

It is shown that for allk in C there exists a nodev, colored withk, such that
DS(v) = χ(G)− 1. To do so, it is assumed that there exists a colork such that all
nodev colored withk have a degree of saturation being strictly less thanχ(G)−1.
Then, for allv ∈ X such thatF (v) = k, ∃c ∈ C\{k} such that there does not
existu ∈ N(v)|F (u) = c. Consequently, a new valid coloring can be by setting
F (v) = c. This operation can be performed for any node colored withk, leading
to a coloring that involvesχ(G)− 1 colors, which is impossible by definition of the
chromatic number. 2

Proof of Lemma 2.2. It can be deduced from Theorem 2.3 that there exist at least
χ(G) nodes inG which degree is at leastχ(G) − 1. So,ζ = χ(G) is the smallest
integer such that there existζ nodes which degree is at leastζ − 1 and such that
χ(G) ≤ ζ . Consequentlyχ(G) is less than or equal to the greatest integer satisfy-
ing this condition. 2

3. Assessing the new bounds quality

The new bounds introduced in this abstract were tested with existing bounds
on a large set of instances from literature. As a result,ζ andξ have the best perfor-
mances on chromatic number bounds becauseζ reaches the best value on 95 % of
the instances and so doesξ on the remaining 5 %. Furthermore,ζ is significantly
better than the others bounds as its value is in average 48% lesser than the others
ones. It can also be observed that there is no dominance relationship betweenξ and
d asd is better thanξ on 45 % of the instances whereξ is on average 44% lesser
thand, andd is better thanξ on 55 % of the instances whered is on average only
34% lesser thanξ. Whereas, it has been proved thatξ ≤ l, these bounds have per-

† The degree of saturation of a nodev ∈ X denotedDS(v) is the number of different
colors at the nodes adjacent tov [3], [2].
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formances very closer in practice.
Due to a lack of space, extended results will be presented at the conference.

4. Conclusion

The two upper bounds on the chromatic number introduced in this paper appear
to be significantly better than the previously known ones. They are of particular
interest for microprocessor cache memory management as they enable to reduce
the search space for non conflicting memory allocations. These new bounds are
easily computable even for large graphs asξ complexity isO(1) andζ is O(m).
However, there is room for improvement as the gap with the chromatic number
remains quite large. Using more information on graphs topology appears to be a
promising direction for future work.
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Abstract

In this work we study the Minimum Sum Set Coloring Problem (MSSCP) which consists
in assign a set ofω(v) positive integers to each vertexv of a graph so that the intersection
of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to
each vertex of the graph is minimum. This problem generalizes the well known Minimum
Sum Coloring Problem, which is solvable in polynomial time on block graphs. We study
two versions of the MSSCP (preemptive and non-preemptive) on two subclasses of block
graphs: trees and line graphs of trees. This allows us to showthat both versions of the
problem are NP-complete on block graphs. We also find polynomial-time algorithms for
the MSSCP under certain conditions.

Key words: graph coloring, minimum sum coloring, set-coloring, blockgraphs

A vertex coloringof a graph is an assignment of colors (positive integers)
to its vertices such that adjacent vertices receive different colors. Thesumof the

1 Partially supported by ANPCyT PICT-2007-00518 and 00533, UBACyT Grants X069
and X606 (Arg.), FONDECyT Grant 1080286 and Millennium Science Institute “Complex
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coloring is the sum of the colors assigned to the vertices. Thechromatic sumΣ(G)
of a graphG is the smallest sum that can be achieved by any vertex coloring ofG.
In theMinimum Sum Coloring Problem(MSCP) we have to find a coloring ofG
with sumΣ(G).

The MSCP was introduced by Kubicka [11]. The problem is motivated by ap-
plications in scheduling [1; 2; 8; 9] and VLSI design [15; 17]. The computational
complexity of determining the vertex chromatic sum of a simple graph has been
studied extensively since then. In [12] it is shown that the problem is NP-hard
in general but solvable in polynomial-time for trees. The dynamic programming
algorithm for trees can be extended to partialk-trees and block graphs [10]. Fur-
thermore, the MSCP is NP-hard even when restricted to some classes of graphs for
which finding the chromatic number is easy, such as bipartiteor interval graphs [2;
17]. A number of approximability results for various classes of graphs were ob-
tained in the last ten years [1; 6; 8; 9; 4].

In an analogous way, it has been defined the edge coloring version of the
MSCP: theMinimum Sum Edge Coloring Problem(MSECP). The MSECP is NP-
hard for bipartite graphs [7], even if the graph is also planar and has maximum
degree3 [13]. Furthermore, in [13] is also shown that the MSECP is NP-hard for
3-regular planar graphs and for partial2-trees. For trees, the MSECP can be solved
in polynomial time [7; 16; 18] by a dynamic programming algorithm that uses
weighted bipartite matching as a subroutine (see also [10]). In [3] it has been shown
that this problem is also polynomial-time solvable for multicycles (i.e., cycles with
parallel edges). For general multigraphs, a1.829-approximation algorithm for the
MSECP is presented in [9]. For bipartite graphs there exist better approximation
ratios: a1.796-approximation algorithm is given in [8], and a1.414-approximation
algorithm is proposed recently in [5].

An interesting application of the MSECP is to model dedicated scheduling of
biprocessor jobs. The vertices correspond to the processors and each edgee = uv
corresponds to a job that requires a time unit of simultaneous work on the two
preassigned processorsu andv. The colors correspond to the available time slots.
A processor cannot work on two jobs at the same time, this corresponds to the
requirement that a color can appear at most once on the edges incident to a vertex.
The objective is to minimize the average time before a job is completed. When
there can beω(e) instances of the same job, it arises the notion ofset-coloringof
the corresponding conflict graph. Formally, given a simple graphG = (V,E) and a
demand functionω : V → Z+, avertex set-coloringof (G,ω) consists in assigning
to each vertexv ∈ V a set ofω(v) colors in such a way that adjacent vertices will
be assigned disjoint sets of colors. Given a vertex set-coloring of a graphG with
demand functionω, thesumof the set-coloring is the sum of the colors in the set
assigned to each one of the vertices. Thechromatic set-sumΣ(G,ω) of (G,ω) is
the smallest sum that can be achieved by any proper set-coloring of (G,ω). In the
Minimum Sum Set Coloring Problem(MSSCP) we have to find a set-coloring of
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(G,ω) with sumΣ(G,ω). Clearly, whenω(v) = 1 for each vertexv of the graph,
the MSSCP becomes the MSCP. The dedicated scheduling of biprocessor jobs with
multiple instances can be modeled as a MSSCP on the line graphof the conflict
graph. A similar problem where each jobe requiresω(e) time units of dedicated
biprocessors, thus leading to a different objective function, was studied in [14].
In this case, sometimes it is allowed that a job is interrupted and continue later :
the set of colors assigned to a vertex does not have to be consecutive. This type
of scheduling is calledpreemptive(assuming that preemptions can happen only at
integer times). Otherwise, if the set of colors assigned to each vertex needs to be
consecutive, then the scheduling is callednon-preemptive. In our case, the non-
preemptive case arises when each job requires a high cost setup on the processors,
and thus the objective is to minimize the average time beforea job is completed,
within the solutions minimizing the setup costs. Therefore, we have two variants of
the MSSCP : the preemptive (pMSSCP) and the non-preemptive (npMSSCP) one.

LetG = (V,E) be a graph with a demand functionω : V → Z+. Denoten =
|V |, ∆ the maximum degree ofG, andωmax = maxv∈V ω(v). The family of block
graphs includes as special cases trees and line graphs of trees. We found dynamic
programming algorithms for pMSSCP and npMSSCP on trees and line graphs of
trees, that run in polynomial time under certain assumptions, like bounded degree
or demand, or consideringnωmax as the size of the input. This last assumption
makes sense specially in the preemptive case, where the output of the algorithm
are the lists ofω(v) colors assigned to each vertexv, and they can be formed by
non-consecutive numbers.

Theorem 0.1. The npMSSCP on trees can be solved inO(n∆2ω2
max) time.

Theorem 0.2. The pMSSCP on trees can be solved inO(n(∆ωmax)
2ωmax) time.

Theorem 0.3. The npMSSCP for line graphs of trees can be solved in
O(∆3n∆+2ω∆+1

max ) time.

As a counterpart, we showed the NP-completeness of the preemptive and non-
preemptive MSSCP on trees and their line graphs, respectively.

Theorem 0.4. The pMSSCP on trees and the npMSSCP on line graphs of trees
are NP-complete, even considering the sum of the demands as the size of the input
graph.

These results show that the MSSCP is NP-hard on block graphs,both in the
preemptive and non-preemptive case, and that the computational complexity of the
MSCP and the MSSCP (resp. the pMSSCP and the npMSSCP) can be different for
the same family of graphs.
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An acyclic coloringof a graph is a proper vertex coloring such that the sub-
graph induced by the union of any two color classes is a disjoint collection of trees.
The more restricted notion ofstar coloringrequires that the union of any two color
classes induces a disjoint collection of stars. The acyclicand star chromatic num-
bers of a graphG are defined analogously to the chromatic numberχ(G) and are
denoted byχa(G) andχs(G), respectively. In this paper, we consider acyclic and
star colorings of graphs that are decomposable with respectto the join operation,
which builds a new graph from a collection of two or more disjoint graphs by
adding all possible edges between them. In particular, we present a recursive for-
mula for the acyclic chromatic number of joins of graphs and show that a similar
formula holds for the star chromatic number. We also demonstrate the algorith-
mic implications of our results for the cographs, which havethe unique property
that they are recursively decomposable with respect to the join and disjoint union
operations.

1. Introduction

Both acyclic and star colorings have applications in the field of combinatorial
scientific computing, where they model two different schemes for the evaluation of
sparse Hessian matrices. The general idea behind the use of coloring in computing
derivative matrices is the identification of entities that are essentially independent
and thus may be computed concurrently; see [5] for a survey.

A number of results exist for acyclic and star colorings of graphs formed by
certain graph operations. Results have been obtained for Cartesian products of
paths [4], trees [9], cycles [7], and complete graphs [8]. InSection 2, we describe
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the acyclic and star chromatic numbers of graphs formed by the join operation. The
join of a collection{Gi = (Vi, Ei)}i∈I of pairwise disjoint graphs, denoted⊕, is
the graphG = (V,E), whereV =

⋃
i∈I Vi andE = {ab | ab ∈ Ei, i ∈ I} ∪ {ab |

a ∈ Vi, b ∈ Vj, i, j ∈ I, i 6= j}. Here and throughout this paper,I denotes a finite
index set.

The problems of finding optimal acyclic and star colorings are bothNP-hard
and remain so even for bipartite graphs [2; 1]. It was shown recently [6] that every
coloring of a chordal graph is also an acyclic coloring. Since recognizing and op-
timally coloring chordal graphs can be done in linear time, this result immediately
implies a linear time algorithm for the acyclic coloring problem on chordal graphs.
A generalization of this result and other related results can be found in [10], where
it is shown that the graphs for which every acyclic coloring is also a star coloring
are exactly the cographs. In Section 3, we show that our results imply a linear time
algorithm for finding optimal acyclic and star colorings of cographs.

2. Joins of graphs

In this section, we outline a proof of the following theorem.

Theorem 9. Let {Gi = (Vi, Ei)}i∈I be a finite collection of graphs. Then

(i) χa

(
⊕

i∈I
Gi

)
=
∑

i∈I
χa(Gi) + min

j∈I





∑

i∈I,i6=j
(|Vi| − χa(Gi))




 ;

(ii) χs

(
⊕

i∈I
Gi

)
=
∑

i∈I
χs(Gi) + min

j∈I





∑

i∈I,i6=j
(|Vi| − χs(Gi))




 .

For ease of exposition, we will focus on the case whereG is the join of exactly
two graphs as in the following lemma. To see that these results generalize to joins
of arbitrarily large collections of graphs, first observe that the join operation is
commutative and associative; the result is then obtained byusing induction on|I|.

Lemma 4. LetG1 = (V1, E1) andG2 = (V2, E2) be graphs. Then

(i) χa(G1 ⊕G2) = χa(G1) + χa(G2) + min {|V1| − χa(G1), |V2| − χa(G2)} ;
(ii) χs(G1 ⊕G2) = χs(G1) + χs(G2) + min {|V1| − χs(G1), |V2| − χs(G2)} .

We now sketch the idea behind the proof of this lemma. Supposewe are given
graphsG1 andG2 and we wish to find an optimal acyclic or star coloring of their
join. Since every vertex inV1 is adjacent to every vertex inV2, no color can occur in
V1 andV2 simultaneously. Moreover, the desired coloring must also be valid for the
subgraphs induced by eachVi, i ∈ {1, 2}, where the lower bound will beχa(Gi) or
χs(Gi) depending on the type of coloring that is sought. The key observation is that
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at least oneVi must besaturated, meaning that each vertex receives a unique color.
It can be shown thatG will otherwise contain a bichromatic cycle – a violation of
the conditions of acyclic coloring. Furthermore, such a bichromatic cycle implies a
bichromatic path on four vertices, which cannot occur in a star coloring. Thus, given
disjoint optimal acyclic colorings ofG1 andG2, an optimal acyclic coloring of their
join can be constructed by saturating the graphGi that minimizes|Vi| − χa(Gi). It
is easy to see that the same procedure can be used in the context of star coloring.

3. Cographs

In this section, we outline a linear time algorithm for finding optimal acyclic
and star colorings of cographs. The algorithm works on the cotree — defined below
— in a way that is typical for algorithms on cographs. We beginwith some defi-
nitions. Thedisjoint unionof a collection{Gi = (Vi, Ei)}i∈I of pairwise disjoint
graphs, denoted∪, is the graphG = (V,E), whereV =

⋃
i∈I Vi andE =

⋃
i∈I Ei.

A graphG = (V,E) is acographif and only if one of the following is true:

(i) |V | = 1;
(ii) there exists a collection{Gi}i∈I of cographs such thatG =

⋃

i∈I
Gi;

(iii) there exists a collection{Gi}i∈I of cographs such thatG =
⊕

i∈I
Gi.

Cographs can be recognized in linear time [3], where most recognition algorithms
also produce a special decomposition structure when the input graphG is a cograph.
We associate with a cographG a treeTG called acotree, whose leaves correspond
to the vertices ofG and whose internal nodes are labeled either0 or 1. The0-nodes
correspond to the disjoint union of their children, and the1-nodes correspond to the
join of their children.

As in Section 2, we describe the binary case, which can be appropriately gen-
eralized. The algorithm proceeds by traversing the cotree starting with the leaves,
such that no node is visited before both of its children have been visited. We do the
following when we visit a nodet ∈ TG with childrent1 andt2. If t is a 0-node,
we construct a coloring that usesχa(t) = max{χa(t1), χa(t2)} colors in the ob-
vious way. Ift is a 1-node, we use the process described in Section 2 to construct
a coloring that is optimal by Theorem 9. Since the algorithm produces an optimal
acyclic coloring for every node in the cotree, the last step will produce an opti-
mal acyclic coloring ofG itself. Our final theorem follows from the fact that every
acyclic coloring of a cograph is also a star coloring and viceversa.

Theorem 10. An optimal acyclic coloring of a cograph can be found in linear time.
Furthermore, the obtained coloring is also an optimal star coloring.
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1. Introduction

Throughout the paper all graphsG = (V,E) are undirected and simple. Anin-
duced bicliqueof G is a complete bipartite induced subgraph ofG. A non-induced
biclique is a complete bipartite (not necessarily induced) subgraphof G. Equiva-
lently, the pair(X, Y ) of disjoint vertex subsetsX ⊆ V andY ⊆ V is a non-
induced biclique ofG if {x, y} ∈ E for all x ∈ X andy ∈ Y . If, additionally,X
andY are independent sets, then(X, Y ) is also an induced biclique ofG. Let the
pair (X, Y ) be an induced or non-induced biclique. We call it a(k1, k2) biclique if
|X| = k1 and|Y | = k2. Its cardinality is|X|+ |Y |.

The literature dealing with bicliques is rich and diverse. There are applica-
tions of bicliques (induced or non-induced on bipartite graphs or general graphs) in
various different areas such as data mining, automata and language theory, artificial
intelligence and biology, see e.g. [1]. Therefore bicliques and algorithmic problems
about bicliques have been studied extensively.

Known results. Already in [3], the complexity of finding certain bicliques has
been considered. For example, deciding whether a bipartitegraph has a balanced
biclique of size (at least)k is NP-complete ([GT24] in [3]). A maximum cardinal-
ity induced biclique can be computed in polynomial time on bipartite graphs [2],
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wheras this problem is NP-complete for general graphs [7]. Another related prob-
lem that asks to compute a non-induced biclique with a maximum number of edges
is also known to be NP-hard [6].

The above-mentioned NP-completeness of the balanced biclique problem on
bipartite graphs implies the NP-completeness of the following two problems about
the existence of induced and non-induced bicliques, respectively.

Induced (k1,k2) Biclique
Input: An undirected graphG = (V,E), positive integersk1 andk2.
Question:DoesG have an induced(k1, k2) biclique(X, Y )?

Non-Induced (k1,k2) Biclique
Input: An undirected graphG = (V,E), positive integersk1 andk2.
Question:DoesG have a non-induced(k1, k2) biclique(X, Y )?

There is a trivialO∗(3n) algorithm for finding and also for enumerating all in-
duced and non-induced(k1, k2) bicliques, respectively.∗ It considers all partitions
of the vertex set intoX, Y andV \ (X ∪ Y ) and verifies for each whether(X, Y )
fulfils all conditions.

Our results. For generating all non-induced(k1, k2) bicliques, note that there
is no hope in obtaining a faster algorithm than the above-describedO∗(3n) algo-
rithm, as a complete graph onn vertices has3npoly(n) non-induced(bn/3c, bn/3c)
bicliques. For solving theNon-Induced (k1,k2) Biclique problem, however, we
give a polynomial-spaceO(1.8899n) algorithm and an exponential-spaceO(1.8458n)
algorithm.

There is also anO∗(3n/3) time algorithm to solveInduced (k1,k2) Biclique.
This algorithm is based on enumerating all maximal induced bicliques of the graph
with a polynomial delay algorithm and on the fact that ann-vertex graph has
O∗(3n/3) maximal induced bicliques [4].

2. Polynomial-space algorithms for finding a non-induced biclique

We start by describing two simpleO∗(2n) time algorithms for theNon-Induced
(k1,k2) Biclique problem. We will use these algorithms as subroutines in our third
algorithm with running-timeO(1.8899n) and polynomial space usage.

The first algorithm,NIB1, verifies all setsXc ⊆ V with |Xc| = k1 as can-
didates for being the setX in the pair(X, Y ). It computes for eachXc the set

∗ Throughout the paper we writef(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for some
polynomialp(n).
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B(Xc) := {v ∈ V \ Xc | ∀x ∈ Xc : v ∈ N(x)}. If |B(Xc)| < k2 then the
algorithm rejects the candidateXc. Otherwise it picks an arbitrary setYc ⊆ B(Xc)
with |Yc| = k2, and clearly(Xc, Yc) is a non-induced(k1, k2) biclique. The only
exponential part is the enumeration step and thus the running-time isO∗(2n).

The second algorithm,NIB2, verifies all setsU ⊆ V with |U | = k1 + k2 and
checks for each whether there is a non-induced biclique(X, Y ) such that|X| = k1

and |Y | = k2. This can be done in polynomial time by computing the connected
components of the complement ofG[U ]. If s1, s2, . . . , st are the sizes of those com-
ponents, then there is a non-induced biclique as described above iff there is an
I ⊆ {1, 2, . . . , t} such that

∑
i∈I si = k1. Such a SUBSET SUM problem can be

solved in timeO(nW ) by dynamic programming, whereW = maxi si. The only
exponential part is the enumeration step and thus the running-time isO∗(2n).

For the third algorithm,NIB3, suppose w.l.o.g. thatk1 ≤ k2. If k1 ≤ bn/3c,
then runNIB1, otherwise runNIB2. Thus, the running-time ofNIB3 is at most
O∗

((
n
n/3

))
= O(1.8899n) if NIB1 is executed and at mostO∗

((
n

2n/3

))
= O(1.8899n)

if NIB2 is executed.

Theorem 2.1. Algorithm NIB3 solves theNon-Induced (k1,k2) Biclique prob-
lem in timeO(1.8899n) and polynomial space.

3. Exponential-space algorithm for finding a non-induced biclique

In this section we provide an exponential-space algorithm for the theNon-
Induced (k1,k2) Biclique problem in timeO(1.8458n). The algorithm relies on a
preprocessing involving a dynamic programming approach. It is described by the
forthcoming three steps calledPartitioning, PreprocessingandComputing.

3.1 Description of the algorithm

Partitioning Step. Letα be a constant to be determined. Given the graphG =
(V,E), compute an arbitrary partition of the vertex set into two subsetsL andR
such that|R| = dαne and|L| = b(1− α)nc.

Preprocessing Step.This step focuses on the vertices ofR. For any two (not
necessarily disjoint) subsetsX, Y ⊆ R and any two integersi andj, 0 ≤ i, j ≤ |R|,
we compute the value of the booleanR-biclique[X, i, Y, j] which is true iff there
exist two subsetsX ′ ⊆ X andY ′ ⊆ Y such that(X ′, Y ′) is a non-induced(i, j)
biclique. To compute the values ofR-biclique, the setsX, Y and the integersi, j
are considered by increasing cardinality and order.
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For anyX, Y ⊆ R and i, j, such that0 ≤ i, j ≤ |R|, R-biclique[X, 0, Y, 0] is
clearly true. ObviouslyR-biclique[∅, i, Y, j] is true iff i = 0 andR-biclique[X, i, ∅,
j] is true iff j = 0. For any other value,R-biclique[X, i, Y, j] is true iff

∨
v∈X

(
R-biclique[X \ {v}, i, Y, j] ∨ R-biclique[X \ {v}, i − 1, N(v) ∩ Y, j]

)
∨

∨
v∈Y

(
R-biclique[X, i, Y \ {v}, j] ∨ R-biclique[N(v) ∩X, i, Y \ {v}, j − 1]

)
.

Computing step.If the graph admits a non-induced(k1, k2) biclique, then it is
found during this final step. For every two disjoint subsetsXL, YL ⊆ L for which
(XL, YL) is a non-induced biclique with|XL| ≤ k1, |YL| ≤ k2, letX ′

R = {v ∈ R : v
is adjacent to every vertex ofYL} andY ′

R = {v ∈ R : v is adjacent to every vertex
of XL}; if R-biclique[X ′

R, k1 − |XL|, Y ′
R, k2 − |YL|] is true then the graph has a

non-induced(k1, k2) biclique and “Yes” is returned.

If the algorithm was not able to find anyXL, YL such thatR-biclique[X ′
R, k1−

|XL|, Y ′
R, k2−|YL|] is true, then the graph has no non-induced(k1, k2) biclique and

it returns “No”. The correctness of the algorithm is shown inthe next section. Note
that instead of returning “Yes” or “No”, our algorithm can easily be modified (by
standard backtracking techniques) to indeed return a non-induced(k1, k2) biclique
if one exists.

3.2 Correctness of the algorithm

Assume thatG has a non-induced(k1, k2) biclique and let(X, Y ) be such a
biclique. Since(L,R) is a partition ofV , it holds thatX = XL ∪ XR andY =
YL ∪ YR whereXL = X ∩ L,XR = X ∩ R, YL = Y ∩ L andYR = Y ∩ R. Since
(X, Y ) is a biclique, note thatXR ⊆ X ′

R andYR ⊆ Y ′
R whereX ′

R = {v ∈ R : v is
adjacent to every vertex ofYL} andY ′

R = {v ∈ R : v is adjacent to every vertex of
XL}. Moreover|XR| = k1 − |XL| and|YR| = k2 − |YL|.

Thus, assuming thatXL andYL are given, by definition ofR-biclique it is
sufficient to know whetherR-biclique[X ′

R, k1 − |XL|, Y ′
R, k2 − |YL|] is true. Since

the Computing step goes through all possible choices forXL andYL, it remains to
show that the formula of the Preprocessing step is correct. Clearly, the base cases
are correct. Let us consider the inductive step. The valueR-biclique[X, i, Y, j] is
true iff there exists a vertexv ∈ X (the same argument can be used ifv is a vertex of
Y ) such thatR-biclique[X \ {v}, i, Y, j] is true (i.e.v does not belong to the(i, j)-
biclique and thus it is removed fromX) or R-biclique[X \ {v}, i− 1, N(v)∩ Y, j]
is true (i.e.v is a vertex of the(i, j)-biclique and thus it remains to find a(i− 1, j)-
biclique fromX \ {v} and{u ∈ Y \ {v} : {u, v} ∈ E}).
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3.3 Analysis of the running-time

The Partitioning step can clearly be done in polynomial time. During the Pre-
processing step we need to computeR-biclique[X, i, Y, j] for any (not necessar-
ily disjoint) subsetsX, Y ⊆ R and any integersi and j, 0 ≤ i, j ≤ |R|. For
each such4-tuple, R-biclique can be evaluated in polynomial time: go through
all vertices ofX ∪ Y and use the previously computed values ofR-biclique –
recall thatX andY are considered by increasing cardinality. Thus, to enumer-
ate allX andY , the algorithm needsO∗(4αn) time. The Computing step needs
to consider all disjoint subsetsXL, YL ⊆ L and then to look for already com-
puted values ofR-biclique. Consequently, it needsO∗(3(1−α)n) time. Finally the
value ofα is choosen to balance the running-time of the last two steps.By setting
α = log(3)/(2 + log(3)) ≈ 0.44211..., our main theorem follows.

Theorem 3.1. The described algorithm solves theNon-Induced (k1,k2) Biclique
problem in timeO(1.8458n) and exponential space.
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1. Introduction

In this paper we study an extension of the classical Resource-Constrained
Project Scheduling Problem (RCPSP) with minimum makespan objective by intro-
ducing a further type of precedence constraints denoted as “Feeding Predecences”
(FP). This problem happens in that production planning environment, like make-
to-order manufacturing, which commonly requires the so-called project-oriented
approach. In this approach a project consists of tasks, eachone representing a man-
ufacturing process, that is an aggregate activity. Due to the physical characteristics
of these processes the effort associated with a certain activity for its execution can
vary over time. An example is that of the human resources thatcan be shared among
different simultaneous activities in proportion variableover time. In this case the
amount of work per time unit devoted to each activity, so as its duration, are not
univocally defined. This kind of problems is in general modelled by means of the so
called Variable Intensity formulation, that is a variant ofthe Resource Constrained
Project Scheduling Problem (see, e.g., Kis, 2006). As the durations of the activities
cannot be taken into play, the traditional finish-to-start precedence relations, so as
the generalized precedence relations, cannot be used any longer, and we need to
introduce the so called “feeding precedences” (see, e.g., Kis, 2005, 2006). Feeding
precedences are of four types:

• Start-to-%Completed (S%C) between two activities(i, j). This constraint im-
poses that the processed percentage of activityj successor ofi can be grater
than0 ≤ gij ≤ 1 only if the execution ofi has already started.

• %Completed-to-Start (%CS) between two activities(i, j). This constraint is
used to impose that activityj successor ofi can be executed only ifi has been
processed for at least a fractional amount0 ≤ qij ≤ 1.

CTW09,École Polytechnique & CNAM, Paris, France. June 2–4, 2009



• Finish-to-%Completed (F%C) constraints between two activities (i, j). This
constraint imposes that the processed fraction of activityj successor ofi can
be greater than0 ≤ gij ≤ 1 only if the execution ofi has been completed.

• %Completed-to-Finish (%CF) constraints between two activities (i, j). This
constraint imposes that the execution of activityj successor ofi can be com-
pleted only if the fraction ofi processed is at least0 ≤ qij ≤ 1.

In the following we propose a new mathematical formulation of the RCPSP
with FP constraints in terms of mixed integer programming. For this formulation a
branch and bound algorithm has been designed and a computational experimenta-
tion an randomly generated instances will be provided.

2. The Mathematical Model

We will assume that the planning horizon within which all theproduction pro-
cesses have to be scheduled is[0, T ), whereT is the project deadline, and it is dis-
cretized (without loss of generality) intoT unit-width time periods[0, 1), [1, 2), . . . , [T−
1, T ). Let us define with

• q1
ij , the fraction of activityi that has to be at least completed in order to let

activity j start;
• q2

ij , the fraction of activityi that has to be at least completed in order to let
activity j finish;

• g1
ij, the fraction ofj that can be at most completed before the starting time of

activity i;
• g2

ij, the fraction ofj that can be at most completed before the finishing time of
activity i;

• A, the set of activities to be carried out;
• A1, A2, A3 andA4, the sets of pairs of activities for which aS%C, %CS,
F%C, and%CF constraint exists, respectively;

• K, the set of renewable resources each one available in an amount of bk units,
with k = 1, . . . , K;

• qik, the amount of units of resourcek necessary to carry out activityi.

Furthermore, let us consider the following decision variables

• xit, the percentage ofi executed till time periodt.
• sit, fit, binary variables that assumes value 1 if activityi has started or finished

in a time periodτ ≤ t, respectively, and assumes value 0 otherwise.

Since the completion time of an activityi ∈ A can be expressed asfi =
(
T −∑T

t=1 fit + 1
)
,

the objective function can be written as:

min {maxi∈A fi} = min
{
maxi∈A

(
T −∑T

t=1 fit + 1
)}
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that can be easily linearized. The FP relations can be modelled as follows

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

sjt ≤ xi,t−1 + (1− q1
ij) ∀(i, j) ∈ A2, t = 1, . . . , T (2)

xjt ≤ fi,t−1 + g2
ij ∀(i, j) ∈ A3, t = 1, . . . , T (3)

fjt ≤ xi,t−1 + (1− q2
ij) ∀(i, j) ∈ A4, t = 1, . . . , T (4)

xit ≤ xi,t+1 ∀i ∈ A, t = 1, . . . , T − 1 (5)

sit ≤ si,t+1 ∀i ∈ A, t = 1, . . . , T − 1 (6)

fit ≤ fi,t+1 ∀i ∈ A, t = 1, . . . , T − 1 (7)

siT = fiT = xiT = 1 ∀i ∈ A (8)

si0 = fi0 = xi0 = 0 ∀i ∈ A (9)

fit ≤ xit ≤ sit ∀i ∈ A, t = 1, . . . , T (10)
∑|A|
i=1 qik(xit − xi,t−1) ≤ bk k = 1, . . . , K, t = 1, . . . , T (11)

sit, fit ∈ {0, 1} ∀i ∈ A, t = 1, . . . , T (12)

xit ≥ 0 ∀i ∈ A, t = 1, . . . , T (13)

Constraints from (1) to (4) modelS%C, %CS, F%C and %CF feeding con-
straints, respectively. Constraints (5) regulate the total amount processed of an ac-
tivity i ∈ A over time. Constraints (6) imply that if an activityi ∈ A is started
at timet, then variablesiτ = 1 for everyτ ≥ t, and, on the contrary, if activityi
is not started at timet, siτ = 0 for everyτ ≤ t. Constraints (7) are the same as
constraints (6) when finishing times are concerned. Constraints (8) say that every
activity i ∈ A must start and finish within the planning horizon. Constraints (9)
represent initialization conditions for variablesit, fit, xit whent = 0. Constraints
(10) forcexit to be zero ifsit = 0, andfit to be zero ifxit < 1. Resource con-
straints are represented by relations (11). Constraints (12) and (13) limit the range
of variability of the variables.

3. The Exact Algorithm Scheme

The exact algorithm proposed exploits the mathematical formulation presented
in the previous section and is based on branch and bound rules. The root nodeα0

of the search tree is associated with the whole problemP0 and two bounds, i.e.,
the trivial upper bound on the minimum makespan given by the time horizonT
and the lower bound on the minimum makespan based on a Lagrangian relaxation
of the resource constraints of the mathematical model (see,Bianco and Caramia,
2009). Each level of the search tree is associated with an activity in the set A of
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activities, which means that the tree has at most|A| levels. Assume that activityi is
associated with the first level of the tree; then level 1 is formed byT subproblems,
denotedP1t with t = 1, . . . , T , each associated with a time slott in the time hori-
zon at which activityi can start at the very latest, i.e., at each nodeα1t at level 1 of
the tree the subproblemP1t associated is obtained fromP0 (its parent) by impos-
ing sit = 1. The same analysis described for level 1 can be applied for every level
of the tree, i.e., from a subproblemPiτ at leveli we can generateT subproblems
Pi+1,t at leveli + 1, with t = 1, . . . , T , each obtained fromPiτ by fixing sjt = 1,
wherej is the activity associated with leveli+ 1. Each subproblemPit undergoes
a bounding phase in which a lower bound on the minimum makespan is computed
as done for the root node. Here we can have three alternative outcomes: (1) the
mathematical program associated with the Lagrangian lowerbound is empty, i.e.,
some feeding precedence relations cannot be obeyed, (2) thesolution of the La-
grangian relaxation is not feasible with respect to some resource constraints, (3)
the latter solution respects all the resource constraints.Clearly, in the first case the
subtree generating from problemPit is fathomed since a feasible solution cannot
be found, with a consequent backtracking to the previous level; in the case (2) the
Lagrangian solution valueLa(Pit) is a lower bound for subproblemPit and it is
compared with the best upper boundUB∗ found so far; ifLa(Pit) ≥ UB∗ then
the tree is pruned again (with a consequent backtracking) otherwise the search is
continued in a depth first search strategy. In the last occurrence, i.e., in the case (3),
the solution valuef(Pit), obtained by substitutingxit, sit, fit values obtained by
the Lagrangian relaxation inPit, is an upper bound for the latter subproblem and
therefore it is an upper bound on the whole problemP0. Now, if this solution toPit
satisfies the complementary slackness conditions, it is theoptimal solution forPit
and the tree can be pruned, possibly updatingUB∗ to f(Pit) if the former is greater
than the latter. If the solution is not optimal forPit then the search continues in a
depth first search strategy possibly updatingUB∗ to f(Pit) if UB∗ > f(Pit).

4. Preliminary Computational Results

The implementation of our algorithm has been carried out in the C language.
The performance of our approach has been compared to that of the commercial
solver CPLEX, implementing the mathematical formulation presented in Section 2
in the AMPL language, version 8.0.0. The machine used for theexperiments is a PC
Core Duo with a 1.6 GHz Intel Centrino Processor and 1 GB RAM. Experiments
have been generated with the following features:

• the number of activities|A| has been chosen equal to 10, 20, and 30;
• a densityfd of feeding precedences has been set equal to 30%;
• the numberK of renewable resources has been kept equal to 4;
• an amountbk of resource availability per period for each resourcek = 1, . . . , K

has been set equal to 4;
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• a requestqik of resourcek = 1, . . . , K for every activityi ∈ A has been
assigned uniformly at random from 1 to 3;

• the valuesg1
ij, q

1
ij , g

2
ij, q

2
ij have been assigned uniformly at random in the range

(0.00, 1.00);
• the time horizonT , that is the starting upper bound at the root node of the

search tree, has been fixed to 80.

Preliminary results, given as averages over five instances,are shown in Table
11 (an extensive experimentation is in progress). We listedthe following values:
OPT CPLEX andOPT BB, being the average values of the makespan, computed
over the instances solved at the optimum, achieved by CPLEX and by our algo-
rithm, respectively;# Opt CPLEX and# Opt BB, being the number of instances,
out of the five, solved at the optimum by CPLEX and by our algorithm, respec-
tively; CPU CPLEX andCPU BB, being the average CPU time (in seconds) elapsed
by CPLEX and by our algorithm to find the optimal solutions, respectively.

The comparison shows that our algorithm is able to solve all the instances with
sizes from 10 to 30 activities, differently from CPLEX that for 30 activities solved
only two out of the five instances within the time limit of two hours. Moreover,
CPU BB is always lower thanCPU CPLEX.

|A| Opt CPLEX # Opt CPLEX CPU CPLEX OPT BB # Opt BB CPU BB

10 5.2 5/5 0.7 5.2 5/5 0.3

20 9.0 5/5 67.6 9.0 5/5 34.2

30 14.2 2/5 1826.6 15.8 5/5 1248.9

Table 11. Comparison between the performance of CPLEX and our algorithm
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1. Introduction

In this paper we analyze a routing problem related with the waste collection
in urban areas, which is formulated as a Vehicle Routing Problem with additional
constraints. There is a single depot, which is the beginning, o, and the end,d, of all
vehicle routes. The fleet of vehicles is homogeneous, with a capacity ofW units. It
is assumed that there areK available vehicles in the fleet. A vehicle that leaves the
depot must fulfill a minimum filling constraint by coming backwith at leastLmin
units of waste. Each waste collection point is seen as a client i ∈ N = {1, . . . , m},
with a given load,li, that is stored in a container. A container is considered to be
full if it has more than a given amount of wastewmax. It is only mandatory that the
waste of a given clienti is collected if its container is full. Clients that do not have
full containers will only be visited if necessary, in order to ensure that a pre-defined
minimal amount of wasteLTmin is collected. The first set of clients is denoted by
N1 and the second byN2. We use an exact branch-and-price-and-cut algorithm
to solve the integer problem. The column generation model isa Dantzig-Wolfe
decomposition of a network flow model over arcs, whose variables are also used in
our branching scheme. We apply dynamic stabilization techniques to the column
generation algorithm and use dual-feasible functions to derive valid cutting planes
from implicit constraints of the model. An extensive surveyon time constrained
routing and scheduling problems can be found in [1].
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2. Mathematical Model

Our routing problem is defined in a graphG = (V,A), whereV = N ∪ {o, d}
represents the set of nodes in the graph andA the set of oriented arcs. The graph
is assumed to be unique and complete Each arc(i, j) ∈ A has a costcij, that
represents the distance betweeni andj, as well as other eventual costs that may
be incurred by traveling through it. The optimization objective of the plan is to
minimize the total cost of the vehicles routes.

2.1 Column Generation Model

The column generation model is a network flow model over pathsthat results
from a Dantzig-Wolfe decomposition of a network flow model over arcs. The re-
formulated model consists of a master problem (2.1)-(2.6) with binary variables,
λp, that represent feasible vehicle routes, and a pricing subproblem that consists of
a shortest path problem with additional constraints. The column generation model
is stronger than the original arc-flow formulation and does not have symmetry. Let
Ω denote the set of all feasible routes,cp the cost of a pathp ∈ Ω andlp the total
amount of waste picked up in routep. Constraints (2.2) and (2.3) guarantee, re-
spectively, that clients that belong to setN1 are visited exactly once, and that the
other clients have, at most, one visit. Constraint (2.4) ensures that the number of
used routes does not exceed the number of available vehicles. The minimum filling
constraint is guaranteed in (2.5). Model (2.1)-(2.6) can beseen as a set-partitioning
model with additional constraints.

min
∑

p∈Ω

cpλp (2.1)

s.t. ∑

p∈Ω

aipλp = 1, ∀i ∈ N1, (2.2)

∑

p∈Ω

aipλp ≤ 1, ∀i ∈ N2, (2.3)

∑

p∈Ω

λp ≤ K, (2.4)

∑

p∈Ω

lpλp ≥ LTmin, (2.5)

λp ∈ {0, 1}, ∀p ∈ Ω. (2.6)

Solving the pricing subproblem generates a new column to be added to the master
problem. This column, which represents a valid path in the primal space, is the one
with the lowest reduced cost. The reduced cost of a pathp ∈ Ω is given byc′p =
cp −

∑
i∈N1∪N2

aipπi − lpδ − θ. In our implementation, we solved this subproblem
using a dynamic programming algorithm. Recently, new cuts based on dual-feasible
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functions have been described in the literature. In our routing problem, we can
apply these principles by considering a valid constraint for (2.1)-(2.6). Beingfp
the free space in a vehicle that goes through routep, we have that

∑
p∈Ω fpλp ≤

K ×W − LTmin.

2.2 Stabilization Strategies

The introduction of dual cuts [2; 3] is one of the most promising methods
proposed in the literature to accelerate the convergence ofcolumn generation algo-
rithms. We derived a new cut, valid in the dual space, which represents the possi-
bility of exchanging clients in a route.

Proposition 2.1. Given a clienti ∈ N , letS be a subset of clients such that|S| > 1
and

∑
j∈S lj = li, andP be a path between all the clients ofS. The cost of that path

is denoted bycS. Let c1min andc2min be the first and the second smaller cost of arcs
incident ini, respectively. Leta andb be the nodes at the extremities ofP , andd1

max

andd2
max be the higher costs among the arcs incident ina andb, respectively. IfP

is a circuit, pick the higher arc costs incident in two nodes of S. Let πn, n ∈ N , θ
andδ, be the dual variables associated to the constraints (2.2)-(2.3), (2.4) and (2.5),
respectively. The cut−πi +

∑
j∈S πj ≤ cS− (ci1min + ci2min)+ (dS1

max +dS2
max) is valid

in the dual space.

Proof. Let (π, θ, δ) be the dual solution corresponding to an optimal solution
to the column generation problem (2.1)-(2.6). This solution is, according to the
optimality conditions, valid in the dual space, which meansthat

∑
n∈N anpπn +

θ + lpδ ≤ cp, ∀p ∈ Ω. Two cases may occur: (i)i ∈ N1 or (i ∈ N2 and client
i is visited in the optimal solution) or (ii)i ∈ N2 and clienti is not visited in
the optimal solution . Let us consider case (i). There is, in the optimal solution, at
least one positive basic variable corresponding to a pathp′ = (a1p′ , . . . , amp′), with
aip′ = 1 andasp′ ∈ {0, 1}, ∀s ∈ S. Its reduced cost is null, which means thatcp′ =∑
n∈N anp′πn+ θ+ lp′δ. Consider path̃p = (a1p̃, . . . , amp̃), with aip̃ = aip′−1 = 0,

ajp̃ = ajp′ + 1, ∀j ∈ S, andanp̃ = anp′, ∀n ∈ N \ (S ∪ {i}). Pathp̃ is a valid
path corresponding to the exchange of clienti by clientsj ∈ S. Clearly,cp̃ − cp′ ≤
cS−(ci1min+ci2min)+(dS1

max+d
S2
max) andlp̃ = lp′. Suppose that there is a cut that is not

valid in the dual space, i.e.,−πi +
∑
j∈S πj > cS − (ci1min + ci2min) + (dS1

max + dS2
max).

Then,−πi+
∑
j∈S πj > cp̃−cp′ ⇒ −πi+

∑
j∈S πj > cp̃−(

∑
n∈N anp′πn+θ+lp′δ).

It is clear that−πi +
∑
j∈S πj =

∑
n∈N anp̃πn −

∑
n∈N anp′πn, which implies that

∑
n∈N anp̃πn + θ + lp̃δ > cp̃, contradicting the validity of solution(π, θ, δ). Let us

now consider case (ii). Given that
∑
p∈Ω aipλp = 0, by the complementary slackness

theorem,πi = 0. Moreover, asi ∈ N2 and
∑
j∈S lj = li, we know thatj ∈ N2, ∀j ∈

S, and thus that
∑
j∈S πj ≤ 0. Therefore,−πi +

∑
j∈S πj ≤ 0. Let cij1 andcij2 be

the costs of the arcs incident ini andj1, andi andj2, respectively, withj1, j2 ∈ S.
We know thatcij1 + cij2 ≥ c1min + c2min andcij1 + cij2 ≤ d1

max + d2
max. This means
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thatd1
max + d2

max ≥ c1min + c2min =⇒ cp − (c1min + c2min) + (d1
max + d2

max) ≥ 0 =⇒
−πi +

∑
j∈S πj ≤ cp − (c1min + c2min) + (d1

max + d2
max).

2

2.3 Branch-and-Bound

In the branching scheme, we used the binary decision variables of the network
flow model over arcs,xij , beingi andj the beginning and end of an arc. The re-
sulting branching constraints,xij = 1 andxij = 0, representing two new branching
nodes of the branching tree, are easily enforced in the master problem (2.1)-(2.6),
whose variables are not used to branch as it would cause a regeneration of columns,
unless the pricing subproblem was reformulated in a more complicated way.

3. Conclusions

In this paper, we defined an exact branch-and-price-and-cutalgorithm for a
routing problem arising in an urban waste management system. We conducted pre-
liminary computational experiments on a set of random instances with promising
results. For the sake of brevity, we do not present the list ofresults obtained, but
we can say that for instances with 50 clients, we usually converge to a small opti-
mality gap in a reasonable amount of time. In what concerns the cut described in
§2.1, its performance depends on the values of parameters likeK, Lmin or LTmin,
whereas the dual cut described in§2.2 performs well when the clients are organized
in geographically scattered groups.
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Abstract

Classical discrete optimal control problems which are based on a graph-theoretic structure
are introduced. The paper focusses now on a stochastic extension of such processes. Based
on the concept of general Markov processes, stochastic networks are characterized. Suitable
algorithms exploiting the time-expanded network method are presented.

Key words: Stochastic Networks, Markov Processes, Time-Expanded Network

1. Introduction

Classical discrete optimal control problems are introduced in [1; 2; 4]. We con-
sider now such control problems for which the discrete system in the control pro-
cess may admit dynamical states where the vector of control parameters is changing
in a random way. We call such states of the dynamical systemuncontrollable dy-
namical states. So, we consider the control problems for which the dynamicsmay
contain controllable states as well as uncontrollable ones. We show that these types
of problems can be modeled on stochastic networks. New algorithmic approaches
for their solving based on the concept of Markov processes and dynamic program-
ming from [3] can be described. The approach is based on the time-expanded net-
work method. This is a comfortable graph-theoretic structure which was introduced
in [4; 5].

2. The General Graph-Theoretic Structure

We consider a time-discrete systemL with a finite set of statesX ⊂ Rn. At
every time-stept = 0, 1, 2, . . . , the state of the systemL is x(t) ∈ X. Two states
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x0 andxf are given inX, wherex0 = x(0) represents the starting state of systemL
andxf is the state in which the systemLmust be brought, i.e.xf is the final state of
L. We assume that the systemL should reach the final statexf at the time-moment
T (xf) such thatT1 ≤ T (xf ) ≤ T2, whereT1 andT2 are given. The dynamics of
the systemL is described as follows

x(t+ 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . , (2.1)

where

x(0) = x0 (2.2)

andu(t) = (u1(t), u2(t), . . . , um(t)) ∈ Rm represents the vector of control pa-
rameters. For any time-stept and an arbitrary statex(t) ∈ X a feasible finite set
Ut(x(t)) = {u1

x(t), u
2
x(t), . . . u

k((x(t))
x(t) }, for the vector of control parametersu(t) is

given, i.e.

u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . . (2.3)

We assume that in (2.1) the vector functionsgt(x(t), u(t)) are determined uniquely
byx(t) andu(t), i.e.x(t+1) is determined uniquely byx(t) andu(t) at every time-
stept. Additionally, we assume that at each moment of timet the costct(x(t), x(t+
1)) = ct(x(t), gt(x(t), u(t))) of system’s passage from the statex(t) to the state
x(t+1) is known. Letx0 = x(0), x(1), x(2), . . . , x(t), . . . be a trajectory generated
by given vectors of control parametersu(0), u(1), . . . , u(t − 1), . . . . Then either
this trajectory passes through the statexf at the time-momentT (xf ) or it does not
pass throughxf . We denote by

Fx0xf
(u(t)) =

T (xf )−1∑

t=0

ct(x(t), gt(x(t), u(t))) (2.4)

the integral-time cost of system’s passage fromx0 to xf if T1 ≤ T (xf ) ≤ T2; oth-
erwise we putFx0xf

(u(t)) = ∞. In [1; 2; 4] the following problem has been for-
mulated: Determine vectors of control parametersu(0), u(1), . . . , u(t), . . . which
satisfy the conditions (2.1)-(2.3) and minimize the functional (2.4). This problem
can be regarded as a control model with controllable states because for an arbi-
trary statex(t) at every moment of time the determination of a vector of control
parameteru(t) ∈ Ut(x(t)) is assumed to be at our disposition.

In this paper we assume that the dynamical systemL may contain uncontrol-
lable states, i.e. for the systemL there exists dynamical states in which we are not
able to control the dynamics of the system and the vector of control parameters
u(t) ∈ Ut(x(t)) for such states is changing by a random way according to a given
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distribution function

p : Ut(x(t))→ [0, 1],
k(x(t))∑

i=1

p(uix(t)) = 1. (2.5)

on the corresponding dynamical feasible setsUt(x(t)). If an arbitrary dynamic state
x(t) of systemL at given moment of timet is characterized by its position(x, t)
then the set of positionsXT = {(x, t) | x ∈ X, t ∈ {0, 1, 2, . . .}} of the dynamical
system can be divided into two disjoint subsetsXT = XTC ∪ XTN (XTC ∩
XTN = ∅), whereXTC represents the set of controllable positions ofL andXTN
represents the set of positions(x, t) = x(t) for which the distribution function (2.5)
of the vectors of control parametersu(t) ∈ Ut(x(t)) are given. This means that the
dynamical systemL is expressed by the following behavior: If the starting point
belongs to the set of the controllable positions then thedecision makerchoose a
vector of these control parameters and we reach the statex(1). If the starting state
belongs to the set of uncontrollable positions then the system passes to the next
state in a random way. After that step if at the time-momentt = 1 the statex(1)
belongs to the set of controllable positions then the decision maker may choose the
vector of control parameteru(t) ∈ Ut(x(t)) and we obtain the statex(2). If x(1)
belong to the set of uncontrollable positions then the system passes to the next state
again in a random way and so on.

3. The Main Concept

In this dynamic process the final state may be reached at a given moment of
time with a probability which depends on the control vectors(in the controllable
states) as well as on the expectation of the integral time cost. Our main results
are concerned with solving the following problems which arebased on a graph-
theoretic structure:

Algorithmic Procedure

1. For given vectors of control parametersu0(t) ∈ Ut(x(t)), x(t) ∈ XTC ,
determine the probability that the final state will be reached at the moment of time
T (x2) such thatT1 ≤ T (xf) ≤ T2.

2. Find the vectors of control parametersu∗(t) ∈ Ut(x(t)), x(t) ∈ XTC for
which the probability in problem 1 is maximal?

3. For given vectors of control parametersu0(t) ∈ Ut(x(t)), x(t) ∈ XTC ,
estimate the integral-time cost afterT stages.

4. For given vectors of control parametersu0(t) ∈ Ut(x(t)), x(t) ∈ XTC ,
determine the integral-time cost of system’s passage from the starting statex0 to
the final statexf when the final state is reached at the time-momentT (xf ) such that
T1 ≤ T (xf ) ≤ T2.

5. Minimization problem I:
For which vectors of control parametersu∗(t) ∈ Ut(x(t)), x(t) ∈ XTC is the
expectation of the integral-time cost in problem 3 minimal?
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6. Minimization problem II:
For which vectors of control parametersu∗(t) ∈ Ut(x(t)), x(t) ∈ XTC is the
expectation of the integral-time cost in problem 4 minimal?

Note that problems 1-6 extend and generalize the deterministic and stochastic
dynamic problems from[1; 2; 3] using a certain graph-theoretic approach.

4. Control Problems on Stochastic Networks

If the dynamics and input data of the problems 1-6 are known then the stochas-
tic network can be obtained by the following way:

Each position(x, t), x ∈ X, t = 0, 1, 2, . . . , T2 of the dynamical system L
can be identified with a vertex(x, t) of the network and each vector of the control
parameteru(t) which provide a system passage from the statex(t) = (x, t) to the
statex(t + 1) = (y, t) is associated with a directed edgee = ((x, t), (y, t+ 1))
of our network. To each directed edgee = ((x, t), (y, t+ 1)) -originated in the
uncontrollable position(x, t)- we associate the probabilityp(e) = p (u(t)) (, where
u(t) is the vector of control parameters which determines the passage from the
statex = x(t) to the statex(t + 1) = (y, t + 1)). Additionally we associate to
each edgee = ((x, t), (y, t+ 1)) the costc((x, t), (y, t+ 1)) = ct (x(t), x(t+ 1))
(which corresponds to the cost of the system to pass from the statex(t) to the state
x(t+ 1)). The obtained stochastic network has a structure of aT2-partite network.

5. Resume

After having introduced a new comfortable structure to analyze stochastic net-
works on partite networks, we propose a new procedural concept for the under-
lying control problems. Suitable algorithms exploiting the time-expanded network
method and distinguished Markov properties method will be presented.
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1. Introduction

We consider two problems related to therouting and wavelength assignment
problem(RWA) in wavelength division multiplexing (WDM) optical networks. For
a given network topology, represented by an undirected graph G, the RWA prob-
lem consists in establishing a set of traffic demands (or connection requests) in
this network. Traffic demands may be of three types: static (permanent and known
in advance), scheduled (requested for a given period of time) and dynamic (un-
expected). In this communication, we deal with the case ofscheduled lightpaths
demands(SLDs), which is relevant because of the predictable and periodic nature
of the traffic load in real transport networks (more intense during working hours,
see [4]).

An SLD can be represented by a quadruplets = (x, y, α, β), wherex andy are
some vertices ofG (source and destination nodes of the connection request), and
whereα andβ denote the set-up and tear-down dates of the demand. The routing
of s = (x, y, α, β) consists in setting up a lightpath betweenx andy, i.e. a path
betweenx and y in G and a wavelengthw. In order to satisfy the SLDs, this
lightpath must be reserved during all the span of[α, β].

The same wavelength must be used on all the links travelled bya lightpath
(wavelength continuity constraint). Moreover, at any given time, a wavelength can
be used at most once on a given link; in other words, if two demands overlap in

CTW09,École Polytechnique & CNAM, Paris, France. June 2–4, 2009



time, they can be assigned the same wavelength if and only if their routing paths
are disjoint in edges (wavelength clash constraint).

The two problems that we consider here are the following:

• minimize the number of wavelengths necessary to satisfy allthe demands;
• given a number of wavelengths, maximize the number of connection demands

that can be satisfied with this number of wavelengths.

These problems are NP-hard (see [3]), and have been extensively studied (see,
among others, [1], [2], [4], [5] and the reference therein).In both problems, a solu-
tion is defined by specifying, for each SLD, the lightpath chosen for supporting the
connection (i.e. a path and a wavelength), so that there is noconflict between any
two lightpaths (let us recall that two lightpaths are in conflict if they use the same
wavelength, they have at least one edge in common and the corresponding demands
overlap in time). To solve these problems, we design a modelisation of the problem
as the search of successive independent sets (IS) in some conflict graphs. Then we
apply a descent heuristic improved by a post-optimization method.

2. Independent sets in conflict graphs

To solve these problems, we build aconflict graphH defined as follows. For
each SLDs = (x, y, α, β), we compute a given numberk of paths betweenx and
y in G (for instance,k = 5): C1

s , C
2
s , ..., C

k
s . We associate a vertex ofH with each

pathCi
s for each SLDs. Thus, if δ denotes the number of SLDs, the number of

vertices ofH is equal tokδ. The edges ofH are of two types:

• for each SLDs and for1 ≤ i < j ≤ k, all the edges{Ci
s, C

j
s} are inH; thus

these edges induce, for each SLDs, a clique (i.e., a complete graph) on the
verticesC1

s , C
2
s , ..., C

k
s ;

• for any SLDs = (x, y, α, β) and any other SLDs′ = (z, t, γ, ε), we add the
edges{Ci

s, C
j
s′} for 1 ≤ i ≤ k and1 ≤ j ≤ k if the time windows ofs ands′

overlap ([α, β] ∩ [γ, ε) 6= ∅) and if the pathsCi
s andCj

s′ are not edge-disjoint;
such an edge{Ci

s, C
j
s′} represents a conflict betweens ands′: it is not possible

to assign a same wavelength tos ands′ if we decide to routes thanks toCi
s

ands′ thanks toCj
s′.

Our algorithm consists in applying the following two steps successively:

• compute an independent setI inH;
• remove fromH all the cliques associated with the satisfied SLDs to obtain a

new current conflict graphH.

226



We perform this process in order to obtain a series of ISsI1, I2, ...,Iq in successive
conflict graphs. This will provide a solution to our problem.Indeed, if the vertex
Ci
s belongs toIj, then we routes thanks to the pathCi

s with thej-th wavelength.
EachIj allows us to route|Ij | SLDs with a same wavelength. We stop when all the
SLDs are satisfied (first problem) or whenq is equal to the prescribed number of
wavelengths (second problem).

3. The heuristic to compute an independent set

To compute an IS in the current conflict graphH, we apply aniterative im-
provement method, also calleddescent(we tried more sophisticated methods as
simulated annealing, but these methods were too long to obtain interesting results).
We start from an IS of cardinality 1, and we look for another ISof cardinality 2, 3,
and so on, until reaching a valueλ for which we do not succeed in finding an IS of
cardinalityλ. Then the method returns the last IS of cardinalityλ− 1 as a solution.

To look for an ISIλ of cardinalityλ from an ISIλ−1 of cardinalityλ − 1, we
add a random vertex toIλ−1. Usually, we thus obtain a setIλ inducing a subgraph
containing some edges. Then we try to minimize the number of edges by perform-
ing elementary (or local) transformations, in order to find asetIλ which will be an
IS. It is for this minimization that we apply a descent.

The elementary transformation that we adopt consists in removing a vertex
belonging toIλ and simultaneously to add another vertex which does not belong to
Iλ. Such a transformation is indeed accepted if the number of edges decreases.

When the descent stops, if the setIλ still induces a subgraph which is not an
IS, then we stop and we keep the previous ISIλ−1 as the solution. Otherwise, we
add a vertex and we apply the same process once again.

In fact, we improve this method in two manners. The first one consists, after
the construction of each ISI, in trying to add extra SLDs with a greedy algorithm.
For this, we consider each unsatisfied SLDs, and we look for a path inG that would
allow us to routes with the current wavelength, i.e. a path which would not contain
any edge of paths associated with another SLDs′ routed with the same wavelength
and of which the time window overlaps the one ofs. Such a situation may occur
since we limit ourselves tok paths in the construction ofH, while we look for a
path inG to add extra SLDs.

The other improvement consists in applying a post-optimization method (al-
ready applied in [1]), after the computation of the series ofISs I1, I2, ..., Iq. The
aim is to reduce the overall values of the wavelengths in order to decrease the total
number of wavelengths for the first problem or to make some place to extra SLDs,
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still unsatisfied, for the second problem. For this, given a wavelengthw, we try to
empty, at least partially, the set of SLDs routed withw, by assigning them lower
wavelengths. So we change the wavelengths assigned to SLDs which are currently
routed with the wavelenths1, 2, ..., w−1; in this process, all the SLDs with a current
wavelength between1, 2, ..., w − 1 will keep a wavelength in this interval. For the
first problem, it may then happen that a wavelength becomes useless; then we re-
move it definitively and so the number of required wavelengths decreases. For the
second problem, the changes involved in the assignments of the wavelenghts are
such that, sometimes, we may route an SLD which was unsatisfied; so this process
allows us to route extra SLDs.

4. Results

We experimentally study the impact of the formulation of theproblem as
the search of successive ISs in conflict graphs as well as the impact of the post-
optimization method. The experiments are done on several networks, with numbers
of SLDs up to 3000. The results, not detailed here, show that these two approaches
are quite beneficial for both problems, when their results are compared to the one
of the method developped in [5].
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1. Introduction

Reducible flow graphs were introduced by Allen [1] to model the control flow
of computer programs. Although they were initially used in code optimisation al-
gorithms, several theoretical and applied problems have been solved for the class.

Directed hypergraphs [2; 4] are a generalisation of digraphs and they can model
binary relations among subsets of a given set. Such relationships appears in differ-
ent areas of Computer Science such as database systems [2], parallel programming
[9] and scheduling [5]. Reducible flow hypergraphs were defined by Guedeset al.
[7; 6].

In this paper, we present flow hypergraphs and the extension of reducibility for
this family. We show that the characterisation of reducibleflow graphs using the
transformation approach yields a polynomial recognition algorithm.
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CNPq, Brazil.
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2. Directed Hypergraphs

Definition 1. A directed hypergraph H = (V,A) is a pair, whereV is a non
empty finite set of vertices andA is a collection of hyper-arcs. A hyper-arca =
(X, Y ) ∈ A is an ordered pair whereX andY are non empty subsets ofV , such
thatX = Org(a) is called theorigin andY = Dest(a) is called thedestination
of a.

The notationOrg andDest can be extended to a collectionA′ of hyper-arcs,
whereOrg(A′) = ∪e∈A′Org(e) andDest(A′) = ∪e∈A′Dest(e).

Definition 2. LetH = (V,A) be a directed hypergraph andv ∈ V . The collection
of hyper-arcs entering vertexv is denoted byBS(v) = {e ∈ A | v ∈ Dest(e)}, the
backward star set ofv.

Definition 3. [7] LetH = (V,A) be a directed hypergraph andu andv be vertices
ofH. A B-path of sizek from u to v is a sequenceP = (ei1 , ei2, ei3 , . . . , eik), such
thatu ∈ Org(ei1) andv ∈ Dest(eik), and for each hyper-arceip of P , 1 ≤ p ≤ k,
we have:

• Org(eip) ⊆ (Dest(ei1 , ei2 , . . . , eip−1) ∪ {u}
• Dest(eip) ∩ (Org(eip+1, eip+2, . . . , eik) ∪ {v}) 6= ∅.

Org(ei1) andDest(eik) are denoted byOrg(P ) andDest(P ), respectively.

Definition 4. A flow hypergraph H = (V,A, s) is a triple, such that(V,A) is a
directed hypergraph,s ∈ V is a distinguished source vertex, and there is a B-path
from s to each other vertex inV .

3. Reducibility of Flow Hypergraphs

In [8], Hecht and Ullman presented a characterisation of reducible flow graphs
based on two transformations. We extend these operations inorder to define re-
ducible flow hypergraphs and to develop a recognition algorithm.

Given a flow hypergraph, two transformations,T1 andT2, can be defined, per-
forming the contraction of a hyper-arc.

Definition 5. (T1) LetH = (V,E, s) be a flow hypergraph anda = ({x}, {x}) ∈
E be a simple loop. The hypergraphT1(H, a) is defined asH − {a}.

Definition 6. (T2) LetH = (V,E, s) be a flow hypergraph anda = ({x}, Y ) ∈ E
be a hyper-arc (with|Org(a)| = 1), such that∀y ∈ Y \ {x}, Org(BS(y)) = {x};
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x = s or s 6∈ Y ; anda is not a simple loop. The hypergraphT2(H, a) is defined by
removinga fromH and merging the vertices ofY with x.
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Fig. 1. TransformationsT1 andT2

To use such transformations in an algorithm they need to be, together, a finite
“Church-Rosser” transformation [3; 8]. This means that starting with flow hyper-
graphH, any sequence of hypergraphs generated by applying of thesetransforma-
tions is finite and ends generating the same hypergraph, saysT ∗(H).

Theorem 3.1. Let H be a flow hypergraph. There is a unique flow hypergraph
T ∗(H) resulting from any sequence of applications ofT1 andT2 in H and in which
T1 andT2 can not be applied.

The reducibility can now be defined in terms of the transformations.

Definition 7. H is calledreducible if T ∗(H) is a flow hypergraph with just one
vertex and no hyper-arcs.

Definition 8. LetH = (V,A) be a directed hypergraph anda ∈ A. The hyper-arc
a is contractible if one of the transformationsT1 or T2 can be applied ata (see
Definitions 5 and 6).

It can be proved that any sequence of possible transformations is valid. So, the
recognition algorithm consists in applying the transformations to any contractible
hyper-arc (it is necessary to verify this condition). It stops when there are no more
contractible hyper-arcs; at this point, the resulting flow hypergraph must be checked.

It is easy to see that the algorithm always stop and leads to the T ∗(H) flow
hypergraph.
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reducible(H = (V,A, s))
T ∗ ← H
repeat

find a contractible hyper-arca in G
apply the appropriate transformation inT ∗ ata

until there is no contractible hyper-arc
test ifT ∗ = ({s}, ∅, s)

The following aspects must be considered to establish the complexity of the
algorithm:

• testing whether or not a hyper-arca = ({x}, Y ) is contractible can be per-
formed in timeO(|Y |∆), being∆ the maximum size of the backward star
sets (BS(v)). So, it takesO(|V | × |A|).

• Finding a contractible hyper-arc in the flow hypergraphH = (V,A, s) may
imply that all hyper-arcs are tested. So, it takesO(|V | × |A|2).

• If H is reducible then every hyper-arc will be contractible, at some point. So,
the above test may be performed|A| times. The whole algorithm takes time
O(|V | × |A|3).
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1. Extended Abstract

In many real world applications we often need to reason with uncertain infor-
mation under partial knowledge. A common situation is when acoherent probabil-
ity assessmentPn is defined on a family ofn conditional or unconditional events.
Given a further event, logically dependent on the others, there exists an interval
[p′, p′′] such that every probabilitypn+1 ∈ [p′, p′′] assigned to the new event to-
gether withPn forms a coherent probability assessment on the resulting family of
n+ 1 events. In case of unconditional events the above result is known as theFun-
damental Theorem of the Theory of Probabilityof de Finetti [5; 6]. The problem of
finding the maximum and minimum value ofpn+1 such thatPn ∪ pn+1 is coherent,
has been already identified in the seminal work of Boole, who called it the “general
problem in the theory of probabilities” [1]. In this paper wefocus on the special case
of finding upper bounds for the probability of the (logical) union ofn events when
the individual probabilities of the events as well as the probabilities of all intersec-
tions ofk-tuples of these events are known, wherek ≤ m < n, andm is called the
orderof the bound. This problem is also known as theBoolean Probability Bound-
ing Problem(BPBP) [3]. In spite of its long history, its theoretical complexity is
still unknown. More precisely, we have recently shown [2] that for this problem the
complexity of deciding whether a given probability assessment is coherent is NP-
hard, and we strongly conjecture that this is also the case for the problem of finding
the best upper bound for the union, when we are given a feasible probability assess-
ment for the events and their intersections. However, this is still an open problem.
Since BPBP is hard in practice, several authors have proposed efficient techniques
for finding relaxed solutions (bounds) for this problem (see[3; 4; 7; 9; 11; 13]
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and the references therein). However, while most bounding procedures clearly re-
quire polynomial time, the complexity of some recent graph-based methods has
not yet been established. LetA1, ..., An be a set of arbitrary events in a probability
spaceΩ. We assume that the single events probabilityP (Ai), i = 1, ..., n, and the
probability of the intersectionsP (

⋂
i∈I Ai) for all subsetsI ⊆ {1, 2, . . . , n} with

cardinality|I| ≤ m < n, are known. Our problem consists in finding upper bounds
for the probability of the union of then eventsP (A1∪A2∪, ...,∪An). In this paper
we focus on graph-based upper bounds. LetG = (V,E) be thecompletegraph
associated to the eventsA1, ..., An, with vertex setV = {1, 2, ..., n}, and associate
with each edge(i, j) a weightwij = P (Ai ∩Aj). Hunter and Worsley [9; 13] have
shown that the inequality

P (A1 ∪ A2∪, ...,∪An) ≤
n∑

i=1

P (Ai)−
∑

(i,j)∈T
wij (1.1)

holds for every spanning treeT ofG. Thus, the second order bound provided by the
right hand side of (1.1), which can be computed by solving a max weight spanning
tree ofG, is called the Hunter-Worsely bound. Bukszár and Prékopa[4] presented
a third order bound, which considers also the intersectionsamong triples of events,
and improves on the one by Hunter and Worsley. This third order bound is based
on a new type of graph called cherry tree. Acherry treeis a triple∆ = (V,E, ϕ),
where(V,E) is an undirected graph, and the setϕ is a collection of subsets of
vertices of cardinality three called cherries.Cherriesare recursively defined in the
following manner (see [4]): (i) An adjacent pair of verticesis the only cherry tree
with exactly two vertices ofG; (ii) from a cherry tree, obtain a new cherry tree by
adding a new vertex and two new edges connecting this new vertex with two already
existing vertices of the tree. The vertices belonging to these two edges constitute a
cherry. With every cherry{i, j, k} ∈ ϕ we associate a weightwijk. The weight of a
cherry tree∆ is:

W (∆) =
∑

(i,j)∈E wij −
∑

{i,j,k}∈ϕwijk. (1.2)
Given weightswij = P (Ai ∩ Aj), i 6= j, andwijk = P (Ai ∩ Aj ∩ Ak),

i 6= j 6= k, Bukszár and Prékopa provided the following bound on the probability
of the union:

P (A1 ∪A2∪, ...,∪An) ≤
∑n
i=1 P (Ai)−W (∆). (1.3)

In particular, the Bukszár and Prékopa’s bound is obtained by considering a spe-
cial cherry tree calledt-cherry tree. At-cherry tree is found when at each step
in (ii), the two vertices to which a new vertex is connected are adjacent. In this
case a cherry constitutes a triangle and at-cherry tree is a triangulated graph.
Bukszár and Prékopa also provide a polynomial time algorithm for finding at-
cherry tree by first calculating a maximum spanning tree of the graphG associ-
ated to the eventsA1, ..., An, and then improving it to find a spanningt-cherry
tree. However, thet-cherry tree provided by this algorithm is not guaranteed to
be the heaviest one. Moreover, in their paper the complexityof finding the heavi-
estt-cherry tree spanning the complete graphG is not assessed. We note that the
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weightswij = P (Ai∩Aj) andwijk = P (Ai∩Aj∩Ak) are not arbitrary values, but
they must represent a feasible and coherent probability distribution for the events
A1, ..., An. Another third order upper bound, which exploits the concept of chordal
graphs, is introduced in [3; 7]. LetC = (V,E) be a chordal graph with weightswij
associated to the edges and weightswijk associated to the triangles ofC. Denote
by E(C) the set of the edges ofC, and byΓ(C) the set of triangles whose sides
belong toC. We define the weightW (C) of the graphC as:

W (C) =
∑

(i,j)∈E(C)wij −
∑

{i,j,k}∈Γ(C)wijk. (1.4)

Given any chordal graphC spanningG with weightswij = P (Ai∩Aj) andwijk =
P (Ai ∩ Aj ∩ Ak), the following is an upper bound on the probability of the union
[3; 7]:

P (A1 ∪A2∪, ...,∪An) ≤
∑n
i=1 P (Ai)−W (C) (1.5)

Also in this case, neither in [3] nor in [7], the complexity offinding the chordal
graphC of maximum weightW (C) is assessed. We note that finding a spanning
chordal graph of maximum weightW (C) is an extension of the problem of finding
a maximum weight spanning chordal subgraph of a given graphG in the special
case wherewijk = 0 ∀i 6= j 6= k. This problem has been uncertain for a long time.
The first proof ofNP -completeness is attributed to A. Ben-Dor in [10]. Here, we
study the problem of finding a chordal graphC spanningG of maximum weight
W (C) by exploiting some recent results on the complexity of the problem of de-
ciding the existence of a maximum spanning chordal subgraphof a given graph
[12]. Our main results concern the NP-completeness of the following two open
problems:

1. Maximum Weight Spanningt-Cherry Tree Bounding problem

INSTANCE: A complete graphG = (V,E) with weights0 ≤ wij ≤ 1 as-
signed to its edges, and weights0 ≤ wijk ≤ 1 assigned to its triangles that represent
a coherent probability distribution for the eventsA1, ..., An.
QUESTION: Does there exist at-Cherry Tree spanning the graphG with total
weightW (∆) at least L?

2. Maximum Weight Chordal Bounding problem

INSTANCE: A complete graphG = (V,E) with weights0 ≤ wij ≤ 1 assigned
to its edges, and weights0 ≤ wijk ≤ 1 assigned to its triangles that represent a
coherent probability distribution for the eventsA1, ..., An.
QUESTION: Does there exist a chordal graphC spanningG with total weight
W (C) at leastL?
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Abstract

The problem to find a valid integer flow with flow multipliers onnodes or arcs is long
known to be NP-complete [8]. We show that the problem is stillhard when restricted to
instances with a limited number of integral multipliers. Wedemonstrate that for the multi-
pliers 1 and 2 optimal solutions with fractions12n , n ∈ N can occur. For special instances
which are motivated by some applications we prove that the optimal solution is halfintegral.
Finally, we extend theSuccessive Shortest Path Algorithm[2; 6; 7], to the minimum cost
flow problem with multipliers. For the application based instances with halfintegral optimal
solutions, we try to find acceptable integral solutions.

Key words: generalized flow, successive shortest paths, rounding heuristics

1. Introduction

A flow f : A → R is a function which assigns a flow valuef(aij) to each arc
of a digraphN = (V,A) (called network) such that the capacity(∀aij ∈ A : lij ≤
f(aij) ≤ uij) and balance (∀vi ∈ V :

∑
ali=(vl,vi)∈A f(ali)−

∑
aik=(vi,vk)∈A f(aik) =

b(vi), ∀ai ∈ A : fout(aij) = fin(aij)) constraints hold. Generalized flows or flows
with gains and losses differ from such flows in networks in onerespect: a flow may
be damped or amplified when traversing an arc. Depending on the arc multiplier
µij, a unit of flow entering arcaij can result in more or less than one unit leaving
the arc. Denoting the incoming and outgoing flow byfin(aij) andfout(aij) we have
fout(aij) = µij · fin(aij).

The introduction of flow multipliers detroys the total unimodularity of the net-
work matrix and thus integral optimal solutions are no longer guaranteed or even
impossible. It is known that finding an optimal integer solution is NP-complete for
generalized flows [5; 8]. There seem to be no results for the special case where the
multipliers are restricted to a few fixed numbers or even to the single additional
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multiplier 2. However, this special case occurred when we modeled a railway dis-
position problem. We encountered some ’merely generalized’ flow instances with
the property that the underlying network essentially is a bipartite digraph, all ex-
cesses, demands (node balances), arc capacities (costs) are integral and we have
only multipliers1 and2.

2. Complexity and fractional solutions

The NP-completeness proof for generalized flows by Sahni [8]employs the
subset sum problem. It can be extended to hold for the restriction to multipliers
1 and2. However this extension does not hold for the the disposition networks,
i.e. the special graph instances which arise from our application. Thus, we show a
reduction from 3V2LSAT, where the constructed graph meets all requirements of
Definition 1.

Definition 1. A disposition networkN = (V = X ∪ Y,A) is bipartite digraph
with µa ∈ {1, 2} for all arcsa and all arcs withµ(a) = 2 are directed fromX to
Y . Moreover, for all paths from a sources to a sinkt the product of multipliers of
all arcs along the path (path multiplier) iseither1 or 2.

Let α = C1 ∧ · · · ∧ Cn be a boolean formula with at most three literals per
clause where each variablevk, 1 ≤ k ≤ m can only occur 3 times in total and
maximal 2 times as one of the corresponding literals. Tovey showed that 3V2LSAT
is NP-complete [9]. In our networkNα we have verticesnk for every variablevk
and additional two verticesn0

k,n
1
k for the corresponding literals¬lk, lk, which occur

in α. For everynk the node balancebk is +1 and0 for the literal nodes. Nodesnk
are connected to ’their’ literal nodes by arcs with multiplier 2. For each clauseCi
in α we add a vertexni, which has incoming arcs from those literal nodes which
correspond to literals occuring inCi. Finally we add two sink nodesssat, srest with
node balancesbsat = −n and brest = −2m + n to the graph. We connect the
clause nodes to both sinks by arcs(ni, ssat) with capacity1 and arcs(ni, srest) with
unlimited capacity (see Figure 1). Unless otherwise noted,any node balances are0
multipliers are1, capacity unlimited and costs0. We conclude:

Theorem 11. The decision problem for a valid integral flow in a disposition net-
work with integral values is NP-complete.

An optimal solution to the min cost flow problem with multipliers1 and2 can
contain arbitrarily small fractions of flow: We can construct examples with flows
1
2n in a graphG(V,A), |V | = 3n in the optimal solution (Figure 1). Yet, we can
transform disposition networks into a generalized minimumcost flow circulation
instanceG′ and show that the Circuit Cancelling (CC) algorithm always yields a
half-integral solution to the minimum cost circulation problem onG′ which can be
transfered to the flow instanceG.
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Fig. 2. Two s-t-ways with identical arc cost, but different de facto per unit cost.

3. Modified SSP Algorithm (MSSP)

The CC algorithm is the first (and to our knowledge only) classical combinato-
rial minimum cost flow or circulation algorithm so far, whichwas extended to the
generalized case by Wayne [10]. (Other approaches for solving generalized flow
problems are of course provided by LP techniques and the modified network sim-
plex method of Dantzig [3; 1].) We give a generalization of theSuccessive Shortest
Path (SSP) algorithm [7; 6; 2], which is based on the principle of pseudoflows,
i.e. flows respecting the non-negativity and capacity constraints, but not the node
balance constraints. We first need to define a shortest path ona network with mul-
tipliers: Consider Figure 2, where all arc costs and multipliers are1 if not depicted
otherwise. The two possible paths froms to t result in costs of 2 accounting only
on arc costs. Yet actually sending one unit of flow alongs− a− t creates two units
of flow at a which are passed on tot to deliver one unit att but arise arc cost of 2
on (a, t).

Definition 2. We define thepath costsof a flow multiplier pathπuv = u1−· · ·−un
with u = u1 andun = v from u to v as:c′(πuv) =

∑n
i=2

∏i−1
j=1 µj(j+1) · c((i− 1)i).

We can easily adjust Dijkstra’s [4] algorithm∗ by introducing a tentative per
node parametermv, which accounts for the product of arc multipliers on the (ten-
tative) shortest path froms to every nodev. Besides this modification, we take the
flow multipliers into account when we compute the maximum flowδ to be aug-
mented. After each augmentation a residual network is built: For each arce(u, v)
with a positive flowf(e), an arcē = (v, u) with capacitycap(ē) = f(e), cost
c(ē) = −c(e), multiplierµē = 1

µe
and flow0 is added. Iff(e) equalscap(e), then

∗ Dijkstra’s algorithm can be used as a plug-in to the SSP, because of the throughout non-
negative edge weights.
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arce is removed from the network. The correctness can be shown with the reduced
cost optimality criterion. The running time of the (unscaled) SSP is pseudopolyno-
mial in the sum of excesses and demands, as in each augmentation at least one unit
of flow is sent. Asδ does not need to be integral in our case and because there is no
general lower boundε(n) < δ(n), we cannot give an appropriate running time for
general instances. Still we can use the modified SSP on all instances with optimal
solutions of certain fractions. Especially, in the case of disposition networksδ ≥ 1

2
,

which (without scaling) also results in a (pseudo)polynomial running time.

4. Rounding to acceptable integer solutions

To obtain an acceptable integral solution we temporarily allow cap(bj , t) to be
violated by 1

2
. The heuristic can always be applied to a halfintegral solution un-

til there are only integral flows, because in each iteration,at least two halfintegral
flows are rounded (up or down) to integral flows. The node balances can be vio-
lated: Although demands do not stay over-saturated in the end (without halfintegral
flows, a violation ofcap(bj , t) by ’only’ 1

2
is impossible), there can be additional

unsaturated deficits and rest excesses, which could be reallocated by another MSSP
application. If we accept the solution nevertheless, we gain a2-approximate solu-
tion.

Rounding

1: while (∃ halfintegral flow f)

3: Find cheapest f from s to t

4: if (f = f + 1
2 violates bal(t) by at most 1

2 )

5: Round f up, most expensive s-t-flow f’ down.

6: else Round f down, cheapest s-t-flow f’ up.

8: end
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1. Introduction

In this paper we study the polytope associated with the hop constrained short-
est path problem defined on an acyclic digraph. The aim is to show that all facet
defining 0/1-inequalities for this polytope can be classified via the inherent struc-
ture of dynamic programming.

Let D = (N,A) be an acyclic digraph with node setN = {0, 1, . . . , n} and
arc setA = {(i, j) : i = 0, . . . , n − 1, j = i + 1, . . . , n}. A (0, n)-path is a set
of arcs{a1, . . . , ar} such thatai = (ip−1, ip) for p = 1, . . . , r with i0 = 0 and
ir = n. Given a length functiond : A → R and a nonnegative integerk ≤ n, the
hop constrained shortest path problemis the problem of finding a(0, n)-path with
at mostk arcs of minimum length. SinceD is an acyclic digraph, the problem can
be solved in polynomial time for everyk and length functiond.

Thehop constrained path polytope, denoted byP k
0,n-path(D), is the convex hull

of the incidence vectors of all paths with at mostk arcs. Its integer points are char-
acterized by the system

x(δout(0)) = 1, (1.1)

x(δin(n)) = 1, (1.2)

x(δout(i))− x(δin(i)) = 0, i = 1, . . . , n− 1, (1.3)
x(A) ≤ k, (1.4)
xij ∈ {0, 1} for all (i, j) ∈ A. (1.5)

Here,δout(j) andδin(j) denote the set of arcs leaving and entering nodej, respec-
tively. Moreover, for an arc setF ⊆ A we setx(F ) :=

∑
(i,j)∈F xij .
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The hop constrained path polytope and some closely related polyhedra have
been paid some attention in the literature, see [3; 4; 5; 6; 7]. However, a complete
linear description ofP k

0,n-path(D) is unknown, and to the best of our knowledge
just a characterization of all facet defining inequalitiesbTx ≥ β with coefficients
bij ∈ {0, 1} for (i, j) ∈ A were not given before.

2. All 0/1-facet defining inequalities forP k
0,n-path(D)

The hop constrained path polytopeP k
0,n-path(D) has some nice properties that

gain access to a promising polyhedral investigation by the dynamic programming
paradigm. We start with a tight connection of this polytope and itsdominant
dmt(P k

0,n-path(D)) := P k
0,n-path(D) + RA

+. Proofs are ommited due to lack of space.

Theorem 12. Denote byP0,n-path(D) the ordinary path polytope (k = n). Then, for
every nonnegative integerk, P k

0,n-path(D) = dmt(P k
0,n-path(D)) ∩ P0,n-path(D).

Theorem 12 implies that a complete linear description ofP k
0,n-path(D) can be given

by nonnegative inequalitiesbTx ≥ β, that is,b ≥ 0.

From the inherent structure of the Bellman-Ford algorithm [2] a so calleddy-
namic programming graphD = (N ,A) for the hop constrained shortest path prob-
lem can be quite easily constructed. The algorithm computes(the value of) a short-
est(i, j)-path for each pair of nodes(i, j), providedD has no negative cycles. In
the main loop of the algorithm the length of a shortest(i, j)-path with at most̀
arcs will be computed for̀ = 2, . . . , n. The correctness of the algorithm is based
on theBellman Equations

u
(1)
ij = dij, u

(`)
ij = min

m∈N

(
u

(`−1)
im + dmj

)
for ` = 2, . . . , n, (2.6)

whereu`ij denotes the length of a shortest(i, j)-path with at most̀ arcs.

Suppose that the Bellman-Ford algorithm will be executed until ` = k. Fix-
ing i = 0, we associate with each accessable stateu`0j a node[j, `] and with each

possible decisionu(`)
0j = u

(`−1)
0m + dmj an arc([m, ` − 1], [j, `]) at costdmj . Sub-

stituting all arcs([i, `], [n, ` + 1]) by ([i, `], [i, ` + 1]) for i = 2, . . . , n − 1, ` =
1, . . . ,min{i− 1, k − 2} at cost0 and removing the nodes[n, `], ` = 1, . . . , k − 1,
the hop constrained shortest path problem is quite easily viewed as one of finding a
shortest([0, 0], [n, k])-path in the digraphD = (N ,A), whereN is a disjoint union
of node sets

N0 := {[0, 0]}, Ni := {[i, j] : j = 1, . . . , γi}, i = 1, . . . , n− 1, Nn := {[n, k]}
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Fig. 1. An acyclic digraphD = (N,A) on node setN = {0, 1, . . . , 7} and associated
DP-graphD = (N ,A) for k = 5. Arc setA is omitted; Illustration of a(0, 7)-path and its
analogue inD.

with γi := min{i, k − 1}, andA is given by

A = {([0, 0], [n, k])} ∪ {([0, 0], [i, 1]), ([i, γi], [n, k]) : i = 1, . . . , n− 1}
∪ {([i, j], [i, j + 1]) : i = 2, . . . , n− 1, j = 1, . . . , γi − 1}
∪ {([i, j], [h, j + 1]) : i = 1, . . . , n− 2, j = 1, . . . ,min{k − 2, γi},

h = i+ 1, . . . , n− 1}.

An illustration of the model is given in Figure 1.

The Bellman equations (2.6) provide us an avenue to derive a classification of
all 0/1-facet defining inequalities for dmt(P k

0,n-path(D)). To this end, we consider

the numbersu(h)
0j , [j, h] ∈ N as values of a set functionπ0 : N → R, that is,

π0([j, h]) := u
(h)
0j for all [j, h] ∈ N . Each functionπ : N → R induces a valid

inequality
∑

(i,j)∈A µ
π
ijxij ≥ π([n, k])− π([0, 0]) for dmt(P k

0,n-path(D)) via

µπij := max{0}∪{π([j, `])−π([i, h]) : ([i, h], [j, `]) ∈ A} for (i, j) ∈ A.(2.7)

This result can be proved with the projection theory of Balas[1] applied to dmt(P k
0,n-path(D))

and dmt(P[0,0],[n,k]-path(D)).

Observations

(i) π0 is row-monotone. A functionπ : N → R is called row-monotoneif
π([(i, j)]) ≥ π([i, j + 1]) for i = 1, . . . , n− 1, j = 1, . . . , γi − 1.

(ii) π0 is up-monotone. A functionπ : N → R is said to beup-monotoneif
for every node[i, j] ∈ N \ {[0, 0]}, π([i, j]) = π[(h, `)] + µπhi for some arc
([h, `], [i, j]) ∈ δin([i, j]), whereµπii := 0.

We define an analogue of property (2) forδout([i, j]). A functionπ : N → R

is said to bedown-monotoneif for every node[i, j] ∈ N \ {[n, k]}, π[(h, `)] =
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π([i, j]) + µπih for some arc([i, j], [h, l]) ∈ δout([i, j]), whereµπii := 0. Next, π
is said to berow-up-and-down-monotoneif it is row-, up-, and down-monotone.
Finally, π is calledtight if for each arc(i, j) ∈ A it exists an arc([i, h], [j, `] ∈ A
such thatµπij = π([j, `])− π([i, h]).

Denote byΠ the collection of all set functionsπ : N → R with π([0, 0]) =
0, π([n, k]) = 1, and0 ≤ π([i, j]) ≤ 1 for all [i, j] ∈ N \ {[0, 0], [n, k]}. We
are now able to characterize all 0/1-facet defining inequalities for the dominant
dmt(P k

0,n-path(D)).

Theorem 13. Row-up-and-down-monotone 0/1-functionsπ ∈ Π and nontrivial
facet defining0/1-inequalities for dmt(P k

0,n-path(D)) are in 1-1-correspondence, that
is,

(a) each row-up-and-down-monotone 0/1-functionπ ∈ Π induces a facet defining
0/1-inequality for dmt(P k

0,n-path(D));
(b) each nontrivial facet defining0/1-inequality for dmt(P k

0,n-path(D)) is induced
by a row-up-and-down-monotone 0/1-functionπ ∈ Π;

(c) if two row-up-and-down-monotone 0/1-functionsπ, π̃ ∈ Π induce the same
facet defining inequality for dmt(P k

0,n-path(D)), thenπ = π̃.

Corollary 1. Tight row-up-and-down-monotone 0/1-functionsπ ∈ Π and nontriv-
ial facet defining0/1-inequalities forP k

0,n-path(D) are in 1-1-correspondence.
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1. Introduction

Given a graphG = (V (G), E(G)) and a vectorw ∈ QV
+ of node weights,

the stable set problemis to find a set of pairwise nonadjacent nodes(stable set)
of maximum weight. Thestable set polytopeSTAB(G) is the convex hull of the
incidence vectors of the stable sets ofG: finding its linear description has been one
of the major research problems in combinatorial optimization. A useful strategy to
face this problem is by defining graph compositions that havepolyhedral counter-
parts for the stable set polytope, such as substitutions or complete joins [3]. The
gear composition, introduced in [5], is one of these operations: it builds a graphG
by replacing a suitable edgee of a given graphH with the graphB (gear) shown
in Fig. 1(a).
The polyhedral properties of the gear composition have beenextensively studied
in [4]. There we proved that all the facet defining inequalities forSTAB(G) are
obtained by extending the facet defining inequalities describing STAB(H) and
STAB(He), whereHe is obtained fromH by subdividing the edgee. Inequali-
ties generated by repeated applications of the gear composition are namedmultiple
geared inequalities.
The gear composition revealed also a very effective tool to approach the longstand-
ing open problem of finding a linear description of the stableset polytope of claw-
free graphs, i.e. graphs such that the neighborhood of each node has no stable set
of size three. For these graphs there exist polynomial time algorithms to optimize
overSTAB(G) [9; 10]; so, by the equivalence of optimization and separation prob-
lems [8], one would expect that an explicit linear description forSTAB(G) when
G is claw-free is easy to get. But, as noticed in [8], “in spite of considerable ef-
forts, no decent system of inequalities describingSTAB(G) for claw-free graphs
is known”.
Using the decomposition theorem for claw-free graphs of Chudnovsky and Sey-
mour [1; 2] and the gear composition, we provided the defininglinear system of
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STAB(G) for a large subclass of claw-free graphs with stability number at least 4.
Indeed, Chudnovsky and Seymour [1; 2] stated that a claw-free graph which does
not admit a 1-join either has stability number at most3 or it is a fuzzy circular
interval graph or a composition of three types of graphs, called strips: fuzzy linear
interval strips, fuzzyXX-strips, fuzzy antihat strips. In [6] we proved that anXX-
strip is in fact a gear plus two extra nodes. This led us to consider the claw-free
graphs that are obtained by composing fuzzy linear intervalstrips andXX strips.
We named these graphsXX-graphs and we proved that:

Theorem 1.1. [7] The stable set polytope ofXX-graphs is described by nonnega-
tivity inequalities, rank inequalities, lifted 5-wheel inequalities and multiple geared
inequalities.

In this paper we look for a generalization of the above result. In particular, we
generalize the gear into ak-gearand, accordingly, we extend the class of claw-free
graphs with the graphs obtained by composing fuzzy linear interval strips, fuzzy
antihat strips, andk-gears. Interestingly, the stable set problem on this superclass
of claw-free graphs is still polynomial time solvable by adapting the algorithm in
[10]. Thus, as for the claw-free graphs, the linear description of their stable set
polytope should be “easy” to obtain. Here, we study the polyhedral structure of
STAB(G) whenG results from thek-gear composition of ak-gear and a given
graphH.
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Fig. 1. (a) A gear; (b) A4-gear.

2. k-gear graphs and thek-gear composition

A (2k + 1)-antiwheelW = (h : u1, . . . , u2k+1) consists of ak-antiholeC2k+1

defined on nodesu1, . . . , u2k+1 plus ahubh adjacent to each node ofC2k+1.

Definition 1. Let W1 = (h1 : u1, . . . , u2k+1) andW2 = (h2 : w1, . . . , w2k+1) be
two (2k + 1)-antiwheels withk ≥ 2. Thek-gearBk is the graph such that
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1) V (Bk) = V (W1) ∪ V (W2) and u1 = w1, u2k = w2k, h1 = w2k+1, and
h2 = u2k+1,

2) E(Bk) is E(W1) ∪ E(W2) plus the edgesuiwj, ∀i, j ∈ {2, . . . , k − 1} and
uiwj, ∀i, j ∈ {k + 2, . . . , 2k − 1}.

A k-gear graphBk with k = 4 is depicted in Fig. 1(b). Since a(2k + 1)-wheel
coincides with a(2k + 1)-antiwheel whenk = 2, we have that the gear as defined
in [5] is actually a2-gear. Interestingly, whileSTAB(B2) does not admit a facet
defining inequality that has full support on the gearB2, for k ≥ 3 thek-gearBk

does support an inequality that is facet defining forSTAB(Bk). Indeed we prove
that:

Theorem 2.1. Let k ≥ 3 and letBk be ak-gear. Then the inequality
∑

v∈V (Bk)\{h1,h2}
xv + 2(xh1 + xh2) ≤ 3. (2.1)

is facet defining forSTAB(Bk).

An edgev1v2 of a graphH is said to besimplicial if K1 = N(v1) \ {v1} and
K2 = N(v2) \ {v2} are two nonempty cliques ofH.

Definition 2. Let H be a graph with a simplicial edgev1v2 and letBk be ak-
gear,k ≥ 2. Thek-gear compositionof H andBk produces ak-geared graphG,
denoted byG = (H,Bk, v1v2), such thatV (G) = V (H) \ {v1, v2} ∪ V (Bk) and
E(G) = E(H) \

(
δ(v1) ∪ δ(v2)

)
∪E(Bk) ∪ F1 ∪ F2, with F1 = {uku, uk+1u|u ∈

K1} andF2 = {wku, wk+1u|u ∈ K2} (see Fig. 2).
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Fig. 2. (a)H with a simplicial edgev1v2; (b) thek-geared graphG = (H,Bk, v1v2).

For k = 2 we obtain the definition of gear composition given in [5]. In the
following we show that, as the gear composition, also thek-gear composition has
the polyhedral feature of preserving the property of an inequality of being facet
defining for the stable set polytope. In particular, we show that:
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Theorem 2.2. Let H be a graph with simplicial edgev1v2 and let(π, π0) be a
facet defining inequality forSTAB(H) different fromxv1 + xv2 ≤ 1 and such that
πv1 = πv2 = λ > 0. Let Bk be ak-gear graph withk ≥ 2. Then the following
inequality, calledk-geared inequalityassociated with(π, π0),

∑

v∈V (H)\{v1,v2}
πvxv + λ

∑

v∈V (Bk)\{h1,h2}
xv + 2λ(xh1 + xh2) ≤ π0 + 2λ (2.2)

is facet defining forSTAB(G), whereG = (H,Bk, v1v2) is thek-geared graph.

It is worth noticing that the above results do not hold if we generalize the gear
with (2k + 1)-wheels instead of(2k + 1)-antiwheels.
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Abstract:

Starting form a very practical question :what is the best algorithm available to
compute or to approximate the diameter of a huge network ?At first, to compute
the diameter of a given graph, it seems necessary to compute all-pairs shortest
paths, which is not known to be computable in linear time, see[1] and [10].

We first present the well-known 2-sweap Breadth-First Search approximation
procedure and some experimental results of its randomized version on huge graphs
[2], [4], [5], [11]. In order to explain the efficiency of this2-sweaplinear time
procedure, we study its properties on various graph classesand its relation with
classical graph parameters such as: k-chordality or tree-length [7].

We then emphasize on a notion introduced by M. Gromov in 1987 [8], namely
theδ-hyperbolic metric spaces via a simple 4-point condition: for any four points
u, v, w, x the two larger of the distance sumsd(u, v) + d(w, x), d(u, w) + d(v, x),
d(u, x) = d(v, w) differ by at most2δ. δ-hyperbolic metric spaces play an im-
portant role in geometric group theory, geometry of negatively curved spaces, and
have recently become of interest in several areas of computer science including
computational geometry and networking.

A connected graphG = (V,E) equipped with its standard graph metricdG
is δ-hyperbolic if the metric space(V, dG) is δ-hyperbolic. This very interesting
notion captures the distance from a graph to a tree in a metricway. Moreoverδ-
hyperbolicity is polynomially computable and easy to approximate.

We survey some results aboutδ-hyperbolicity of graphs, and in particular we
show thatδ-hyperbolicity generalizes tree-length with respect to the 2-sweap al-
gorithm. We provide some experimental results on real data (i.e. graphs extracted
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from the Internet), showing thatδ-hyperbolicity can be a very practical measure
[9].

We finish with a comparison on the computational complexity of the diameter
and the center of a given graph, listing some open questions [12], [3].
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1. Introduction

We present an efficient algorithm to find anoptimal integer solutionof a given
system of 2-variable equalities and 1-variable inequalities with respect to a given
linear objective function. More precisely, the input consists of

• a finite set of variablesx1, . . . , xn,
• equations of the formax+ by = c wherex andy are variables, anda, b, c are

rational numbers,
• inequalities of the formx ≤ u or x ≥ l, wherex is a variable andu, l are

rational numbers, and
• a linear objective function

∑n
i=1wixi where the thewi’s are rational numbers.

The task is to find an assignment ofinteger valuesto the variablesx1, . . . , xn such
that all equations and inequalities are satisfied and the function

∑n
i=1wixi is maxi-

mized.

If instead of 2-variable equalities we are given 2-variableinequalities, then
the problem obviously becomes NP-hard (this can be seen by a reduction from
the maximum independent set problem). If instead of 2-variable equalities we are
given 3-variable equalities, then the problem again becomes NP-hard. This follows
by a trivial reduction from the NP-complete problem 1-in-3-SAT, where each 1-in-
3 clause 1-in-3(x, y, z) is reduced tox+ y + z = 1, x, y, z ≥ 0. Hence, 2-variable
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equalities and 1-variable inequalities is a maximal tractable class in the sense that
allowing longer equalitiesor longer inequalities results in NP-hard problems.

We remark that finding integer solutions to linear equation systemswithout in-
equalitiesis tractable [4], and has a long history. Faster algorithms have been found
in for example [2; 8]. Integer programming can also be solvedin polynomial time
if the total number of variables is two [6]; Lenstra [5] has generalized this result
to any fixed finite number of variables. See [3] for one of the fastest known algo-
rithms for 2-variable integer programming, and for more references about linear
programming in two dimensions.

In our algorithm for a system of 2-variable equalities and 1-variable inequali-
ties over the integers we use the fact that such equation systems reduce to systems
that define a one-dimensional solution space. This idea was also used by Aspvall
and Shiloach [1] in their algorithm for solving systems of 2-variable equations over
the rational numbers. We use this fact to compute anoptimal integer solution by
solving a system of modular equations in polynomial time. One of our contributions
is to show that the necessary computations can be performed in total quadratic time
in the input size.

Since the problem to decide whether a single 2-variable equation ax+ by = c
with a, b, c ∈ Z has an integer solution forx, y is equivalent to deciding whether the
gcd ofa andb is a divisor ofc, we cannot expect an algorithm for our problem that is
faster than gcd computations. There are sub-quadratic algorithms for computing the
gcd of twoN bit integers with running times inO(log(N)M(N)), whereM(N) is
the bit-complexity of multiplying twoN bit integers. Using the classical Schönhage
Strassen [7] integer multiplication algorithm, this givesa running time for gcd in
O(N(log(N))2log(log(N))).

We view it as an interesting open problem whether integer programming over
2-variable equalities and 1-variable inequalities can be shown to be no harder than
gcd computations, i.e., with a running time ofO(G(N)) whereG(N) is the bit
complexity of computing gcd of twoN bit integers. We also emphasize that the
quadratic time algorithm we give does not rely on sub-quadratic algorithms for
multiplication, division, or gcd.

2. Reduction to an acyclic system

We show how to partition the system of equations into independent subsys-
tems, each having a one-dimensional solution space (i.e., the solution space can be
expressed using one free parameter). Thegraphof an instance of our problem is the
graph that has a vertex for each variable and an edge for each equation (connecting
the two vertices corresponding to the variables in the equation). A instance of our

262



problem is called anacyclic (or connected) system if the graph of the system is
acyclic (orconnected, respectively), and aconnected componentof a systemF is a
subsystem ofF whose graph is a connected component of the graph ofF .

Proposition 1. There is anO(N2) time algorithm that computes for a given system
of two variable linear equations an equivalent acyclic subsystem.

The upper and lower bounds on the variables translate into anupper and lower
bound on the parameterx. If y has the upper boundu and the expression fory is
y = ax+ c, then in case thata is positive we get the boundb(buc− c)/ac ≥ x, and
in casea is negative we get the boundd(buc− c)/ae ≤ x. Lower boundsl ony are
treated analogously. After translating all bounds we can obtain the strongest upper
bound and lower bound onx, denotedu∗ andl∗ respectively (obviously, ifu∗ < l∗,
then there is no solution).

3. Computing an optimal solution

Assume for the sake of presentation that the coefficientsa, b, c in all equations
ax+ by = c are integer. This is without loss of generality since every equation can
be brought into this form by multiplying both sides of the equation by the product
of the denominators ofa, b, andc. This can clearly be done in quadratic time and
increases the bit size of the input by at most a constant factor. Check that each
individual equationax + by = c has integer solutions. Recall that a Diophantine
equation of the formax + by = c has integer solutions if and only ifgcd(a, b)|c.
Simplify the equations by dividinga, b, andc by gcd(a, b). In the resulting system
we now havegcd(a, b) = 1 for each equationax+ by = c.

Proposition 2. There is anO(N2) time algorithm for solving acyclic connected
systems of two variable equations over the integers.

Proof Sketch. We perform a depth-first search on the graph of the system, start-
ing with any variablex from the system. The goal is to find an expression for the
solution space of the formx ≡ s (mod t). That is, the assignmentx := i can be
extended to an integer solution to the entire system if and only if i ≡ s (mod t).
If we enter a variabley in the DFS andy has an unexplored childz, then continue
recursively withz. If z is a leaf in the tree, meaning that there is a unique equa-
tion ay + bz = c wherez occurs, then rewrite the equation asay ≡ c (mod b).
Note that an assignmenty := i can be extended to a solution ofay + bz = c if
and only ifai ≡ c (mod b). Compute the multiplicative inversea−1 of a (mod b)
(which exists sincegcd(a, b) = 1 and can be retrieved from the gcd computation).
The congruence above can now be rewritten asy ≡ c′ (mod b) wherec′ = ca−1.
If all children of y have been explored, theny is explored and we backtrack. If
v is the parent ofy through the equationdv + ey = f , then rewrite the equation
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using the congruencey ≡ c′ (mod b), into dv + e(c′ + kb) = f which is equiva-
lent todv + ebk = f − ec′. Check thatgcd(d, eb)|(f − ec′) (otherwise there is no
solution and we reject) and divided, eb, andf − ec′ by gcd(d, eb) giving the equa-
tion d′v + e′k = f ′ with gcd(d′, e′) = 1. Rewrite this equation as the congruence
d′v ≡ f ′ (mod e′) which in turn is rewritten asv ≡ f ′′ (mod e′) by multiplying
both sides with the multiplicative inverse ofd′ (mod e′) (which again exists since
gcd(d′, e′) = 1). Suppose thatv already has an explored child (with congruence
v ≡ c (mod b)) when we have finished exploring another child ofv, giving rise to
the congruencev ≡ c′ (mod b′). We then combine these congruences in a similar
fashion as discussed above already twice (by computing greatest common divisors
and multiplicative inverses). The result (if a solution exists) is a congruencev ≡ c′′

(mod b′′), which replaces the two old congruences, and we continue thedepth first
search. We omit the proof that the algorithm runs in quadratic time.

Theorem 14. There is an algorithm that computes the optimal solution of agiven
integer program with 2-variable equalities and 1-variableinequalities inO(N2)
time, whereN is the number of bits in the input.
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The problem of sharing a set of limited resources between users (customers) in
an optimal way is fundamental. The common mathematical model has been called
the min-max resource sharing problem. Well-studied special cases are the fractional
packing problem and the maximum concurrent flow problem. Theonly known ex-
act algorithms for these problems use general linear (or convex) programming.
Shahrokhi and Matula [9] were the first to design a combinatorial approximation
scheme for the maximum concurrent flow problem. Subsequently, this result was
improved, simplified, and generalized many times. This workis a further step on
this line. In particular we provide a simple algorithm and a simple proof of the
best performance guarantee in significantly smaller running time. Moreover, we
implemented the algorithm for an application to global routing of VLSI chips.

The problem. The MIN-MAX RESOURCESHARING PROBLEM is defined as
follows. Given finite setsR of resourcesandC of customers, a convex setBc, called
block, of feasible solutions for customerc (for c ∈ C), and a nonnegative continuous
convex functiongc : Bc → RR

+ for c ∈ C specifying theresource consumption, the
task is to findbc ∈ Bc (c ∈ C) approximately attaining

λ∗ := inf

{
max
r∈R

∑

c∈C
(gc(bc))r

∣∣∣∣∣ bc ∈ Bc (c ∈ C)
}
, (0.1)

i.e., approximately minimizing the largest resource consumption. We assume that
gc can be computed efficiently and we have a constantε0 ≥ 0 and oracle functions
fc : RR

+ → Bc, calledblock solvers, which forc ∈ C andω ∈ RR
+ return an element

bc ∈ Bc with ω>gc(bc) ≤ (1 + ε0)OPTc(ω), whereOPTc(ω) := infb∈Bc ω
>gc(b).

Block solvers are calledstrongif ε0 = 0 or ε0 > 0 can be chosen arbitrarily small,
otherwise they are calledweak.

1 joint work with J. Vygen
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Note that previous authors often required thatBc is compact, but we do not
need this assumption. Some algorithms requirebounded block solvers: for c ∈ C,
ω ∈ RR

+ , andµ > 0, they return an elementbc ∈ Bc with gc(bc) ≤ µ1andω>gc(bc) ≤
(1 + ε0) inf{ω>gc(b) | b ∈ Bc, gc(b) ≤ µ1} (by 1 we denote the all-one vector).
They can also be strong or weak.

All algorithms that we consider are fully polynomial approximation schemes
relative toε0, i.e., for any givenε > 0 they compute a solutionbc ∈ Bc (c ∈ C) with
maxr∈R

∑
c∈C(gc(bc))r ≤ (1+ε0+ε)λ

∗, and the running time depends polynomially
on ε−1. By θ we denote the time for an oracle call (to the block solver). Moreover,
we writeρ := sup{ (gc(b))r

λ∗
| r ∈ R, c ∈ C, b ∈ Bc}.

Previous work. Grigoriadis and Khachiyan [4] were the first to present such
an algorithm for the general MIN-MAX RESOURCE SHARING PROBLEM. Their
algorithm usesO(|C|2 log |R|(ε−2+log |C|)) calls to a strong bounded block solver.
They also have a faster randomized version.

In [5] they proposed an algorithm which needsO(|C||R|(ε−2 log ε−1+log |R|))
calls to a strong, but not bounded, block solver. They also showed that
O(|C|2 log |R|(ε−2 + log |R|)) calls to a strong bounded block solver suffice.

Jansen and Zhang [6] generalized this and allowedweak block solvers. Their
algorithm needsO(|C||R|(log |R|+ ε−2 log ε−1)) calls to a block solver.

block solver running time
Grigoriadis, Khachiyan [4] strong, bounded Õ(ε−2|C|2θ)
Grigoriadis, Khachiyan [5] strong, unbounded̃O(ε−2|C||R|θ)
Jansen, Zhang [6] weak, unboundedÕ(ε−2|C||R|θ)
our algorithm weak, unbounded Õ(ε−2ρ|C|θ)
our algorithm weak, bounded Õ(ε−2|C|θ)

Table 12. Approximation algorithms for the MIN-MAX RESOURCESHARING PROBLEM.
Running times are shown for fixedε0 ≥ 0, and logarithmic terms are omitted.

Fractional packing. The special case where the functionsgc (c ∈ C) are linear
is often called the FRACTIONAL PACKING PROBLEM (although sometimes this
name is used for different problems). For this special case faster algorithms us-
ing unbounded block solvers are known. Plotkin, Shmoys and Tardos [8] require a
strong block solver andO(ε−2ρ|C|θ(log |R|+ε−1)) oracle calls to solve the feasibil-
ity version (whereλ∗ = 1 is known). Young’s algorithm [11] needsO(ε−2ρ|C|(1 +
ε0)

2θ ln |R|) calls to a weak block solver. Charikar et al. extended the result of [8]
to weak block solvers resulting inO(ε−2ρ|C|(1 + ε0)

2θ log(ρ(1 + ε0)ε
−1)) oracle

calls.

Bienstock and Iyengar [2] managed to reduce the dependence on ε fromO(ε−2)
to O(ε−1). Their algorithm does not call a block solver, but requires the resource
consumption functions to be explicitly specified by a|R| × dim(Bc)-matrixGc for
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eachc ∈ C. So their algorithm does not apply to the general MIN-MAX RESOURCE

SHARING PROBLEM, but to an interesting special case which includes the MAX -
IMUM CONCURRENTFLOW PROBLEM. The algorithm solvesO(ε−1

√
Kn log |R|)

separable convex quadratic programs, where
n :=

∑
c∈C dim(Bc), andK := max1≤i≤|R|

∑
c∈C k

c
i , with kci being the number of

nonzero entries in thei-th row ofGc.

block solver running time
Plotkin, Shmoys, Tardos [8]∗ strong, unbounded Õ(ε−2ρ|C|θ)
Young [11] weak, unbounded Õ(ε−2ρ|C|θ)
Charikar et al. [3]∗ weak, unbounded Õ(ε−2ρ|C|θ)
Bienstock, Iyengar [2] — Õ(ε−1

√
KnTQP )

our algorithm weak, unbounded Õ(ε−2ρ|C|θ)
our algorithm weak, bounded Õ(ε−2|C|θ)

Table 13. Approximation algorithms for the fractional packing problem. Entries with∗
refer to the feasibility version (λ∗ = 1). Running times are shown for fixedε0 ≥ 0, and
logarithmic terms are omitted.TQP is the time for solving a convex separable quadratic
program overBc1 × . . . × Bc|C|.

Our results. We describe an algorithm for the general MIN-MAX RESOURCE

SHARING PROBLEM. It uses ideas of Grigoriadis and Khachiyan [5], Young [11],
Albrecht [1], and Vygen [10]. The same algorithm and a quite simple analysis
yields two results: With a weak unbounded block solver we obtain a running time
of O(|C|θρ(1 + ε0)

2 log |R|(log |R| + ε−2(1 + ε0))). This generalizes several re-
sults for the linear case and improves on results for the general case for moderate
values ofρ. With a weak bounded block solver the running time isO(|C|θ(1 +
ε0)

2 log |R|(log |R|+ ε−2(1 + ε0))). This improves on previous results by roughly
a factor of|C| or |R|. The running times are summarized in Tables 1 and 2.

Our motivation is an application to VLSI design. In global routing instances of
the (nonlinear) MIN-MAX RESOURCESHARING PROBLEM occur naturally when
dealing with today’s constraints and objectives (see e. g. [7]). We incorporate a
speed-up technique that drastically decreases the number of oracle calls in practice.
We generalize the randomized rounding paradigm to our problem and obtain an
improved bound. Finally we present experimental results for instances from current
chips, with millions of customers and resources. We show that such problems can
be solved efficiently.
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1. Introduction

Many problems can be modeled as the search for a subgraphS ⊆ A with
specific properties, given a graphG = (V,A). There are applications in which it is
desirable to ensure alsoS to beanonymous. In this work we formalize an anonymity
property for a generic family of subgraphs and the corresponding decision problem.
We devise an algorithm to solve a particular case of the problem and we show
that, under certain conditions, its computational complexity is polynomial. We also
examine in details several specific family of subgraphs.

2. Characterization of anonymity

Given a digraphG = (V,A), let |V | = n and |A| = m. We are interested
in finding if a certain familyA of subgraphs isanonymouswith respect toG. By
anonymous we mean that it is not possible to single out a subgraphS ∈ A, nor to
identify any other arc in the subgraph, given the topology ofthe graph and a subset
C of the arcs inS. We callC a partial viewof S. LetPV : P(A) ×A → {0, 1}
be the function

PV (X,S) =





1 X is a partial view ofS

0 otherwise
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that defines which subsets are considered a partial view of a certain subgraph.

Definition 4. (Anonymous family of subgraphs) Given a digraphG = (V,A)
and a functionPV : P(A) × A → {0, 1}, a family of subgraphsA ⊆ P(A)
is anonymousin G if

∀S ∈ A, ∀C ∈ {X|PV (X,S) = 1} , ∀b ∈ S \ C ∃T ∈ A : C ⊆ T ∧ b /∈ T.

We callanonymous subgraphsthe elements of an anonymous familyA. It is now
possible to defineAnonymous Subgraph Problem(ASP) as the decision problem of
checking if a family of subgraphs contains an anonymous family with respect to a
graph.

Definition 5. (Anonymous Subgraph Problem)Given a digraphG = (V,A), a
functionPV : P(A) × A → {0, 1}, and a family of subgraphsS, is there a non
empty subsetA of S which is anonymous inG?

Here we restrict our analysis to the case where the set of partial views of a
subgraphS is {C| C ⊆ S ∧ |C| = 1}, i.e. only one arc of the subgraph is known.
With this restriction, we obtain the following definition ofanonymity:

Definition 6. Given a digraphG = (V,A), a family of subgraphsA ⊆ P(A) is
anonymousin G if

∀S ∈ A, ∀a 6= b ∈ S ∃T ∈ A : a ∈ T ∧ b /∈ T.

We will refer to ASP1 to denote the Anonymous Subgraph Problem where Defini-
tion 6 is used to characterize anonymity. In Section 3 we propose an algorithm to
solve the ASP1 and we show under what conditions its computational complexity is
polynomial in the size of the graphG, even if the familyS contains a combinatorial
number of subgraphs.

3. Algorithm

Algorithm 1 Algorithm for solving the ASP1
1: FINDANONYMOUSSG(G,S, P ):
2: for all a 6= b ∈ P do
3: if FINDSG(G,S, P \ {b}, {a}) = ∅ then
4: return FINDANONYMOUSSG(G,S, P \ {a})
5: end if
6: end for
7: return FINDSG(G,S, P, ∅)

Algorithm 1 solves the ASP1: it returns an element ofA, if A exists, and an

270



empty set otherwise. It is a recursive algorithm and at the top levelP is equal to the
arc setA. The algorithm is based on the following observation: if there exists two
distinct arcsa, b ∈ A such that no subsetT ∈ S containsa but notb, it implies that
all the subsetsS ∈ S that containa are not anonymous. Thus, we can transfer the
anonymity property from the subsets to the arcs. The algorithm iteratively remove
arcs from the setP of permitted arcs and uses this set as additional constraints
when looking for possible subgraphs. If no subgraphs can be found satisfying the
additional constraints given byP the family is not anonymous inG.

We assume the correctness of the subroutine FINDSG(G,S, P,X): it returns
an empty set if and only if it doesn’t exist a subgraphS ∈ S ∩P(P ) : x ∈ S∀x ∈
X.

Theorem 15. Alg. 1 correctly solves the ASP1.

Proof.First we observe that, if the algorithm returns a non empty solution, at line
7 the setA of subgraphs inS where every arc belongs toP is anonymous inG.
Let S ⊆ P be an element ofA, we know that∀a, b ∈ S ∃T ∈ A s.t. a ∈ T
andb /∈ T , otherwisea would have been banned fromP . Assume now there is a
solution to ASP1 and Alg. 1 fails. The existence of a solutionimplies the existence
of a non empty anonymous setA. If our algorithm reached line 7 withA ⊆P(P ),
then, because FINDSG(G,S, P,X) is correct, our algorithm would not have failed.
Thus we know that the algorithm reached line 7 withA \P(P ) 6= ∅. Consider
the first time an arca ∈ A used in at least one element ofA has been removed
from P . At that timeA ⊆ P(P ), so a would not have been removed because
∀b 6= a ∈ P ∃T ∈ A s.t.a ∈ T andb /∈ T .

Since initially |P | = m and at every recursive call the cardinality ofP is de-
creased by one, we are sure that the number of recursive callsis bounded bym. At
each call the subroutine FINDSG is executed up tom2 times. Thus, if FINDSG has
computational complexityO(γ), the worst case complexity of the overall algorithm
is O(m3γ). In conclusion, if we are provided a polynomial algorithm tosolve the
subproblem, we can solve ASP1 in polynomial time.

4. Special cases and applications.

Definition 4 holds for a generic family of subsets. In real application we usu-
ally have to deal with a familyS characterized by specific properties. By exploiting
them, we can describeS implicitly and, in some cases, obtain polynomial proce-
dures to solve FINDSG even if the cardinality ofS is combinatorial in the size of
the graph.

We now analize some families of subgraphs that lead to interesting applica-
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tions.

Secret Santa Problem.

If the family S is the set of allVertex Disjoint Circuit Covers(VDCCs), we
obtain the Secret Santa Problem described in [2].

The basic concept of the Secret Santa game is simple. All of the participants’
names are placed into a hat. Each person then chooses one namefrom the box, but
doesn’t tell anyone which name was picked. He/she is now responsible for buying a
gift for the person selected. When the Secret Santa wraps his/her gift, he/she should
label it with the recipient’s name but doesn’t indicate whomthe present is from. All
the gifts are then placed in a general area for opening at a designated time.

Additional constraints are considered in the definition of the problem: it may
be required that self-gifts and gifts between certain pairsof participants should be
avoided. The problem can be modeled with a digraph, where vertices represent
the participants and arcs the possibility of a participant giving a gift to another
participant. We want to determine if the topology of the graph allows an anonymous
exchange of gifts, that is nobody can discover who made a giftto whom, knowing
the graph and the receiver of his gift.

The problem can be formulated as an ASP1 whereS is the family of all the
VDCCs of the graph.

Definition 7. A Vertex Disjoint Circuit Cover(VDCC) forG = (V,A) is a subset
S ⊆ A of arcs ofG such that: (a) for eachv ∈ V there is a uniqueu ∈ V , called
the predecessor ofv and denoted byπS(v), such that(u, v) ∈ S; (b) for eachv ∈ V
there is a uniqueu ∈ V , called the successor ofv and denoted byσS(v), such that
(v, u) ∈ S. We denote byC the set of all VDCCs inG.

In this case FINDSG(G,S, P, {(i, j)} requires to find a VDCC with restrictions
on the arcs can be used. As shown in [2] it can be done inO(n

1
2m) by solving

an assignment problem on a bipartite graphB = (U1, U2, A
′), whereU1 = U2 =

V \ {i, j} andA′ = P .

Anonymous routing.

In many contexts it is desirable to hide the identity of the users involved in
a transaction on a public telecommunication network. According to the specific
application, we may be interested in:
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• sender anonymityto a node, to the receiver or to a global attacker;
• receiver anonymityto any node, to the sender or to a global attacker;
• sender-receiver unlinkabilityto any node or a global attacker. This means that

a node may know that A sent a message and B received one, but notthat A’s
message was actually received by B.

Several protocols to provide anonymous routing features has been proposed in the
literature ([1; 4; 3]). Using these protocols every node traversed by a message has
only a partial knowledge on the path the message is being routed on. Typically a
node knows only the next step, or the next and the previous one.

Attacks against these protocols are usually based on trafficanalysis. Thus, if
the topology of the network contains “forced paths”, they can leak information to
an attacker who is monitoring the traffic.

Some protocols, like Onion Routing, require the topology ofthe network to
be known to every participant. Every time a node leave or a newnode joins the
protocol, the topology of the network changes. Therefore itmay be useful to check
the network against the presence of “forced paths”. This canbe done by solving, for
each pair of nodes(s, t) of the network, an instance of ASP1 whereG is the graph
representing the network andS is the family of all paths of length at least 2 between
the two nodes. We exclude paths involving one arc because they naturally fail in
providing anonymity. The subproblem FINDSG(G,S, P \ {b}, {(i, j)}) requires,
in this case, to find two paths: one froms to i and one fromj to t. It can be done in
O(n+m) using a graph traversing algorithm.

Anonymous routing protocols usually generate pseudo-random path in order to
maximize the level of anonymity provided and the robustnessagainst traffic analy-
sis attacks. This introduces delays in the transaction (e.g. in onion routing we have
to apply a layer of cryptography for each node in the path) that cannot be tolerated
in certain application, i.e. when the content of the messageis part of an audio or
video stream, or in financial market transactions. In these situations we may want
to give up some anonymity in exchange for performances. We may, for example,
force the routing protocol to choosequasishortest paths, instead of random ones.
Again, we would like the topology of the graph to allow them tobe anonymous.
We can check this property in a way similar to what we have donein the previous
case, but this time the familyS will contain only thes− t pathsS whose length is
not greater thanα times the length of the shortest path froms to t, whereα ≥ 1 is
a given parameter.
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Abstract

In [5] the number of non-homologically equivalent excellent discrete Morse functions de-
fined onS1 was obtained in the differentiable setting. We carried out the analogous study in
the discrete setting for some kind of graphs, includingS1, in [2]. In this paper we complete
this study counting excellent discrete Morse functions defined on any infinite locally finite
graph.

Key words: infinite locally finite graph, critical simplex, gradient vector field, gradient
path, excellent discrete Morse function

1. Introduction

Through all this paper, we only consider infinite graphs which are locally finite.
Given such a graphG, abridge is an edge whose deletion increases the number of
connected components ofG. A graph is said to bebridgeless if it contains no
bridges. We consider non trivial connected bridgeless graphs, that is, connected
bridgeless graphs not consisting of a unique vertex.

Let B the set of all bridges ofG. Thebridge componentsof G are the con-
nected components ofG− B. For other topics of graph theory we follow [4].

We introduce here the basic notions of Discrete Morse theory[3]. A discrete
Morse function is a functionf : G −→ R such that, for anyp-simplexσ ∈ G:

(M1) card{τ (p+1) > σ/f(τ) ≤ f(σ)} ≤ 1.
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(M2) card{υ(p−1) < σ/f(υ) ≥ f(σ)} ≤ 1.

A p-simplexσ ∈ G is said to bea critical simplex with respect tof if:

(C1) card{τ (p+1) > σ/f(τ) ≤ f(σ)} = 0.
(C2) card{υ(p−1) < σ/f(υ) ≥ f(σ)} = 0.

A value of a discrete Morse function on a critical simplex is calledcritical value.

A ray is a sequence of simplices:

v0, e0, v1, e1, . . . , vr, er, vr+1 . . .

If there is a discrete Morse functionf defined onG, a decreasing ray is a ray
verifying that:

f(v0) ≥ f(e0) > f(v1) ≥ f(e1) > · · · ≥ f(er) > f(vr+1) ≥ · · ·

A critical element of f onG is either a critical simplex or a decreasing ray.

Givenc ∈ R the level subcomplexG(c) is the subcomplex ofG consisting of
all simplicesτ with f(τ) ≤ c, as well as all of their faces, that is,

G(c) =
⋃

f(τ)≤c

⋃

σ≤τ
σ

Theorem 1.1. [1] Let G be a graph and letf be a discrete Morse function defined
on G such that the numbersmi(f) of critical i-simplices off with i = 0, 1 are
finite andf has no decreasing rays. Then:

(i) m0(f) ≥ b0 andm1(f) ≥ b1, wherebi denotes thei-th Betti number ofG
with i = 0, 1.

(ii) b0 − b1 = m0(f)−m1(f).

Given a discrete Morse function defined onG, we say that a pair of simplices
(v < e) is in thegradient vector field induced byf if and only if f(v) ≥ f(e).

Given a gradient vector fieldV onG, aV -path is a sequence of simplices

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , . . . , β(p+1)

r , α
(p)
r+1, . . . ,

such that, for eachi ≥ 0, the pair(α(p)
i < β

(p+1)
i ) ∈ V andβ(p+1)

i > α
(p)
i+1 6= α

(p)
i .
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Given a0-critical simplex inG, we say that any vertexw of G is rooted in v if
there exists a finiteV -path joiningw andv.

Proposition 1.2. [2] Let G be an infinite graph and letf be a discrete Morse func-
tion defined onG with no decreasing rays. It holds that:

(i) Givenw any vertex ofG, there is a unique0-critical simplex on whichw is
rooted.

(ii) Given any0-critical simplexv, the set of allV -paths rooted in it is a tree called
the tree rooted inv and denoted byTv.

(iii) Any two of such rooted trees are disjoint.

Theorem 1.3. [2] Under the above definitions and notations, the forestF consist-
ing of all rooted trees inG can be obtained by removing all critical edges off on
G.

2. The number of excellent discrete Morse functions on a graph

A discrete Morse function defined on a graphG is calledexcellent if all its
critical values are different.

Two excellent discrete Morse functionsf andg defined on a graphG with crit-
ical valuesa0 < a1 < · · · < am−1 andc0 < c1 < · · · < cm−1 respectively will be
calledhomologically equivalentif for all i = 0, . . . , m−1 the level subcomplexes
G(ai) andG(ci) have the same Betti numbers.

Let f be an excellent discrete Morse function defined onG with m critical
simplices and critical valuesa0, . . . , am−1. We denote the level subcomplexesG(ai)
by Gi for all i = 0, . . . , m − 1. The homological sequencesof f are the two
sequencesB0, B1 : {0, 1, . . . , m−1} → N containing the homological information
of the level subcomplexesG0, . . . , Gm−1, that is,Bp(i) = bp(Gi) = dim(Hp(Gi))
for eachi = 0, . . . , m− 1 andp = 0, 1.

Notice that the homological sequences off satisfy:

B0(0) = B0(m− 1) = b0 = 1, B0(i) > 0, |B0(i+ 1)− B0(i)| = 0 or 1;

B1(0) = 0, B1(m− 1) = b1, B1(i) ≥ 0, B1(i+ 1)− B1(i) = 0 or 1.

Lemma 2.1. [2] For eachi = 0, 1, . . . , m − 2 it holds one and only one of the
following identities:

(H1) B0(i) = B0(i+ 1).
(H2) B1(i) = B1(i+ 1).

279



Note that identity (H1) reveals us the creation of a new1-cycle ofG on this
process and therefore it holds this identity for exactlyb1 values ofi. If we remove
B0(i+1) for these values ofi in the sequenceB0, we obtain a walk inZ>0 starting
and ending at1, with even length2k and steps of size±1. The number of such
walks is thek-th Catalan numberCk = 1

k+1

(
2k
k

)
.

Lemma 2.2. If G is a connected graph with at least one bridge andb1 < +∞,
thenG = P1 ∪ P2 ∪ · · · ∪ Pp ∪ F , whereP1, . . . , Pp are the non trivial bridge
components ofG, F is a forest and every tree inF intersects eachPi in at most one
vertex. Moreover, ifG is infinite, thenF has at least an infinite tree.

Theorem 2.3. Under the notations of the above Lemma, the number of homology
equivalence classes of excellent discrete Morse functionswith
m = b0 + b1 + 2k critical elements on a graphG with b1 < +∞ is:

(i) Ck

(
m− 2

2k

)
if G is a non trivial bridgeless graph.

(ii) Ck

(
m− 1

2k

)
if G is infinite or has at least one vertex with degree one.

(iii)
k−1∑

j=0

CjCk−j−1

((
m− 1

2k

)
−
(

2j + b12 + 1

2j

)(
2(k − j) + b11 − 2

2(k − j)− 1

))
if G is

finite,G has at least one bridge and the degree of any vertex ofG is greater
than one, whereb11 = min{b1(Pi) : F ∩ Pi is a unique vertex} andb12 =
b1 − b11.
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1. Introduction

Circle graphs were introduced in [7] to solve a problem of queues and stacks
posed by Knuth in [11]. A graphG = (V,E) is acircle graphif it is the intersection
graph of a familyL = {Cv}v∈V of chords on a circle (i.e., for eachv, w ∈ V ,
vw ∈ E if and only if v 6= w andCv ∩ Cw 6= ∅). L is called acircle modelof
G. In [1; 8; 12], recognition algorithms based on the fact thatcircle graphs are
closed by split composition (cf. [4]) were presented. In [2], Bouchet proved that
a graphG is a circle graph if and only if each graph that is locally equivalent to
G contains none of3 prescribed forbidden induced subgraphs. However, there are
not known characterizations of circle graphs by forbidden induced subgraph that
do not involve the notion of local equivalence. We present some results in this
direction, providing forbidden induced subgraph characterizations of circle graphs
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Fig. 1. Some small graphs

restricted to graphs that belong to one of the following graph classes: linear domino,
{chair,triangle}-free,P4-sparse, and tree-cographs.

The concept ofHelly circle graph is due to Durán [6]. A graph belongs to
this class if it has a circle model whose chords are all different and satisfy the
Helly property. In [6], it is conjectured that a circle graphis a Helly circle graph if
and only if it is a diamond-free graph. This conjecture was recently affirmatively
settled affirmatively in [5]. Therefore, the Helly circle graph recognition problem
is solvable in polynomial time. Nevertheless, to best of ourknowledge, there is no
characterization for the whole class of Helly circle graphsby forbidden induced
subgraphs. In this work we completely characterizeunit Helly circlegraphs, which
are those having a model whose chords have all the same length, are all different,
and satisfy the Helly property.

2. Characterizations

Thelocal complementof a graphG = (V,E) with respect to a vertexu ∈ V is
the graphG ∗ u that arises fromG by replacing the induced subgraphG[N(u)] by
its complement. Two graphsG andH arelocally equivalentif and only ifG arises
fromH by a sequence of local complementations.

Theorem 1. ([2]) Let G be a graph. Then,G is a circle graph if and only if no
graph locally equivalent toG containsW5,W7 orBW3 as induced subgraph.

As a consequence, we can prove the following result.

Theorem 2. Let G be a graph. IfG is not a circle graph, then any graphH that
arises fromG by edge subdivisions is not a circle graph.

Some small graphs to be referred in the sequel are depicted inFigure 1. A
triangle is a complete with3 vertices. AP4 is a chordless path on4 vertices.
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A graphG is dominoif all its vertices belong to at most two cliques. If each
of its edges belongs to at most one clique, thenG is a linear domino graph. Linear
domino graphs coincide with{claw,diamond}-free graphs [10]. Aprismis a graph
that consists of two disjoint triangles{a1, a2, a3} and{b1, b2, b3} linked by three
vertex-disjoint pathsP1, P2, P3, whose internal vertices have degree two and where
Pi links ai andbi for i = 1, 2, 3. The graphC6 is a prism where each path has just
one edge. By Theorem 1,C6 is not a circle graph. Besides, since every prism arises
fromC6 by edge subdivision, Theorem 2 implies that prisms are not circle graphs.

Theorem 3. LetG be a linear domino graph. Then,G is a circle graph if and only
if G contains no induced prism.

The proof relies on the split decomposition of a graph into stars, completes and
prime graphs (cf. [4]) and the fact that circle graphs are closed by split composition
[1; 8].

Chudnovsky and Kapadia gave a polynomial-time algorithm todecide if a
graph contains a theta or a prism [3] (a theta is a graph arising fromK2,3 by edge
subdivision). Theorem 3 and the existence of a polynomial-time algorithm for rec-
ognizing circle graphs imply an alternative polynomial-time algorithm to find a
theta or a prism in linear domino graphs, because a domino graph cannot contain a
theta.

Next, we characterize those{chair,triangle}-free graphs that are circle graphs.

Theorem 4. Let G be a{chair,triangle}-free graph. Then,G is a circle graph if
and only ifG contains no inducedBW3.

Cographsare the graphs with no chordless paths on4 vertices; i.e.,P4-free.
It is well known that cographs are circle graphs.P4-sparse graphsare a natural
generalization of cographs. Hoàng [9] defined a graph to beP4-sparse if every five
vertices induce at most oneP4. For any graphG, letG+ denote the graph that arises
fromG by adding a universal vertex.

Theorem 5. LetG be aP4-sparse graph. Then,G is a circle graph if and only ifG
contains no induced net+, no induced tent+ and no induced tent-with-center.

Tree-cographsare defined recursively as follows: trees are tree-cographs, the
disjoint union of tree-cographs is a tree-cograph, and ifH is a tree-cograph, then
H is a tree-cograph.

Theorem 6. Let G be a tree-cograph. Then,G is a circle graph if and only ifG
contains no induced (bipartite-claw)+ and no induced co-(bipartite-claw).

Our last result is a complete characterization of unit Hellycircle graphs. LetC∗
n

denote the graph that arises from a chordlessn-cycle by adding an isolated vertex.
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Theorem 7. LetG be a graph. Then the following assertions are equivalent: (i) G
is a unit Helly circle graph; (ii)G contains no induced paw, no induced diamond
and no inducedC∗

n for anyn ≥ 3; (iii) G is a chordless cycle, a complete graph, or
a disjoint union of chordless paths.

The proof is of geometric nature and relies on properties of tangent lines to a
circle.
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1. Introduction

It has been observed that many large graphs (networks) that express some real world
relationships possess certain characteristics such as power-law degree distributions,
large cluster coefficients, etc. Recently, Uno et al. [1] found another ‘scale-free’
property by investigating a graph from some real network. They observed that the
size distributions of ‘isolated cliques’, cliques that canbe separated easily from the
other part, follows power-law. Furthermore, it keeps this property after contracting
every isolated clique to one vertex; that is, the clique structure of the graph has self-
similarity. (Though a different type, some self-similarity has been also studied by
Song et al. [2].) In this paper we show a way to generate graphswith this recursive
clique structure. Our method is to expand an initial graph for a few times so that
the obtained graph has a recursive clique structure. One important point is that the
basic characteristics of the initial graph are kept throughthis expansion process.

Preliminaries: Consider any (sufficiently large) graphG and let us fix it in the
following explanation. We useV andE (or more specificallyV (G) andE(G))
to denote its set ofverticesandedges, respectively, and letn denote the number
of vertices inG. For a vertexv, let N(v) denote the set of its neighbor vertices,
namely,N(v) = {u | {u, v} ∈ E}, and for anyU ⊂ V , we also useN(U) to
denote

⋃
v∈U N(v). Thedegreeof v is defined asdeg(v) , |N(v)|. By “subgraph”

of G, we imply itsinduced subgraph.

Isolated Clique and Contraction: A subgraph ofG is calledcliqueif every pair of
vertices in this subgraph is adjacent. A cliqueC is calledc-isolatedif the number of
outgoingedges fromV (C) to V \V (C) is less than or equal toc|V (C)|. Although
finding large cliques in the graph is intractable, finding isolated cliques is not so
hard. Furthermore, 1-isolated clique can be enumerated in linear time [3], and it is
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investigated in [1]. Note that very few overlaps occur among1-isolated cliques and
they are easy to be separated. Throughout this paper, we consider 1-isolated clique
and we simply call themisolated clique. We consider a process ofcontracting an
isolated cliqueof G into one vertex. We useC(G) to denote a graph obtained from
G by contracting all isolated cliques inG.

Power-law and Scale-free Property: The scale-freeness is considered as one of
the basic properties characterizing real world large graphs. We say thatG is ‘scale-
free’ if its degree distribution follows power-law, i.e., adistribution proportional to
k−γ for some constantγ. Let us make these notions more precise for our discus-
sion. Thedegree distributionof G is a sequence{nk}k≥1, wherenk is the number
of vertices inG with degreek. Then we say thatG’s degree distribution follows a
power-lawif nk = Θ(k−γ) for someγ, that is, there are some constantsc1 andc2
such thatc1k−γ ≤ nk ≤ c2k

−γ for all k ≥ 1. The parameterγ is called apower-law
exponent. In this paper we extend this notion to isolated clique size distributions.
The isolated clique size distributionof G is a sequence{ms}s≥1, wherems is the
number of isolated cliques ofs vertices. We say thatG’s isolated clique size follows
power-lawif the sequence{ms}s≥1 satisfiesms = Θ(s−γ) for someγ.

Remark on constants.It does not make sense for discussing the above properties
for any fixed finite graphG. Thus, in this paper, we will consider a family of graphs
consisting of infinite number of graphs defined in a certain way and discuss power-
law properties with constantsc1 andc2 that are independent fromk and the choice
of a graph in the family. Thus, when claiming for example thatG’s degree distribu-
tion follows a power-law with some exponentγ, we formally imply that its degree
sequence{nk}k≥1 satisfiesnk = Θ(k−γ) under some fixed constantsc1 andc2 for
all graphs in our assumed graph family.

Cluster Coefficient: Another basic property is on a cluster coefficient, a way to
measure the density of triangles in a given graph. For any vertex v, the following
ratio is called thecluster coefficientof v:

CC(v) = |{ {u, w} ∈ E | u, w ∈ N(v) }|
/ (

deg(v)
2

)
.

Then letCC(U) denote the average cluster coefficient of all vertices inU (i.e., the
arithmetic mean ofCC(v) of all verticesv in U). We say thatG has alarge cluster
coefficientif CC(V (G)) is larger than some constant. (Here again the remark above
is applicable. By “constant” we mean some constant that works for all graphs in
our assumed graph family.) Note that the cluster coefficientis the probability that
any pair of two neighbors of some vertex have an edge (when such a pair is chosen
uniformly at random); thus, on a graphG with a large cluster coefficient, it is likely
that vertices adjacent to some vertex are also adjacent.
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2. Model

We describe our model, that is, a way of defining graphs that possess self-similarity
as observed in [1]. We give a method for expanding a graph randomly; it is designed
so that a graph with our desired self-similarity is obtainedwith high probability by
applying this expansion some number of times to a given initial graph that is defined
by some other model. Our expansion method is simple. For eachdegreek ≥ 3, we
select each vertexv of degreek independently with probabilitypk, and then replace
it with a clique of sizek, where each edge to a vertexu in N(v) is replaced with
an edge betweenu and one vertexvu in the clique (see Figure 1). We introduce one
parameterp and define the probabilitypk as follows:

pk =




p/(k − 1), if k ≥ 3, and

0, otherwise.

Fig. 1. An expansion of a vertex of de-
gree four.

For any graphG, let E(G) denote a
graph obtained by applying this random ex-
pansion. Note thatE(G) is a random vari-
able. We consider graphs obtained by ap-
plying this random expansiont times. In
the following analysis, we fix one initial
graph that is taken from a certain graph
family, and letG0 denote it. For example,
we may assume thatG0 is generated by some known scale-free graph model. Then
for a givent, letGt denote a graph obtained by applyingE(·) for t times toG0. In
order to simplify our discussion, we assume in this paper that G0 has no isolated
cliques. Throughout this paper, we assume thatt is sufficiently large, but it is still
regarded as a constant. (Some results can be generalized forthe non-constant case.)

3. Analysis

Fix G0 and consider randomly generated graphsGi, 1 ≤ i ≤ t. We first show
that two basic properties characterizing real world large graphs are inherited in
G1, . . . , Gt. That is, ifG0 has a power-law degree distribution and/or has a large
cluster coefficient, then so doesGt with high probability.

First consider the degree distribution ofGt. For eachk ≥ 1, let nk andN t
k denote

the number of degreek vertices inG0 andGt, respectively. Then for anyk ≥ 3, it
is easy to show the following. (Note that from our settingp1 = p2 = 0, the number
of vertices of degree1 or 2 does not change by expansion.)

Theorem 3.1. E[N t
k] = (1 + p)tnk, and for anyδ (0 < δ < 1), we have
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Pr[ |N t
k − E[N t

k]| > δ · E[N t
k] ] < 2te

− pδ2nk
12t2(k−1) .

Thus, ifnk is large enough, we may assume thatN t
k’s concentration around its

expectation is high. Therefore, ifnk follows power-law with exponentγ, then with
high probabilityN t

k also follows the power-law with the same exponent.

Next consider cluster coefficients. We analyze a cluster coefficient for vertices of
each degreek; that is, for eachk ≥ 1, we letΣCCik denote the sum of the cluster
coefficients of all degreek vertices inGi, and we analyze this quantity. Then we
have the following bound fork ≥ 5. (For small degreek ≤ 4, a similar bound can
be shown by detail case analysis.)

Theorem 3.2. E[ ΣCCtk ] > αtΣCC0
k + 1

5
((1 + p)t − αt)nk, whereα = 1− p

k−1
.

From these bounds, we can derive a bound for the degree-wise cluster coefficient
by simply dividingΣCCtk by N t

k. Recall here thatE[N t
k] = (1 + p)tnk and that

N t
k is close to this expectation with high probability if we can assume thatnk is

large enough. Hence, for example, we can show for anyk ≥ 5 thatE[ CC(V t
k ) ] >

βtCC(V 0
k ) + (1 − βt)/5, whereV i

k is the set of vertices of degreek in Gi and
β = 1−(p/(1+p))(k/(k−1)) ' 1−p. Notice that the above bound is either close
to CC(V 0

k ) or larger than some constant, say,1/5. Hence if the original degree-wise
cluster coefficientCC(V 0

k ) is large, thenCC(V t
k ) is also large (providednk is large).

On the other hand, ifnk is small for supporting some reasonable concentration on
N t
k, then the influence of vertices inVk in CC(V (Gt)) can be ignored. Therefore,

we can conclude thatE[CC(V (Gt))] is either close toCC(V (G0)) or larger than
some constant.

Next consider an isolated clique size distribution. LetM i
s be the number of isolated

cliques of sizes in Gi. Again this is a random variable except forM0
s , which was

assumed to be0 (i.e., no isolated cliques inG0). Then for anys ≥ 3, we can show
the following bounds.

Theorem 3.3. (1 + p)t−1pns/s < E[M t
s ] < (1 + p)tns/s.

Thus (regardingp and t as constants) we can conclude that if{nk}k≥1 follows
power-law with some exponentγ, then on average{M t

s}s≥1 follows power-law
with exponentγ+1. That is,Gt has a large cluster coefficient ifG0’s degree distri-
bution follows power-law. A concentration result similar to the one forN t

k can be
also shown.

Finally consider the self-similarity or recursive structure ofGt. We would like to
see, e.g., whetherGt keeps a similar isolated clique size distribution after con-
tracting it several times. For anyj ≥ 0, let Hj be the graph obtained fromGt

by applying the contractionC(·) for j times. That is,H0 = Gt, H1 = C(H0),
H2 = C(H1), . . ., and so on. It should be noted here that the contractionC(·) is
not the inverse of our expansionE(·) in general. Thus,H1 = Gt−1 does not hold
in general, and it is not at all trivial thatHj has a similar clique size distribution.

288



Nevertheless, for the numberCj
s of cliques of sizes in Hj, we can show that the

following bound for anys ≥ 3, which supports thatHj keeps a similar clique
distribution ons.

Theorem 3.4. E[Cj
s ] > (1− e−p)jE[M t−j

s ] > (1− e−p)j(1 + p)t−j−1pns/s.
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1. Introduction

Conflict graphs impose disjunctive constraints for pairs ofjobs, items, edges
or other objects in a combinatorial optimization problem. Equivalently, the feasible
domain of the considered problem is restricted to stable sets in the given conflict
graph. After reviewing in our presentation results from theliterature for bin pack-
ing and scheduling problems with conflict graphs, we first consider the classical 0-1
knapsack problem. Adding a conflict graph makes the problem strongly NP-hard
but for three special graph classes, namely trees, graphs with bounded treewidth and
chordal graphs, we can develop pseudopolynomial algorithms. From these we can
easily derive fully polynomial time approximation schemes(FPTAS). Secondly, we
study the minimum spanning tree problem and show that the border between poly-
nomially solvable and NP-hard is given by moving from a conflict graph containing
only isolated edges to paths of length 2.
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2. The Knapsack Problem with Conflict Graphs

For a formal definition of theknapsack problem with conflict graph(KCG), let
n be the number of items, each of them with profitpj and weightwj , j = 1, . . . , n,
andc the capacity of the knapsack. LetG = (V,E) with |V | = n be a conflict
graph, where the vertices uniquely correspond to the items of the knapsack.G is
not necessarily connected and may therefore contain isolated vertices.

Then KCG is determined by the following ILP formulation:

(KCG) max
n∑

j=1

pjxj (2.1)

s.t.
n∑

j=1

wjxj ≤ c (2.2)

xi + xj ≤ 1 ∀ (i, j) ∈ E (2.3)
xj ∈ {0, 1} j = 1, . . . , n. (2.4)

From a graph theoretical perspective, KCG can also be seen asa generalization
of the independent set problem. For every given instance of the independent set
problem we can superimpose an instance of KCG by introducingtrivial items for
every vertex with profit and weight equal to 1 and capacityc = n. Therefore it
follows immediately, that KCG for general graphs is strongly NP-hard (cf. [4]) and
does not permit pseudo-polynomial algorithms (underP 6= NP ). Motivated by
this complexity status and our main task is to identify graphclasses for which we
can prove the existence of a pseudo-polynomial time and space algorithm and use
them to attain fully polynomial time approximation schemes(FPTAS).

For trees as conflict graphs we introduce a dynamic programming algorithm
that solves KCG inO(nP 2) time usingO(log(n)P +n) space whereP =

∑n
i=1 pi.

If we consider any vertexi ∈ T , by the property of trees as conflict graphs, when
includingi into the knapsack solution, it is not allowed to include the parent vertex
p of i as well as any of thek child verticesc1 . . . ck of i. Indeed these vertices are
the only vertices inT that are in conflict withi. The main idea of our algorithm is
to processT in depth-first order starting at some root vertexr.

For graphs of bounded treewidth as conflict graphs (including series-parallel
graphs, outerplanar graphs, Halin graphs... ([2])), we derive a dynamic program-
ming algorithm solving KCG with a conflict graph of bounded treewidthk in
O(nP 2) time usingO(log(n)P + n) space. For algorithmic purposes, the struc-
ture of the decomposition is restricted to four simple configurations corresponding
to anice tree decomposition, which can be be computed from a tree-decomposition
in O(n) time (cf. [3]) .
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For every chordal graphG (graphs that do not contain induced cycles other
than triangles) there exists a clique treeT = (K, E), where the maximal cliquesK
of G are vertices ofT and for each vertexv ∈ G all cliquesK containingv induce
a subtree inT . The basic idea for treating chordal graphs lies in utilizing special
separation properties of the clique-tree of a chordal graphalong with the fact that
from every maximal clique ofG at most one vertex can be added to the knap-
sack solution. The three relevant separation properties can be found with detailed
proofs in [1]. Our algorithm can be implemented to run inO((n+m)P 2) time and
O(min {m,n log n} ∗ P +m) space wherem denotes the number of edges ofG.

All the algorithms mentioned above do admit FPTASs by scaling the profit
space in a standard way (see e.g. [5]). In fact, the correctness of this scaling proce-
dure depends only on the cardinality of the solution set, which is trivially bounded
by n. The running time complexities of the resulting FPTASs differ from the above
bounds in the following way: every occurrence of the factorP is replaced byn

2

ε
for

the scaled instances and thus the required complexity of an FPTAS is attained.

3. Minimum Spanning Trees with Conflict Graphs (MSTCG)

In this part of our presentation we consider an extension of the minimum
spanning tree problem. In addition to the well studied problem of finding a min-
imum spanning tree in an undirected connected graphG = (V,E) with weight
function w, there exist incompatibilities for certain pairs of edges.These sym-
metric conflict relations are represented by means of an undirectedconflict graph
Ḡ = (E, Ē), where every vertex of̄G corresponds uniquely to an edgee ∈ E and
edges̄e = (i, j) ∈ Ē imply that the two vertices adjacent toē cannot occur together
in a solution.

First we show thatMSTCG is already NP-hard for an easy subclass of all
possible conflict graphs, namely for conflict graphsḠ consisting of components
that are described by three vertices (w.l.o.g.e1, e2 ande3) which are connected by
two edges (w.l.o.g.(e1, e2) and(e2, e3)). We call such graphs̄G 3-ladder. In terms
of the underlying graphG this means that in a feasible spanning tree including
e1 the edgese2 ande3 are necessarily excluded. Obviously this result implies that
MSTCG is already NP-hard on paths as conflict graphs. The stated result is then
shown by reducing a special variant of3− SAT toMSTCG.

On the other hand we also show thatMSTCG is easy for disjunctive conflict-
ing pairs of edges (we call them ladder). This is done by showing that the conflict-
ing structure imposed by a ladder is a matroid. Then by the matroid intersection
theorem of Edmonds (cf. [7]) by intersecting the above matroid and the graphic
matroid, which describes the minimum spanning trees, the desired result follows.
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4. Concluding remarks

After considering chordal graphs the natural next step would be the more gen-
eral class ofperfect graphs. This question however can be settled by a result due
to Milanič and Monnot [6]. There it was shown the exact weighted independent set
problem (EWIS) for perfect graphs is strongly NP-complete.But this problem can
be reduced to KCG. Furthermore, motivated by the result for minimum spanning
trees, it seems worthwile to consider other classical combinatorial optimization
problems that do admit polynomial algorithms and combine them with additional
constraints, imposed by a conflict graph.
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Abstract

The (global) offensivek-alliance partition number of a graphΓ = (V,E), denoted by
(ψgok (Γ)) ψok(Γ), is defined to be the maximum number of sets in a partition ofV such that
each set is an offensive (a global offensive)k-alliance. We obtain tight bounds onψok(Γ) and
ψ
go
k (Γ) in terms of several parameter of the graph. As a consequence of the study we show

the close relationships that exist among the chromatic number ofΓ andψgo0 (Γ). Moreover,
we study the particular case of partitioning the vertex set of the cartesian product of graphs
into (global) offensivek-alliances.

Key words: Offensive alliances, chromatic number, cartesian productof graphs

1. Introduction

Since (defensive, offensive and powerful) alliances in graph were first intro-
duced by P. Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi [5], several au-
thors have studied their mathematical properties [1; 2; 3; 4; 5; 6; 7]. We focus
our attention in the problem of partitioning the vertex set of a graph into (global)
offensivek-alliances. This problem have been previously studied, forthe case of
defensivek-alliances, by K. H. Shafique and R. D. Dutton [6; 7] and the particu-
lar casek = −1 have been studied by L. Eroh and R. Gera [2; 3] and by T. W.
Haynes and J. A. Lachniet [4]. We begin by stating the terminology used. Through-
out this article,Γ = (V,E) denotes a simple graph of order|V | = n and size
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|E| = m. We denote the degree of a vertexv ∈ V by δ(v), the minimum degree
by δ and the maximum degree by∆. For a nonempty setX ⊆ V , and a vertex
v ∈ V , NX(v) denotes the set of neighborsv has inX and the degree ofv in X
will be denoted byδX(v) = |NX(v)|. The complement of the setS in V will be
denoted byS̄, moreover, the boundary ofS is defined as∂(S) :=

⋃
v∈S NS(v).

For k ∈ {2 − ∆, ...,∆}, a nonempty setS ⊆ V is anoffensivek-alliance in Γ
if δS(v) ≥ δS(v) + k, ∀v ∈ ∂(S). An offensivek-allianceS is calledglobal
if it is a dominating set. The (global) offensivek-alliance numberof Γ, denoted
by (γok(Γ)) aok(Γ), is defined as the minimum cardinality of any (global) offensive
k-alliance inΓ. We denote by (ψgok (Γ)) ψok(Γ) the maximum number of sets in a
partition ofV such that each set is an offensivek-alliance. Notice that if every ver-
tex of Γ has even degree andk is odd, then every offensivek-alliance inΓ is an
offensive(k + 1)-alliance and vice versa. Hence, in such a case,aok(Γ) = aok+1(Γ),
γok(Γ) = γok+1(Γ), ψok(Γ) = ψok+1(Γ) andψgok (Γ) = ψgok+1(Γ). Analogously, if every
vertex ofΓ has odd degree andk is even, then every offensivek-alliance inΓ is an
offensive(k + 1)-alliance and vice versa. Hence, in such a case,aok(Γ) = aok+1(Γ),
γok(Γ) = γok+1(Γ), ψok(Γ) = ψok+1(Γ) andψgok (Γ) = ψgok+1(Γ). We say that a graphΓ
is partitionable into (global) offensivek-alliances if (ψgok (Γ) ≥ 2) ψok(Γ) ≥ 2.

2. Results

Proposition 1. For any graphΓ without isolated vertices, there existsk ∈
{0, ..., δ} such thatΓ is partitionable into global offensivek-alliances.

Corollary 2. Any graph without isolated vertices is partitionable into global offen-
sive0-alliances.

Theorem 3. If a graph is partitionable intor ≥ 3 global offensivek-alliances, then
k ≤ 3− r.

From Theorem 3 we have that if a graph is partitionable intor ≥ 3 global
offensivek-alliances, thenk ≤ 0, so we obtain the following interesting conse-
quence.

Corollary 4. If Γ is partitionable into global offensivek-alliances fork ≥ 1, then
ψgok (Γ) = 2.

From Corollary 2 we have that any graph without isolated vertices is parti-
tionable into global offensive 0-alliances. Therefore, the above result leads to the
following consequence.

Corollary 5. For any graph without isolated vertices,2 ≤ ψgo0 (Γ) ≤ 3.

An example of graph whereψgo0 (Γ) = 2 is the complete graph and an example
of graph whereψgo0 (Γ) = 3 is the cycle graphC3t, t ≥ 1.
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Now we are going to show the relationship that exists among the chromatic
number ofΓ, χ(Γ), andψgo0 (Γ).

Theorem 6. Any set belonging to a partition of a graph intor ≥ 3 global offensive
k-alliances is a(−k)-dependent set.

Corollary 7. If ψgo0 (Γ) = 3, thenχ(Γ) ≤ 3.

A trivial example whereψgo0 (Γ) = 3 = χ(Γ) is the cycle graphΓ = C3. In the
case of the cycle graphΓ = C6 it is satisfiedψgo0 (Γ) = 3 andχ(Γ) = 2.

Remark 2.1. If Γ is a non bipartite graph andψgo0 (Γ) = 3, thenχ(Γ) = 3.

An example of graph whereχ(Γ) > 3 andψgo0 (Γ) = 2 is the complete graph
Γ = Kn, with n ≥ 4.

Corollary 8. For any graphΓ without isolated vertices and chromatic number
greater than 3,ψgo0 (Γ) = 2.

Theorem 9. For any graphΓ without isolated vertices containing a vertex of odd
degree,ψgo0 (Γ) = 2.

Theorem 10. If a graphΓ is partitionable into global offensivek-alliances, then
ψgok (Γ) ≤

⌊
2m−n(k−4)

2n

⌋
.

The above bound is attained, for instance, for the cycle graph C3t, where
ψgo0 (C3t) = 3.

Theorem 11. LetCgo
(r,k)(Γ) be the minimum number of edges having its endpoints

in different sets of a partition ofΓ into r ≥ 2 global offensivek-alliances, then
Cgo

(r,k)(Γ) ≥
⌈

(r−1)(2m+nk)
4

⌉
. Moreover, ifr ≥ 3, thenCgo

(r,k)(Γ) ≤
⌊

(r−1)(2m−nk)
4(r−2)

⌋
.

From the above result we have that ifψgok (Γ) ≥ 3, thenψgok (Γ) ≤
⌊

6m+nk
2m+nk

⌋
.

Notice also that, fork ≤ δ, 2 ≤
⌊

6m+nk
2m+nk

⌋
, so we obtain the following bound.

Corollary 12. For any graphΓ of ordern and sizem, ψgok (Γ) ≤
⌊

6m+nk
2m+nk

⌋
.

The above bound is attained, for instance, for the cycle graph Γ = C3t, where
ψgo0 (Γ) = 3.

Theorem 13. [1] Let Γi = (Vi, Ei) be a graph of minimum degreeδi and maximum
degree∆i, i ∈ {1, 2}. If Si is an offensiveki-alliance inΓi, i ∈ {1, 2}, then, for
k = min{k2 −∆1, k1 −∆2}, S1 × S2 is an offensivek-alliance inΓ1 × Γ2.

From the above result we deduce that, a partitionΠi of Γi into ri offensiveki-
alliances,i ∈ {1, 2}, induces a partition ofΓ1 × Γ2 into r1r2 offensivek-alliances,
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with k = min{k2 −∆1, k1 −∆2}. So, we obtain the following result.

Corollary 14. For any graphΓi of orderni and maximum degree∆i, i ∈ {1, 2},
and for everyk ≤ min{k1 −∆2, k2 −∆1}, ψok(Γ1 × Γ2) ≥ ψok1(Γ1)ψ

o
k2

(Γ2).

Example of equality in the above result isψo−3(C4×K4) = 4 = ψo0(C4)ψ
o
1(K4).

Theorem 15. LetΓi = (Vi, Ei) be a graph of orderni and letΠi be a partition ofΓi
into ri global offensiveki-alliances,i ∈ {1, 2}. If xi = min

X∈Πi

{|X|}, yi = max
X∈Πi

{|X|}
andk ≤ min{k1, k2}. Thenγok(Γ1 × Γ2) ≤ min{n2x1, n1x2}, andψgok (Γ1 × Γ2) ≥
max{ψgok1(Γ1), ψ

go
k2

(Γ2)}.

Corollary 16. If a graphΓi of orderni is partitionable into global offensiveki-
alliances,i ∈ {1, 2}, then fork ≤ min{k1, k2},

γgok (Γ1 × Γ2) ≤
n1n2

max
i∈{1,2}

{ψgoki
(Γi)}

.

Example of equality isγo1(C4 ×K2) = 4·2
max{ψgo

1 (C4),ψgo
1 (K2)} = 4.
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In some situations an undirected multigraph has to be ‘enriched’ by a minimum
number of additional edges, such that there exists at least agiven numberk of edge-
disjoint paths between every pair of vertices. Due to the duality of maximum flows
and minimum cuts, this corresponds to the increase of the edge connectivity to the
target valuek by a minimum number of additional edges. Finding thisminimum
k-augmenting setof additional edges is called theedge connectivity augmentation
problem(ECA). In this paper we will concentrate on the casek = λG + 1, ie. the
problem ofedge connectivity augmentation by one(ECA1).

Several strongly and pseudo-polynomial algorithms for ECAare known up
to date. Basically these can be split into two groups. The algorithms of the first
type use the process ofedge splitting. Based on the results of Cai and Sun [3],
Frank [5] described such a strongly polynomial algorithm requiring timeO(n5) on
a graph withn vertices andm edges. Gabow [8] obtainedO (n2m log (n2/m))).
Nagamochi and Ibaraki [13; 14] described anO

(
nm logn + n2 log2 n

)
algorithm.

The other group of algorithms does not use edge splitting explicitly. Many of
them iteratively solve ECA1, ie. they increase the edge connectivity of the graph
one by one. This approach usually results in pseudo-polynomial runtimes, which
depend on the number of necessary steps, ie. the differencek−λG. One of the eldest
is described in [15] and requiresO(kLn4(kn + m)) time with L = min{k, n}.
Naor, Gusfield and Martel [12] described anO(δ2nm+δ3n2+n·M(G)) algorithm,
whereδ is the number of required steps andM(G) the time required by a maximum
flow algorithm on the graphG. In [6; 7] Gabow describes an algorithm requiring
O(m+ k2n logn) time for simple graphs.
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Benczúr and Karger [1] describe a nondeterministic algorithm mixing both ap-
proaches. They use a probabilistic algorithm for the construction of allextremesets
as defined in [15] of vertices and then use these to implicitlyconstruct an edge
splitting, increasing the edge connectivity tok − 1. For the last step they suggest
a cactus based∗ algorithm, like those in [12] or [9]. The resulting algorithm con-
structs a minimumk-augmenting set in timeO(n2 log5 n) with high probability. In
[10; 11] Nagamochi describes an algorithm, which allows thedeterministic com-
putation of all extreme sets in an undirected, weighted graph inO(mn + n2 log n)
time, resulting in an algorithm for ECA in the fashion of Benczúr and Karger, re-
quiringO(mn+ n2 logn) time andO(m+ n) space.

In this paper we present a new algorithm for the solution of ECA1. We show
that its runtime is bounded byO(λGn

2 logn) and that its expected runtime is
O(λGn

2 log(∗) n). Furthermore, due to a quite conservative estimation, the average
runtime of the algorithm may be significantly lower. The algorithm may either be
used to solve ECA iteratively, or as the last step in Benczúrand Karger’s algorithm,
avoiding the construction of the cactus.

We assume, that the edge connectivityλG of the underlying integer weighted
graph is already known (see eg. [2]). Our algorithm consistsof two main compo-
nents. The first component is an algorithm for the computation of all λG-extreme
sets, which are the minmal minimum cuts ofG. As we show, this can be achieved
in timeO(λGn

2) by usingLax-Adjacency Ordersas introduced in [2].

It is a simple observation, that the increase of the edge connectivity by one,
requires that for everyλG-extreme at least one new edge has to leave it. This leads
to a lower bound ofd l

2
e for the number of required additional edges, wherel is

the number ofλG-extreme sets. As proven in [5], this lower bound is in fact the
minimum number of edges required to solve ECA1. In other words, an optimal
solution consists ofb l

2
c disjoint pairs ofλG-extreme sets and edges between the two

components of each pair. Ifl is odd, then one additional edge leaving the remaining
set has to be added.

Due to the minimality of theλG-extreme sets and the fact that the intersection
of two minimum cuts is again a minimum cut, every minimum cut contains at least
onλG-extreme set. We call a pair(X, Y ) of λG-extreme sets illegal, if there exists
a minimum cutZ, that containsX andY and no otherλG-extreme set. In this
situation the addition of an edge betweenX andY would require that an additional
edge leavesZ, implying that the pair cannot be part of an optimal solution.

Basically our algorithm chooses an arbitrarypairing of the λG-extreme sets
and then detects illegal pairs by constructing allλG-extreme sets in the graph, in
which edges between the pairs were added. The edges induced by legal pairs remain

∗ Cactus-basedmeans that the algorithm requires the construction of the cactus represen-
tation of all minimum cuts in the multigraphG, as described in [4; 6]
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in the solution, while the illegal pairs are split again, andthe process is repeated
until no illegal pair was found.

As we observed, eachλG-extreme set can be a member of at most two il-
legal pairs. If known illegal pairs are avoided in subsequent rounds, it can be
shown that at mostO(log n) rounds are required, leading to a total runtime of
O(λgn

2 log n). A more thorough analysis reveals, that a random choice of the pair-
ings is expected to require onlyO(log(∗) n) rounds, leading to an expected runtime
of O(λGn

2 log(∗) n).
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Abstract

In [2] V. Giakoumakis and S. Olariu characterized all classes of graphs whose set of min-
imal prime extensions is finite. In this extended abstract wepropose an efficient algorithm
that enumerates all minimal prime extensions of these classes of graphs.

Key words: modules in graphs, modular decomposition, minimal prime, extension,
enumeration algorithm.

1. Motivation, notation and terminology

For terms not defined here the reader is refered to [1]. All considered graphs
are finite, without loops nor multiple edges. LetG be a graph, the set of its vertices
will be noted byV (G) while the set of its edges will be noted byE(G). An edgeless
(resp. complete) graph ofn vertices is denotedOn (resp.Kn) while [W ] will denote
the subgraph ofG induced byW ⊆ V (G). A chordless path (or chain) ofk vertices
will be denotedPk and a chordless cycle ofk vertices wil be denoted byCk. A bull
is a graph formed from aP4 and a vertexx which is adjacent to the middle vertices
and misses the two extremities of thisP4. The vertexx will be called thetopvertex
of the bull. A diamond(resp.paw) is a graph formed from aP3 (resp. aP3) and a
universal vertex with respect to the set of vertices of thisP3 (resp.P3). A setM ⊆
V (G) is called amoduleif every vertex ofG outsideM is adjacent to all vertices of
M or to none of them. The empty set,V (G) and the singletons aretrivial modules
and wheneverG has only trivial modules is calledprimeor indecomposable. A non
trivial moduleM is also calledhomogeneous set.The graphG′ is aminimal prime
extensionof G if G′ is prime, it contains an induced subgraph isomorphic toG and
is minimal with respect to set inclusion and primality.Ext(G) will denote the set
of minimal prime extensions ofG. It is well known thatExt(G) is not necessarily
a finite set.
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Finding characterizations of the set of minimal prime extensions of classes of
graphs could lead to efficient optimization algorithms (seein [2] for details) and
this has motivated many researching works in this direction. In ([4]) is proved that
if G is a P4- homogeneous graph(i.e. every non trivial module ofG induces a
subgraph of aP4) thenExt(G) is a finite set.

The open problem of giving necessary and sufficient conditions for the finite-
ness ofExt(G) was recently solved in [2] where it is proved thatExt(G) is a finite
set iffG is either aP4- homogeneous graphor a2P4 - homogeneousgraph whose
definition is given below:

Definition 1.1LetG be a connected graph which is notP4-homogeneous such
thatG contains exactly two connected componentsC1 andC2. Then,G andG are
said to be2P4 - homogeneousgraphs if[C1] and[C2] are subgraphs of a chordless
chain and one of the following conditions holds:

• [C1] is a singleton andG′ = G \ u is aP4- homogeneous graph
• [C1] is isomorphic to aP1 ∪ P3 or to aP1 ∪ P4 or to anO3 or to anO2 ∪ P2

and[C2] is isomorphic to aP4, P 3 or aP 2.

Using as framework the theoretical results in [2] and [4] we present in this abstract
an efficient and easily programming method which enumeratesthe set of all mini-
mal prime extensions in the finite case. In this way we unify also several previous
researching works where this set is obtained by examining separately each particu-
lar case of the graphs under consideration.

2. Enumeration ofExt(G) for a P4-homogeneous graphG

We shall first give the structure of the modular decomposition treeT (G) of a
P4-homogeneous graphG. We shall classifyG in to 3 classes as follows:

Definition 2.1. LetG be a connectedP4−homogeneous graph, letT (G) be its
corresponding modular decomposition tree and letr(T ) be the root ofT . Then

(i) G is of type1 if r(T ) is anN-node and the subgraph ofG corresponding to
each son ofr(T ) is isomorphic to a subgraph of aP4

(ii) G is of type2 if r(T ) is anS-node having two sons and the subgraph ofG
corresponding to each son ofr(T ) is isomorphic to either aP4 or to aP3 or to
P2 or to aP1.

(iii) G is of type3 if G is isomorphic to aC3 or to a diamond or to a paw.

Theorem 2.2LetG be a connected graph and letT (G) be its corresponding
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modular decomposition tree. If G isP4-homogeneous then G is of type1, 2 or 3.

We recall that since the construction of the modular decomposition tree of a
graph can be obtained in linear time on the size this graph (see [1]), Theorem2.2
implies that the recognition of aP4-homogeneous graphG can be obtained in linear
time on the size ofG. The modular decomposition tree of aP4-homogeneous graph
will be used in the enumeration algorithm presented below. Before, we give some
definitions and we recall some known results.

Definition 2.3 ([3]) Let G be an induced subgraph of a graphH, and letW be a
homogeneous set ofG. We define aW -pseudopath inH as a sequence
R = (u1, u2, ..., ut), t ≥ 1, of pairwise distinct vertices ofV (H) \ V (G) satisfying
the following conditions:

(i) u1 is partial with respect toW .
(ii) ∀ i = 2, ..., t eitherui est adjacent toui−1 and indifferent with respect to

W ∪ {u1, ..., ui−2} or ui is total with respect toW ∪ {u1, ..., ui−2} and not
adjacent toui−1 ( wheni = 2 , {u1, u2, ..., ut} = �).

(iii) ∀ i = 2, ..., t−1, ui is total with respect toN(W ) and indifferent with respect
to V (G) − N(W ) and eitherut is not adjacent to a vertex ofN(W ) or ut is
adjacent to a vertex ofV (G)−N(W ).

From ([3]) we know that for every homogeneous setW of a graphG there is a
W -pseudopath with respect to any induced copy ofG in Ext(G).

Definition 2.4 LetW be a non trivial module of a graphG and letx be a partial
vertex with respect toW . We shall say thatx is astrong partialvertex forW if W
does not contain an homogeneous set in the graph induced byV (G) ∪ {x}. If x is
the first vertex of aW -pseudopathP , P will be called astrongpseudopath.

Definition 2.5 A graphG will be called(P4, bull)-homogeneous graph if every
homogeneous set ofG induces either a subgraph of aP4 or is isomorphic to a bull.

From ([4]) we know that for every homogeneous setW of aP4-homogeneous
graphG there is inExt(G) a strongW -pseudopathP = x1 or a pseudopathP =
x1, x2. The latter case occurs whenever[W ∪ {x1}] is isomorphic to a bull and
W ∪{x1} forms a non trivial module in the graph induced byV (G)∪{x1}. In this
casex2 is a strongW ∪ {x1}-pseudopath such thatx2 either is only adjacent to the
top vertexx1 of [W ∪ x1] and misses all vertices ofW or x2 is not adjacent tox1

and is total with respect toW .

We are now in position to present our enumeration algorithm.We shall enumerate
the set of minimal prime extensions of a connectedP4-homogeneous graphG of
type1 or 2. A graphG of type3 is a particular case of aP4-homogeneous graphs
andExt(G) is already known by previous researching works. Although wecould
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adapt our algorithm in order to enumerate alsoExt(G) in this case, we prefer to
invite the reader to see [2] for the related references. Finally, wheneverG is
disconnected, the set of minimal prime extensionsH of G will be the set of the
complementary graphs ofH (see [2]).

The enumeration algorithm ofExt(G)

Input: A connectedP4-homogeneous graphQ of type1 or 2

Output: The set of minimal prime extensionsH of Q

(i) Consider the setF(Q) = {G1, ..., Gt} of (P4, bull)-homogeneous graphs con-
tainingQ as induced subgraph

(ii) Let Gi be a graph ofF(Q) and letU1, ..., Uk be the set of the maximal non
trivial modules ofGi that can be computed from the modular decomposition
tree ofGi.

(iii) Ext1(G
i) is the set of all graphs obtained by adding toGi the setX =

{x1, ..., xk} of new vertices such that:
(a) eachxi form a strongUi- pseudopath of length1 and[X] is edgeless
(b) there is no edge betweenxi andUj , i 6= j andi, j = 1...k

(iv) Ext2(Gi) is be the set of all graphs obtained by considering every graph of
Ext1(G

i) and then identifying in all possible ways the vertices ofX of (the
neighborhood of the vertex resulted from the identificationof the two vertices
x andy isN(x)∪N(y)).Ext3(Gi) is the set of all graphs obtained by adding
edges in all possible ways between the vertices ofV (Gj)∩X, of every graph
Gj of Ext2(Gi) . Finally,Ext4(Gi) is the set of all graphs obtained by adding
edges in all possible ways between the vertices ofV (Gl) ∩X of every graph
Gl of Ext3(Gi) and the non trivial modules ofGl in the following manner: for
x ∈ V (Gl)∩X and for an homogeneous setU ofGl such thatx is indifferent
with respect toU , we add all edges betweenx and the vertices ofU if [U ] is not
isomorphic to aP3 or to its complement; if[U ] is isomorphic to aP3 = abc or
to its complement we add either all edges betweenx and{a, b, c} or the edge
xb or the edgesxa andxc.

(v) The set of minimal prime extensionsH of Q is obtained from the union of the
setsExt1(Gi) ∪Ext2(Gi) ∪ Ext3(Gi) ∪ Ext4(Gi), i = 1, ..., t.

3. EnumeratingExt(G) wheneverG is a2P4 - homogeneous graph

The space limitations of this extended abstract do not allowus to give the
details for obtainingExt(G) in all cases that may occur for a2P4-homogeneous
graphG. We shall only present here a general method for enumeratingExt(G).

We first enumerateExt([C2]) (since[C2] is aP4-homogeneous graph,Ext([C2])
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can be found as exposed in previous section). LetH be a graph ofExt([C2]) and
let A be a set of new vertices such that[A] is isomorphic to[C1]. Then add edges
betweenA andV (H) as follows:

1 A is partial with respect toV (H) and the graph induced byV (H) ∪ A is a
minimal prime extension ofG. Let F1 be the set of graphs obtained in this
manner.

2 A is total with respect toV (H). Hence the graphH ′ induced byV (H) ∪ A
contains two maximal modules,A andV (H). Then add toH ′ a strongB-
pseudopath and a strongV (H)-pseudopath which is2K2-free and containing
at most9 vertices. LetF2 be the set of graphs obtained with this manner.

3 Ext(G) is a subset ofF1 ∪ F2.

Remark. Following the structure of the2P4-homogeneous graphG under consid-
eration, the general method presented above can be consequently adapted in order
to enumerate with precision the corresponding set of graphsF1 ∪ F2.
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1. Introduction

Assume we are given an-vertexm-edge (di)graphG = (V,E), aweight func-
tion c : E → N∗ and a listN of pairs (sourcesi, sinks′i) of terminalvertices. The
minimum multicut problem, or MINMC, consists in selecting a minimum weight
set of edges (or arcs) whose removal leaves no (directed) path fromsi to s′i for each
i. The minimum multiterminal cut problem(M INMTC) is a particular minimum
multicut problem in which, given a set ofr vertices{t1, . . . , tr}, the source-sink
pairs are(ti, tj) for i 6= j.

For |N | = 1, M INMC is equivalent to the classicalminimum cut problem, and
therefore is polynomial-time solvable both in directed andin undirected graphs.
However, MINMC (resp. MINMTC) becomesNP-hard, and evenAPX-hard, as
soon as|N | = 3 (resp.r = 3) in undirected graphs [7] (the casesr = 2 and
|N | = 2 being tractable [12]), and as soon as|N | = 2 (resp.r = 2) in digraphs
[10]. For an arbitrary number of source-sink pairs, MINMC is APX-hard even in
unweighted stars [9]. Moreover, MINMC is polynomial-time solvable in directed
trees (the constraint matrix being totally unimodular) andM INMTC is polynomial-
time solvable in directed acyclic graphs [6].

It is generally believed that MINMC is not significantly simpler in directed
acyclic graphs. In [2], it was proved that MINMC is NP-hard even in unweighted
directed acyclic graphs (or DAG) having a very special structure (namely, their un-
derlying undirected graph is a bipartite cactus of bounded path-width and of maxi-
mum degree three), but itsAPX-hardness remained open, as well as its complexity
when|N | is fixed. Moreover, MINMTC is known to beNP-hard in planar graphs,
where it becomes tractable ifr is fixed [7], and, in [1], MINMC has been shown
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to be polynomial-time solvable in planar graphs where all the terminals lie on the
outer face, if|N | is fixed.

In this extended abstract, we first show that MINMC is APX-hard in DAG,
even if |N | = 3. The proof is surprisingly simple, and only relies on theAPX-
hardness of VERTEX COVER in bounded-degree undirected graphs. Then, we im-
prove the result in [1], by giving a nearly linear-time algorithm for MINMC when
the graph is planar,|N | is fixed, and the terminals lie on the outer face.

2. APX-hardness proof for DAG

The structure of our proof is simple: we will give an approximation-preserving
reduction from VERTEX COVER in graphs of maximum degree 3, which is known
to beAPX-hard [11], to MINMC in unweighted DAG with|N | = 3. This will
immediately implies theAPX-hardness of the latter problem.

As in [2], we consider an instance of VERTEX COVER in graphs of maximum
degree 3, and transform this (undirected) graphG into a DAG, by first numbering
the vertices arbitrarily, and then orienting the edges so that this numbering defines
a topological order. Then, we replace each vertexvi by an arc(v′i, v

′′
i ) and any arc

of the form(vi, vj) by an arc(v′′i , v
′
j). LetG′ be this new digraph (note thatG′ is

also a DAG, and has maximum degree 4). To finish the reduction,we add six new
verticess1, s2, s3, s

′
1, s

′
2, s

′
3, and, following the topological order of thev′i in G′, we

link, for each pair(v′i, v
′′
j ) such that(vi, vj) is an arc ofG, vertexsh to v′i andv′′j to

s′h by two new arcs, whereh ∈ {1, 2, 3} is the smallest index such that there is no
arc fromv′′i to s′h yet.

SinceG is of maximum degree 3, it is not difficult to show that:

Claim 1. Such an indexh always exists, so the construction is always possible.

This yields a MINMC instance where the terminal pairs are(si, s
′
i) for i =

1, 2, 3, and which, as can be easily seen, is such that: for each integerS, there is a
vertex cover of sizeS in G iff there is an arc multicut of sizeS in G′. So:

Theorem 16. M INMC is APX-hard in unweighted DAG, even when|N | = 3.

An interesting open problem would be to settle the case wherethere are only
two source-sink pairs (recall that MINMC is thenAPX-hard in general digraphs
[10]). Moreover, our result is best possible (up to constantfactors), in the sense that
there exists a trivial 3-approximation algorithm for MINMC when |N | = 3 (for
eachi, compute a minimum simple cut betweensi ands′i, then take as a multicut the
union of these three cuts). It also matches the best inapproximability result known
for this problem inunrestricted digraphsthat is based on the assumption thatP6=NP
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[10] (theΩ
(

logn
log logn

)
inapproximability bound of Chuzhoy and Khanna [5] being

based on a stronger complexity assumption, and theΩ(1) inapproximability bound
of Chawla et al. [3] being based on a different one, namely theUnique Games
Conjecture).

3. An efficient algorithm for planar graphs

In [1], a polynomial algorithm for MINMC in planar graphs with fixed|N | and
all the terminals lying on the outer face was given, but it wasnot an FPT algorithm
[8]. Here we give the sketch of an FPT algorithm for this case.

Recall that the algorithm in [1] was based on a refinement of anidea from
[7]: when we remove the edges of any optimal solution to a MINMC instance,
the terminals are clustered inp ≤ 2|N | connected components. So, after having
“guessed” the right clustering of the terminals (which is done by brute force enu-
meration on the set of terminals), we can obtain an equivalent M INMTC instance
by merging, for each cluster, all the terminals of this cluster into a single terminal.
If the graph remains planar after this operation, then we canuse the algorithm given
in [7]; this was the main idea used in [1]. However, if, in the MINMTC instance
we obtain, all the terminals were lying on the outer face, then we could use the
much more efficient algorithm given in [4], which runs inO(n logn) time. The
basic idea of our new algorithm is thus to call this fast algorithm several times, in
order to split up the graph into several (connected) components, each one of them
being, in turn, a new MINMTC instance on which we can apply the same algorithm
once again. So, we follow adivide-and-conquerapproach, and, unlike in [1], solve
several planar MINMTC instances (whose terminals lie on the outer face) in order
to solve the MINMTC instance (whose terminals does not necessarily lie on the
outer face) associated with the optimal clustering of the initial M INMC instance.
But how should we split up the graph? The next lemma is our starting point:

Lemma 5. Assume we are given a MINMC instanceM in an undirected 2-vertex-
connected planar graphG where the terminals lie on the outer face, and an optimal
clustering of the terminals for this instance. Let us denoteby C1, . . . , Cq the clusters
of this clustering which are not included in other clusters (a clusterC being included
in another clusterC′ if any path on the outer face linking, clockwise, two terminals
of C is included in some path on the outer face linking, clockwise, two terminals
of C′). Then, the edges of any optimal solution for the MINMTC instance obtained
in G by considering only the terminals inC1, . . . , Cq and merging, for eachi, the
terminals inCi into a single terminal, are part of an optimal solution forM.

The ideas used in the proof of this lemma are rather simple: start from an
optimal multicut, and replace the edges lying between the connected components
associated with the clustersCi by an optimal solution of the MINMTC instance
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described in the lemma. It is a reasonably easy task to show that the new solution
is also an optimal multicut. Hence, starting fromG, we can recursively define a
M INMTC instance by taking theCi’s as terminals, solve it (by the algorithm given
in [4], since the terminals lie on the outer face), and then apply this approach on
each one of the connected components obtained by removing the edges of this
optimal multiterminal cut. The algorithm given in [4] runs inO(n logn) time, and,
for a given clustering (there areO(1) possible clusterings when|N | is fixed), we
call it O(|N |) times: therefore, for fixed|N |, our –FPT– algorithm also runs in
O(n logn) time. An interesting open problem would be to determine whether a
linear-time algorithm exists.

References

[1] Bentz, C.: A simple algorithm for multicuts in planar graphs with outer ter-
minals. Discrete Applied Mathematics157(2009) 1959–1964.

[2] Bentz, C.: On the complexity of the multicut problem in bounded tree-width
graphs and digraphs. Discrete Applied Mathematics156(2008) 1908–1917.

[3] Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the
hardness of approximating multicut and sparsest-cut. Proc. CCC (2005).

[4] Chen, D.Z., Wu, X.: Efficient algorithms fork-terminal cuts on planar graphs.
Algorithmica38 (2004) 299–316.

[5] Chuzhoy, J., Khanna, S.: Hardness of Cut Problems in Directed Graphs. Proc.
STOC (2006) 527–536.

[6] Costa, M.-C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer
multiflow: a survey. European J. of Operational Research162(2005) 55–69.

[7] Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yan-
nakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23
(1994) 864–894.

[8] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, NY
(1999).

[9] Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algo-
rithms for integral flow and multicut in trees. Algorithmica18 (1997) 3–20.

[10] Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted
graphs. Journal of Algorithms50 (2004) 49–61.

[11] Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and com-
plexity classes. J. Comput. and System Sciences43 (1991) 425–440.

[12] Yannakakis, M., Kanellakis, P., Cosmadakis, S., Papadimitriou, C.: Cutting
and partitioning a graph after a fixed pattern. Proc. ICALP (1983) 712–722.

316



Maintenance resources allocation on power
distribution networks with a multi-objective

framework
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Introduction. Power distribution companies are incumbent to transport elec-
trical energy in order to attend all clients in a given network, subject to specified
quality and reliability levels. The occurrence of network components failure is the
main factor which compromise power systems reliability. Therefore, maintenance
actions like repairs and component replacements are neededto reestablish the net-
work healthy activity. These maintenance actions can be classified as preventive,
when executed before the component failure, or corrective,otherwise. Given the
increasing demand of reliable (uninterrupt) power supply and more severe quality
inspections imposed by regulations entities, it becomes mandatory to rationalize
investments on distribution network maintenance. This is done by first defining the
relationship between maintenance and reliability, and then achieving the network
reliability target through the lowest maintenance cost possible, or alternatively,
seeking the most reliable network under maintenance resources constraints. This
work proposes a multi-objective approach to tackle the Maintenance Resources
Allocation Problem (MRAP), i.e., we have considered optimizing simultaneously
both objectives: maintenance cost and network reliability, and so providing power
distribution companies with a set of non-dominated (Paretooptimum) solutions to
access the companies’ decisions on maintenance investments.

Problem Definition. Most power distribution networks operate with a radial
configuration, which means that, using a graph terminology,the network can be
represented as a treeT (V,E) rooted at a substation that provides a unique path
from the substation to each load point (or node)v. Each node attends a given num-
ber of clients and contains a set of electrical equipments subject to failure. The
occurrence of any equipment failure will determine power supply interruption of
the corresponding node and recursively of all his offsprings. The MRAP is defined
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in a time horizon oft = 1, . . . , T years. In the following, we give some notation
used in this work:

• xte = 1 if equipmente receives maintenance in yeart, 0 otherwise.
• δte = failure rate of equipmente in yeart.
• Nv = number of clients affected (including offsprings) by failure on nodev.
• pe = preventive maintenance cost for equipmente.
• ce = corrective maintenance cost for equipmente.
• me0 = failure multiplier for equipmente on lack of maintenance.
• me1 = failure multiplier for equipmente when maintenance is executed.
• mt

e = failure multiplier applied on equipmente failure rate in yeart.

We define the nature in which the network equipments deteriorate or improve
along the time horizon, whether if they receive or not maintenance, as failure rate
model. In this model, the equipments failure rates are updated through the failure
rate multipliers, according to the actions applied (0.1). The maintenance cost is
expressed in terms of corrective maintenance cost (0.2) andpreventive maintenance
cost (0.3). The network reliability is given through the SAIFI (System Average
Interruption Frequency Index) (0.4).

δtj =





δt−1
e me1 if equipmente receives maintenance

δt−1
e me0 otherwise

(0.1)

Ct
c =

∑

v∈V

∑

e∈v
ceδ

t
e (0.2)

Ct
p =

∑

v∈V

∑

e∈v
pex

t
e (0.3)

SAIFI t =

∑

v∈V
(Nv

∑

e∈v
δte)

∑

v∈V
Nv

(0.4)

The bi-objective integer non-linear mathematical model for MRAP is given:

MIN CT =
∑

t

1

(1 + i)t
(Ct

c + Ct
p) (0.5)

MIN SAIFI = max
t

(SAIFI t) (0.6)

st
mt
e = xteme1 + (1− xte)me0 ∀e, ∀t (0.7)

δte = δt−1
e mt−1

e ∀e, ∀t (0.8)
xte ∈ {0, 1} ∀e, ∀t (0.9)

The objective function (0.5) minimizes the maintenance total cost, adjusted by the
present value, given an interest ratei. The objective function (0.6) minimizes the
maximumSAIFI t obtained through all the time horizon. Constraints (0.7) guar-
antee that the failure multipliermt

e applied to each equipmente and yeart must
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be one of two possible values,me0 orme1; (0.8) determine the failure rate of each
equipment along the time period, depending on the maintenance applied; finally,
(0.9) correspond the binary constraints on the decision variables.

Solving Strategy. To solve the MRAP model, we use a traditional scalar-
ization technique, theε-Constraint Method[2], where only one of the objec-
tives, maintenance cost, is minimized, while the SAIFI is transformed into a con-
straint (0.10). To obtain the set of non-dominated solutions, the previous model
should be solvedp times under distinct values ofεk, whereε1 = SAIFImax and
εp = SAIFImin. These SAIFI extreme values can be calculated by considering
xte = 0 andxte = 1 (∀t, ∀e), respectively. To distribute thep values ofεk uniformly
between theSAIFI extreme values, they are computed by (0.11).

max
t

(SAIFI t) 6 εk (0.10)

εk = SAIFImin +
(SAIFImax − SAIFImin)(k − 1)

p− 1
k = 1, . . . , p (0.11)

Given a power distribution network, the Pareto frontier is thus obtained afterp
iterations of theε-constraint method. To solve each iteration, an efficient genetic
algorithm specifically developed for MRAP [1] is executed.

Composition of Pareto Frontiers. In general, a power distribution company
is expected to have not one, but several distribution networks. In theory, all these
networks could be considered as a single instance and then solved by the procedure
previously described. Nevertheless, this would result in an overwhelming computa-
tional effort. This work introduces a divide-and-conquer technique to surmount this
problem: it first solves each network individually (division phase) and then com-
poses all Pareto frontiers into a single one (conquer phase). This last phase intro-
duces a new combinatorial problem, which we call Composition of Pareto Frontiers
Problem (CPFP).

The input of the CPFP is a set ofn Pareto frontiers and a vectorNCi(i =
1, . . . , n) which represents the number of clients attended by networki. For the
sake of simplicity, we are considering that each frontier has the same numberp
of non-dominated solutions. Thejth solution from theith Pareto frontierSij =
(CT ij , SAIFI

i
j) is represented by the pair of objectives. In the CPFP we select one

solution from each Pareto frontier (i.e., somej for eachi = {1, . . . , n}), in order to
produce a composite solutionSC = (CTC, SAIFIC) which we desire to be non-
dominated. Supposing we have chosen then solutions as (S1

j1 , S
2
j2, ..., S

n
jn), then the

composite solution can be determined by (0.12).

SC = (
n∑

i=1

CT iji,

n∑

i=1

NCiSAIFI iji

n∑

i=1

NCi

) (0.12)
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A naive strategy to determine a set ofp well distributed non-dominated com-
posite solutions could be choosing all possible solution combinations of the Pareto
frontiers and then filteringp well distributed non-dominated compositions. That
would lead topn composite calculations, which is excessive considering that power
distribution companies may have, for example, more thann = 50 networks, and
that a good Pareto frontier should have at leastp = 20 solutions. A better way
to achieve this is to compound the Pareto frontiers two-by-two, always preserving
p well distributed non-dominated compositions in the resulting frontier; the pro-
cess is repeated until only one frontier remains. This will reduce the calculations to
(n− 1)p2, which is perfectly acceptable.

Study Cases.The methodology described above was applied to a fictional
small-scaled group of three distribution networks (15600 clients, 105 equipments),
based on [3], and to real large-scale group of five distribution networks (48247
clients, 6314 equipments). The results confirm the suitability of the strategy to find
good quality non-dominated solutions for the MRAP, and thencomposing them
into one Pareto frontier.

Conclusions.This work proposes a multi-objective approach to solve MRAP:
a hard, non-linear, combinatorial problem which concerns major power distribution
companies. The purpose of the methodology is to help decisions on investments ap-
plied to network maintenance, giving the companies decision makers proper infor-
mation about the best trade-offs between maintenance investments and their feed-
back into system reliability.
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1. Introduction

In most networks flows models, the time dimension is not explicitly consid-
ered. This assumption is unrealistic in several applications such as road and air
traffic management, or water distribution. Inflows-over-timemodels, the flow is al-
lowed to vary over time and it requires a positive amount of time to travel through
an arc. Reviews of applications and fundamental theory results are reported in the
surveys [2; 5; 8].

The notion of flows over time (or dynamic flows) is introduced by Ford and
Fulkerson. In [6; 7] they give efficient solution algorithmsfor the maximum flow
over timeproblem: Given a capacitated networkG = (V,E), source and destina-
tion nodes, and arcs traversal times, find a flow over time maximizing the amount
of flow reaching the destination node within a given time horizon T . Capacity
constraints are expressed as upper bounds on the flow rates onthe arcs. A re-
lated problem, polynomially solvable, is thequickest(s, t)-flow: Find a dynamic
flow such that a certain demand is shipped and the time horizonT is minimized
(see Burkardet al. [12]). Gale [4] introduce theearliest arrival flows, i.e., flows
such that the amount reaching the destination node is maximal for all times t,
0 ≤ t ≤ T . Pseudo-polynomial algorithms for finding such flows—whichare
based on the successive shortest path algorithm—have been devised by Wilkinson
and Minieka [13; 11].

If we consider arc-dependent costs and we look forminimum cost dynamic
flowssatisfying a demand within a given time horizonT , things get harder. Klinz
and Woeginger [3] show that the single source, single destination case is NP-hard
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even for series-parallel graphs. Fleischer and Skutella in[10] show that the min-
cost single commodity problem never requires the flow to waitat intermediate
nodes. Themulticommoditysetting is, of course, NP-hard as well, as showed by
Hall, Hippler and Skutella [1]. On the positive side, Fleischer and Skutella [9] pro-
vide an approximation algorithm for the quickest multicommodity dynamic prob-
lem.

In this paper we present an exact algorithm for the Multicommodity Flow over
Time Problem (MFTP) which is based on a column generation approach for a path-
based linear programming model. The column generation subproblem is shown
to be binary NP-hard and we devise a pseudo-polynomial dynamic programming
algorithm for its solution. The results of a preliminary computational study is also
reported.

2. A linear programming model for MFTP

We use the following notation.G = (V,E) is a digraph.K is a set of com-
modities to be served within the time horizon (or makespan)T : Each commodity
k ∈ K is identified by the triple(sk, tk, bk) ∈ (V × V × R+), i.e. source, desti-
nation and demand of commodity.Pk is the set of paths that one can use to serve
commodityk ∈ K. We assume that

⋂
k∈K Pk = ∅ ∗ and letP =

⋃
k∈K Pk. The

capacity of arce ∈ E, expressed as a rate (unit of flow/time), isue, ce its cost, and
te its traversal time. Given a pathp ∈ P , we letcp =

∑
e∈p ce be the cost andtp

the traversal time ofp. Moreover, ife ∈ p, we lette,p be the traversal time of path
p ∈ P up to (and including) arce ∈ E. (Clearly, if e′ is the last arc of pathp, then
tp = te′,p.) We also use an incidence vectorδe,p = 1 [0] if e ∈ p [e ∈ E \ p].

In the following linear programming problem, decision variablefp(t) repre-
sents the amount of flow starting from the origin of pathp at time t, p ∈ P ,
t = 1, . . . , T .

(P)

min
∑

p∈P

∑

t∈{1,...,T}
cpfp(t)

s.t.
∑

p∈P
fp(t− te,p)δe,p ≤ ue, ∀ t ∈ {1, . . . , T}, ∀ e ∈ E

∑

t∈{1,...,T}

∑

p∈Pk

fp(t) ≥ bk, ∀ k ∈ K

fp(t) ≥ 0, ∀ p ∈ P, 1 ≤ t ≤ T − tp

(2.1)

∗ Note that, of course, one arc may be part of two or more paths serving the same or
different commodities.
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The first family of capacity constraints considers the timestaken by the flows
traveling on different paths until arce. More precisely, a unit of flow reachingthe
headv of arce = (u, v) at timet, using pathp ∈ Pk, left its originsk at timet−te,p.
The second family of constraints imposes the demand to be fulfilled. Linear pro-
gram (2.1) is non-compact: With respect to the input size, there are exponentially
many variables. Furthermore the number of constraints is pseudo-polynomial since
it depends on the time horizonT . It is therefore worthwhile to devise a column
generation approach in order to provide an exact solution for P.

3. Column generation subproblem

SupposeP̄k ⊂ Pk is the restricted set of paths for commodityk ∈ K used
so far in the primal. If we associate variableswe(t), (t, e) ∈ {1, . . . , T} × E, to
primal capacity constraints and variablesσk, k ∈ K, to demand constraints, the
column generation subproblem consists of finding a pathp ∈ Pk \ P̄k such that
cp +

∑
e∈p we(t+ te,p) < σk for all 1 ≤ t ≤ T , k ∈ K, ande ∈ E.

Fix t ∈ {1, . . . , T} and lettu,p be thearrival time at nodeu along pathp and
observe thatt+ t(u,v),p = tu,p + t(u,v). Note that, due to the structure of the original
(primal) problem, we do not have to consider waiting times atintermediate nodes.
Hence, we search for a pathp ∈ Pk \ P̄k such that, for alle ∈ E:

∑

(u,v)∈p
cu,v + wu,v(tu,p + t(u,v)) < σk

This is in fact a special shortest-path problem:Find a minimum cost path in a
network where the cost of any arc(u, v) is time-dependent and arc traversal times
are constant values. Unfortunately, the following negative result holds:

Theorem. The column generation subproblem is binary NP-hard.

However, we devise adynamic programmingsolving the column generation
subproblem that runs in (pseudo-polynomial) timeO(|V |3T ). It is worthwhile to
point out that the dynamic programming algorithm looks for the minimum cost
path from each node to one destination, for eacht ∈ {1, . . . , T}.

4. Preliminary Results

Preliminary computational results, performed on a standard PC, show that the
approach presented here is promising. It is reasonably effective against increasing
networks size and efficient in terms of CPU times. We are able to optimally solve
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in few seconds instances of the problem withT ≤ 100, k ≤ 10 and hundreds of
nodes.
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1. Introduction

This paper employs mathematical programming and mixed integer linear pro-
gramming techniques for solving a problem arising in the study of genetic regu-
latory networks. More precisely, we solve the inverse problem consisting in the
determination of the sequence of updates in the digraph representing the gene reg-
ulatory network (GRN) ofArabidopsis thalianain such a way that the generated
gene activity is as close as possible to the observed data.
Differences among cells of different tissues depend on the specific set of genes that
are active in each tissue. Therefore, one usually assumes that the different steady
states of a GRN dynamics correspond to the different possible cell fates ([7]). This
leads to explain the changes observed during the development of the organisms by
the fact that perturbations on specific elements of the network make the system
switch from one steady state to another. Some hypothesis canbe made about these
perturbations, which are then treated as initial conditions for the new tissue being
formed. However, an important unknown is (are) the update sequence(s) of the gene
activity that let the system evolve from a given set of initial conditions to the set of
steady states. Indeed, different update sequences determine different sets of basins
of attraction of the GRNs. However, the steady states remainthe same under any
sequence.
Usually, a specific update sequence is assumed to rule the dynamics of the
GRNs [1; 3]. The present study differs from this approach in that we sought to
infer the update sequence from the biological observations. It also differs from our
previous paper as we focus here on asynchronous sequences whereas in [6] the
updates were synchronous.
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2. The problem

Given a directed graphG = (V,E), a discrete setT of time instants (which we
suppose to be an initial contiguous proper subset ofN) and the following functions:

• a functionα : E → {+1,−1} called thearc sign function;
• a functionω : E 7→ R+ called thearc weight function;
• a functionχ : V × T 7→ {0, 1} called thegene state function;
• a functionι : V 7→ {0, 1} called theinitial configuration;
• a functionθ : V 7→ R called thethreshold function;
• a functionγ : V × T 7→ {0, 1} called theupdating function.

A gene regulatory network(GRN) is a 8-tuple(G, T, α, ω, θ, χ, ι, γ) such that:

∀v ∈ V χ(v, 0) = ι(v) (2.1)

∀v ∈ V, t ∈ T r {0} χ(v, t) =





H(v, t− 1) if γ(v, t) = 1

χ(v, t− 1) otherwise
(2.2)

whereH is theHeavisidefunction defined forv ∈ V andt ∈ T by

H(v, t) =






1 if
∑

u∈δ−(v)
α(u, v)ω(u, v)χ(u, t) ≥ θ(v)

0 otherwise,
(2.3)

with δ−(v) = {u ∈ V | (u, v) ∈ E} for all v ∈ V . Eqns. (2.1)-(2.2)-(2.3) together
are called theevolution rulesof the GRN. For any particulart ∈ T , χ(·, t) : V →
{0, 1} is called aconfiguration. Since the evolution rules relate a configuration at
time t with a configuration at timet − 1, χ(·, t) is called afixed configuration
(or fixed point) if it remains invariant under the application of one complete cycle
of updates encoded byγ. Furthermore, as long as the evolution rules are purely
deterministic (as is modelled above), a fixed point of a GRN isdetermined by its
initial configuration.

In this paper we deal with an inverse problem related to the estimation of up-
date sequence in GRNs. More precisely, we address the following.

UPDATE SEQUENCEESTIMATION IN GRNS (USEGRN). Given a digraphG, a
time instant setT , an arc sign functionα, an arc weight functionω, a threshold
function θ and a setI of initial configurations, find an update functionγ with
the property that for allι ∈ I there exists a gene activation functionχ such that
(G, T, α, ω, θ, χ, ι, γ) are GRNs whose fixed points are at a minimum distance
to observed data.

In other words, we attempt to estimate the sequence of updates in a GRN from the
knowledge of the digraph topology in such a way that (a) the GRN evolution rules
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are consistent with respect to a certain set of initial configurations and (b) the fixed
points induced by the estimated values are as close as possible to the observed ones.
As the reader might notice, the problem strongly depends on the modelling of the
update sequence encoded byγ. In [3], the authors proposed to describe such a
sequence by means ofperiodsanddelaysparameters for each gene. Assumingpv
anddv to be such values for genev, we can reformulate Equation 2.2 in the previous
modellisation according to the following relation:

∀t ∈ T γ(v, t) = 1 ⇐⇒ ∃n ∈ N s.t.t = npv + dv

3. The mathematical programming formulation

The methodology we shall follow is that of modelling the USEGRN by means
of a mathematical programming formulation:

minx f(x)

subject to g(x) ≤ 0,






wherex ∈ Rn are thedecision variablesandf : Rn → R is theobjective function
to be minimized subject to a set of constraintsg : Rn → Rm which may also in-
clude variable ranges or integrality constraints on the variables.
The primary concern in solving the USEGRN is thus modellistic rather than al-
gorithmic. One of the foremost difficulties is that of employing a static modelling
paradigm — such as mathematical programming — in order to describe a prob-
lem whose very definition depends on time. Another importantdifficulty resides in
describing the necessary and sufficient conditions for a configuration to be a fixed
point in a mathematical form. We solve this difficulty by introducing two decision
variables: a binary variables stating that the network has been stable for at least
two successive time steps; a binary variabley that will indicate the first time the
network is stable. The last difficulty concerns the proper modelling of the update
sequence as proposed in [3]. The solution relies on the use oftwo binary variables
π andδ for each gene and indexed over the possible values for the periods and the
delays. Then,πv(p) (resp.δv(d)) is set to1 if the period (resp. delay) ofv is p (resp.
d). We provide above such a formulation:

• Sets: V of genes in the network,E of edges in the network,T of time instants,
P of periods values,D of delay values andR of regions.

• Parameters:
· ι : R × V 7→ {0, 1} is the initial configuration of the network (vector of

boolean values affected to the genes) for each region.
· α : A→ {+1,−1} is the sign of the arc weights;
· w : V 7→ R+ is the arc weight function;
· θ : V 7→ R is the threshold function;
· φ : V ×R 7→ {0, 1} is the targeted fixed configuration for regionr.

• Variables:
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· for all r ∈ R, v ∈ V , t ∈ T , xtr,v ∈ {0, 1} is the activation state of genev
at timet in regionr;
· for all r ∈ R, v ∈ V , t ∈ T , htr,v ∈ {0, 1} is the projection of state of

genev at timet in regionr according to Heaviside function;
· s : R × T 7→ {0, 1} is a decision variable indicating that the network is

stable during at least two successive time steps in regionr.
· y : R× T 7→ {0, 1} is a decision variable that indicates the first time the

network reaches a stable state in regionr.
· for all v ∈ V , p ∈ P , πv,p ∈ {0, 1} is a decision variable that indicates

that the periodicity of genev is p.
· for all v ∈ V , d ∈ D δv,d ∈ {0, 1} is a decision variable that indicates

that the delay of genev is d.
• Objective function:

min
∑

r∈R

∑

t∈T\{1}

(
(yt−1
r − ytr)

∑

v∈V
|xtr,v − φr,v|

)
.

• Constraints:
· Heaviside function computation rule (for allt ∈ T \ {1}, v ∈ V, r ∈ R) :

θvh
t
r,v−|V |(1−htr,v) ≤

∑

u∈δ−(v)

αuvwuvx
t−1
r,u ≤ (θv−1)(1−htr,v)+ |V |htr,v

· state transition rules (for allr ∈ R, v ∈ V , p ∈ P , d ∈ D):
x0
r,v = ιr,v

∀t ∈ T \ {1} s.t.t 6= np+ d πv,p δv,d x
t
r,v = πv,p δv,d x

t−1
r,v

∀t ∈ T \ {1} s.t.t = np+ d πv,p δv,d x
t
r,v = πv,p δv,d h

t−1
r,v

πv,p δv,d d ≤ p
· fixed point conditions (for allr ∈ R, t ∈ T \ {1}):

∑
v∈V
|xtr,v − xt−1

r,v | ≤ ‖V ‖str
∑
v∈V
|xtr,v − xt−1

r,v | ≥ str

ytrf
t
r = 0

∑
u>t

sur = f tr

(1− ytr) ≤ f tr

(|P |+ |D|)2 ≤ ∑
τ∈T

yτr

4. Reformulations and solutions

The above problem is a nonconvex Mixed-Integer Non-Linear Problem that
can be reformulated exactly to a Mixed-Integer Linear Problem using the tech-
niques proposed in [5]. After standard mathematical manipulations, all the nonlin-
earities reduce to product terms of binary and/or integer variables, which can be
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reformulated by adding new auxiliary variables and constraints as follows:

xy terms(x, y : binary) xz terms(x : binary, z : integer)

η ≥ 0 ζ ≥ zLx

η ≤ y ζ ≤ z + (|zL|+ |zU |)(1− x)
η ≤ x ζ ≤ zUx

η ≥ x+ y − 1 ζ ≥ z − (|zL|+ |zU |)(1− x)

wherezL andzU stand for the boundaries ofz andη andζ are the new variables
that replace the products in the equations.

We solved to optimality a few real-life instances from the GRN of Arabidopsis
thaliana using AMPL [2] to model the problem and CPLEX [4] to solve it. The
size of the GRNs involved were such that CPLEX obtained the optimal solution in
a matter of minutes.
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1. Introduction

Nanocones are carbon networks conceptually situated in between graphite and
the famous fullerene nanotubes. Graphite is a planar carbonnetwork where each
atom has three neighbours and the faces formed are all hexagons. Fullerene nan-
otubes are discussed in two forms: once the finite, closed version where except
for hexagons you have 12 pentagons and once the one-side infinite version where
6 pentagons bend the molecule so that an infinite tube with constant diameter is
formed. A nanocone lies in the middle of these: next to hexagons it has between 1
and 5 pentagons, so that neither the flat shape of graphite northe constant diameter
tube of the nanotubes can be formed. Recently the attention of the chemical world
in nanocones has strongly increased. Figure 1 shows an overview of these types of
carbon networks.

Fig. 1. graphite - nanocone - nanotube

The structure of graphite is uniquely determined, but for nanotubes and
nanocones an infinite variety of possibilities exist. Therealready exist fast algo-
rithms to generate fullerene nanotubes (see [3]) that are e.g. used to detect energet-
ically possible nanotubes. In this talk we describe a generator for nanocones.

2. Patches

For computer generation of these structures we first need to describe them in
a finite way. We describe the infinite molecule by a unique finite structure from
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Fig. 2. Two views of a patch with two pentagons.
which the cone can be reconstructed. The aim of this talk is todescribe this step
and give an idea of the algorithm to generate these finite representations.

A finite and 2-connected piece of a cone that contains all the pentagons is
called a patch. All the vertices (atoms) in a cone have degree3, so the vertices
along the boundary of a patch will have degree 2 or 3. It can be easily shown that
if the boundary of a patch doesn’t contain any consecutive threes, then the number
of neigbouring twos is equal to6 − p, wherep is the number of pentagons in the
patch.

22
3

2

2
3

22
3

2

2
3

Fig. 3. A cone patch with boundary(2(23)1)4 and four neighbouring twos.

We can interpret patches without consecutive threes as polygons where the
consecutive twos are the corners, and the lengths of the sides are determined by
their number of threes.

3. Classification

Definition 1. A symmetric patch is a patch that has a boundary of the form
(2(23)k)6−p, with 1 ≤ p ≤ 5.
A nearsymmetric patch is a patch that has a boundary of the form(2(23)k−1)
(2(23)k)6−p−1, with 1 < p < 5.

So in a symmetric patch all sides have an equal length and in a nearsymmetric
patch all sides except one have an equal length and that one side is just one shorter
than the others.

Theorem 3.1. All cones with1 or 5 pentagons contain a symmetric patch, and all
cones with2, 3 or 4 pentagons contain a symmetric or a nearsymmetric patch.
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Table 14. The complete classification of cone patches.

25 = (2(23)0)5 2(23)1(2(23)2)2

(2(23)1)4 (2(23)2)2

2(23)0(2(23)1)3 2(23)22(23)3

(2(23)1)3 2(23)5

This result was first established in [5]. Here we sketch a proof that is not only
shorter but can also easily be generalized to other periodicstructures.

We interpret a nanocone as a disordered graphite lattice. Choosing a path
around all disordering pentagons in the cone (described by right and left turns)
and repeating the first edge at the end, and then following this path in the graphite
lattice, the first and last edge in the resulting path don’t agree anymore. It can be
shown that the first edge and the last edge can be mapped onto each other by asym-
metry of the lattice which is in fact a rotation byp ∗ 60◦. This method to classify
disordered patches was invented in [4], extended in [2] and in [1] it was shown that
(under the circumstances described here), two disorders ofthe same tiling are iso-
morphic – except for a finite region – if and only if these symmetries are equivalent.
Two rotations are said to be equivalent when they rotate among the same angle, and
the centers of rotation are equivalent under a symmetry of the tiling.
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In our case there are only a limited number of possibilities for these symmetries.
They are all rotations and are depicted in Table 14. The patches in Table 14 are
patches that correspond to these symmetries.
It is easily proven that adding or removing layers of hexagons does not change the
type of the boundary, i.e. whether the boundary is symmetricor nearsymmetric.
So together with the theorem of Balke, this proves that all cones are equivalent to
one of the cones obtainable from the patches in Table 14.
It also follows from Table 14 that no cone contains a symmetric and a nearsymmet-
ric patch which both contain all the pentagons in the cone, because such boundaries
correspond to different automorphisms.
Choosing the boundary that exists due to Theorem 3.1 in a shortest way leads to a
unique patch that fully describes the nanocone.

In fact this classification even leads to a unique patch, so wehave the following
theorem.

Theorem 3.2. There is a 1-1 correspondence between the set of symmetric and
nearsymmetric patches and the set of nanocones.

An algorithm to generate these patches will be sketched in the talk. It was
implemented and tested against an independent algorithm toverify the results.
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Molecules are sets of atoms that bond to each other forming particular three-
dimensional structures, which can reveal important features of the molecules. One
of the most used approaches to discover these structures is based on the Nuclear
Magnetic Resonance (NMR). This is an experimental technique which is able to
detect the distances between particular pairs of atoms of the molecule. Once a sub-
set of distances between atoms has been obtained, the problem of identifying the
coordinates of the considered atoms is known as the MOLECULAR DISTANCE GE-
OMETRY PROBLEM (MDGP) [3].

Many researchers worked on this problem and proposed different approaches.
The most common approach is to formulate the MDGP as a continuous global
optimization problem, in which the function to be minimizedis a penalty function
monitoring how much the known distances are violated in possible conformations
of the atoms of the molecule. One of the most used objective functions is the Largest
Distance Error (LDE):

LDE({x1, x2, . . . , xn}) =
1

|m|
∑

{i,j}

||xi − xj || − dij
dij

,

where{x1, x2, . . . , xn} represents a conformation,dij is the known distance be-
tween the atomxi and the atomxj andm is the total number of known distances.
If the subset of given distances is feasible, then the value of the LDE function in
correspondence with a solution is 0.
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We are studying a particular subclass of instances of the MDGP for which
a combinatorial formulation can be supplied. LetG = (V,E, d) be a weighted
undirected graph, whereV represents the set of atoms, edges inE indicate that
the distances between the connected atoms are known, and theweightsd represent
the numeric value of the distances. As shown in [4; 5; 6; 7], ifthe following two
assumptions are satisfied

(i) E contains all cliques on quadruplets of consecutive atoms,
(ii) consecutive vertices cannot represent perfectly aligned atoms,

for a given order inG, then the MDGP can be formulated as a combinatorial prob-
lem. We refer to this problem as the DISCRETIZABLE MOLECULAR DISTANCE

GEOMETRY PROBLEM (DMDGP).

The DMDGP is NP-complete [4]. Moreover, it is interesting tonote that the as-
sumption (i) in the definition of the DMDGP is the tightest possible for the problem
to be NP-complete. IfE contains all cliques onquintuplets, and not only quadru-
plets, of consecutive atoms, thenG is a trilateration graph. By [2], the MDGP
associated to a trilateration graph can be solved in polynomial time. Therefore,
graphs having cliques on sequences of 4 consecutive vertices correspond to an
NP-complete problem, whereas graphs with cliques on sequences of 5 consecu-
tive vertices bring to easy-to-solve problems. There is a sort of barrier after which
the DMDGP becomes simple to solve. This is very interesting,because, when data
from biology are considered, the corresponding DMDGP approaches to this barrier,
but it is not able to go beyond and to be classified as an easy-to-solve problem.

We are particularly interested inprotein molecules. Proteins are formed by
smaller molecules calledamino acids, that bond to each other by forming a sort of
chain. Because of their particular structure, the MDGP related to protein molecules
can be formulated as a combinatorial problem, because the aforementioned as-
sumptions are satisfied, in most of the cases. Instances usedto test the performances
of approaches to the MDGP are usually artificially generatedfrom the known con-
formations of some proteins. In [1; 8], for example, the usedinstances are generated
by computing the distances between all the possible pairs ofatoms of the molecule,
and by keeping only the distances smaller than 6Å. This simulates instances ob-
tained by NMR, because this technique is able to detect only distances which are
not larger than 6̊A. Currently, our attention is focused on protein backbonesonly,
and therefore, in previous works, the considered atoms are limited to the backbone
atoms only. In particular, the sequence of atoms N−Cα−C, defining the backbone
of a protein, is considered.

A BRANCH & PRUNE (BP) algorithm [4] is used for solving the combinato-
rial problem efficiently (Algorithm 1). It is based on the exploration of a binary tree
containing solutions to the problem. During the search, branches of the binary tree
are pruned as soon as they are discovered to be infeasible. This pruning phase helps
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Algorithm 1 The BP algorithm.
0: BP(i, n, d)

for (k = 1, 2)do
compute thekth atomic position for theith atom:xi;
check the feasibility of the atomic positionxi:
if (| ||xi − xj || − dij | < ε, ∀j < i) then

the atomic positionxi is feasible;
if (i = n) then

a solution is found;
else

BP(i + 1,n,d);
end if

else
the atomic positionxi is pruned;

end if
end for

in reducing the binary tree quickly, so that an exhaustive search of the remaining
branches is not computationally expensive. The computational experiments pre-
sented in [4; 6; 7] showed that the combinatorial approach can provide much more
accurate solutions to the problem.

Our final aim is to be able to solve instances containing real data (i.e. data
obtained by NMR) by the combinatorial approach. This is not trivial. Indeed, the
artificially generated instances used in the experiments are still far from instances
obtained by NMR. Indeed, the NMR is able to identify distances between hydrogen
atoms only. Therefore, instances generated as explained above simulate real data
only because of the rule of the 6Å threshold, but not for the kind of considered
atoms.

Let us suppose that the sequence of atoms N−Cα−C (defining the protein
backbones) and all the hydrogens H bonded to such atoms are considered. LetG =
(V,E, d) be the associated weighted undirected graph. Since only hydrogens are
detected by NMR, there is an edge between two vertices only ifboth the vertices
refer to hydrogens, or if one vertex represents a hydrogen and the other one is the
carbon or the nitrogen bonded to it (bond lengths are knowna priori). It follows
that the subgraphGH , such thatG ⊃ GH = (VH , EH , dH) and containing all the
vertices inV to which at least two edges are associated, refers to hydrogen atoms
only. Given an order on the vertices inVH for which the assumptions (i) and (ii)
are satisfied, the MDGP can be formulated as a DMDGP, and solved by the BP
algorithm. From a chemical point of view, however, the solutions provided by BP
are incomplete in this case, because they provide the coordinates of the hydrogen
atoms only, whereas the sequence N−Cα−C is of interest. The problem is to find
the coordinates of the atoms associated to the vertices ofG − GH by exploiting
the coordinates of the atoms associated to the vertices ofGH , and some distances
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between pairs of vertices(v, vH), wherev ∈ V − VH and vH ∈ VH . Suitable
strategies for solving this problem are currently under investigation.
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1. Introduction

The most importantin silico methods, to exploit the amount of new genomic
data, are based on the concept of homology. The principle of homology-based anal-
ysis is to identify a homology relationship between a new protein and a protein
whose function is known. For remote homologs, sequence alignment methods fail.
In such a case one aligns the sequence of a new protein with the3D structures of
known proteins. Such methods are called fold recognition methods or threading
methods.

Lathrop & Smith [1] were the first to propose an algorithm based on a branch
& bound technique providing the global alignment with the optimal score and to
prove the problem to be NP-Hard. Since then, other methods have been developed
that improved the efficiency of the sequence – structure global alignment algorithm
([2; 3; 4]).

This paper describes a new algorithm that expands upon algorithms proposed
in previous works ([3; 4]) to allow implementation oflocal sequence – structure
alignments. This allows threading methods to cover the whole spectrum of align-
ment types needed to analyze homologous proteins.

Our definition of alignments is based on the definition of the Protein Threading
Problem (PTP) given in [1].
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2. Outline of the Protein Threading Problem

Query Sequence and Structure Template:A query sequence is a string of
lengthN over the 20-letter amino acid alphabet. A structure template is an ordered
setM of m blocks which correspond to the secondary structure elements (SSEs).
Block k has a fixed length ofLk amino acids. LetI ⊆ {(k, l) | 1 ≤ k < l ≤ m} be
the set of blocks interactions.

Alignment: An alignment of a structure template with a query sequence cor-
responds to positioning blocks of the template along the sequence. Aglobalalign-
ment requires that all blocks are aligned, preserve their order, and do not overlap.
This alignement has been modelized by mixed integer programming (MIP) ap-
proach in [2; 3]. In this paper, we extent the model presentedin [3].

3. Local alignments : towards better PTP models

Global alignment assumes that all blocks are aligned with the query sequence.
However, it sometimes happens that some members of a proteinfamily do not share
exactly the same number of SSEs. An alignment which permits to omit blocks is
called alocal alignment. To solve this local alignment, we propose two models:
(1) A compact model (CM) where we modify constraints to omit blocks. (2) An
extended model (EM) where we add dummy positions for each block. When a
dummy position is chosen, the block is omitted. These modelsare described very
briefly below. For more details, the interested reader can refer to our research report
[5].

3.1 Compact model

We define a digraphG(V,A) with vertex setV and arc setA. Each vertex
(i, k) ∈ V represents blockk at positioni along the sequence. A blockk can take
nk = N − Lk + 1 positions along the query sequence. A costCik (resp.Dikjl) is
associated to each vertex(i, k) (resp each arc((i, k), (j, l))). Let yik (resp.zikjl) be
binary variables associated with vertices (resp. arcs). Based on these notations, we
obtain the following model:

max
m∑

k=1

nk∑

i=1

Cikyik +
∑

((i,k),(j,l))∈A
Dikjlzikjl (3.1)
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Subject to:

yik ∈ {0, 1}, k ∈M, i ∈ [1, n] (3.2)
0 ≤ zikjl ≤ 1, ((i, k), (j, l)) ∈ A (3.3)

nk∑

i=1

yik ≤ 1, k ∈M (3.4)

nl∑

j=i+Lk

zikjl − yik ≤ 0, (k, l) ∈ I, i ∈ [1, nk] (3.5)

min(j−Lk,nk)∑

i=1

zikjl − yjl ≤ 0, (k, l) ∈ I, j ∈ [1, nl] (3.6)

yik +
min(nk,i+Lk−1)∑

j=1

yjl ≤ 1, 1 ≤ k ≤ l ≤ m, i ∈ [1, nk] (3.7)

nk∑

i=1

yik +
nl∑

i=1

yil −
nl∑

j=Lk+1

j−Lk∑

i=1

zikjl ≤ 1, (k, l) ∈ I (3.8)

Constraints (3.4) allow a block be aligned or not. Constraints (3.5) and (3.6) allow
an arc, leaving (resp. entering) an activated vertex, be activated or not. Constraints
(3.7) preserve the order of blocks. Finaly, constraints (3.8) coerce the activation of
an arc if its vertices are activated.

3.2 Extended Model

Denote bydik, i ∈ [1, N ], k ∈ [1, m] a variable which we call dummy vari-
ables. The objective function is given by (3.1). This model uses constraints (3.2),
(3.3), (3.5), (3.6) and (3.8). Additional constraints are the following:

dik ∈ {0, 1} k ∈M, i ∈ [1, nk] (3.9)
nk∑

i=1

yik +
N∑

i=1

dik = 1 k ∈M (3.10)

j∑

i=1

dik +
min(j,nk)∑

i=1

yik −
j∑

i=1

dik−1 −
j−Lk−1∑

i=1

yi(k−1) ≤ 0 k ∈ [2, m], j ∈ N (3.11)

Constraints (3.10) state that exactly one vertex (either real or dummy), must be
activated in a column. Constraints (3.11) preserve the order of the blocks.

4. Results

Two indicators have been used, computation time and the relative gap (RG)
between the solution of the relaxed problem (LP ) and the optimal solution (OPT ):
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RG = LP−OPT
OPT

. RG is a good indicator of the efficiency of the model since the
smallerRG, the easier for the branch & bound algorithm to find the solution.

Fig. 1.Comparison of the computation times obtained

by EM and CM. Each point represents an alignment.

Times are expressed in seconds and are plotted using a

base 10 logarithm scale.

Fig. 2. Comparisons of relative gaps (LP−OPT
OPT

) be-

tween models EM and CM. Each point is a sequence –

structure alignment.

Figure 1 shows that EM is faster than CM for 99% of the instances. Moreover,
Figure 2 shows that EM always gives a smallerRG than CM. It must be noted that
LP relaxation directly gives the integer solution in 41% of the cases for the CM
model and 52% of the cases for the EM model.
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1. Introduction

We consider the problem of partitioning a graph into cliquesof bounded cardi-
nality. The goal is to find a partition that minimizes the sum of clique costs where
the cost of a clique is given by a set function on the nodes. We present a general
algorithmic solution based on solving the problem variant without the cardinality
constraint. We yield constant factor approximations depending on the solvability
of this relaxation for a large class of submodular cost functions. We give optimal
algorithms for special graph classes.

More formally, we are given a simple graphG = (V,E), a set func-
tion f : 2V → R+, and a boundB ∈ Z+. The problem is to find a partition
of the graphG into cliquesK1, . . . , K` (the value of` is not part of the input)
of size at mostB, that is,|Ki| ≤ B, i = 1, . . . , `, such that the objective func-
tion

∑`
i=1 f(Ki) is minimized. We denote our problem aspartition into cliques of

bounded sizePCliq(G, f,B).

Let V be a finite set. The functionf : 2V → R is calledsubmodularif for
all subsetsA,B ⊆ V holdsf(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). We consider
non-negative submodular functions that satisfy the following exchange properties.
For all subsetsA,B ⊆ V with f(A) ≥ f(B) and elementsu, v ∈ V \ (A ∪ B)
with f(u) ≥ f(v) holds

f(A+ u) + f(B + v) ≤ f(A+ v) + f(B + u) . (E1)
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Moreover, for all setsA,B ⊆ V suchf(A) ≥ f(B) and all elementsu ∈ V \ (A∪
B), holds that

f(A+ u) ≥ f(B + u). (E2)

This class of set functions contains well-known cost functions such as maximum
function [7], chromatic entropy [2], probabilistic coloring [3], etc.

The problem PCliq(G, f,B) is generallyNP-hard because it contains the clas-
sic NP-hard problemspartition into cliques(or clique cover) andgraph color-
ing [5]. If the bound on the clique sizeB equals2 then the problem corresponds
to a maximum cardinality matching problem inG and can be solved optimally in
polynomial time.

Graph partitioning and coloring problems (without cardinality constraints) are
among the fundamental problems in combinatorial optimization. Various results are
known for particular cost functions and graph classes. Recently, also generalized set
functions have been considered in this context. Gijswijt, Jost, and Queyranne [6]
introducevalue-polymatroidalset functions which arepolymatroid rank functions
(i.e. nondecreasing, submodular, andf(∅) = 0) that satisfy a slightly weaker ex-
change property than we require above. For everyA,B ⊆ V such thatf(A) ≥
f(B) and everyu ∈ V \ (A∪B), holds thatf(A+u)+f(B) ≤ f(A)+f(B+u).
They consider the problem PCliq(G, f,∞) and derive polynomial time algorithms
for interval graphs and circular arc graphs. Fukunaga, Halldorsson, and Nag-
amochi [4] consider monotone concave cost functions and provide a general al-
gorithmic scheme which yields a factor4 approximation for perfect graphs. They
also give a result for general graphs depending on the solvability of the maximum
independent setproblem on the complement of the graph.

Graph partitioning (or coloring) with a constraint on the clique size has been
addresses rarely so far. Bodlaender and Jansen [1] investigated a special case
of PCliq(G, f,B) with the objective to minimize the number of cliques, that is,
f(S) = 1 for all S ⊆ 2V . They show that the decision variant of the problem on
co-graphs isNP-complete whereas it is polynomial time solvable on split graphs,
bipartite graphs and interval graphs.

2. Our Results

2.1 Optimal algorithm for complete graphs and proper interval graphs

Consider the problem PCliq(K, f,B) on a complete graphK. The following
simple algorithm solves the problem optimally.

Algorithm PARTK
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Order elementsu ∈ K in non-increasing order off(u) and group them greedily
into sub-cliques of sizeB beginning with the elements of largest value.

Theorem 2.1. PARTK solves the problem PCliq(K, f,B) on a cliqueK for sub-
modular functions with exchange property optimally in polynomial time.

The exchange properties are indeed substantial to the result above. The prob-
lem of partitioning a complete graph is generallyNP-hard for submodular func-
tions, and even for polymatroid rank functions.

Theorem 2.2. The problem PCliq(K, f,B) on a cliqueK is NP-hard even if we
restrictf to polymatroid rank functions, that is, non-decreasing, submodular func-
tions withf(∅) = 0.

Proof 1. Reduction fromgraph partitioningwith unit node weights [5].

Additionally, we devise a dynamic program that solves the problem optimal
for another special graph class.

Theorem 2.3. The problem PCliq(G, f,B) on a proper interval graphG can be
solved optimally in pseudopolynomial time for submodular functions with ex-
change property. If the number of distinct values for singleelementsf(u) for
all u ∈ V is bounded, then this algorithm runs in polynomial time.

2.2 An(c+ 1)−approximation for general graphs

Our algorithmic framework is based on solving two relaxation of the given
problem PCliq(G, f,B). One relaxation concerns ignoring the graph structure, i.e.,
PCliq(K, f,B) for K being a complete graph as considered above. In the other re-
laxation we assume that the cardinality of the cliques is notbounded, orB ≥ |V |.
We denote it as PCliq(G, f,∞). Optimal values for both relaxations considered in-
dividually may give arbitrarily bad lower bounds on an optimum solution. Still, we
derive constant factor approximation guarantees when combining them. Consider
the following polynomial time algorithm.

Algorithm PART

(i) Solve the relaxation PCliq(G, f,∞) without cardinality restrictions.

(ii) For all cliquesKi: Solve the problem PCliq(Ki, f, B).

Theorem 2.4. Let f be a submodular function with exchange property. If there
exists ac-approximation algorithm for the problem PCliq(G, f,∞) without cardi-
nality constraint, then PART is a(c+ 1)−approximation for PCliq(G, f,B).

Sketch of Proof: Let K1, . . . , K` be the solution of the relaxed problem
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PCliq(G, f,∞). For each of the cliquesKi letK1
i , . . . , K

`i
i denote the partition into

subcliques (Step 2). Assume that all sets are indexed such that f(Kj
i ) ≥ f(Kj+1

i )
for j = 1, . . . , `i − 1. Then the value of the algorithms solution is

PART =
∑̀

i=1

`i∑

j=1

f(Kj
i ) =

∑̀

i=1

f(K1
i ) +

∑̀

i=1

`i∑

j=2

f(Kj
i )

≤ cOPT(G, f,∞) +
∑̀

i=1

`i∑

j=2

f(Kj
i ) .

The main effort lies in proving
∑`
i=1

∑`i
j=2 f(Kj

i ) ≤ OPT(K, f,B). We first
observe: For two setsA,B ⊆ V with |A| ≥ |B| holds that if each elementv ∈ B
can be mapped to a distinctive element inu ∈ A such thatf(v) ≤ f(u),
thenf(A) ≥ f(B). This fact combined with Algorithm PARTK and Theorem 2.1
allows us to apply a charging scheme where we map the elementsof the cliquesKj

i

with i > 1 to the optimal solution.

Since the set functions we consider are value-polymatroidal, can employ the
optimal algorithm in [6] and yield a quite general result forinterval graphs which
are of particular interest in applications.

Corollary 2. There is a factor2 approximation algorithm for PCliq(G, f,B) on
interval graphs and circular arc graphs.
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Graph partitioning problems have many relevant real-worldapplications, e.g.,
VIA minimization in the layout of electronic circuits [1], or inphysics of disor-
dered systems [2]. In its most basic version, the task is to partition the nodes of a
graph into two disjoint sets such that the weight of edges connecting the two sets is
either minimum or maximum (assuming uniform weights in casethe graph is un-
weighted). For general edge weights, theMAX -CUT problem is NP-hard. When re-
stricting to certain graph classes, polynomial-time solution algorithms are known.
This is true especially for planar graphs which are the subject of this extended
abstract. In 1990 Shih, Wu, and Kuo [7] presented a mixedMAX -CUT algorithm
for arbitrary weighted planar graphs. They solve the problem in time bounded by
O(|V | 32 log |V |) which is the best worst-case running time known to date. First,
the dual graph is constructed which is then expanded in such away that (optimum)
matchings in the latter correspond to (optimum) cuts in the former. In this work, we
follow this general algorithmic scheme which leads to an algorithm with the same
worst-case running timeO(|V | 32 log |V |). However, in our procedure the expanded
dual graph has a simpler structure and contains a considerably smaller number of
both nodes and edges. As the bulk of the running time is spent in the matching com-
putation and the latter scales with the size of the graph, ouralgorithm is much faster
in practice. Our newMAX -CUT algorithm for arbitrary weighted planar graphs is
a generalization of the methods proposed in [8; 6] which are based on the work
of Kasteleyn [3] from the 1960s. This extended abstract bases upon a technical re-
port [4] in which we both describe the algorithm in detail andpresent experimental
results.
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1. The MAX-CUT Algorithm

In the following we assume we are given a planar embedding ofG. At first, we
calculate its dual graphGD = (VD, ED), where the weight of a dual edge is chosen
asw(ẽ) = w(e) if ẽ ∈ ED is the dual edge crossed bye ∈ E. Subsequently, we
split all dual nodes̃v ∈ VD with degreedeg(ṽ) > 4 into b(deg(ṽ) − 1)/2c nodes
and connect the copies by a path of new edges receiving zero weight. Let split
nodesdenote nodes created by a splitting operation. Edges incident to the original
node are equally distributed among the split nodes such thatthe degree of each
node is at most four. We denote the resulting graph byGt = (Vt, Et). It is easy
to see that after the splitting operations, no node inGt has a degree smaller than
three or larger than four. The connectedness ofG andGD yields connectedness
of Gt. Next, we expand each node inGt to aK4 subgraph (a so-called Kasteleyn
city). Newly generated edges again receive weight zero, while edge weights from
Gt are assigned to the corresponding edges in the expanded graph. We denote the
resulting graph byGE. Next, we calculate a minimum-weight perfect matchingM

Algorithm 1 MAX -CUT algorithm for planar graphs
Require: Embedding of a simple, connected planar graphG
Ensure: MAX-CUT δ(Q) of G

1. Build dual graphGD

2. Split each nodev ∈ GD with deg(v) > 4 and call resulting graphGt

3. Expand each nodev ∈ Gt to aK4 and call resulting graphGE

4. Compute a minimum-weight perfect matchingM in GE

5. Shrink back all artificial nodes and edges while keeping track of matched dual
edges

6. Matched dual edges inGD induce optimum Eulerian subgraphs and thus opti-
mum max-cutδ(Q) of G

7. return δ(Q)

in GE. Subsequently, we undo the expansion, i.e., shrink back allK4 subgraphs
and all (possibly created) split nodes, while keeping trackof matched dual edges.
Consider the subgraph ofGD induced by the matching edges that are still present
in the dual after shrinking. Each node in this subgraph has even degree. Therefore,
it is a minimum weight Eulerian graph. It is well known that there is a one-to-
one correspondence between Eulerian subgraphs in the dual and cuts in its primal
graph, see also Alg. 1 for a compact statement of the algorithm.

In order to prove correctness of the algorithm, we need to show that there
always exists a perfect matchingM in the expanded graphGE. Then, we need
to prove that the constructed perfect matching inGE induces a subgraph in the
dual in which all node degrees are even. We first show the latter. We call edges
not contained in aK4 outgoingand count the number of matched outgoing edges
on someK4 for an arbitrary perfect matching inGE. Clearly, any possible perfect
matching in aK4 subgraph leads to either zero, two or four outgoing matching
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edges. An odd number of outgoing matching edges always leaves an odd number of
K4 nodes unmatched, which contradicts the matching’s perfectness. Shrinking back
the artificial nodes to the corresponding split nodes does not affect the number of
outgoing matching edges. Consequently, after having collapsed all split nodes back
to its dual nodes, each dual node has an even number of adjacent matching edges,
too. Hence the matching induced subgraph is Eulerian and therefore defines a cut
δ(Q) in the original graphG. Letw(M) be the weight of a minimum-weight perfect
matching inGE, which is the same weight of the Eulerian subgraph, therefore the
weight of the induced Eulerian subgraph is minimum, and thusthe weight of the
cut δ(Q), too. We summarize this in the next theorem.

Theorem 17. The algorithm described above computes aMIN -CUT (or MAX -CUT)
in an arbitrarily weighted planar graph.

The proof that the expanded graphGE indeed has a perfect matchingM is based on
the following observations.GE is connected and has an even number of nodes. A
trivial perfect matching exists as in eachK4 all nodes can be covered by matching
edges contained in theK4. Therefore, a perfect matching inGE always exists.
There also always exists another perfect matching in which not only artificial edges
contained in theK4 subgraphs are matched. This is reasonable due to the structure
of the dual graphGD, as any two adjacent nodes inGD are connected by at least
one simple cycle that is preserved during the expansion step. A possible nontrivial
perfect matching inGt may consist of those cycle edges and additionally of some
artificial edges in eachK4 subgraph on the cycle. For all other Kasteleyn cities,
edges contained in theK4 can be matched.

For establishing running time bounds, we start with a given embedding of a
planar graph. The geometric dual can be constructed in timeO(|V |). Furthermore,
the described expansion of the dual graph can be done in time linear in |V |, and
only O(|V |) new nodes (edges) are created. Next, the most time consumingstep
is performed - the calculation of a minimum-weight perfect matching. Using a
maximum-weight matching algorithm by Lipton and Tarjan [5], based on the pla-
nar separator theorem, together with an appropriate weight-function, the calcula-
tion of the minimum-weight perfect matching needs timeO(|V | 32 log |V |). Finally,
all nodes blown up in the expansion are shrunk back in timeO(|V |). With these
considerations, we state the following theorem.

Theorem 18. Using the method described above, aMIN -CUT (or MAX -CUT) in a
planar graph can be determined in time bounded byO(|V | 32 log |V |).

Space may become a crucial factor especially for large inputgraphs. Our
method is less space demanding than the construction of [7].This is important
as the matching part depends on the graph size and is the bottleneck in the algo-
rithm. The latter implies that our algorithm is faster in practice. LetF denote the
set of faces of a maximum planar graph. Our method constructsa graphGE with
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at most|VE| = 4|F | = 4(2|V | − 4) nodes, and6|F | + |ED| = 15|V | − 30 edges.
The procedure by [7] generates for each dual node a “star” subgraph of seven nodes
and nine edges. Thus yields an expanded dual graph with7(2|V | − 4) nodes and
21|V | − 42 edges. These bounds are sharp as the first step of Shih, Wu, andKuo
is always a triangulation of the graph. Our procedure, in comparison, computes a
matching on a much smaller and sparser graph, even in the casethe graph is a tri-
angulation. Moreover, the practical running time of the method stated in [7] might
increase, as the matching induced even-degree edge set may be empty in which
case an additionalO(|V |) time step is needed to compute a nontrivial even-degree
edge set.

It turns out that with our implementation of the presented algorithm we can
computeMAX -CUTS in planar graphs with up to106 nodes within reasonable time.
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1. Introduction

In thek-Hyperplane Clusteringproblem (k-HC), given a set ofm pointsP =
{a1, . . . , am} in Rn, we have to determinek hyperplanesHj = {a ∈ Rn | wTj a =
γj, wj ∈ Rn, γj ∈ R}, with 1 ≤ j ≤ k, and assign each point to a singleHj ,
thus partitioningP into k h-clusters, so as to minimize the sum-of-squared 2-norm
orthogonal distancesdij from each point to the corresponding hyperplane, where

dij =
|wT

j ai−γj|
‖wj‖2

.

k-HC naturally arises in many areas such as data mining [3], operations re-
search [7], line detection in digital images [2] and piecewise linear model fitting [4].
k-HC isNP-hard, since it isNP-complete to decide whetherk lines can fitm
points inR2 with zero error [7]. In [3] Bradley and Mangasarian propose aheuris-
tic for k-HC which extends the classicalk-means algorithm to the hyperplane case.

The bottleneck version ofk-HC in which, given a maximum deviation toler-
anceε, k is minimized, has been studied in [5]; it is closely related to the MIN-
PFS problem of partitioning an infeasible linear system into a minimum number
of feasible subsystems [2]. Variants ofk-HC where linear subspaces of different
dimensions are looked for are also considered, e.g., in [1].

In this work we propose a column generation algorithm and an efficient meta-
heuristic.
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2. Column generation algorithm (CG)

We consider the following set covering master problem (MP):

min
∑

s∈S
dsys (2.1)

s.t.
∑

s∈S
x̃isys ≥ 1 1 ≤ i ≤ m (2.2)

∑

s∈S
ys ≤ k (2.3)

ys ∈ {0, 1} s ∈ S,

whereS is the set of (exponentially many) feasible h-clusters and,for eachs ∈ S,
the variableys equals 1 if the h-clusters is in the solution and 0 otherwise. The
parameterds is the sum-of-squared 2-norm orthogonal distances to the hyperplane
Hs of the points contained in the h-clusters and the parameter̃xis equals 1 if the
pointai is contained in h-clusters, and 0 otherwise.

We tackle this formulation with a column generation approach. Let S ′ ⊂ S
be the initial pool of columns. Letπi andµ be the dual variables of constraints
(2.2) and (2.3), corresponding to an optimal solution of (MP) when restricted to the
only columns inS ′ and with the integrality constraints relaxed. The columns /∈ S ′

with the largest negative reduced costc̄s′, with c̄s′ = ds′ −
∑m
i=1 πixis′ − µ, can be

obtained by solving the following nonlinear 2-norm pricingproblem (PP):

min
m∑

i=1

((wTai − γ)2 − πi)xi − µ (2.4)

s.t. ‖w‖2 ≥ 1 (2.5)
xi ∈ {0, 1} 1 ≤ i ≤ m (2.6)
w ∈ Rn, γ ∈ R,

where(w, γ) are the parameters ofHs′ and the binary variablexi is equal to 1 if the
pointai is assigned toHs′ and 0 otherwise. Note thatxi takes integer values in any
optimal solution and hence (2.6) can be relaxed intoxi ∈ [0, 1]. (PP) is nonconvex
due to (2.5) and can be solved to local optimality with state-of-the-art nonlinear
programming solvers such as SNOPT.

Since
√
n ‖w‖2 ≥ ‖w‖1, substituting‖w‖1 ≥ 1 for (2.5) yields‖w‖2 ≥ 1√

n

and thus a relaxation ofk-HC. This 1-norm constraint can be linearized with stan-
dard techniques, see [5]. Given any 1-norm solution, a corresponding feasible 2-
norm solution can be obtained by fixing the point-to-hyperplane assignment and
recomputing the hyperplane parameters in the closed-form proposed in [3].

To speed up convergence, a dual-stabilization technique [8] is used. At each
iterationt that is a multiple of the frequency parameterf , the current dual vector
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πt is replaced by a convex combinationπ′
t of πt and the previous dual vectorπt−1,

namelyπ′
t := ηπt + (1− η)πt−1 with η ∈ (0, 1).

3. Point-Reassignment metaheuristic (PR)

Our Point-Reassignment metaheuristic (PR) relies on a simple criterion to
identify, at each iteration, points which are likely to beill-assignedin the current
solution, based on the distance ratio dij

minj′ 6=j dij′
.

Starting from a randomly generated solution, at each iteration the setI of pos-
sibly ill-assigned points is identified as follows. Letmj , with 1 ≤ j ≤ k, be the
number of points currently assigned to hyperplaneHj and rank them w.r.t. the ra-
tio dij

minj′ 6=j dij′
. Indeed, points with large ratio have larger distance w.r.t.Hj and are

close to another hyperplaneHj′, hence being more likely to be ill-assigned. Given
a control parameterα (“temperature”), the setI then contains theα ·mj points of
each cluster with the largest ratio.

A move consists in assigning each pointai in I to the closest hyperplane which
differs from the current oneai is assigned to, and in assigning the points inP \
I to the closestHj , if it is not already the case. The hyperplane parameters are
then recomputed in the closed-form described in [3]. To avoid cycling and try to
escape from local minima, we adopt two Tabu Search features (see e.g. [6]): a list
of forbidden moves of lengthl and a partial aspiration criterion.

Since early solutions are expected to have a larger number ofill-assigned
points, the control parameterα is initially set to a large enough valueα0 and is then
progressively decreased to stabilize the search process, thus progressively reducing
the variability that is introduced at each iteration. More precisely,α is updated as
αt = α0ρ

t, wheret is the index of the current iteration andρ ∈ (0, 1) determines
the speed at whichα is driven to0. Whenα = 0, I becomes empty and, after all
points are assigned to the closetsHj, the algorithm terminates in a local minimum.
The best solution found is stored and returned.

4. Computational results and conclusions

We compare CG and PR with a multi-start version of Bradley andMangasar-
ian’s algorithm (BM, [3]) on a set of challenging, randomly generated instances [4].
CG is implemented in AMPL using SNOPT and CPLEX as solvers. PRand BM
are implemented in C++. Tests are run on an Intel Xeon machine, with 2.8 GHz
and 2 GB RAM, equipped with Linux and gcc 4.1.2.
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CG is tested on 8 instances withm = 20− 70, n = 2− 3 andk = 3− 6. η is
set to 0.7 and is reduced to 0.4 when 90% of the dual variables become zero. The
frequencyf is set to 5. Because of the nonlinearities in the 2-norm pricing problem,
CG with 2-norm gets often stuck in local minima and leads to poor quality solu-
tions. CG with 1-norm finds solutions with very small objective function values,
but since the 1-norm pricing problem is a non-trivial mixed-integer linear program,
the overall computation time scales poorly with the size of the instances.

PR is tested on 95 instances withm = 100− 2500, n = 2− 6 andk = 3− 8.
Parameters are set toα0 = 0.9, ρ = 0.6, l = 2. We compare the best solutions
found by running PR and BM for a fixed amount of time and restarting them from
randomly generated solutions each time a local minimum is found. The time limit
is set to 120 and 180 seconds for instances with up to, respectively, 750 points
and 2500 points. PR finds better results in 89 cases out of 95 (with strictly better
solutions in 59 cases). On average, BM yields solutions worse than those found
by PR by a factor of25%. Neglecting the 30 instances for which both algorithms
find solutions of the same value (since they may be optimal), the factor amounts
to 35.5%.
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1. Introduction

The classical model of cooperative games assumes that arbitrary subsets of
agents can join to form feasible coalitions and create values in a given economic
context. The main problem is: How should a commonly generated value be dis-
tributed among the agents?
Weber [13] developed a model of so-called probabilistic values (including the Shap-
ley value, the Banzhaf value etc.) for the classical model.
However many real problems are not covered by the classical model. The notions of
cooperation and allocation have often a more dynamic flavor.In the past there were
many approaches that aimed for a suitable generalization ofthe classical model.
For example Kalai and Samet [10] studied games with block structure, i.e., cer-
tain critical coalitions partition the set of agents. Models for cooperative games
under precedence constraints were developed by Derks and Gilles [8] and Faigle
and Kern [9]. Bilbaoet al. [1; 2; 3; 4; 5; 6] have studied models for cooperative
games with underlying combinatorial coalition structuressuch as convex geome-
tries, antimatroids or matroids. In all these generalizations, analogues of Shapley‘s
[12] classical value and possibly also the core are sought.
Our present research wants to take a first step towards viewing cooperation and
allocation as dynamic processes and thus to approach cooperative games system
theoretically. Our model includes all the above mentioned models as special cases.
Also the classical results can be shown to extend to this wider context.
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2. Cooperation Systems and Cooperative Games

A cooperation systemis a quadrupleΓ = (N, V,A,A), whereN is a finite
set of agents,V a finite set ofstates of cooperationandA a finite set of feasible
transitionsx→ y between states, which we assume to be partitioned into pairwise
disjoint blocksAi, indexed by the agentsi ∈ N . We denote the latter partition by
A = {Ai|i ∈ N} and think of the blockAi ∈ A as the set of transitions that are
governed by the agenti: Intuitively, i can take the “action”(x → y) ∈ Ai and
transform the current statex of cooperation into the statey ∈ V .
By identifying (x → y) with the pairxy ∈ V × V , we obtainG = (V,A) as the
(directed) transition graph ofΓ with vertex setV and arc setA. For simplicity of
exposition, we assume throughout:

(Γ0) There is one uniqueinitial stateS ∈ V (i.e. s− := {u ∈ V |us ∈ A} = ∅).
(Γ1) G is acyclic.

This means everyx ∈ V can be reached by a directed path that starts ins. More-
over each such path extends to a path that ends in a sinkt (i.e.:t+ := {u ∈ V |tu ∈
A} = ∅). A source-sink path is called acooperation instanceand we denote byP
the set of all cooperation instances.

A cooperative gameis a pair(Γ, v), wherev : V → R is a valuation of the states
of cooperation (the so-calledcharacteristic functionof the game) with the prop-
erty thatv(s) = 0. The vector space of all cooperative Games onΓ is denoted by
V(= V(Γ)).

A selectoris an operatorX 7→ σ(X) on the subsets ofN such thatσ(X) ⊆ N \X
for all X ⊆ N . We show how cooperative games with selectors fit in our model.
All mentioned generalizations of the classical model are such games with selectors.
All cooperative games with selector suffice the followingsingular action property
in words of cooperation instances:

(SA) |P ∩Ai| ≤ 1 for all P ∈ P andi ∈ N .

3. Allocation and Symmetries

We define anallocation mechanismto be a computational scheme for allocat-
ing payoffs to the individual agents in the context of a cooperative game(Γ, v). We
make some axiomatic assumption:

(A0) The null game should yield zero payoffs.
(A1) The allocation to the agenti should only depend on his action setAi and
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should be linear inv.

Let ∂ : V → RA, ∂xy(v) := v(y) − v(x) be themarginal operator. Since∂ is a
monomorphism, it is an isomorphism on∂(V). A linear allocation mechanism is
therefore described by a vectorα ∈ RA that determines the individual values for
i ∈ N :

φαi (v) :=
∑

xy∈Ai

αxy∂xy(v).

We call the linear functionalv 7→ φα(v) := αT∂(v) the group value associated
with the allocation mechnismα.
Together with the two assumptions (A0) and (A1) we develope a theory of linear al-
location mechanisms strongly inspired by the theory of Weber [13] for the classical
case. We define a Shapley allocation mechanism in our model and show that it is a
generalization of the Shapley values proposed in the above mentioned models and
expose it to be the unique mechanism of maximal entropy in some sense. Moreover
we defineλ-mechnisms as a generalization of weighted Shapley values studied by
Shapley [11; 12] and Kalai and Samet [10].

Laxly speaking a symmetry ofΓ is a permutationρ of V which leaves the structure
of Γ invariant, i.e.:

(S0) ρ is a graph automorphism ofG. (Note that this is equivalent forρ to leave
invariantP)

(S1) ρ respectsA, i.e.:ρ(Ai) ∈ A for all i ∈ N .

In some sense the group of symmetries ofΓ acts on the set ofλ-values. A symmetry
ρ of Γ is called an automorphism of a gamev, if

v(ρ(x)) = v(x) for all x ∈ V.

We extend a classical result of Owen and Carreras [7] to our model and show under
the assumption (SA) that the automorphisms of a gamev are exactly the symmetries
of Γ which stabilize allλ-values. Sadly this statement may become false, if (SA) is
dropped.

4. Core and Weber Sets

Finally we discuss the concept of a core of a cooperative gameand its relation
to the Weber set. For this discussion we restrict ourselves to cooperation systems
that arise from selection structures. We propose a core concept as well as marginal
vectors for our model as a generalization of the classical case.
The convex hull of all marginal vectors is classically called the Weber set of a
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game. Weber [13] showed that in the classical model the core is always a subset
of the Weber set. We extend this idea to games with selection structures and show
how our results lead to Webers result as a special case.
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1. Motivation
Throughout this paper, letq = pr wherep is an odd prime andr is a posi-

tive integer. LetFq be a finite field ofq elements. The prime base fieldFp of Fq

may then be naturally identified withZp. LetM be ann × n matrices, two basic
parameters ofM are its determinant

Det(M) :=
∑

σ∈Sn

sgn(σ)
n∏

i=1

aiσ(i),

and its permanent

Per(M) :=
∑

σ∈Sn

n∏

i=1

aiσ(i).

The distribution of the determinant of matrices with entries in a finite fieldFq

has been studied by various researchers. Suppose that the ground fieldFq is fixed
andM = Mn is a randomn× n matrices with entries chosen independently from
Fq. If the entries are chosen uniformly fromFq, then it is well known that

Pr(Mn is nonsingular)→
∏

i>1

(1− q−i) asn→∞. (1.1)

It is interesting that (1.1) is quite robust. Specifically, J. Kahn and J. Komlós [4]
proved a strong necessary and sufficient condition for (1.1).

Theorem 19. ([4]) LetMn be a randomn×nmatrix with entries chosen according
to some fixed non-degenerate probability distributionµ on Fq. Then (1.1) holds if
and only if the support ofµ is not contained in any proper affine subfield ofFq.

? This paper was not actually presented at the conference, as the author did not attend (nor
communicate his cancellation). The talk was replaced by thecommunication: S. Margulies,
Computing Infeasibility Certificates for Combinatorial Problems via Hilbert’s Nullstellen-
satz.
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An extension of the uniform limit is to random matrices withµ depending on
n was considered by Kovalenko, Leviskaya and Savchuk [5]. They proved that the
standard limit (1.1) under the condition that the entriesmij of M are independent
andPr(mij = α) > (log n + ω(1))/n for all α ∈ Fq. The behavior of the nullity
of Mn for 1− µ(0) close tolog n/n andµ(α) = (1− µ(0)/(q − 1) for α 6= 0 was
also studied by Blömer, Karp and Welzl [2].

Another direction is to fix the dimension of matrices. For an integer number
n and a subsetE ⊆ Fn

q , let Mn(E) denote the set ofn × n matrices with rows
in E . For anyt ∈ Fq, let Nn(E ; t) be the number ofn × n matrices inMn(E)
having determinantt. Ahmadi and Shparlinski [1] studied some natural classes of
matrices over finite fieldsFp of p elements with components in a given subinterval
[−H,H ] ⊆ [−(p− 1)/2, (p− 1)/2]. They showed that

Dn([−H,H ]n; t) = (1 + o(1))
(2H + 1)n

2

p
(1.2)

if t ∈ F∗
q andH � q3/4. In the casen = 2, the lower bound can be improved to

H � q1/2+ε for any constantε > 0.

Covert et al. [3] studied this problem in a more general setting. A subsetE ⊆
Fn
q is called a product-like set if|Hd ∩ E| . |E|d/n for anyd-dimensional subspace
Hd ⊂ Fn

q . Covert et al. [3] showed that

D3(E ; t) = (1 + o(1))
|E|3
q
,

if t ∈ F∗
q andE ⊂ F3

q is a product-like set of cardinality|E| � q15/8. Using the ge-
ometry incidence machinery developed in [3], and some properties of non-singular
matrices, the author [7] obtained the following result for higher dimensional cases
(d ≥ 4):

Dn(An; t) = (1 + o(1))
|A|n2

q
,

if t ∈ F∗
q andA ⊆ Fq of cardinality|A| � q

d
2d−1 .

On the other hand, little has been known about the permanent.The only known
uniform limit similar to (1.1) for the permanent is due to Lyapkov and Sevast’yanov
[6]. They proved that the permanent of a randomn×m matrixMnm with elements
from Fp and independent rows has the limit distribution of the form

lim
n→∞Pr(Per(Mnm) = k) = ρmδk0 + (1− ρm)/p, k ∈ Fp,

whereδk0 is Kronecker’s symbol. The purpose of this paper is to study the dis-
tribution of the permanent when the dimension of matrices isfixed. For any
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t ∈ Fq and E ⊂ Fd
q , let Pn(E ; t) be the number ofn × n matrices with rows

in E having determinantt. We are also interested in the set of all permanents,
Pn(E) = {Per(M) : M ∈Mn(E)}.
2. Statement of results

The main result of this paper is that, ifE is a sufficient large subset ofFn
q then

Pn(E) coversFq. More precisely, our main result is the following theorem.

Theorem 20. Suppose thatq is an odd prime power andgcd(q, n) = 1.

a) If E ∩ (F∗
q)
n 6= ∅, and|E| > cq

n+1
2 , thenF∗

q ⊆ Pn(E).

b) If E ⊂ Fn
q of cardinality|E| > nqn−1, thenF∗

q ⊆ Pn(E).

A is a sufficient large subset ofFq thenPn(An) coversFq. More precisely, our
main result is the following theorem.

Theorem 21. Suppose thatq is an odd prime power andgcd(q, n) = 1.

a) If E ∩ (F∗
q)
n 6= ∅, and|E| > cq

n+1
2 , thenF∗

q ⊆ Pn(E).

b) If E ⊂ Fn
q of cardinality|E| > nqn−1, thenF∗

q ⊆ Pn(E).

c) If A ⊂ Fq of cardinality|A| � q
1
2
+ 1

2n , thenF∗
q ⊆ Pn(An).

b) If A ⊆ Fq of cardinality|A| � q2/3, then for eacht ∈ F∗
q

P3(A3; t) = (1 + o(1))
|E|3
q
.

Note that the bound in Part b) of Theorem 20 is tight up to a factor of n. For
example,|{x1 = 0}| = qn−1 andPn({x1 = 0}) = 0. WhenE is a product-like set,
we can get a positive proportion of the permanents under a weaker assumption.

Theorem 22. Suppose thatq is an odd prime power andgcd(q, n) = 1. If E ⊂ Fn
q

is a product-like set of cardinality|E| � q
n2

2(n−1) , then

|Pn(E)| > (1− o(1))q.

In the special caseE = A× . . .×A, we have the following corollary.

Corollary 1. Suppose thatq is an odd prime power andgcd(q, n) = 1. If A ⊆ Fq

of cardinality|A| � q
1
2
+ 1

2(n−1) , then|Pn(An)| > (1− o(1))q.

Furthermore, if we restrict our study to matrices over a finite field Fp of p
elements (p is a prime) with components in a given interval, we obtain a stronger
result.
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Theorem 23. Suppose thatq = p is a prime, and entries ofM are chosen from a
given intervalI := [a + 1, a+ b] ⊆ Fp, where

b

p1/2 log p
→∞, p→∞,

then

Pn(In; t) = (1 + o(1))
bn

2

p

for anyt ∈ Fp.

Throughout the abstract, the implied constants in the symbols ‘o’ and ‘�’ may
depend on integer parametern. We recall that the notationU � V is equivalent to
the assertion that the inequalityU � c|V | holds for some constantc > 0.
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This paper covers the material from my talk at CTW 2009, Paris. ∗ I am in-
debted to the Scientific Committee and to Leo Liberti and the other members of the
Organizing Committee for the opportunity to present this paper.

Nonlinear discrete optimization, in its broadest sense, issimply the study of
optimization models involving nonlinear functions in discrete variables. This is so
hopelessly broad as to be a subject ripe for charlatans and cranks. Sober individ-
uals cannot hope to devise efficient methods — practical or theoretical — for the
entire class of such problems. So we set out some reasonable goals in the hope of
delineating some of the boundary between tractable and intractable.

In §1, we look at polynomial optimization in integer variables from a com-
plexity point of view. We summarize some key hardness results and also describe
positive algorithmic results. More details regarding the material on polynomial op-
timization is collected in [14].

In §2, we take a different slice across nonlinear discrete optimization. In the
context of a structured parametric nonlinear discrete optimization model, we de-
scribe some hardness results and also several broad cases for which we can give ef-
ficient exact or approximation algorithms. Much of that material is from [4; 19; 5].
I am enormously indebted to Shmuel Onn and Robert Weismantelfor allowing me
to survey some of our joint work which is the essence of§2. A full treatment of that
material, which is only summarized here, will appear in our forthcoming mono-
graph [20]. Further thanks are due to Yael Berstein who was also a key player in
the development of some of that material.

∗ Cologne Twente Workshop 2009, 8th Cologne-Twente Workshopon Graphs and Com-
binatorial Optimization, Ecole Polytechnique and CNAM, Paris, France June 2-5, 2009.
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Finally, in §3, we describe a recent effort to implement one of the more novel
algorithms from§2, using ultra-high precision arithmetic on a high-performance
computational platform. I owe considerable gratitude to John Gunnels and Susan
Margulies who were partners of mine in the work [10] summarized in§3.

1. Polynomial optimization

Polynomial optimizationin continuous or integer variables refers to the model

min /max {f0(x) : fi(x) ≤ 0, i = 1, . . . , m; x ∈ Dn},

where thefi : Rn → R are polynomials, andD is eitherR or Z. Often one looks
at the special case in which the constraint functionsf1, . . . , fm are affine functions,
and so the feasible region is either a polyhedron or the integer points in a poly-
hedron. Polynomial optimization in integer variables constitutes a very broad and
natural class of nonlinear discrete optimization problems. As we shall soon see,
some very simple subclasses are intractable, while for another broad subclass we
get tractability, and for another broad subclass we get strong approximability.

First, we point out how hardness of nonlinear discrete optimization also im-
plies hardness for nonlinear continuous optimization. Specifically, the max-cut
problem can be modeled as minimizing a quadratic form over the cube[−1, 1]n,
and Håstad [12] demonstrated inapproximability for max-cut. Thus we have the
following result:

Theorem 1.1. Polynomial optimization in continuous variables over polytopes in
varying dimension is NP-hard. Moreover, there does not exist a fully polynomial-
time approximation scheme, unlessP = NP.

However, polynomial optimization in continuous variablesover polytopes can
be solved in polynomial time when the dimension is fixed. Thisfollows from Rene-
gar’s general result on the complexity of approximating solutions to general alge-
braic formulae over the reals (see [23]).

For integer variables, hardness sets in for very low dimension. Based on reduc-
tion from the NP-complete problem of determining if there exists a positive integer
x < c with x2 ≡ a (mod b), we have the following (see [9; 6]):

Theorem 1.2. The problem of minimizing a degree-4 polynomial over the integer
points of a convex polygon is NP-hard.

Moreover, hardness sets in with a vengeance. The negative solution of Hilbert’s
tenth problem by Matiyasevich [21; 22], building on earlierwork by Davis, Putnam
and Robinson [7], implies that nonlinear integer programming over unbounded fea-
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sible regions is incomputable. Due to Jones’ strengthening[16] of Matiyasevich’s
negative result, there also cannot exist any such algorithmfor the cases of feasible
regions for even a small fixed number of integer variables (see [6]):

Theorem 1.3. The problem of minimizing a linear form over polynomial con-
straints in at most 10 integer variables is not computable bya recursive function.

Another consequence, as shown by Jeroslow [15], is that eveninteger quadratic
programming is incomputable.

Theorem 1.4. The problem of minimizing a linear form over quadratic constraints
in integer variables is not computable by a recursive function.

So far, we have painted a rather bleak picture for polynomialoptimization. But
the inherent difficulty is related to non-convexity, and it becomes worse in vary-
ing dimension. On the positive side, Khachiyan and Porkolabhave demonstrated
that in fixed dimension, the problem of minimizing a convex polynomial objective
function over the integers, subject to polynomial constraints describing a convex
body, can be solved in time polynomial in the encoding lengthof the input [17].
This result was strengthened by Heinz [13] to achieve the following result based on
generalizing Lenstra’s algorithm for linear integer optimization in fixed dimension
[18].

Theorem 1.5. Let the dimensionn be fixed. The problem of minimizingf0(x) on
the set of integer points satisfyingfi(x) ≤ 0, i = 1, 2, . . . , m, where thefi : Rn →
R are quasi-convex polynomials with integer coefficients, for i = 0, 1, . . . , m, can
be solved in time polynomial in the degrees and the binary encoding of the coeffi-
cients.

Owing to the difficulty, already, of optimizing (non-convex) degree-4 polyno-
mials over the integer points in a convex polygon (Theorem 1.2), the best that we
can hope for, in fixed dimension without a convexity assumption on the objective, is
an approximation result. In fact, a very strong result — namely a fully polynomial-
time approximation scheme — has been established (see [6]):

Theorem 1.6. Let the dimensionn be fixed. LetP ⊂ Rn be a rational convex
polytope. Letf be a polynomial with rational coefficients that is non-negative on
P ∩Zn, given as a list of monomials with rational coefficientscβ encoded in binary
and exponent vectorsβ ∈ Zn

+ encoded in unary. Then we can find a feasible solu-
tion x ∈ P ∩ Zn with fmax − f(x) ≤ εfmax, in time polynomial in the input and
1/ε.
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2. Parametric Nonlinear Discrete Optimization

In this section, we take another view across the landscape ofnonlinear discrete
optimization. While in the last section our viewpoint was tolook at specializa-
tions of mathematical programming models, in the present section our viewpoint
more closely aligned with that taken in combinatorial optimization. From this dif-
ferent viewpoint, we will see other aspects of the boundary between tractable and
intractable nonlinear discrete optimization models.

We consider theparametric nonlinear discrete optimizationmodel

min /max {f(Wx) : x ∈ F},

whereW ∈ Zd×n, f : Rd → R is specified by a comparison oracle, andF ⊂ Zn is
well described(i.e., we have access to an oracle for optimizing an arbitrary linear
objective onF ). One motivation for the study of such a model is multi-objective
optimization, where we view each row ofW as specifying a linear objective, and
then the nonlinearf balances thed competing linear objectives. Besides this ap-
pealing motivation, the structure of this model also provides a nice structure for
exploring the boundary between intractable and tractable.So, in the remainder of
this section, we will expose some of this boundary, as we varyhypotheses onf ,W
andF .

We make some brief comments about our general hypothesis onF , that it is
well described. Usually such a term would be formally definedas meaning that we
have a separation oracle forconv(F). But of course the polynomial equivalence of
separation and optimization is well known (see [11]). Finally, the hypothesis that
we can optimize arbitrary linear functions on the discrete set F is very natural,
from both the theoretical and practical viewpoints, as we try to lift up to nonlinear
discrete optimization.

One of our primary complexity levers is the encoding ofW . We will see that
typically for binary-encodedW , we will have intractability, and so to obtain posi-
tive results we will need to hypothesize that the number of rowsd is fixed, and that
the entries ofW are somehow small. The exact hypotheses vary over the results that
we present, so we lay out here the possibilities: (i) unary encoding of thewij , (ii)
wij ∈ {a1, . . . , ap}, wherep is fixed and theak ∈ Z are binary encoded input, (iii)
wij ∈ {a1, . . . , ap}, wherea1, . . . , ap ∈ Z+ are fixed, (iv)wij =

∑
k λ

ij
k ak, wherep

is fixed, theak ∈ Z are binary-encoded input, and theλijk are unary-encoded input.
In this last case, we say thatW has aunary encoding over{a1, . . . , ap}.

The following three results demonstrate the strong intractability of parametric
nonlinear discrete optimization. The results emphasize matroids, because forlinear
objectives such problems areveryeasy — the greedy algorithm works.
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Theorem 2.1. Computing the optimal objective value of

min /max {f(wx) : x ∈ F},

whend = 1, w ∈ Zn
+, f is a univariate function presented by a comparison oracle,

andF is the set of bases of a uniform or graphic matroid on ann-element ground
sets, cannot be done in time polynomial inn and the binary encoding ofw.

Theorem 2.2. Computing the optimal objective value of

min /max {f(Wx) : x ∈ F},

whend = n,W = In, f : Rn → R presented by a comparison oracle, andF is the
set of bases of a uniform or graphic matroid on ann-element ground sets, cannot
be done in time polynomial inn.

Theorem 2.3. Determining whether the optimal objective value is zero for

min {f(wx) : x ∈ F},

whend = 1, binary-encodedw ∈ Zn
+, f is the explicit convex univariate function

f(y) := (y − u1)
2, andF is the set of bases of a uniform or graphic matroid on an

n-element ground sets, is NP-complete.

Despite the strong intractability of the general model, we are able to get posi-
tive complexity results for broad classes of interest. We are able to do this, for the
most part, by fixing the number of rows ofW and restricting the encoding of its en-
tries. Depending on the precise restrictions onW , we are able to address different
types of functionsf .

Theorem 2.4. If F is well described,f is quasi-convex, andW has a fixed number
of rows and has a unary encoding over binary encoded{a1, . . . , ap}, then there is
an efficient deterministic algorithm formax {f(Wx) : x ∈ F}.

Theorem 2.5. If F is well described,f is a norm, andW has a fixed number of
rows and is binary-encoded and non-negative, then there is an efficient determinis-
tic constant-approximation algorithm formax {f(Wx) : x ∈ F}.

A functionf : Rd
+ → R is ray concaveif

λf(u) ≤ f(λu) for u ∈ Rd
+ , 0 ≤ λ ≤ 1.

For example, iff is a norm onRd , then it ray-concave and non-decreasing onRd
+ .

As a further example,f(u) := ‖u‖1 − ‖u‖s , for any integers ≥ 1 or infinity, is
ray-concave and non-decreasing onRd

+ . Notice that already ford = 2 ands =∞ ,
f(u) is not a norm — indeed, for this casef(u) = min(u1, u2) .
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Theorem 2.6. If F is well described,f is ray concave and non-decreasing, and
W has a fixed number of rows and has a unary encoding over binary encoded
{a1, . . . , ap}, then there is an efficient deterministic constant-approximation algo-
rithm for min {f(Wx) : x ∈ F}.

Turning to general functionsf , we must be much more modest in our ex-
pectations. The next results establishes very strong intractability. An independence
systemF ⊂ {0, 1}n has the property that forx ∈ F andy ∈ {0, 1}n with y ≤ x,
we havey ∈ F .

Theorem 2.7. There is no efficient algorithm for computing an optimal solution
of theone-dimensionalnonlinear optimization problemmin /max {f(wx) : x ∈
F} over a well-described independence system, withf presented by a comparison
oracle, and single weight vectorw ∈ {2, 3}n.

Still, we can establish a positive result, using a new notionof approximation
that is appropriate for general functionsf . We say thatx∗ ∈ F is r-bestfor

min /max {f(Wx) : x ∈ F},

if at mostr better values thanf(Wx∗) are achievable asf(Wx), over pointsx ∈ F .
A p-tuplea is primitive if its entries are distinct positive integers having gcd 1.

Theorem 2.8. For every primitivep-tuplea, there is a constantr(a) and an effi-
cient algorithm that, given any well-described independence systemF ⊆ {0, 1}n,
a single weight vectorw ∈ {a1, . . . , ap}n, and functionf : Z → R presented by a
comparison oracle, finds anr(a)-best solution tomin /max {f(wx) : x ∈ F}.

Moreover, (i) ifai dividesai+1 for i = 1, . . . , p− 1, then the algorithm provides
an optimal solution; (ii) forp = 2, that is, fora = (a1, a2), the algorithm provides
an(a1a2 − a1 − a2)-best solution.

Even though the situation for arbitrary well described independence systems is
tough, for a matroid even presented by an independence oracle, we have an efficient
algorithm for optimizing general functionsf .

Theorem 2.9. If F is the set of characteristic vectors of bases or independentsets
of a single matroid presented by an independence oracle,cT ∈ Zn is binary en-
coded,f is arbitrary and given by a comparison oracle, andd × n matrixW has a
fixed number of rows and has entries in binary encoded{a1, . . . , ap} with p fixed,
then there is an efficient deterministic algorithm formin /max {cx+f(Wx) : x ∈
F}.

Turning to vectorial matroids (over the rationals so as to make our complexity
statements simple), and modifying the assumptions on the encoding ofW , we are
able to again get an efficient algorithm.
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Theorem 2.10. If F is the set of characteristic vectors of bases or independentsets
of a single rational vectorial matroid represented by a binary-encoded integer ma-
trix A, f is arbitrary and given by a comparison oracle, andW has a fixed number
of rows and is unary encoded, then there is an efficient deterministic algorithm for
min /max {f(Wx) : x ∈ F}.

Finally, for matroid intersection, again for vectorial matroids, we are able to
get an efficientrandomizedalgorithm for generalf .

Theorem 2.11. If F is the set of characteristic vectors of common bases or inde-
pendent sets of a pair of rational vectorial matroids, represented by binary-encoded
integer matricesA1 andA2, on a common ground set,f is arbitrary and given by a
comparison oracle, andW has a fixed number of rows and is unary encoded, then
there is an efficient randomized algorithm formin /max {f(Wx) : x ∈ F}.

3. Supercomputing

In §2, we have omitted the algorithms and analyses that form the proofs of
the theorems. Many of the algorithms are not particularly esoteric, so the range of
parameters for which they are practical is mostly apparent.

But this generalization has some exceptions. The algorithms that form the
bases of the proofs of Theorems 2.10 and 2.11 might seem to be of only theoretical
interest. In this section we describe the algorithm from theproof of Theorem 2.10,
and a bit about how we have implemented it, in ultra-high precision arithmetic on
a Blue Gene/L supercomputer [1].

Without loss of generality, we can assume thatW is non-negative and that we
are optimizing over the bases ofM (the case of arbitraryW and independent sets is
treated, easily, in [20]). LetA ∈ Zr×n be the matrix representation of the (rational)
vectorial matroidM , and letF be the set of characteristic vectors of bases ofM .

It turns out that it is sufficient to be able to efficiently calculate an optimalWx
— there is a simple methodology for recovering an associatedx. The motivating
idea of the algorithm is to determine, in one go, the entire set of points

U := {Wx : x is the characteristic vector of a base ofM}.

We observe thatU is a subset ofZ := {0, 1, · · · , rω}d. By our assumptions,|Z| is
bounded by a polynomial in the size of the data encoding. So, once we haveU , we
can easily determine an optimalWx using the comparison oracle off .
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Define the following polynomial ind variablesy1, . . . , yd:

g = g(y) :=
∑

u∈Z
gu

d∏

k=1

yuk

k ,

where the coefficientgu corresponding tou ∈ Z is the non-negative integer

gu :=
∑{

det2(Ax) : x ∈ F , Wx = u
}
,

whereAx is ther× r submatrix ofA indicated by the 0/1 vectorx. Now,det2(Ax)
is positive for everyx ∈ F . Thus, the coefficientgu corresponding tou ∈ Z is
non-zero if and only if there exists anx ∈ F with Wx = u . So the desired setU
is precisely the set of exponent vectorsu of monomials

∏d
k=1 y

uk

k having non-zero
coefficientgu in g .

Next, a simple lemma provides a key ingredient for our algorithm.

Lemma 3.1.
g(y) = det(AY AT ) .

Finally, the key idea is that we can determine the coefficients gu of the mono-
mials ing indirectly, by using the lemma to evaluateg at enough points. Thus we
get Algorithm 1.

Algorithm 1 : Efficient enumeration of the image ofF underW

input: full row-rankA ∈ Zr×n (binary encoded),W ∈ Zd×n
+ (unary encoded);

let ω := maxwi,j , s := rω + 1 andZ := {0, 1, · · · , rω}d ;
let Y := diagj

(∏d
i=1 y

wi,j

i

)
;

for t = 1, 2, . . . , sd do
let Y (t) be the numerical matrix obtained by substitutingts

i−1
for yi

(i = 1, 2, . . . , d) in Y ;
computedet(AY (t)AT );

end
compute the unique solutiongu, u ∈ Z, of the square linear system:

∑
u∈Z t

∑d

i=1
uisi−1

gu = det(AY (t)AT ), t = 1, 2, . . . , sd ;
return U := {u ∈ Z : gu > 0}.

We would like to view the system of equations from the algorithm a bit more
concretely in the form

V T g = b , (3.1)

whereV is an ordersd square matrix,g is an sd vector of real variables, and
the right-hand sideb is an sd-vector of constants. Clearly we will letbt :=
det(AY (t)AT ), for t = 1, 2, . . . , sd . As for the variables, we need a numbering
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of the elements ofZ . A natural numbering is via theφ : Z → {1, 2, . . . , sd} de-
fined byφ(u) := 1 +

∑d
i=1 uis

i−1. In fact this map is just a lexical ordering of the
elements ofZ ; for example,φ((0, 0, . . . , 0)T ) = 1 andφ((rω, rω, . . . , rω)T ) = sd.

With this notation, we can now view the linear system as

sd∑

j=1

tj−1gj = bt , t = 1, 2, . . . , sd. (3.2)

Lettingk := sd , we let thek × k matrixV T be defined by

V T
t,j := tj−1 , for 1 ≤ t, j ≤ k .

With this definition ofV T , (3.2) has the form (3.1).

In this form, we see thatV is a (special) Vandermonde matrix (so it is invert-
ible), and the system (3.1) that we wish to solve is a so-called “dual problem.” We
propose to solve it simply by evaluatingV −1, and lettingg := V −T b .

Our Vandermonde matrix is a very special one. It even has a closed form for
the inverseV −1 :

V −1
i,j :=






(−1)i+k 1
(i−1)!(k−i)! , j = k ;

i V −1
i,j+1 +

[
k+1
j+1

]
V −1
i,k , 1 ≤ j < k ,

where
[
k+1
j+1

]
denotes a Stirling number of the first kind (see [8], though they define

things slightly differently there). The form forV −1
i,j indicates how each row ofV −1

can be calculated independently, with individual entries calculated from right to
left, albeit with the use of Stirling numbers of the first kind. We note that the Stirling
number used forV −1

i,j does not depend on the rowi , so the needed number can be
computed once for each columnj . The (signed) Stirling numbers of the first kind
can be calculated in a “triangular manner” as follows (see [24]). For−1 ≤ j ≤ k ,
we have

[
k + 1

j + 1

]
:=





0 , k ≥ 0 , j = −1 ;

1 , k ≥ −1 , j = k ;
[
k
j

]
− k

[
k
j+1

]
, k > j ≥ −1 .

A remark is in order concerning the practicality of working with large Van-
dermonde systems and Stirling numbers. The numerics would quickly get out of
hand, using ordinary limited-precision arithmetic, whenk = sd is even modest in
magnitude. So, the practical implementation of [10] uses the ultra-high precision
arithmetic library ARPREC (see [2; 3]).
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Finally, it is easy to see that there is enormous potential for parallelism in the
calculation of the needed Stirling numbers and in the formation and use of the
Vandermonde inverse (see [10] for details).

4. Remarks

It is not the case that algorithms and implementations like those described in
§3 are currently very practical. After all, not everyone has asupercomputer, and
even for the lucky few, there remains a large gap between instances that we would
like to solve and those that we can currently handle. However, I hope that we have
demonstrated that as computational platforms evolve, our view of what is possible
and eventually practical for discrete optimization shouldevolve accordingly. We
have only worked out the details and implemented one algorithm — the one for
Theorem 2.10. An algorithm for Theorem 2.11, though more complicated, is based
on similar ideas, and there is clearly the potential to make an effective implemen-
tation for it. Certainly, a broad paradigm for solving discrete optimization based on
matrix algebra in ultra-high precision on supercomputers would be very attractive.
We hope that this work is a first step in such a direction.
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maximally violated valid inequalities,

125
maximum adjacency order, 301
maximum capacity path, 175
maximum independent set problem, 40
metaheuristic, 355
min-max resource sharing, 265
minimal prime extension, 305
minimal weight increment, 97
minimum caterpillar spanning prob-

lem, 48
minimum cut, 301
minimum spanning tree, 293
minimum sum coloring, 195
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mixed integer nonlinear programming,
373

modular decomposition, 305
modules in graphs, 305
molecule, 337
Morse functions, 277
multi-agent optimization, 44
multicommodity min-cost flow over

time, 321
multicuts, 313
multiobjective optimization, 317
multipliers, 239

nanocone, 333
network, 97, 257
network optimization, 317
nonapproximability bounds, 115
nonlinear discrete optimization, 373
NP-completeness, 55, 84, 115, 235
NP-hard problem, 205
NP-hardness, 89, 313
Nullstellensatz, 367

odd chordless cycle, 153
offensive alliances, 297
optical networks, 225
OSPF, 97

packings, 79
parameterized algorithms, 79
parameterized complexity, 40
pareto frontier, 317
parking, 11
parking warden tour, 11
partition coloring, 187
path polytope, 247
permanent, 367
pivot algorithm, 120
planar graph, 351
polyhedral combinatorics, 251
polyhedral embedding, 19
polynomial algorithm, 301
polynomial algorithms, 115
polynomial instances, 153
power-law, 285
probabilistic constraint, 140

problem contraction, 3
problem reduction, 89
protein, 337, 341
protein molecules, 337
protein structure alignment, 341
protein threading problem, 341
pseudo backbone, 3

quadratic semi-assignment problem,
109

quasi-threshold graphs, 23

Ramsey Theory, 40
randomization, 361
recognition algorithm, 229
rectangle packing, 84
reducible flow graph, 229
reformulation linearization technique,

109
regular graphs, 55
replacement model, 285
rerouting, 97
resistance of a graph, 64
resource allocation, 68
restricted entries, 367
RLT, 109
robustness, 171
rounding heuristics, 239
RWA, 225

scheduling, 210
secret santa, 269
separation, 125
set-coloring, 195
shortest path, 93, 239
signless Laplacian, 157
SLD, 225
sliding shortest path, 97
spanning tree, 120
split disjunctions, 144
stability, 149
stability number, 153
stable graphs, 149
stable set polytope, 251
star coloring, 199
stochastic dominance, 137
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stochastic integer programming, 137
stochastic network, 221
stochastic programming, 140
structural characterizations, 281
submodular functions, 347
successive shortest paths, 239
symmetry, 361
system, 361

tabu search, 163
time-expanded network, 221
total chromatic number, 55
train timetabling, 171
traveling salesman problem, 3, 7
two-stage knapsack problem, 140

unconstrained quadratic programming,
105

undirected graphs, 301
unit disk graph, 35
upper bounding scheme, 191
upper bounds, 191

value, 361
vehicle routing problem, 215
vertex degree, 120
VLSI design, 35, 265

WDM, 225
Weber set, 361
window based approach, 3
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