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MEASURABLE 3-COLORINGS OF ACYCLIC GRAPHS

CLINTON T. CONLEY AND BENJAMIN D. MILLER†

Abstract. This is the first of two lectures on measurable chro-
matic numbers given in June 2010 at the University of Barcelona.
Our main result here is that acyclic locally finite analytic graphs
on Polish spaces admit Baire measurable 3-colorings.

1. Introduction

Suppose that X and Y are sets. A graph on X is an irreflexive
symmetric set G ⊆ X × X. The restriction of G to a set A ⊆ X is
given by G � A = G∩ (A×A). We say that a set A ⊆ X is G-discrete
if G � A = ∅. A Y -coloring of G is a function c : X → Y for which
each set of the form c−1({y}) is G-discrete.

A G-path is a sequence (xi)i∈n+1 such that (xi, xi+1) ∈ G for all i ∈ n.
We refer to n as the length of the G-path. A graph G is acyclic if there
is at most one injective G-path between any two points. The axiom of
choice trivially implies that every acyclic graph has a two-coloring.

Suppose now that Γ is a pointclass of subsets of Hausdorff spaces.
The Γ-measurable chromatic number of a graph G on a Hausdorff space
X is the least cardinality of a Hausdorff space Y for which there is a
Γ-measurable Y -coloring of G. In [KST99], the following is noted:

Theorem 1 (Kechris-Solecki-Todorcevic). There is an acyclic Borel
graph on a Polish space which does not have a Borel ω-coloring.

We say that X is analytic if it is the continuous image of a closed sub-
set of ωω. When X is non-empty, this implies that X is the continuous
image of ωω itself. Here we consider general circumstances under which
acyclic locally countable analytic graphs admit measurable 3-colorings.

Some examples are known. In [KST99], the following is established:

Theorem 2 (Kechris-Solecki-Todorcevic). The Borel chromatic num-
ber of the graph associated with any Borel function on an analytic Haus-
dorff space is 1, 2, 3, or ℵ0.
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Building on this, in [Mil08] it is noted that the Borel chromatic
number of the graph associated with a fixed-point-free Borel function
is infinite if and only if there is no Borel set such that both it and
its complement intersect every forward orbit of f , and this is used to
establish the following:

Theorem 3 (Miller). Under ZFC + add(null) = c, the universally
measurable chromatic number and ω-universally Baire measurable chro-
matic number of the graph associated with a Borel function on a Haus-
dorff space coincide with value 1, 2, or 3.

Recall that an equivalence relation is hyperfinite if it is the increasing
union of finite Borel equivalence relations. We say that an equivalence
relation is measure hyperfinite if for every Borel probability measure
on the underlying space, its restriction to some set of full measure is
hyperfinite. In [Mil08], the following is also established:

Theorem 4 (Miller). Under ZFC+add(null) = c, there is a universal-
ly measurable 3-coloring of every acyclic analytic graph on a Hausdorff
space whose induced equivalence relation is measure hyperfinite.

On the other hand, in [HK96] the following is established:

Theorem 5 (Hjorth-Kechris). Every countable analytic equivalence re-
lation on a Polish space is hyperfinite on a comeager set.

Theorems 1 and 5 rule out the analog of Theorem 4 for ω-universally
Baire measurable colorings. Here we establish a salvage for this, as well
as versions for other natural notions of measurability.

2. Measurable colorings of locally finite graphs

Suppose that X is a Hausdorff space and E is a countable analytic
equivalence relation on X. Let XE denote the subspace of X<ω consist-
ing of all finite injective sequences x with the property that x(i)Ex(j)
for all i, j ∈ dom(x). Let GE denote the graph on XE consisting of all
pairs of distinct sequences whose images have non-empty intersection.

Proposition 6. Suppose that X is a Hausdorff space and E is a
countable analytic equivalence relation on X. Then there is a Borel
ω-coloring of GE.

Proof. We will show that there are countably many GE-discrete Borel
subsets of XE whose union is XE. Clearly we can assume that X 6= ∅,
so there is a continuous surjection ϕ : ωω → X. For each l ∈ ω, set

Sl = {s ∈ (ω<ω)l | (ϕ(Ns(k)))k∈l is pairwise disjoint)}.
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The first separation theorem ensures that for each s ∈ Sl, there is a
pairwise disjoint sequence (Bk,s)k∈l of Borel subsets of X such that
ϕ(Ns(k)) ⊆ Bk,s for all k ∈ l. By the Lusin-Novikov uniformization
theorem, there are partial functions fn : X ⇀ X, whose graphs are
Borel subsets of E, such that E =

⋃
n∈ω graph(fn). Let P denote the

family of triples of the form p = (l, n, s), where l ∈ ω, n ∈ ωl×l, and
s ∈ Sl. For every such p, define Bp ⊆ X l by

x ∈ Bp ⇐⇒ ∀j, k ∈ l (x(k) ∈ Bk,s and fn(j,k) ◦ x(j) = x(k)).

Clearly Bp is a Borel subset of XE.

Lemma 7. Suppose that p = (l, n, s) is in P . Then Bp is GE-discrete.

Proof of lemma. Suppose that x, y ∈ Bp. If x(j) 6= y(k) for all j, k ∈ l,
then (x, y) /∈ GE. Otherwise, the fact that (Bk,s)k∈l is pairwise disjoint
ensures the existence of j ∈ l with x(j) = y(j). The definition of Bp

then implies that x(k) = fn(j,k) ◦ x(j) = fn(j,k) ◦ y(j) = y(k) for all
k ∈ n, so x = y, thus (x, y) /∈ GE, and the lemma follows.

As |P | = ℵ0 and XE =
⋃
p∈P Bp, the proposition follows.

We say that a σ-ideal I on X approximates analytic sets if for all
analytic sets A ⊆ X, there are Borel sets B,C ⊆ X with the property
that B ⊆ A ⊆ C, C \B ∈ I, and both B and X \C are standard Bor-
el. This trivially implies the more general fact for sets in the smallest
σ-algebra containing the analytic sets.

Proposition 8. Suppose that X is a standard Borel space, Y is a Haus-
dorff space, I is a σ-ideal on X which approximates analytic sets, and
ϕ : X → Y is Borel. Then the family ϕ∗I = {B ⊆ Y | ϕ−1(B) ∈ I} is
a σ-ideal on Y which approximates analytic sets.

Proof. Clearly ϕ∗I is a σ-ideal on Y , so it is enough to show that
if AY ⊆ Y is in the smallest σ-algebra containing the analytic sets,
then there is a standard Borel set BY ⊆ Y such that BY ⊆ AY and
AY \ BY ∈ ϕ∗I. Towards this end, set AX = ϕ−1(AY ), fix a Borel set
BX ⊆ X such that BX ⊆ AX and AX \ BX ∈ I, and let E denote the
equivalence relation on X given by xEy ⇐⇒ ϕ(x) = ϕ(y).

By the Jankov-von Neumann uniformization theorem, there is a left
inverse ψ for ϕ which is measurable with respect to the smallest σ-
algebra containing the analytic sets. Then so too is ψ ◦ ϕ, thus there
is an I-conull Borel set CX ⊆ X such that (ψ ◦ϕ) � CX is Borel. Then
(ψ ◦ ϕ)(BX ∩ CX) is an analytic partial transversal of E, so by the
first separation theorem it is contained in a Borel partial transversal
DX ⊆ BX ∩ CX of E, thus the set BY = ϕ(DX) is as desired.
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Let EG denote the minimal equivalence relation on X containing G.
The connected component of a point is its EG-class.

Proposition 9. Suppose that X is a Hausdorff space, G is a locally
countable analytic graph on X, and I is a σ-ideal on X which approx-
imates analytic sets. Then there is an EG-invariant I-conull standard
Borel set B ⊆ X on which G is Borel.

Proof. Clearly we can assume that X = dom(G). Set E = EG. By
Proposition 6, there are involutions ιn : X → X with analytic graphs
such that E =

⋃
n∈ω graph(ιn). Set

Am,n = {x ∈ X | (ιm(x), ιn(x)) ∈ G}

for all m,n ∈ ω. Then there is an I-conull standard Borel set C ⊆ X
with the property that each of the sets Cm,n = Am,n ∩ C is standard
Borel and each of the functions ιn � C : C → X is Borel. Noting that
[C]E =

⋃
n∈ω ιn(C) and G � [C]E =

⋃
m,n∈ω(ιm × ιn)(Cm,n), it follows

that these sets are also standard Borel.

A G-barrier is a set Y ⊆ X for which every connected component
of G � (X \ Y ) is finite.

Proposition 10. Suppose that X is a Polish space, Y is a Hausdorff
space, G is an acyclic locally finite analytic graph on Y , and ϕ : X → Y
is continuous. Then there is an EG-invariant Borel set C ⊆ Y such
that ϕ−1(C) is comeager and G � C admits a discrete Borel barrier.

Proof. By Proposition 9, we can assume that Y is standard Borel and
G is Borel. The G-boundary of a set B ⊆ Y is given by

∂G(B) = {x ∈ B | ∃y ∈ Y \B ((x, y) ∈ G)}.

Let Y denote the standard Borel space of all triples (y, S, T ) with the
property that {y} ∪ S ∪ ∂G(Y \ S) ⊆ T , T × T ⊆ E, and |T | < ℵ0.
Let G denote the locally countable Borel graph on Y consisting of all
pairs of distinct triples whose final entries are not disjoint. Proposition
6 easily implies that there is a Borel ω-coloring c of G .

We say that a sequence is a (G,B)-comb if its image is contained
in ∂G(Y \ B). We will now define an increasing sequence (Bs)s∈ω<ω

of G-discrete Borel subsets of Y such that for no s ∈ ω<ω is there an
injective G-ray which is a (G,Bs)-comb.

We begin by setting B∅ = ∅. Suppose now that s ∈ ω<ω and we have
already found Bs. Let Bs denote the Borel set of all (y, S, T ) ∈ Y
which satisfy the following conditions:

(1) The set Bs ∪ S is G-discrete.
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(2) There is no injective G-path from ∂G(Y \ S) to ∂G(T ) which is
a (G,Bs ∪ S)-comb.

(3) If y /∈ Bs ∪ S, then [y]EG�(Y \(Bs∪S))
is finite.

For each i ∈ ω, define

Bsai = Bs ∪
⋃
{S | ∃y∃T ((y, S, T ) ∈ Bs and c(y, S, T ) = i)}.

Lemma 11. Suppose that i ∈ ω and s ∈ ω<ω. Then Bsai is G-discrete.

Proof of lemma. Suppose that x, y ∈ Bsai. If both x and y are in Bs,
then the G-discreteness of Bs ensures that (x, y) /∈ G. If exactly one
of x and y is in Bs, then there is a finite set S such that Bs ∪ S is a
G-discrete set containing both x and y, thus (x, y) /∈ G. If neither x
nor y is in Bs, then there are finite sets Sx and Sy containing x and y
such that Sx ∩ Sy = ∂G(Y \ Sx) ∩ Sy = ∅, thus (x, y) /∈ G.

Lemma 12. Suppose that i ∈ ω and s ∈ ω<ω. Then no injective G-ray
is a (G,Bsai)-comb.

Proof of lemma. Observe that any injective G-ray which is a (G,Bsai)-
comb would necessarily be a (G,Bs)-comb.

For each s ∈ ω<ω, define Es = EG�(Y \Bs). For each p ∈ ωω, set
Bp =

⋃
n∈ω Bp�n and Ep =

⋂
n∈ω Ep�n. Clearly Bp is G-discrete.

Lemma 13. Suppose that s ∈ ω<ω, x ∈ X, and y ∈ [ϕ(x)]E. Then
there exists i ∈ ω such that y ∈ Bsai or [y]E

sai
is finite.

Proof of lemma. Clearly we can assume that y /∈ Bs. Let S denote the
set of points of terminal points of maximal injective G � (Y \Bs)-paths
(yi)i∈n+1 originating at y for which (yi)i∈n is a (G,Bs)-comb. Kön-
ig’s lemma easily implies that S is finite. Fix a finite set T such that
{y}∪S ∪∂G(S) ⊆ T and T ×T ⊆ E. As (y, S, T ) ∈ Bs, it follows that
i = c(y, S, T ) is as desired.

Lemma 13 implies that

∀x ∈ X∀y ∈ [ϕ(x)]E∀∗p ∈ ωω (y ∈ Bp or [y]Ep is finite).

As E is countable, it follows that

∀x ∈ X∀∗p ∈ ωω∀y ∈ [ϕ(x)]E (y ∈ Bp or [y]Ep is finite).

The Kuratowski-Ulam theorem therefore implies that

∀∗p ∈ ωω∀∗x ∈ X∀y ∈ [ϕ(x)]E (y ∈ Bp or [y]Ep is finite),

which completes the proof of the theorem.
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Proposition 14. Suppose that X is a Polish space, Y is a Hausdorff
space, G is an acyclic locally finite analytic graph on Y , and ϕ : X → Y
is continuous. Then there is an EG-invariant Borel set C ⊆ Y such
that ϕ−1(C) is comeager and G � C admits a Borel 3-coloring.

Proof. By Proposition 9, we can assume that Y is standard Borel and
G is Borel. By Proposition 10, there is a EG-invariant Borel set C ⊆ X
such that ϕ−1(C) is comeager and G � C admits a discrete Borel barrier
B ⊆ C. Then E � (C \ B) is a finite Borel equivalence relation, and
therefore admits a Borel transversal D ⊆ C \ B. For each x ∈ C \ B,
let d(x,D) denote the distance from x to D with respect to the usual
graph metric on G � (C \B), and define c : C → 3 by

c(x) =

{
d(x,D) (mod 2) if x ∈ C \B,

2 if x ∈ B.

It is clear that c is the desired 3-coloring.

Theorem 15 (ZFC). Suppose that X is a Polish space and G is an
acyclic locally finite analytic graph on X. Then there is a Baire mea-
surable 3-coloring of G.

Proof. By Proposition 14, there is a comeager EG-invariant Borel set
C ⊆ X on which G admits a Borel 3-coloring. The axiom of choice
ensures that any such function extends to a 3-coloring of G, and any
such extension is clearly Baire measurable.

A set B ⊆ X is ω-universally Baire if for every continuous function
ϕ : ωω → X the set ϕ−1(B) has the Baire property.

Theorem 16 (ZFC+add(meager) = c). Suppose that X is a Hausdorff
space and G is an acyclic locally finite analytic graph on X. Then there
is an ω-universally Baire measurable 3-coloring of G.

Proof. Clearly we can assume that X = dom(G). Let C(X, Y ) denote
the set of all continuous functions from X to Y . Fix enumerations
(ϕα)α∈c of C(ωω, X) and (xα)α∈c of X. Proposition 14 ensures that for
all α ∈ c there is an EG-invariant Borel set Cα ⊆ X such that xα ∈ Cα,
ϕ−1α (Cα) is comeager, and there is a Borel 3-coloring cα of G � Cα.
Set Dα = Cα \

⋃
β∈αCβ for all α ∈ c, and observe that the function

c =
⋃
α∈c cα � Dα is as desired.

Suppose that X is a Hausdorff space and I is an ideal on X. We say
that a set B ⊆ X is I-measurable if for every I-positive analytic set
A ⊆ X, there is an I-positive analytic set contained in A∩B or A\B.
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Suppose that X and Y are Hausdorff spaces and I and J are ideals
on X and Y . A cohomomorphism from X to Y is a function ϕ : X → Y
which sends I-positive analytic subsets of X to J -positive analytic
subsets of Y .

We say that I is a Baire ideal if for every I-positive analytic set A ⊆
X, there is a continuous cohomomorphism from the ideal of meager
subsets of ωω to I � A. Obviously the ideal of meager subsets of a
Polish space is a Baire ideal, as is the ideal of Silver null subsets of 2ω.
As far as we know, every structural dichotomy theorem of descriptive
set theory can be rephrased as asserting that a natural auxiliary ideal
is a Baire ideal.

It is easy to see that if X is a Hausdorff space and I is a Baire ideal
on X, then every ω-universally Baire subset of X is I-measurable, thus
every ω-universally Baire measurable function on X is I-measurable.
In particular, it follows that under add(meager) = c, every acyclic
locally finite analytic graph on a Hausdorff space admits a 3-coloring
which is simultaneously measurable with respect to all ideals arising
from structural dichotomy theorems.

3. Measurable colorings of locally countable graphs

It is well known that there is an acyclic locally countable Borel graph
on 2ω which does not have a Baire measurable ω-coloring. As we shall
see in this section, there is nevertheless a natural family of ideals I for
which such graphs admit I-measurable 3-colorings.

Let m denote the usual product measure on 2ω. We say that I
is a Lebesgue ideal if for every I-positive analytic set A ⊆ X, there
is a continuous cohomomorphism from the ideal of m-null subsets of
2ω to I. Given a probability measure µ on a Polish space X, the
ideal of µ-null subsets of X is a Baire ideal, as is the ideal of Silver
null subsets of 2ω. Many of the ideals associated with descriptive set-
theoretic dichotomy theorems are also Lebesgue ideals.

Proposition 17. Suppose that X is a Hausdorff space, G is an acyclic
locally countable analytic graph on 2I , and I is an ideal on X which is
both a Baire ideal and a Lebesgue ideal. Then every I-positive analytic
set A ⊆ X contains an I-positive Borel set B ⊆ X such that G � [B]E
admits a Borel 3-coloring.

Proof. By Proposition 9, we can assume that X is standard Borel and
G is Borel. Set E = EG. As I is a Baire ideal, there is a continuous
cohomomorphism ϕ : ωω → X from the ideal of meager subsets of ωω

to I. By Theorem 5, there is a Borel set C ⊆ A such that ϕ−1(C) is
comeager and E � C is hyperfinite.
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As C is I-positive and I is a Lebesgue ideal, there is a continuous
cohomomorphism ψ : 2ω → C from the ideal of m-null subsets of 2ω to
I � C. By Theorem 4, there is a Borel set B ⊆ C such that ϕ−1(B) is
m-conull and G � [B]E admits a Borel 3-coloring.

Theorem 18 (ZFC+add(meager) = c). Suppose that X is a Hausdorff
space, G is an acyclic locally countable analytic graph on X, and I is
an ideal on X which is a Baire ideal and a Lebesgue ideal. Then there
is an I-measurable 3-coloring of G.

Proof. Clearly we can assume that X = dom(G). Fix enumerations
(Aα)α∈c of all I-positive analytic subsets of X and (xα)α∈c of X. Propo-
sition 17 ensures that for all α ∈ c there is an I-positive Borel set
Bα ⊆ Aα such that xα ∈ Bα and there is a Borel 3-coloring cα of
G � Bα. Set Cα = [Bα]E \

⋃
β∈α[Bβ]E for all α ∈ c, and observe that

the function c =
⋃
α∈c cα � Cα is as desired.
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