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Abstract. We give a survey of the study of nonstandard models in recursion
theory and reverse mathematics. We discuss the key notions and techniques
in effective computability in nonstandard models, and their applications to
problems concerning combinatorial principles in subsystems of second order
arithmetic. Particular attention is given to principles related to Ramsey’s
Theorem for Pairs.
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1. Introduction

The existence of a nonstandard model of Peano arithmetic (PA) was proved by
Skolem [57] eighty years ago (see also [58] for an exposition twenty years later). In
the ensuing years, the study of nonstandard models expanded in the main to higher
order structures with applications to classical mathematics by way of nonstandard
analysis, pioneered by Abraham Robinson [49]. However, the investigation of mod-
els of PA stayed very much within the theory itself (see Kaye [32]). The introduction
in 1978 by Kirby and Paris [33] of a hierarchy of fragments of PA paved the way
for applying nonstandard models to recursion theory. This began with Stephen
G. Simpson’s unpublished proof in 1984 of the Friedberg–Muchnik Theorem under
the hypothesis of Σ1 induction.

The study of recursion theory in nonstandard models is motivated by two general
problems: First, capture the essence of computability from the perspective of defin-
ability. The equivalence between Σ1 definability and recursive enumerability in N

(the set of natural numbers) serves as an inspiration to investigate computability in
general domains anchored on definability. Second, understand the proof-theoretic
strength of theorems in recursion theory. In the spirit of reverse mathematics, the
central question of reverse recursion theory asks for an analysis of the strength
of mathematical induction required to prove theorems in recursion theory. Since
induction is at the heart of any set construction in recursion theory, this question
effectively summarizes the aims and objectives of the subject. These two consider-
ations naturally lead to an axiomatic approach to computability theory, and with
that the investigation of models—particularly nonstandard models—of fragments
of PA.

The first explicit study of nonstandard models in recursion theory appeared in
Slaman and Woodin [61] which gave a positive solution to Post’s problem under the
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weaker assumption of Σ1 bounding. This was followed by a systematic investigation
(Groszek and Slaman [26]) of the basic properties of computability in models of
fragments of PA. From the late 1980’s, much effort was invested in characterizing
the inductive strength of theorems proved using priority constructions (cf. Chong
and Yang [14, 15], Mytilinaios [47], Mytilinaios and Slaman [48]).

From its inception, the development of the subject was influenced by both reverse
mathematics and higher recursion theory, especially α-recursion theory. On the
one hand, measuring the inductive strength of recursion-theoretic theorems was
a program with foundational flavor grounded in the overall objective of reverse
mathematics. On the other hand, a number of important notions and techniques it
uses have their origins in α-recursion theory. For instance, the concepts of regularity
and hyperregularity were first introduced there. The blocking method in priority
constructions (Mytilinaios [47]) and the coding method in nonstandard models
(Chong and Yang [14]) were inspired by Shore’s earlier works [53, 54] (as will be
discussed in Section 3). Of course, the model-theoretic approach that it adopts
to study questions in recursion theory is reminiscent of the overall philosophy of
α-recursion theory.

Before the turn of the century, the development of the subject was largely inter-
nal. The focus was on analyzing the proof-theoretic strength of a recursion-theoretic
theorem, the characterization of various types of priority constructions (in terms of
induction), and the structure of Turing degrees in models of systems weaker than
PA. In recent years, the interest has widened to include applications of nonstan-
dard models to reverse mathematics, especially problems concerning combinatorial
principles. By definition, reverse mathematics and reverse recursion theory are
proof-theoretic. This means that any question about the truth of a mathematical
statement is not only relative to the standard model or an ω-model (i.e., a struc-
ture for second order arithmetic whose first order universe is N). Indeed, there are
problems which inherently concern nonstandard models. For example, the question
whether over the base system RCA0, Ramsey’s Theorem for Pairs or the Chain
Antichain Principle (CAC) implies Σ0

2 induction. And there are questions that
on surface do not concern nonstandard models but whose solutions are found by
way of such models, for example, whether Ramsey’s Theorem for Pairs is strictly
stronger over RCA0 than its stable counterpart (Chong, Slaman, and Yang [12]).
The abundant supply of nonstandard models is a rich reservoir for the investiga-
tion of proof-theoretic questions such as these. In particular, the existence of a Σ1

reflection model in which every definable real is coded is used as the starting point
towards analyzing the complexity of Ramsey’s Theorem for Pairs (see Section 4).
Hence looking beyond the standard numbers offers a different perspective that has
proved to be useful and fruitful.

In this paper, we give a survey of nonstandard models in recursion theory and
their applications to reverse mathematics, focusing on combinatorial principles re-
lated to Ramsey’s Theorem for Pairs. We discuss the main results and techniques
used to prove them, with particular emphasis on the role of nonstandard models
in the study. It is our aim to convey to the reader a sense of how different areas
of recursion theory and model theory fit together in the investigation of interesting
and challenging problems. Following the preliminaries in Section 2, we proceed to
fragments of PA and recursion theory in Section 3. In the final section, we discuss
subsystems of second order arithmetic and Ramsey type combinatorial principles.
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We avoid detailed proofs of any theorem, but provide sketches of the key ideas
where appropriate.

2. Fragments of Peano Arithmetic and their models

The language L of first order arithmetic consists of function symbols S,+,×,
and exp where S denotes the successor function and exp the exponential function
x ↦ 2x, together with the constant symbol 0. Formulas are generated in the usual
way, and we follow the convention of defining Σ0

n and Π0
n formulas (for n ≥ 0) in

terms of their complexity. For simplicity, we omit in this section the superscript 0 in
Σ0

n and Π0
n. A relation is ∆n over a theory in L if it is provably equivalent to a Σn

relation and a Πn relation in the theory. While our focus here is on notions defined
in L, many of the basic results about first order models to be discussed below extend
to models of (fragments of) second order arithmetic and will be applied in Section
4.

2.1. The inductive hierarchy. Let PA denote the collection of axioms for Peano
arithmetic and let P − be PA minus the scheme of mathematical induction. IΣn

denotes the induction scheme for Σn formulas (allowing number parameters), and
BΣn denotes the bounding scheme

∀x < a∃y ϕ(x, y) → ∃b∀x < a∃y < bϕ(x, y)

for each Σn formula ϕ(x, y) (note that “<” is definable from “+”). Intuitively, BΣn

says that Σn formulas are closed under bounded quantifiers.
Let Exp be the statement saying that the exponential function exp is total. In

the following we assume that Exp holds. This assumption guarantees the existence
of codes for “finite” sets of numbers in a model without Σ1 induction.

Our starting point is the existence of a hierarchy of theories extracted from
fragments of PA:

Theorem 2.1 (Kirby and Paris, [33]). Over P − + IΣ0 +Exp,

⋯⇒ BΣn+1 ⇒ IΣn ⇒ BΣn ⇒⋯⇒ IΣ1⇒ BΣ1,

and the implications do not reverse.

A model of P − + IΣ0+Exp is a BΣn model if it satisfies BΣn but not IΣn. It
is an IΣn model if it satisfies IΣn but not BΣn+1. Theorem 2.1 says that for each
n ≥ 1, there is a BΣn model and an IΣn model. Such models are constructed by
taking appropriate Σn Skolem hulls inside a model.

It was also shown in [33] that IΣn, IΠn, LΣn (the least number principle for
Σn sets) and LΠn are all equivalent. It turns out that BΣn is equivalent to the
∆n induction scheme I∆n as well as the least principle L∆n (Slaman [60]), thus
presenting the Kirby–Paris hierarchy as a sequence of theories based entirely on
inductive strength.

For the rest of the paper,M will always denote a model of a fragment of PA.

2.2. M-finiteness and coding. Finiteness is a fundamental notion in recursion
theory. It is known since the 1960’s that in any implementation of the idea of com-
putation to a general domain, a “correct” definition of finiteness is critical. This
was hinted at in the writings of Gandy, Kreisel, Sacks and Spector and explic-
itly expressed in Kreisel [34] where an illuminating discussion of this subject was
presented.
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IfM is nonstandard, finiteness is defined in terms of codability:

Definition 2.2. K ⊂M is M-finite if it is coded by a number c ∈M , i.e., for any
i,

i ∈K ↔ the i-th digit in the binary expansion of c is 1.

A set A ⊂M is regular if A ↾ x is M-finite for every x ∈M .

We will often not make a distinction between anM-finite set and its canonical
code inM (for example, in the definition of Turing reducibility involving quadruples
in Section 2.3 below). Clearly everyM-finite set is bounded in M but the converse
is false. For instance, in any nonstandard model of P − + IΣ0+Exp, ω is bounded
but notM-finite. The link betweenM-finite sets and induction is summarized in
the lemma below. The proof is straightforward and is omitted:

Lemma 2.3 (H. Friedman (unpublished)). Over P − + IΣ0+Exp, the following are
equivalent:

(1) IΣn.
(2) Every bounded Σn set is M-finite.
(3) Every partial Σn function maps a Σn definable bounded set onto an M-

finite set.

Definition 2.4. A nonempty bounded initial segment I of M is a cut if it is closed
under the successor function S. If, in addition, I is Σn definable, then we say that
I is a Σn cut.

For example, in the models constructed in [33] to separate BΣn and IΣn, ω is a
Σn cut.

Lemma 2.5. If M is a BΣn model, then there is a Σn cut I with a Σn definable

function f ∶ I
increasing
ÐÐÐÐÐ→

cofinal
M.

Lemma 2.3 says that in a model of IΣn, every bounded Σn definable set isM-
finite. A natural extension of this result would be that in a model of BΣn, every
bounded ∆n definable set isM-finite. In fact something stronger is true.

Definition 2.6. (1) A set X ⊆ A is coded on A if there is an M-finite set X̂

such that X̂ ∩A =X.
(2) X ⊆ A is ∆n on A if both A ∩X and A ∩X are Σn definable.

Lemma 2.7 (Chong and Mourad, [8]). Let n ≥ 1,M⊧ P −+BΣn+Exp and A ⊆M .
Then every bounded set that is ∆n on A is coded on A.

We refer to Lemma 2.7 as the Coding Lemma. In practice, the set A is often a
Σn cut I or Ik, k < ω. The Coding Lemma is a useful tool in recursion-theoretic
constructions over BΣn models. There are two ways in which it plays a role: On
the one hand the complexity of a construction may be considerably reduced by
appealing to a code (see Section 4 for an application of this idea to the study of
Ramsey’s Theorem for Pairs in second order BΣ2 models), while on the other hand
the presence of a code may imply the complete absence of certain sets in BΣn

models that have been constructed in the standard model (e.g. for n = 2 there is no
maximal r.e. set and no incomplete high r.e. set; see Section 3).
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2.3. Turing reducibility. A set is recursively enumerable (or computably enumer-
able) if it is Σ1 definable overM. A recursively enumerable (r.e.) set is recursive
(computable) if its complement is also r.e. Since Exp holds in M, one may apply
Gödel’s coding method to obtain a recursive enumeration of all r.e. sets.

Let Φe be the eth r.e. set of quadruples. If X and Y are subsets of M , then
X ≤T Y (“X is recursive in Y ”) if there is an e ∈M such that X = ΦY

e , i.e., for any
M-finite set K ⊂M ,

K ⊂X⇔ ∃P ⊂ Y ∃N ⊂ Y ⟨K,1, P,N⟩ ∈ Φe

and
K ⊂X⇔ ∃P ⊂ Y ∃N ⊂ Y ⟨K,0, P,N⟩ ∈ Φe.

It is straightforward to verify that ≤T is a transitive relation. Turing degrees are
defined in the usual way.

In the above definition, P is a “positive condition” of the oracle Y and N is a
“negative condition”. Notice that the reduction procedure is designed to answer
questions aboutM-finite sets K, rather than individual numbers x, with the help
of an oracle. The reason is that in a weak system such as P −+IΣ1, pointwise Turing
reduction is not transitive even for r.e. sets. Intuitively, if A is pointwise reducible to
B and B is pointwise reducible to C, then computing an element in A may require
anM-finite amount of information X about B which is not computable using only
M-finite amount of information about C. This could occur even though C has the
capability to make decisions on individual elements of X usingM-finite amount of
information about itself. See [26] for the construction of such an example.

2.4. Three important types of models. From the model-theoretic and proof-
theoretic points of view, the study of recursion theory calls for investigation of the
computational aspects of an arbitraryM. While this sets out the general program,
its success has been uneven. More progress is made for BΣn models than for IΣn

models. A possible explanation is that one has a better understanding of the former.
In contrast, our knowledge of IΣn models is comparatively more limited.

In general, constructing sets with prescribed properties in an M with limited
inductive strength is always a challenge. The difficulties may be resolved in certain
models, or may be insurmountable in others, entailing the nonexistence of such a
set. Here we discuss three types of models that figure prominently in this survey.

2.4.1. Projection models. As inferred from the name, M is a projection model if
there is a definable bijection between M and a proper initial segment. The inspi-
ration for the idea may be traced back to the works of Kleene, Spector and Gandy,
which collectively showed the existence of a Σ1(LωCK

1

)-injection from ωCK
1 into ω.

Jensen [29] made the idea explicit by introducing the notion of a Σn projectum and
applied it to study the fine structure of Gödel’s constructible hierarchy L.

Lemma 2.8 (Groszek and Slaman [26]). There is an IΣ1 modelM and a bijection
f ∶M → ω together with a recursive (in M) approximation f ′ such that for all x,

f(x) = lim
s
f ′(x, s).

Such a model is obtained by the Kirby–Paris construction of an IΣ1 model. The
Σ1 Skolem hull map provides the projection needed. Note that the function f is
∆2 definable via the recursive approximation f ′. The advantage of working with
a projection model is that through the recursive approximation, it “transfers” a
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construction over M to one that is over its standard part, where the full suite
of mathematical induction is available. For example, many well studied priority
arguments may be implemented upon rearranging the requirements defined recur-
sively overM into one that has order type ω. The tradeoff is that the ordering of
priorities is now ∆2 and not recursive, but one is still able to show by induction
on ω that every requirement is satisfied. This idea first appeared in the context of
metarecursion theory and is due to Kreisel and Sacks (cf. Sacks [50]).

2.4.2. Saturated models. The notion of saturation we introduce here has to do with
the existence of codes. It is a notion weaker than that of ω1-saturation in the
literature (see [2]). Lemma 2.7 guarantees that in a BΣn model, sets that are ∆n

on a cut are coded on it. This is a property internal to a BΣn model. While such
a property is sufficient in many recursion-theoretic applications (cf. Sections 3 and
4), stronger coding properties have proved to be useful for the study of problems
in reverse mathematics.

We say that M is arithmetically saturated if ω ⫋ M and every arithmetically
defined (possibly with parameters) subset of ω is coded on ω. M is saturated if any
arbitrary subset of ω is coded on ω. Clearly the universe of a saturated model is
uncountable whereas an arithmetically saturated model can be countable.

Lemma 2.9. For every n ≥ 1, there is a saturated BΣn model and a countable
arithmetically saturated BΣn model, both with ω as a Σn cut.

The existence of an ω1-saturated model of PA implies that there is a saturated
model of PA. In [61] a saturated BΣ1 model is constructed. In general, given a
saturated model of PA, one may apply the canonical construction of Kirby–Paris
to obtain a saturated BΣn model M with ω as a Σn cut. Using this, a count-
able arithmetically saturated BΣn model is defined by generating an elementary
substructure ofM over ω ∪ {a} where a ∈M is an upper bound of ω.

2.4.3. Reflection models. The third type of modelM is one endowed with cofinally
many initial segments that are Σn (or even full) elementary substructures of M,
with the additional property that each segment is also a model of PA. The ingre-
dients for constructing such a model were in McAloon [45]. Lemma 2.10 borrows
from these ingredients and blends them with arithmetical saturation. It provides
a model that is used in Chong, Slaman and Yang [12] to separate Stable Ramsey’s
Theorem for Pairs from Ramsey’s Theorem for Pairs.

Lemma 2.10. There is a countable modelM of P −+BΣ2 and a Σ2(M) increasing
function g such that

(1) M is the countable union of an increasing sequence of cuts Ii each of which
is a Σ1 elementary substructure ofM and a model of PA:

I0 ≺Σ1
I1 ≺Σ1

⋯Ii ≺Σ1
⋯ ≺Σ1

M

(2) For each i ∈ ω, g(i) ∈ Ii, and for i > 0, g(i) /∈ Ii−1. HenceM /⊧ IΣ2.
(3) M is arithmetically saturated.

The reflection model is used in [12] to carry out iterations of Σ1 definable con-
structions relative to an M-finite set of parameters. Condition (1) allows one to
argue that such a construction succeeds and ends within the cut in which the pa-
rameters are located. The situation may be phrased in the following abstract form
involving the idea of a “self-generating function”: SupposeM is an arbitrary BΣ2
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model and b ∈ M . Let f be a partial recursive function with unbounded damain
and range. Let A0 = {x ∣ x ≤ b}. For each z, let Az+1 = {x ∣ ∃y ∈ Az(x < f(y)}. By
BΣ2, each Az , if defined, is anM-finite initial segment ofM. There is no a priori
bound on the size of each Az. In general, the size of Az may “go to infinity” as z
ranges over a cut. However, condition (1) implies that in a reflection model there
is no cut I such that supz∈IAz is unbounded inM. Indeed, for any a, Az is always
defined whenever z ≤ a, and supz≤aAz is bounded in Ii where a ≤ g(i).

3. Reverse Recursion Theory

The thrust of reverse recursion theory is to study models of computation in
weak systems of PA. There are two ways in which to view this: First, as the name
entails, it may be considered to be a first order version of reverse mathematics.
Theorems in classical recursion theory are classified according to the amount of
mathematical induction needed to prove them over a base theory. The second is as
generalized theories of computability, in which models of different axiom systems
are investigated for their computational content. These two approaches merge at
the point of analyzing the techniques developed to study individual problems.

In this section, we discuss theorems in the standard model that continue to hold
in models of a weak system, and theorems that fail in what one might consider to
be “reasonable” weak systems. We also discuss methods that have been introduced
to study these problems. Concepts and ideas unique to nonstandard models will
be highlighted.

It is not difficult to see that many theorems provable in PA are provable in
P −+ IΣn for some n ≥ 1. The interesting problem quite often lies in identifying the
least such n. These are broadly referred to respectively as sufficient and necessary
conditions in the discussion below.

Remark 3.1. It is tempting to raise the following philosophical issue. If one
adopts the formalist position, then the provability of a theorem (for example the
existence of an incomplete r.e. set, see below) in one weak system but not another
may only be statement of a mathematical fact. On the other hand, there is no a
priori justification for choosing one system over another based on the preference
for a theorem to hold. Hence should the study of computability gravitate towards
a particular model, and is the standard model the most natural mathematical
structure in which to study arithmetical sets?

3.1. Analysis of proofs in the standard model. Mathematical induction is
arguably the central notion of recursion theory and this is seen, for example, in the
construction of an r.e. set and in the verification that every requirement is satisfied.
(Subsection 3.1.1). In some cases, induction may be applied implicitly, such as
the assumption that a bounded Σn set is finite (in the sense of the model. See
Subsection 3.1.3). We illustrate these points with examples where use of induction
beyond Σ0 is crucial.

3.1.1. Priority argument. In general, for n = 1,2 or 3, IΣn is sufficient for the
implementation of 0(n)-priority arguments. We exhibit three representative theo-
rems whose proofs are anchored on an analysis of the complexity of the original
arguments. For (3) of Theorem 3.2, recall that a degree a is branching if a is the
infinmum of two other degrees.
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Theorem 3.2. Over P −,

(1) (0′-priority) IΣ1 proves the Friedberg–Muchnik Theorem;
(2) (0′′-priority) IΣ2 proves the existence of a minimal pair of r.e. degrees.
(3) (0′′′-priority) IΣ3 proves the density of branching degrees.

The Friedberg–Muchnik Theorem offers an immediate view of where IΣ1 comes
into the picture. In verifying that every requirement is satisfied in a construction
for this theorem, the key step is to show that each requirement is injured at most
finitely often. Simpson noted that IΣ1 guaranteed this: We make one observation:
The set S = {e ∶ the eth requirement is injured at most 2e times} contains 0, is Π1

and closed under successor. However, there is no Π1 cut in a model of P − + IΣ1

(by an application of LΣ1). Hence S is the entire model and so every requirement
is satisfied.

Consider now the problem of obtaining a minimal pair via a tree construction.
In this setting each requirement has one of two possible outcomes: either a Π2 or
a Σ2 outcome. The source of the challenge lies in arguing that a true path exists.
This is the leftmost path on the priority tree whose initial segments are visited
infinitely often during the construction. Its existence is shown by appealing to IΣ2:
Note that for any e,

{(δ, k) ∶k ≤ e ∧ δ is a string of length k on the priority tree ∧

δ is visited infinitely often}

is bounded and Π2, and is thereforeM-finite under the assumption thatM satisfies
Σ2 induction. It follows that for each e, there is a leftmost string of length e on the
priority tree visited infinitely often. IΣ2 enables one to extend this to a true path
and the path is shown to be ∅′′-recursive. By the same analysis, the existence of a
high incomplete r.e. set and the Sacks’ Jump Inversion Theorem follows from IΣ2

as well.
Slaman [59] proved the density of branching r.e. degrees. The proof is an instance

of a 0′′′-priority argument, where the truth of a Σ3 fact is approached by a process of
approximation relative to a ∅′′-oracle. More precisely, since Σ3 statements may be
viewed as Σ1 relativized to ∅′′, a 0′′′-priority argument is essentially a finite injury
argument relative to the true path Λ of a 0′′-priority tree. As for the minimal pair
construction observed above, the true path Λ is in general recursive in ∅′′, and is
shown to exist in any model of IΣ2. Now each true Σ3 outcome, which is Σ1(Λ),
corresponds to a Friedberg–Muchnik type injury relativized to Λ. Hence to prove
the density of branching degrees, one only needs IΣ1(Λ), which is no worse than
IΣ1 relative to ∅′′. Thus P − + IΣ3 proves Theorem 3.2 (3).

3.1.2. Dynamic blocking. Even for finite injury (i.e., 0′-priority), there are con-
structions that do not conform to the Friedberg–Muchnik condition of an effective
bound on the number of times a requirement is injured. Such constructions do
not automatically generalize to all models of IΣ1. An instructive example is the
Sacks Splitting Theorem, whose characteristic feature in the original proof is the
absence of an a priori Friedberg–Muchnik type recursive bound. The main strategy
in Sacks’ proof of splitting a nonrecursive r.e. set A is to preserve every computa-
tion, and hence length of agreement, due to the requirement of highest priority. The
idea is that if the requirement fails to be satisfied, then the length of agreement and
computations being preserved will be unbounded and that forces A to be recursive.
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If one mimics the construction in an arbitrary model M of IΣ1, then there is no
assurance that each requirement is satisfied. Indeed it is possible that the set of
requirements that are satisfied constitute a (proper) Σ2 cut inM.

The proof of the Sacks Splitting Theorem for models of IΣ1, due to Mytilinaios
[47], exploits a technique called blocking in α-recursion theory introduced by Shore
[53]. Roughly speaking, blocking groups the set of requirements into a “short
sequence” of blocks of requirements such that requirements in the same block are
accorded the same priority. Such a short sequence enables a modified priority
construction to be implemented in a Σ1 admissible ordinal that would otherwise
require Σ2 admissibility. The method is adapted to the arithmetic setting, so that
a model of IΣ1 now performs the work of models of IΣ2.

Here is a brief description of blocking with details glossed over. Suppose we wish
to split A into the disjoint union of A0 and A1. First fix e0 > 0 and consider the
requirements Re, e ≤ e0 and of the type ΦA0

e ≠ A1, as one block B0 all given the
same (highest) priority. In splitting the nonrecursive r.e. set A, every computation
and length of agreement due to a requirement in B0 is preserved, as we do not
allow a requirement in B0 to injure another requirement in the block. The length
of agreement for B0 is the sum of the lengths of agreement for requirements in the
block. Collectively, if the size of preserved computations in B0 “goes to infinity”
over time, one argues that A is recursive and arrives at a contradiction. Hence
there is a least bound e1 (which exists by IΣ1) on the length of agreement for B0.
Now the requirements in [e0 + 1, e1] of the type ΦA1

e ≠ A0 form the next block B1

and a similar argument shows that there is a bound e2 on the length of agreement
for B1. The construction continues in this way by induction.

In an actual implementation, the number e1 is obtained in the limit and therefore
not recursively computable. Hence the size of the block B1 is dynamic and is a
function of the construction itself (it is in fact Σ2(M) definable). As a consequence,
{d ∶ Bd is defined} is a Σ2 cut in the modelM of IΣ1. It is worth noting that the
dynamic aspect of blocking, where the size of each block is determined by the
construction, is necessary and unique to nonstandard models (dynamic blocking
has also been applied to study BΣ2 models). It ensures that each requirement will
belong to some Bd, even if the map d ↦ Bd is not total. Such a dynamic approach
to forming blocks is not present in the case of admissible ordinals, where the Σ2

cofinality function for the ordinal essentially predetermines the size of each block.

3.1.3. Implicit inductive strength. Priority constructions are not the only venue
where Σn induction is invoked. Two “priority-free” theorems about r.e. sets due to
Friedberg [24] use IΣ2 in the proof and, as it turns out, fail in its absence.

Theorem 3.3. Over P −, IΣ2 proves:

(1) There exists a maximal r.e. set.
(2) There is a Friedberg numbering, i.e., an effective enumeration of all r.e. sets

without repetition.

Suppose {We}e∈M is a standard enumeration of all r.e. sets. Construction of
a maximal set typically applies the e-state method: Given n, the e-state of n at

stage s is ∑e′≤e,n∈W
e′ ,s

2e−e
′

. In the standard model, one proves the existence of a

maximal e-state ie which is the eventual e-state of infinitely many n’s. Now ie is
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the maximal element of the following Π2 definable bounded set:

Se = {i < 2
e ∶ ∀m∃n >m∃s (i ≤ e-state of n at stage s)}.

IΣ2 guarantees that Se has a maximal element and hence maximal sets exist in
models of P − + IΣ2.

An analogous situation applies in the construction of a Friedberg numbering,
which as shown in Kummer [35], can be priority free. The proof exploits the fact
that given e and any effective list of r.e. sets {Ae},

{i ∶ i ≤ e ∧Ai = Ae}

has a least element. This is an instance of LΣ2 which as noted earlier is equivalent
to Σ2 induction.

3.2. Recursion theory of BΣn models. The discussion in Section 3.1 raises the
natural question of necessity: whether 0(n)-priority constructions can be imple-
mented without IΣn. In fact, one could even ask whether the theorems whose
proofs historically relied on the priority method could be established in its absence
and with weaker induction hypothesis. More specifically, can the conclusions in
Theorem 3.2 and Theorem 3.3 be proved, without the use of the priority method
and in systems weaker than those stated? It turns out that in many cases the an-
swers are negative. We discuss examples of theorems which are provably equivalent
to IΣn over the base theory BΣn for some n. These results say that the failure of
a priority construction in a model entails the failure of the theorem itself, so that
the use of IΣn in the construction was crucial.

We take as our base theory P −+BΣn and examine recursion-theoretic questions
in BΣn models, with particular focus on n = 1,2 and 3.

3.2.1. Cuts and Codes. In Section 2 it was observed that every BΣn model has a
Σn cut. A Σn cut is a canonical example of a non-regular Σn set. More than just a
curiosity, Σn cuts carry with them useful degree-theoretic and coding information
that has proved to be important to the construction of sets. Here is a summary of
the key properties of a Σn cut:

Theorem 3.4 ([9, 42, 46, 61]). Suppose I is a Σn cut in a BΣn model. Then

(1) All Σn cuts have the same Turing degree;
(2) I is neither recursive nor Σn-complete, hence a solution of Post’s problem

for n = 1;
(3) I and ∅(n−1) form a minimal pair. If n = 1, then I is of minimal Σn degree,

and therefore a counterexample to Sacks’ Splitting Theorem;
(4) Every bounded set recursive in ∅(n) is recursive in I.

The proof of Theorem 3.4 makes extensive use of special features of a Σn cut
including its coding property. To give the reader a taste of how one may exploit
these, we describe the proof of Theorem 3.4 (2) and (3) when n = 1. This is one
place in the paper where we delve into technical details.

We first give a short proof that a Σ1 cut I is a nonrecursive incomplete r.e. set,
and then show that it is in fact a set of minimal r.e. degree.

Clearly I is r.e. and nonrecursive. To construct an r.e. set A such that A /≤T I,
we note two points:
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(i) Since I is downward closed, a computation using I as an oracle may be
simplified: A positive condition is contained in I if and only if its maximal
element is in I, and a negative condition is contained in I if and only if its
minimal element is in I.

(ii) Let f ∶ I → M be a Σ1 cofinal function. This function enables one to
“compress” space and time for the purpose of construction. In particular
a construction is completed in I-many stages if at stage i ∈ I one executes
f(i)-many steps of computation.

Suppose we wish to construct an r.e. set A so that for each e, the eth requirement
Re: ΦI

e ≠ A is satisfied. Fix a to be an upper bound of I. For Re, we assign the
space [⟨e,0⟩, ⟨e, a⟩] in which to perform the required diagonalization. At stage i,
we enumerate triples (⟨e, x⟩, p, n) < f(i) such that 0 ≤ x ≤ a, p ∈ I, n is the largest

number that appears to be in I, and (⟨e, x⟩,0,{p},{n}) ∈ Φe,f(i). For the largest n
where such a triple is enumerated, choose a corresponding ⟨e, x⟩ that is not yet in
A and enumerate it into A. Since [⟨e,0⟩, ⟨e, a⟩] has size a+1, there is an ⟨e, x⟩ that
never enters A. If ΦI

e = A, then ΦI
e(⟨e, x⟩) = 0 and this fact is enumerated at some

stage i with correct positive and negative conditions. But then by the construction,
at stage i some ⟨e, y⟩ with a negative condition at least as large as that for ⟨e, x⟩ is
enumerated into A. Thus ΦI

e(⟨e, y⟩) = 0 ≠ A(⟨e, y⟩).
Imbedded in a Σn cut is an abundance of codes which may be uncovered using

the Coding Lemma (2.7). Theorem 3.4 (3) is proved applying this idea. We discuss
how this is done for n = 1, following the notations used above:

Assume that ΦI = A. If A is not regular, we claim that A computes I. Let i ∈ I be
fixed so that A ↾ f(i) is not regular. ThenG = {(j, x) ∶ x < f(i) ∧ x ∈ Af(j)∖Af(j−1)}

is ∆1 on I × [0, f(i)] and hence coded on I × [0, f(i)] by a Ĝ according to Lemma

2.7. Then j ∉ I if and only if there is a j′ ≤ j and x ∉ A such that (j′, x) ∈ Ĝ. Hence
I ≤T A.

On the other hand, if A is regular then we claim that A either computes I or
is recursive. Regularity implies that A ↾ f(i) is M-finite for every i ∈ I. By BΣ1,
A ↾ f(i) = Af(k) ↾ f(i) for some k. Let (i, j, k) ∈ G if and only if Af(j) ↾ f(i) =

Af(k) ↾ f(i). Since G is ∆1 on I3, by the Coding Lemma it is coded, say by Ĝ.

Suppose Af(j) ↾ f(i) = A ↾ f(i). Then for all k > j in I, (i, j, k) ∈ G ⊂ Ĝ. Since

I has no maximal element in M , by overspill ki,j = max{k > j ∶ (i, j, k) ∈ Ĝ} ∈ I.
The set J = {ki,j ∶ i < j ∈ I ∧ Af(j) ↾ f(i) = A ↾ f(i)} is r.e. in A. There are

two possibilities to consider: The first is that J is cofinal downwards in I and that
implies that I is r.e. in A as well and so I ≤T A. The other possibility is that there
is an a ∈ I which is a lower bound of J . Then for any i < j ∈ I,

Af(j) ↾ f(i) = A ↾ f(i) ↔ ∃k > a∀k
′ ∈ [j, k] (i, j, k′) ∈ Ĝ,

which implies that A is recursive.
Note that in the above argument, essential use was made of the recursive enu-

merability of A to enable the coding of G. This is not always possible if A has a
higher complexity such as ∆2. However, if M is saturated then the existence of
codes paints a vastly different picture for the structure of Turing degrees, even for
those below 0′:
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Theorem 3.5 ([8, 42]). SupposeM is a saturated BΣ1 model and I is a Σ1 cut in
M. Then all degrees below 0′ are r.e. Furthermore, I is an r.e. set with a minimal
Turing degree.

This leads to the first two questions that we pose in this paper:

Question 1. IfM is a BΣ1 model, is the Σ1 cut I necessarily of minimal degree?

Question 2. Is there a BΣ1 model in which a non-r.e. degree exists below 0′?

Together with Theorem 3.4 (3), Theorem 3.6 implies, among other things, that
the existence of a low r.e. set is not provable in P − +BΣ1:

Theorem 3.6 ([15, 17]). Let n ≥ 1 and let M be a BΣn model with Σn cut I.

Then the jump of I is not recursive in ∅(n).

Returning to the origin of the priority method, we remark that the Friedberg–
Muchnik Theorem continues to hold even when 0′-priority constructions break
down. The proof makes use of nonregular sets in the framework of “union of cuts”
where diagonalization takes place to produce r.e. sets of incomparable degrees:

Theorem 3.7 ([8]). P − +BΣ1 proves the Friedberg–Muchnik Theorem.

By Theorem 3.4 (3), any pair of incomparable r.e. sets has to consist of nonreg-
ular sets whose Turing degrees lie strictly above that of I. Another example where
the original priority construction (Cooper [19]) completely fails but the theorem re-
mains true concerns the existence of a proper d-r.e. degree (a degree that contains
a set that is the difference of two r.e. sets, but contains no r.e. set) stated below,
whose proof exploits the coding power of a Σ1 cut:

Theorem 3.8 (Li [42]). P − +BΣ1 proves there is a proper d-r.e. degree.

Remark 3.9. There is an obvious nonuniformity in the proofs of Theorem 3.7
and Theorem 3.8: If M is a model of P − + IΣ1, then the 0′-priority method is
applicable. On the other hand, if IΣ1 fails, then one works with nonregular sets
using completely different, non-priority constructions to establish the results. In
fact, in the case of Theorem 3.8, one has the rather unexpected situation that every
d-r.e. degree below 0′ is r.e., and hence the proper d-r.e. degree constructed in Li
[42] does not lie below 0′.

Question 3. (1) Is there a uniform proof of the Friedberg–Muchnik Theorem
in P − +BΣ1?

(2) Is there a uniform proof of the existence of a proper d-r.e. degree in P − +
BΣ1?

We end our discussion of BΣ1 models with the observation that Theorem 3.6
implies that the existence of a low r.e. set is equivalent over P − + BΣ1 to Σ1

induction. This is somewhat surprising since in the classical proof, the construction
of a low r.e. set uses a finite injury method that is not significantly different from
that of an incomparable pair of r.e. sets for the Friedberg–Muchnik Theorem or a
proper d-r.e. set, and yet Theorems 3.7 and 3.8 imply that the low set theorem and
the two latter theorems have different proof-theoretic strengths.

We now shift our attention to the subsystem P −+BΣ2 and consider constructions
of r.e. sets that typically involve the use of IΣ2. These include questions such as the
existence of a maximal r.e. set, the existence of a Friedberg numbering (see Theorem
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3.3), the existence of an incomplete high r.e. set, the Sacks Density Theorem and the
Sacks Jump Inversion Theorem. It turns out that except for the Density Theorem,
all of these are equivalent to IΣ2 over the base theory P − +BΣ2. As will be seen,
an underlying thread that links these negative results is the coding power of a Σ2

cut. The discussion begins with another application of coding concerning maximal
r.e. sets. Coding will be discussed in conjunction with the notion of hyperregularity
in the next Subsection 3.2.2.

Theorem 3.10. Let M be a BΣ2 model and A be an r.e. set whose complement
is not M-finite. Then there exists an r.e. set W such that both A ∩W and A ∖W
are unbounded. Hence A is not maximal.

Proof. (Sketch) Since the complement of A is a Π1 set, we have a ∆2 increasing

enumeration h of the elements of A. We consider two cases, depending on whether
the domain of h is a cut or all of M , which informally says whether the order type
of A is short or long.

Case 1. The domain of h is a Σ2-cut I. Let a be an upper bound of I. Recursively
enumerateM into a-many pairwise disjoint sets {Se ∶ e < a} so that each Se contains

at most one element in A. This can be done since the order type of A is “less than”
a (see Chong and Yang [16] for details). Consider the set:

G = {(i, e) ∶ i ∈ I ∧ e < a ∧ h(i) ∈ Se}.

Observe that G is ∆2 on I×[0, a). By the Coding Lemma (2.7), there is anM-finite

set Ĝ such that Ĝ∩ I × [0, a) = G. Let W = ⋃{Se ∶ ∃k(2k, e) ∈ Ĝ}. W is r.e. since Ĝ

is a parameter. Clearly,W ∩A ⊇ {h(2k) ∶ 2k ∈ I} and A∖W ⊇ {h(2k+1) ∶ 2k+1 ∈ I}
are both unbounded.

Case 2. The domain of h is M . The idea is to define an r.e. set A∗ ⊃ A with
complement of order type I, and then apply Case 1.

�

Remark 3.11. The technique to show that maximal r.e. sets do not exist in some
models of computation goes back to Lerman and Simpson [39] who proved that
there is no maximal ℵLω-r.e. set. In their proof, the existence of codes for definable
subsets of ω was used to recursively split any unbounded Π1 set.

3.2.2. Hyperregularity in the absence of Σ2 Induction. The notion of hyperregu-
larity also has its origin in α-recurion theory. It was adapted by Mytilinaios and
Slaman in [48] to study infinite injury priority constructions in BΣ2 models,, espe-
cially in relation to the existence of nonelow r.e. sets.

Definition 3.12. LetM be a model of P −+IΣ0+exp. A set A ⊆M is hyperregular
if every partial A-recursive function maps a bounded set onto a bounded set.

In a model of P − + IΣ1, every recursive set is hyperregular. This is false for a
BΣ1 model. A hyperregular set may be characterized in several ways, but they all
point to the limited computational power of the set:

Lemma 3.13 ([48]). Let M be a model of P − + IΣ0+Exp. Let A ⫅M be regular.
Then the following are equivalent.

(1) A is hyperregular.
(2) IΣ1 relative to A holds.
(3) For every e, WA

e is regular.
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Shore [54] first made the connection between a hyperregular α-r.e. set and its
jump. He showed, for example, that every incomplete ℵLω-r.e. set is low. In the
arithmetic setting, this was first seen through the lens of a saturated model:

Theorem 3.14 (Mytilinaios and Slaman [48]). Let M be an arithmetically satu-
rated BΣ2 model with ω as Σ2 cut. If A is r.e. and hyperregular in M, then A is
low.

The key idea of the proof is as follows. Let f be an increasing Σ2 cofinal function
with domain ω. Given i ∈ ω, the set A′ ∩ [0, f(i)] is Σ1(A) and its enumeration is
completed by stage f(j) for some j ∈ ω according to the hyperregularity of A. Let
j(i) be the least such j. Then by arithmetical saturation, G = {(i, j(i) ∶ i ∈ ω} is

coded by anM-finite set Ĝ. Then ∅′ may use Ĝ to compute A′, so that A is low.
At the other end of the scale are the non-hyperregular r.e. sets. Far from be-

ing low, they all occupy the highest r.e. degree (Chong and Yang [14], Groszek,
Mytilinaios and Slaman [25]):

Theorem 3.15. LetM be a BΣ2 model. Then every non-hyperregular r.e. set in
M is complete.

The proof is yet another application of the Coding Lemma (2.7). Suppose A is
non-hyperregular and r.e. Let h be a partial A-recursive function from a bounded
set with unbounded range. By redefining h if necessary, we may assume that the
domain of h is a cut I (which is Σ1(A)). For each i ∈ I, the effective enumeration
of ∅′ ↾ h(i) is completed by stage h(j) for some j ∈ I. Then G = {(i, j) ∶ ∅′ ↾ h(i) =

∅′
h(j) ↾ h(i)} is ∆2 on I × I and hence coded by anM-finite set Ĝ. This gives A an

algorithm to compute ∅′: For each i ∈ I, let j(i) be the least j such that (i, j) ∈ Ĝ.
Then ∅′ ↾ h(i) = ∅′

h(j(i)) ↾ h(i).

Theorems 3.14 and 3.15 together say that in an arithmetically saturated BΣ2

model, the following dichotomy holds for an r.e. set A: Either A is non-hyperregular
and hence complete, or A is hyperregular, hence IΣA

1 holds and A is low. In fact,
the proof of Theorem 3.14 can be easily modified to show that hyperregular ∆2

sets are low. In an arithmetically saturated BΣ2 model, this means that every
incomplete ∆2 set is low. The abundance of low sets is exploited to separate
Ramsey’s Theoren for Pairs from its stable counterpart. We will elaborate on how
this is done in Section 4.

The conclusion of Theorem 3.14 relies heavily on the use of codes for definable
subsets of a Σ2 cut. Such codes may not be available for arbitrary BΣ2 models. In
particular, not every hyperregular r.e. set is automatically low. By a finer analysis of
hyperregularity, Chong and Yang [14] characterized the possible jump of an r.e. set
in an arbitrary BΣ2 model, in terms of a “Three-point Theorem”:

Theorem 3.16. LetM be a BΣ2 model. The jump of an r.e. set is Turing equiva-
lent to either ∅′, ∅′′ or I ⊕∅′, where I is a Σ2 cut inM. Moreover, no incomplete
r.e. set is high.

The above theorem together with Theorem 3.7 relativized to the degrees above
the degree of I ⊕∅′ gives us the strength of Sacks’ Jump Inversion Theorem:

Corollary 3.17. Over the base theory P − +BΣ2, the Sacks Jump Inversion The-
orem is equivalent to Σ2 induction.
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By Theorem 3.15 every incomplete r.e. set is hyperregular. This is a key ingre-
dient in the proof of the following theorem due to Groszek, Mytilinaios and Slaman
[25], where they exploit the fact that given r.e. sets A <T B in a BΣ2 model, A
is hyperregular and therefore Σ1(A) induction holds. This allows a 0′′-priority
construction to succeed:

Theorem 3.18. P − +BΣ2 proves the Sacks’ Density Theorem.

Remark 3.19. One can show that the Sacks Density Theorem holds in the pro-
jection model. Since such a model satisfies IΣ1 but not BΣ2, we conclude that this
theorem is not equivalent to BΣ2 over the base system P − + IΣ1. Indeed, every
theorem discussed in this paper proved using a 0′′-priority construction holds in
the projection model. It is still open whether the Sacks’ Density Theorem holds in
every IΣ1 model.

3.3. Promptness. The next three results all pertain to the notion of promptness
which is a property about dynamic enumeration of r.e. sets introduced by Maass
[44]. One of its most striking applications was the characterization due to Ambos-
Spies, Jockusch, Shore and Soare [1] of prompt r.e. sets as precisely those that are
not half of a minimal pair, an equivalence which continues to hold in any BΣ2

model.

Definition 3.20. Assume IΣ1. An r.e. set A is prompt if there is a total recursive
function h such that for all infinite r.e. set W ,

∃s∃x (x is enumerated into W at stage s ∧ As ↾ x ≠ Ah(s) ↾ x).

A rather unexpected phenomenon about promptness is its omnipresence in the
nonrecursive r.e. sets of any BΣ2 model (Chong, Qian, Slaman and Yang [6]):

Theorem 3.21. LetM be a BΣ2 model. Then any nonrecursive r.e. set is prompt.
Hence there is no minimal pair of r.e. sets in M.

The main idea of proving Theorem 3.21 is as follows. Let M be a BΣ2 model
with Σ2 cut I. Let a be an upper bound of I. Given a nonrecursive r.e. set A,
construct a-many (partial) recursive functions {gn ∶ n < a}. The intention is to make
each gn witness the promptness of A. For a given r.e. set W , when an element x
enters W say at stage s, we delay the definition of gn(s) until we see a change in
A ↾ x. If W offers us infinitely many chances and A is not recursive, then we will
see such a change in A and gn will witness the promptness of A for W . Of course
W may be finite, in which case gn is partial. The lack of Σ2 induction is exploited
to make this strategy succeed.

In addition to not being half of a minimal pair, prompt r.e. sets are also low
cuppable in the standard model: An r.e. degree a is cuppable if there is an r.e. degree
b such that a ∨ b = 0′. It is low cuppable if b is low. In [1] it was proved that any
prompt r.e. set is low cuppable. The argument may be adapted to any model of
P − +BΣ2. Thus by Theorem 3.21,

Corollary 3.22. Over the base theory P − + BΣ2, the following are equivalent to
IΣ2:

(1) The existence of a minimal pair of r.e. degrees;
(2) The existence of a noncuppable r.e. degree.
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3.4. Σ3 induction. The existence of a minimal pair says that 0 is a branching
degree, namely the infimum of two incomparable degrees. Given an r.e. set A, by
relativising the proof of Theorem 3.21 to A, we conclude that deg(A) is branch-
ing implies IΣ2(A). In particular when A is high, IΣ2(A) is equivalent to IΣ3.
Consequently the density of branching degrees is provably equivalent to IΣ3: The
sufficiency of IΣ3 (Theorem 3.2 (3)) follows from an adaptation of the original
0′′′-priority argument in [59]. The other direction can be shown as follows: If M
is a BΣ3 model in which the branching degrees are dense, apply IΣ2 to fix two
high degrees h1 < h2. Then there is a high branching degree h in M such that
h1 < h < h2. By the remark above,M ⊧ IΣ3. Thus

Theorem 3.23. Over the base theory P − +BΣ3, the density of branching degrees
is equivalent to IΣ3.

As far as we know, the density of branching degrees is the only known “natural”
example of a theorem about r.e. degrees equivalent to IΣn for n > 2. By “natural”
we mean a theorem that is not part of a family of results obtained by relativizing
a theorem provably equivalent to IΣ2 over BΣ2, such as the existence of highn or
lown+1 r.e. degrees for n > 1. One suspects that there exist other “textbook exam-
ples” concerning r.e. degrees that demonstrate a proof-theoretic strength beyond
Σ2 induction.

Question 4. Is Lachlan’s nonsplitting theorem [36] or nonbounding theorem [37]
equivalent to IΣ3 over the base theory P −+BΣ3? The same question applies to the
existence of a Slaman triple [55].

A problem related to the above discussion concerns base theory: Taking P −+IΣk

as the base theory, for each n > k, is there a theorem about r.e. degrees provably
equivalent to IΣn? A partial answer is provided in Chong, Shore and Yang [10]:

Theorem 3.24. Over the base theory P − + IΣ4, for each n > 4 there is a sentence
ϕn about r.e. degrees equivalent to IΣn.

3.4.1. Minimal degrees. Sacks’ construction of a minimal degree below 0′ may be
carried out in models of P − + IΣ2. However, the same construction encounters
insurmountable hurdles in BΣ2 models. The situation is very similar to that in α
recursion theory for Σ2 inadmissible cardinals such as ℵL

ω . Rather unexpectedly,
every Σ2 cut in a saturated BΣ2 model is a set of minimal degree. The same is
true of a saturated BΣ1 model. In this case a Σ1 cut, which is r.e., is a set of
minimal degree. Hence over the base theory P − +BΣ2, the existence of a minimal
degree does not imply IΣ2. Nevertheless, since every set in a BΣ2 model that is
recursive in ∅

′ is regular, the following question makes sense and seems to be the
right question to ask:

Question 5. Over the base theory P −+BΣ2, does the existence of a minimal degree
below 0′ imply IΣ2?

3.5. Summary of results. We compile a list of what is known about sets and
Turing degrees, in the order of increasing inductive strength.

● P − + IΣ0 +BΣ1+Exp implies the Friedberg–Muchnik Theorem.
● Over the base theory P − + IΣ0 + BΣ1+Exp, the following are equivalent:
[17, 42, 47, 46]:
(1) IΣ1;
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(2) The existence of a low non-recursive r.e. degree;
(3) The existence of a proper d-r.e. degree below 0′;
(4) The Sacks Splitting Theorem;
(5) The Low Basis Theorem.

● P − +BΣ2 implies the Sacks Density Theorem [25].
● Over the base theory P − +BΣ2, the following are equivalent [16, 14, 6, 16,
41, 62]:
(1) IΣ2;
(2) The existence of a high incomplete r.e. degree;
(3) The existence of a low2 and non-low r.e. degree;
(4) The Sacks Jump inversion Theorem;
(5) The existence of an r.e. minimal pair;
(6) The existence of a maximal r.e. set;
(7) The existence of a Friedberg numbering;
(8) The existence of a non-cuppable r.e. degree.

● Over the base theory P − +BΣ3, the following are equivalent:
(1) IΣ3;
(2) The density of branching r.e. degrees.

As can be seen, most of the equivalences are with IΣn over the base theory
P − + BΣn. Little is known about equivalence with BΣn+1 over the base theory
P − + IΣn.

Question 6. Is there a theorem in recursion theory which is equivalent to BΣ2

over the base theory P − + IΣ1?

4. Second Order Arithmetic and Ramsey’s Theorem for pairs

We now turn to applications of nonstandard models to reverse mathematics. The
language of second order arithmetic expands that of first order by adding set vari-
ables X,Y,Z, . . . and parameters that denote subsets of the underlying universe of
a structure. We allow a first order formula to include set parameters and variables,
and use Σ0

n and Π0
n for formulas which in the previous sections were denoted Σn

and Πn respectively (recall that only first order objects were involved previously).
RCA0 is the system consisting of P − + IΣ0

1, and the ∆0
1-comprehension scheme:

(∀x(ϕ(x)↔ ψ(x)) → ∃X∀x(x ∈X ↔ ϕ(x)),

where ϕ is Σ0
1 and ψ is Π0

1. RCA0 is the base theory for the study of reverse
mathematics. Although there is a well-defined hierarchy of systems of increasing
proof-theoretic strength in the literature (known as the big five systems), our in-
terest in this section is at a relatively “low” level, below ACA0 which is the system
extending RCA0 that incorporates the arithmetical comprehension scheme. Despite
such a restriction, it is sufficiently strong for the study of a rich collection of prob-
lems concerning combinatorial principles. Consistent with the general theme of this
paper, we devote our attention almost exclusively to nonstandard models of RCA0.

A modelM of RCA0 is a structure of the form ⟨M,X,0, S,+,×,<⟩ where X ⊆ 2M .
Since M ⊧ P −, ω is an initial segment of M . We say that M is an ω-model if
M = ω. The models that are of key interest to us are non-ω-models that satisfy
BΣ0

2 but not IΣ0
2. We commence the discussion by recalling the theorem that is

the subject of this section.
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Theorem 4.1. (Ramsey’s Theorem for Pairs (RT2
2)) If h is a function mapping

(unordered) pairs of numbers into {0,1}, then there is an infinite set H and an
i ∈ {0,1} such that h(a, b) = i for any a, b ∈H.

Thus every two-coloring of pairs of numbers has an infinite monochromatic sub-
set. We say that H is homogeneous for the two-coloring h. We will consider RT

2
2

and related principles, including those that it implies. Collectively we refer to these
as “Ramsey-type” principles. Taking RCA0 as the base theory, we will look at
the role played by induction scheme in relation to the proof-theoretic strength of
Ramsey-type principles. This statement deserves elaboration and is best explained
by listing a number of basic questions: First, given a Ramsey-type principle P,
does RCA0 + P prove an induction scheme stronger than IΣ0

1, a scheme that is al-
ready guaranteed by RCA0? Second, if P1 and P2 are two Ramsey-type principles,
does RCA0 +P1 prove more first order theorems than RCA0 +P2 if P2 follows from
RCA0 + P1? Third, under the same hypothesis that P2 follows from RCA0 + P1, is
the implication strict, i.e., does P1 follow from RCA0 +P2? Finally, if the answer is
negative, would a stronger induction scheme accomplish the job? In what follows
we discuss these questions and the techniques of nonstandard models that have
been introduced to study them. We begin with the inductive strength of combina-
torial principles and “work our way up” the rest of the questions. From now on,
all models considered are models of RCA0.

4.1. Σ0
2-bounding. The first key fact to note is the following proposition:

Proposition 4.2. P − + IΣ0
2 proves “Every recursive two-coloring of pairs of num-

bers has an infinite homogeneous set”.

Note that the existence of a homogeneous set should be viewed “externally”: it
is not claimed that the homogeneous set belongs to a given model of P − + IΣ0

2.

Proof. Theorem 4.2 of Jockusch [30] states that every recursive two-coloring of
pairs of numbers has an infinite Π0

2-homogeneous set. A close examination shows
that the construction of the homogeneous set may be carried out within the system
P − + IΣ0

2. �

Definition 4.3. Given models Mi = ⟨Mi,Xi, S,+,×,0⟩ where i = 0,1, we say that
M1 is an M0-extension ofM0 if M0 =M1 and X0 ⊆ X1.

Thus an M -extension of M = ⟨M,X, S,+,×,0⟩ is an extension which preserves
the first order universe M but may expand its second order collection X. With
extra effort, one obtains a reverse mathematics version of Proposition 4.2:

Theorem 4.4 (Theorem 10.1 of [3]). Every model M of RCA0 + IΣ
0
2 has an M -

extension that satisfies in addition RT
2
2.

Chubb, Hirst and McNicholl [18] defined a Ramsey type coloring principle on bi-

nary trees denoted TT
1: Every finite coloring of the full binary tree has a monochro-

matic subtree isomorphic to the full binary tree. One notes immediately that
Proposition 4.2 and Theorem 4.4 remain valid when RT

2
2 is replaced by TT

1 in
the respective statements. There is a natural question on the lower bound of the
inductive strength for these principles. Hirst [28] showed that for RT2

2 the inductive
power is inherently stronger than IΣ0

1:
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Proposition 4.5. RCA0 + RT
2
2 implies BΣ0

2.

Proof. Let M ⊧ RCA0 + RT
2
2. Suppose on the contrary that BΣ0

2 fails in M. Let
f ∶ [0, a]→M be Σ0

2(M)-definable with unbounded range. Thus there is a recursive
f ′ such that limsf

′(s, x) = f(x) for each x ∈ [0, a]. Call {f ′(s, x)∣s ∈ M} the xth-
column. We can arrange f ′ so that {f ′(s, x)∣s ∈M}∩{f ′(s, y)∣s ∈M} = ∅ for x ≠ y,
and ⋃x∈[0,a]{f

′(s, x)∣s ∈ M} = M . Define a two-coloring h such that for u ≠ v,
h(u, v) = 0 if u and v are on the same column and h(u, v) = 1 otherwise. Then
there is no infinite h-homogeneous set since each column is finite and there are only
finitely many columns. �

The coloring h is in fact stable in the following sense: For each u, limvh(u, v)
exists (and is equal to 1). Hence if we define Stable Ramsey’s Theorem for Pairs

(SRT2
2) as: Every stable two colouring has an infinite homogeneous set, then RCA0+

SRT
2
2 implies BΣ0

2 as well. This was pointed out in [3].

One may replace RT2
2 in Proposition 4.5 with TT

1 (see [18]): Define an a-coloring
h on the nodes σ of 2<M level by level so that h(σ) = x if ∣σ∣ is on the xth column.
Then each color appears finitely often on 2<M and hence the full binary tree has no
monochromatic subtree isomorphic to it. Many, perhaps most, of the combinatorial
principles that have been studied imply BΣ0

2 (there are exceptions such as Weak

König’s Lemma WKL0 to be defined later). Some are consequences of RT2
2 and

known to be weaker than RT
2
2 (see Hirschfeldt and Shore [27]). We list three here:

Definition 4.6.

(i) Chain/antichain (CAC): Every infinite partially ordered set has an infinite
chain or an infinite antichain.

(ii) Ascending/descending sequence (ADS): Every infinite linearly ordered set
has an infinite ascending or descending subsequence.

(iii) Partition (PART): If X is an infinite linearly ordered set, with first and last
points such that any partition of the set into two pieces contains exactly one
part that is infinite, then the same conclusion applies to any finite partition
of X.

The stable versions of CAC and ADS (called SCAC and SADS respectively)
and their weaker siblings are also defined in [27] (see Section 4.2.2). Over RCA0,
CAC Ô⇒ ADS and SCAC Ô⇒ SADS Ô⇒ PART (see [27] and Lerman, Solomon
and Towsner [40]. In fact the first implication is essentially “folklore”). Each of
these principles implies BΣ0

2, as a consequence of the following (Chong, Lempp and
Yang [7]):

Theorem 4.7. RCA0 + PART implies BΣ0
2.

Proof. Suppose M ⊧ RCA0 and BΣ0
2 fails in the model. Let [0, a] and f be as in

Proposition 4.5 witnessing the failure of BΣ0
2 in M. In particular, every number

in M belongs to one and only one column. The first point to note is that one
may choose a and f so that f is “bitame” Σ0

2 on [0, a] in the following sense: For
any 0 < x < a, either supy≤xf(y) is bounded, or supx<y≤af(y) is bounded. One
may visualize this as a bell shaped curve defined over [0, a]. Now let ≺ be a linear
ordering on M so that 0 is the least element, a the largest element, and for any
s ≠ t, s ≺ t if and only if either (i) s and t belong to the same column and s < t,
or (ii) s is in the xth column and t is in the yth column with x < y. Then M is
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partitioned into a-many parts under ≺, each of which is M -finite. Hence PART fails
inM. �

Remark 4.8. The notion of tame Σ0
2 for a function was introduced by Lerman

[38] in α-recursion theory. The link between bitameness and failure of BΣ0
2 was

hinted at in Slaman [60]. It is also worth noting that as the combinatorial principle
becomes weaker, the proof that it implies BΣ0

2 gets more elaborate.

It should also be noted that not every Ramsey type principle implies BΣ0
2. Here

is an example:

Definition 4.9. (Rainbow Ramsey Principle RRT
2
2) If f ∶ [M]2 → M satisfies

the condition that every number has at most 2 preimages, then there is an infinite
A ⊆M on which f is injective.

Thus RRT2
2 is a strong form of “anti-RT2

2” theorem. Csima and Mileti [22] showed

without using nonstandard models that RT2
2 → RRT

2
2 over RCA0, and the implica-

tion is strict. It is known that RRT2
2 does not imply BΣ0

2 (Slaman, unpublished).
What one wants to know is whether any of the principles introduced above that
proves BΣ0

2 in fact implies IΣ0
2. As will be seen below, none is known to be so.

4.2. Π1
1-conservation. Suppose T1 ⊃ T2 are theories in the language of second

order arithmetic. We say that T1 is Π1
1-conservative over T2 (with RCA0 as the

base theory) if every Π1
1 sentence provable in RCA0 + T1 is already provable in

RCA0 + T2. We first consider Π1
1-conservation of various combinatorial principles

known to be weaker than RT
2
2 (see Hirschfeldt and Shore [27]). An idea due to

Harrington of showing T1 to be Π1
1-conservative over T2 goes as follows: Assume

that every modelM of RCA0+T2 has an M -extension that is a model of RCA0+T1.
The claim is that T1 is Π1

1-conservative over T2. Suppose otherwise. Let ∀X∃xϕ be
a counterexample so that RCA0+T1 ⊢ ∀X∃xϕ but there is a modelM of RCA0+T2
satisfying ∃X∀x¬ϕ. Then by assumption there is an M -extension M∗ that is a
model of RCA0+T1. But thenM

∗ ⊧ ∃X∀x¬ϕ, which is a contradiction. Harrington
used this approach to show that adding the principle WKL0 (Weak König’s Lemma)
to RCA0 does not prove new Π1

1 sentences.

4.2.1. The principle of cohesiveness COH. The principle states that for any recur-
sive set R of pairs of numbers, there is an infinite set C such that for each i, either
C ∩ {j∣(i, j) ∈ R} is finite, or C ∩ {j∣(i, j) ∉ R} is finite. We say that C is cohesive
for R (or C is R-cohesive). Here, of course, the notions of “finite” and “infinite”
are understood to be with respect to the underlying model.

Stephan and Jockusch [31] (see also [3]) showed that there is always a C that
is low2 relative to R. The result and its proof hold in any model of RCA0 + IΣ

0
2.

In fact one has a reverse mathematics interpretation of this theorem which follows
from Theorem 4.4:

Theorem 4.10. Let M be a countable model of RCA0 + IΣ
0
2. Then there is an

M -extensionM∗ such that M∗ ⊧ RCA0 + IΣ
0
2 + COH.

A corollary of Theorem 4.10 is that RCA0 + IΣ
0
2 + COH is Π1

1-conservative over
RCA0 + IΣ

0
2. It should be pointed out that the existence of a set C that is low2

relative to R requires IΣ0
2(R) in general. In fact, there are models in which proper

low2 sets do not exist (i.e., a set C such that C′ >T ∅
′ and C′′ ≤T ∅

′′):
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Theorem 4.11. LetM ⊧ P −+BΣ0
2+¬IΣ

0
2 with ω as a Σ0

2 cut. Suppose that every
definable subset of ω is coded on ω. Then there is no proper low2 set. In particular,
there is a recursive array R that has no low2 R-cohesive set.

Proof. Relativizing Theorem 9 of Chong and Mourad [9], we have ω ⊕ ∅
′ to be

minimal over ∅′. Suppose C is proper low2. If C <T ∅
′, then by Theorem 3.16

which applies to ∆2 sets, C′ ≡T ω ⊕ ∅
′. By Theorem 4.1 of Chong and Yang [17],

C′′ /≤T ∅
′′.

If C /≤T ∅
′, then C′ >T ∅

′. Since C′ <T ∅
′′, relativizing Theorem 4.1 of Li [42]

we have C′ ≡T C
∗ for some Σ1(∅

′) set C∗. Now C∗ is either regular or nonregular.
If it is regular, then it is recursive in ω ⊕ ∅

′. Since C∗ >T ∅
′, it in fact computes

ω⊕∅′. On the other hand, if it is nonregular, then it also computes ω⊕∅′. Applying
Theorem 4.1 of [17] again, we conclude that (C∗)′ >T ∅

′′ and hence C is not proper
low2. For the other conclusion, let R be a recursive array that has no cohesive set
recursive in ∅

′. �

Thus if one takes a countable modelM satisfying the conditions of Theorem 4.11,
then it is not possible to imitate the construction used in the proof of Theorem 4.10,
to work “internally” inM to obtain anM -extension that satisfies RCA0+BΣ0

2+COH.
This explains why in the proof of the following theorem (cf. Chong, Slaman and
Yang [11]), the forcing construction that produces an R-cohesive path on a tree
preserving BΣ0

2 is carried out “externally”. A model M of RCA0 +BΣ0
2 is topped

if there is a second order element in M which computes every other second order
element in the model.

Theorem 4.12. LetM be a countable topped model of RCA0 +BΣ0
2 +¬IΣ

0
2. Then

M has an M -extension that is topped, satisfies RCA0 +BΣ0
2 and is in addition a

model of COH. Hence BΣ0
2 + COH is Π1

1-conservative over BΣ0
2.

A byproduct of Theorem 4.12 is that RCA0+BΣ0
2+COH does not prove Σ0

2 induc-
tion. This is perhaps not surprising since RCA0+COH does not imply BΣ0

2 (see [27]).

As in Theorem 4.12, Conidis and Slaman [21] showed that RRT2
2 is Π1

1-conservative
overBΣ0

2 (this was also proved independently by Wei Wang (unpublished)). In
fact, in [21] a stronger combinatorial principle 2-RAN was introduced. It asserts
that given an X there is a 2-random set relative to X . It was shown that 2-RAN
is Π1

1-conservative over BΣ0
2. Csima and Mileti [22] had earlier shown that every

2-random real bounds a rainbow for a recursive instance of RRT2
2.

4.2.2. CAC and weaker principles. It is shown in [11] that every topped modelM
of RCA0 + BΣ0

2 has an M -extension that is in addition a model of P, where P
is either ADS or CAC. It follows that, with RCA0 as the base theory, both CAC

and ADS are Π1
1-conservative over BΣ0

2. The proof proceeds by first showing that
the M -extension property holds for the stable versions SCAC and SADS of these
principles, which we now define:

Definition 4.13.

(i) (SADS) If ⟨X,≤⟩ is an infinite linearly ordered structure such that for any
y ∈ X, either {y∣y ≤ x} or {x∣x ≥ y} is finite, then X has an infinite subset
that is either an increasing or descending sequence.

(ii) (SCAC) Assume that ⟨X,≤⟩ is infinite and partially ordered such that for all
y ∈X, either all but finitely many x ∈X are greater than y or incomparable
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with y. Then there is an infinite subset Y of X that is either linearly
ordered under ≤, or the elements of Y are pairwise incomparable. The
same conclusion holds when “greater” is replaced by “less”.

The key idea for the construction of anM -extension that satisfies SADS or SCAC
that also preserves BΣ0

2 comes from [27] where it is shown that a low solution for a
recursive linear ordering (in the case of SADS) or partially ordered set (for SCAC)
always exists. The existence of a “low solution” over a model of RCA0 + BΣ0

2

turns out to be true, although with a different construction. The role of a low set is
apparent from the following proposition, which enables iteration of the construction:

Proposition 4.14. Let M = ⟨M,X,0, S,+,×,<⟩. If M ⊧ RCA0 +BΣ0
2 and G ⊂M

is low relative to a Y ∈ X, then M[G] ⊧ RCA0 +BΣ0
2.

Proof. BΣ0
2(G) holds if and only if BΣ0

1(G
′) holds. The latter is equivalent to the

statement that BΣ0
1(Y

′) holds, which is true since G′ ≡T Y ′. But Y ∈ X implies
that BΣ0

1(Y
′) holds. �

It follows that if one starts with a topped countable modelM0 of RCA0 +BΣ0
2,

then one may construct by a process of iteration a sequence {Mn}n<ω, where
Mn = ⟨Mn,Xn,0, S,+,×,<⟩, of models of RCA0 + BΣ0

2 such that Mn+1 is an Mn-
extension and solves an instance of SCAC or SADS with a set that is low relative
to the (finitely many) sets in Xn used as parameters to define the instance. The
union of theMn’s is the desired model:

Theorem 4.15. Let M be a countable topped model of RCA0 + BΣ0
2. Then for

P = SCAC or SADS, there is anM -extension ofM that is a model of RCA0+BΣ0
2+P.

One concludes from Theorem 4.15 that both SADS and SCAC are Π1
1-conservative

over BΣ0
2. Applying the equivalence of ADS with COH + SADS and CAC with

SCAC+ADS over RCA0 ([27]), one derives the Π
1
1-conservation of these two principles

over BΣ0
2. Since PART is a consequence of SADS, the same conclusion holds for

PART as well.
Taking a step back to Σ0

2 induction, we note as for COH that applying Theorem

4.4 one is able to conclude that RT2
2—and hence every principle provable from it—

is Π1
1-conservative over IΣ0

2. What we know concerning BΣ0
2 in this regard is less

complete. The major open problem concerns RT2
2 and its close associate SRT2

2 (see
Question 9).

4.3. Combinatorial principles and Σ0
2 induction. Theorem 4.15 tells us more

about the strength of a principle than the conservation of sentences. If one starts
with a BΣ0

2 modelM satisfying the hypothesis of the theorem, then the resulting
M -extension will not satisfy IΣ0

2 either. The import of this is that RCA0+CAC and
therefore all the principles it implies do not prove Σ0

2 induction.
Despite the technical challenge it presented, there was little available to hint at a

conjecture on the inductive strength of RT2
2 with respect to IΣ0

2. The only available
data that might shed some light was the breakthrough of Seetapun (Seetapun and

Slaman [52]) separating RT
2
2 from Ramsey’s Theorem for triples RT3

2, which states
that any coloring of unordered triples of numbers into two colors has an infinite
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homogeneous set (a set all of whose triples have the same color). A proof a la
nonstandard models goes as follows:

Theorem 4.16. RCA0 + RT
2
2 /→ RT3

2.

Proof. Theorem 5.7 of Jockusch [30], see [3]) implies that any model of RCA0+RT
3
2

satisfies IΣ0
n for all n ≥ 1 (hence a model of ACA0). On the other hand, Theorem

4.4 holds for a model of RCA0 + IΣ
0
2 + ¬BΣ0

3, �

Theorem 4.16 implies that the inductive strength of RCA0 + RT
2
2 lies within the

range BΣ0
2 to IΣ0

2. It turns out that IΣ
0
2 is not provable in the system RCA0 +RT

2
2

(Theorem 4.20). We consider first its stable version:

Theorem 4.17 (Chong, Slaman and Yang [12]). There is a model M of RCA0 +

BΣ0
2 + SRT

2
2 all of whose second order elements are low.

An immediate reaction to the above theorem might be that it contradicts the
result of Downey, Hirschfeldt, Lempp and Solomon [23] that there is a recursive
stable colouring of pairs with no low homogeneous set. Their argument applies
the 0′′-priority method and in the context of reverse recursion theory, may be
implemented in any model of P −+IΣ2. It follows that no model of RCA0+IΣ

0
2+SRT

2
2

can have all of its second order elements to be low. The key to resolving this
apparent conflict, is that the model used for Theorem 4.17 satisfies only BΣ0

2 and
is therefore necessarily nonstandard. The result of [23] and its generalization to
models of P − + IΣ2 point to the possibility of looking at BΣ2 models and their
second order counterparts for a solution.

It is known ([3] and [7]) that SRT
2
2 is equivalent over RCA0 to the following

principle:

D2
2: For every ∆0

2-set A, either A or A contains an infinite subset.

Hence for our purpose, the modelM to be constructed for Theorem 4.17 will be
a model of D2

2. The proof of the theorem is rather intricate. We give an outline of
the main ideas below.

Proof. We takeM0 to be a second order version of the reflection model introduced
in Subsection 2.4.3, with the additional property of arithmetical saturation. Thus
ω is a Σ0

2-cut ofM0, and every real definable overM0 is coded on ω (inM0).
There are two major steps to the construction. The first is to show that given

a ∆0
2-set A, there is an M0-infinite low set G such that either G ⊆ A or G ⊆ A.

For convenience let us call members of A red and members of A blue. The second
step is to argue that the construction may be iterated over the join of the finitely
many low sets obtained earlier. This turns out to be a fairly delicate operation
requiring more than a straightforward induction as we shall explain. Nevertheless,
the discussion will focus on the first step and only briefly touch on the second whose
proof involves another level of complexity.

The reason for making G low is that by Proposition 4.14 one may conclude that
M0[G] ⊧ RCA0 + BΣ0

2. The preservation of BΣ0
2 in the generic extension paves

the way for the iteration operation. To make G low, one forces the Σ0
1-theory of

G so that G′ is recursive in ∅
′. We divide the Σ0

1-sentences into ω-many disjoint
blocks using ∅′. As an example, let B0 be the first block of sentences. The strategy
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adopted to force the Σ0
1-theory of G with respect to B0 comprises two parts. The

first is to find a red or blueM0-finite set D that positively Cohen forces a maximal
subset of B0. This means that a sentence in B0 of the form ∃xϕ(G) where ϕ is
bounded is either satisfied by interpreting D for G or no extension of D with the
same color can do so. The combinatorics involved in achieving this is embedded in
an M0-finite object called a (maximal) exit tree which is recursively enumerated
and whose existence (i.e., its maximality) is guaranteed by the reflection property
ofM0. In fact the exit tree may be computed by ∅

′ within the initial segment I
of M0 where ⟨I,0, S,+,×,<⟩ ≺Σ1

M0 is a model of PA and B0 is coded in I.
The second part is to force a Π0

1-outcome for each sentence in B0 not positively
forced by D. This is achieved by generating from the construction anM0-infinite
recursive tree “above” D (meaning every number in the tree is greater than any
number in D) from which all future numbers of the generic set G will be drawn.

Now the construction is carried out in ω-many stages, so that at stage n it
handles the nth block Bn of Σ0

1-sentences by defining a red or blue Dn above Dn′

for each n′ < n. The generic set G will then be the union of all the Dn’s that are
red, or all those that are blue, depending on which choice makes G infinite.

The entire construction is ∅′′-recursive, and a closer examination shows that
questions about the construction of G that require a ∅′′-oracle to answer concern
subsets of ω and such sets are coded on ω by the arithmetical saturation of M0.
This leads to the conclusion that G′ is ∅′-recursive and hence G is low.

The second step in the construction of M concerns iterating the above. Each
∆0

2-set Ak with parameters will require an M0-infinite red or blue generic Gk. A
crucial property of the reflection model that was exploited to define the G above was
the existence of a cofinal sequence of Σ0

1-elementary substructures inM0 that are
models of PA. This property is not preserved upon relativization to G. The solution
is to implement a construction reminiscent of iterated forcing, building G (which
we now call G0) “in anticipation” of what future generic sets Gk,1 ≤ k < ω would
do. For this purpose, a principle called bounded monotone enumeration (BME) is
introduced that captures the essence of a “k-dimensional exit tree” for Σ0

1-sentences
with k-set constants G0, . . . ,Gk−1, for each k < ω. The idea is to ensure that each
time a Gk is constructed, BME is preserved to enable the next stage of iteration.
Finally, we letM = ⟨M0,{Gk},0, S,+,×,<⟩k<ω . �

Theorem 4.17 separates stable Ramsey’s Theorem for pairs from Ramsey’s The-
orem for pairs. This follows from a result of Jockusch [30] which states that there
is a recursive two-coloring of pairs with no Σ0

2 homogeneous set. The proof uses
a finite injury construction which can be implemented in any (first order) model
of P − +BΣ2 and therefore in any model of RCA0 +BΣ0

2, leading to the following
conclusion:

Corollary 4.18. RCA0 + SRT
2
2 /⊢ RT

2
2.

This corollary leaves open the challenging question:

Question 7. Does SRT
2
2 imply RT

2
2 in every ω-model of arithmetic? More gener-

ally, does RCA0 + IΣ
0
2 separate these two principles?

The principle Weak König’s Lemma WKL0 states that every infinite binary tree
has an infinite path. With some extra work one may improve Theorem 4.17 to show

Theorem 4.19. RCA0 + SRT
2
2 +WKL0 /⊢ RT

2
2.
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We come now to the final result that we discuss in this survey paper. It is known
([3, 4]) that over RCA0, RT

2
2 is equivalent to COH + SRT

2
2, and neither COH nor

SRT
2
2 implies IΣ0

2. It turns out that there is also an inherent limit on the first order

strength of RT2
2:

Theorem 4.20 (Chong, Slaman and Yang [13]). There is a model M of RCA0 +

RT
2
2 +BΣ0

2 in which IΣ0
2 fails. Hence RCA0 +RT

2
2 does not prove Σ0

2 induction.

To prove the theorem, we again take the reflection model M0 as the ground
model. The idea is to apply the fact that RT

2
2 is equivalent to COH + SRT

2
2 over

RCA0, and buildM overM0 by interlacing the constructions in Theorem 4.12 and
Theorem 4.17. Thus one starts with a solution G for R-cohesiveness, followed by a
solution over G of an instance of D2

2 . There is however a wrinkle with the approach.
First, since not every recursive two coloring of pairs has a Σ0

2 homogeneous set, it is
not possible to buildM consisting entirely of low generic sets, even with an abun-
dant supply of codes inM0. Second, the construction in Theorem 4.12 to produce
an R-cohesive G is highly non-effective. This makes any solution of an instance
of D2

2 by way of a set that is low relative to G will be arithmetically undefinable.
With a more complex construction involving a G′-recursive approximation, coupled
with applying Lemma 2.7 relativized to G, one can resolve these difficulties.

We hasten to add that not every Ramsey type combinatorial principle that im-
plies BΣ0

2 is known to be weaker than IΣ0
2. Recall the definition of TT1 given in the

paragraph following Theorem 4.3. Corduran, Groszek and Mileti [20] have shown

that TT1 is strictly stronger than BΣ0
2. However, its precise inductive strength is

open:

Question 8. Does RCA0 +TT
1 prove IΣ0

2?

Theorems 4.17 and 4.20 do not address the question of Π1
1-conservation of SRT2

2

or RT2
2 over BΣ0

2. It is tempting to suggest that every modelM of RCA0+BΣ0
2 has

anM -extension preserving RCA0+BΣ0
2 and satisfying SRT

2
2 or RT2

2. The elaborate
way in which Theorems 4.17 and 4.20 are proved seems to hint, at least, that such
an M -extension need not exist. In particular, it is not clear how starting with a
“no frills” modelM of RCA0 +BΣ0

2 + ¬IΣ
0
2, such as one that is not endowed with

any codes except those promised in Lemma 2.7, and whose second order elements
consist only of recursive sets, one could construct an M -extension with the desired
property.

Question 9. Is SRT
2
2 or RT

2
2 Π1

1-conservative over RCA0 +BΣ0
2?

Our conjecture is that the answer is negative, and may be hidden somewhere
within the principle BME.

We end with a diagram that summarizes what is known conclusively about the
relative strengths of Ramsey type combinatorial principles discussed in this paper:
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SRT
2
2 +WKL0 RT

2
2 IΣ2

SRT
2
2 WKL0 CAC

SCAC ADS

SADS COH

PART BΣ0
2

(1)
/

(4) /

(2)
/

(3) (HS)

(HS) (HS) (5)

(5) (HS) (HS)

(HS) (CJS)/

(6)

In the diagram, a strict implication is indicated by ⇒; implications labeled (HS)
and (CJS) are proved respectively in [27] and [3]; (1) is Theorem 4.19; (2) is The-
orem 4.20; (3) is Corollary 4.18; (4) is proved in [43]; (5) is proved in [40]; (6) is
Theorem 4.7.
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