“The Wager,”
Overview of the Book, and
Godel’s Completeness Theorem

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)

Troy, New York 12180 USA

9/15/2022 (version 092122)

RA/l R

Rensselaer Al a_;)d Reasoning Lab OXFORD

UNIVERSITY PRESS

“The Wager,”
Overview of the Book, and
Godel’s Completeness Theorem

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology
Note: Thisis a version of Rensselaer Polytechnic Institute (RPI)

coverage Of Gédel,s Troy, New York 12180 USA
Completeness Theorem 9/15/2022 (version 092122)
designed for those who've
had at least one standard/
standard-paced university-

level course in formal logic. R A I R

Rensselaer Al a';)d Reasoning Lab OXFORD

UNIVERSITY PRESS

Latest on HyperGrader®:
Tutorial on Rips’ “Rowdiness”

New Required Problems ...

Background Context ...

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (elementary
discrete math, incl. ZOL, FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s
Genius!?

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (elementary
discrete math, incl. ZOL, FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s
Genius!?

® Brief Preliminaries (elementary

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness

® The Speedup Theorem
® The Continuum-Hypothesis

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

discrete math, incl. ZOL, FOL)

Theorem

Theorem

Genius!?

Godel’s Great Theorems (oup)

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (elementary
discrete math, incl. ZOL, FOL)

The Completeness Theorem
The First Incompleteness Theorem

The Second Incompleteness
Theorem

The Speedup Theorem

The Continuum-Hypothesis
Theorem

The Time-Travel Theorem
Godel’s “God Theorem”

Could a Machine Match Godel’s
Genius!?

Some Timeline Points

Some Timeline Points

1906 Brunn,Austria-Hungary

Some Timeline Points

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna

1906 Brunn,Austria-Hungary

Some Timeline Points

1940 Back to USA, for good.

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1940 Back t<'> USA, for good.

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

B
)

1940 Back t<; USA, for good.

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

&_I“

- AN
' &1\

1940 Back to USA, for good.

1936 Schlick murdered; Austria annexed; advisor dies

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

&_I“

- AN
' &1\

1940 Back to USA, for good.

1936 Schlick murdered; Austria annexed; advisor dies

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

&_I“

- AN
' &1\

1940 Back to USA, for good.

1936 Schlick murdered; Austria annexed; advisor dies

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Some Timeline Points

and semantics are
fundamentally the same.”

1978 Princeton NJ USA. “l have proved that syntax

e B

—
AN 4

]
1940 Back to USA, for good.

1936 Schlick murdered; Austria annexed; advisor dies

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem

Undergrad in seminar by Schlick

1923 Vienna
1906 Brunn,Austria-Hungary

Preliminaries:
Propositional Calculus &
First-Order Logic

Actually ...

Ly< L1 <ZLH < Ly

Actually ...

Third-order logic, which Godel

Second-order logic. \ < used for his “God Theorem.”

Ly< L1 <ZLH < Ly

Zero-order logic; subsumes
the propositional calculus.

N

First-order logic; this is
what the Completeness
Theorem is about: le.,
this logic is complete.

Actually ...

Third-order logic, which Godel

Second-order logic. \ < used for his “God Theorem.”

Ly< L1 <ZLH < Ly

Zero-order logic; subsumes B \ Y P
" Irst-oraer 10gIC; IS IS
the propositional calculus. what the Completeness

Theorem is about: e,
this logic is complete.

Actually ...

This logic is not complete.

Third-order logic, which Godel

Second-order logic. \ < used for his “God Theorem.”

Ly< L1 <ZLHr<Z5...

Zero-order logic; subsumes B \ Y P
" Irst-oraer 10gIC; IS IS
the propositional calculus. what the Completeness

Theorem is about: e,
this logic is complete.

P2

.35 R&W’s Axiomatization of the
Propositional Calculus

Al (pV o) — ¢

A2 ¢ — (o V)

A3 (¢V) = (Y V@)

Ad (Y —=x)— (V) = (¢V X))

L3 R&W'’s Axiomatization of the
Propositional Calculus

Al (¢V @) — ¢
A2 ¢ — (¢V)
A3 (cbv V) = (Y V)

Ad (p—=x) = ((eVY) = (¢VX))

All instances of these schemata are true no matter what the
input (true or false). (Agreed?) And indeed every single
formula in the propositional calculus that is true no matter
what the permutation (as shown in a truth table, e.g.), can be
proved (somehow) from these four axioms (using any standard
collection of inference schemata). This, Godel (& later, Newell
& Simon, when modern Al was born!) knew, and could use.

L3 R&W'’s Axiomatization of the
Propositional Calculus

Al (¢ \/ ¢) — ¢ (if Cor \phi \phi) \phi)
A2 ¢ — (¢ \/ w) (if \phi Cor \phi \psi))
A3 \/ ¢) N (w \/ ¢) (if Cor \phi \psi) Cor \psi phi))

(¢
Ad (= x) = ((eVY) = (6VX))

(if (if \psi \chi) (if (or \phi \psi) (or \phi \chi)))

All instances of these schemata are true no matter what the
input (true or false). (Agreed?) And indeed every single
formula in the propositional calculus that is true no matter
what the permutation (as shown in a truth table, e.g.), can be
proved (somehow) from these four axioms (using any standard
collection of inference schemata). This, Godel (& later, Newell
& Simon, when modern Al was born!) knew, and could use.

Exercise |:

Verify that these are true-no-matter what in a truth tree in HyperSlate®;
then prove using our rules for the prop. calc.; or perhaps better yet,
have the oracle prove in HyperSlate®.

(P NY) = (¥ Vx)
¢ — (Y — ¢)

Exercise |:

Verify that these are true-no-matter what in a truth tree;
then prove using our rules for the prop. calc.

(P NY) = (¥ Vx)

Exercise |:

Verify that these are true-no-matter what in a truth tree;
then prove using our rules for the prop. calc.

(P NY) = (¥ Vx)

Truth Tree showing this formula true no matter what the inputs.

Exercise |:

Verify that these are true-no-matter what in a truth tree;
then prove using our rules for the prop. calc.

(P NY) = (¥ Vx)

Truth Tree showing this formula true no matter what the inputs.

Proof

Exercise |:

Verify that these are true-no-matter what in a truth tree;
then prove using our rules for the prop. calc.

(P NY) = (¥ Vx)

Truth Tree showing this formula true no matter what the inputs.

Proof

Verify that these are {

Exercise |:

then prove usin

(¢/

Truth Tree showing tt

Proof

assume

{ <<1>Aw>:><wvx>J

from

PC K (Oracle)

[(mwwwvx)]

from

- what in a truth tree;
- the prop. calc.

/ X)

no matter what the inputs.

Verify that these are {

Exercise

then prove usin

(¢/

Truth Tree showing tt

Proof

assume

from

{ @AY= (WY

from

|

PC F (Oracle)

[DAY = WV

from

|

- what in a truth tree;
- the prop. calc.

/ X)

no matter what the inputs.

resolution-based!

Verify that these are {

Exercise

then prove usin

(¢/

Truth Tree showing tt

Proof

assume

from

{ @AY= (WY

from

|

PC F (Oracle)

[DAY = WV

from

|

- what in a truth tree;
- the prop. calc.

/ X)

no matter what the inputs.

resolution-based!

‘\

As HyperSlate® Tutorial

@ safari File Edit View History Bookmarks Window Help O MM = 9%%%) Tuel0:34AM Q @ =

@® ® < {J @ rpi.logicamodernapproach.com @] (4] th a ||

Plated News v SUNY System ...ess - Logon Ultra Hardwar...are Products Screen Door L...y Von Morris Screen Door ...d Von Morris Apple Amazon eBay Yahoo! .Mac

CIT 2020 » Conference on Instruction and Technology Sign in to hypergrader - selmerbringsjord@gmail.com - Gmail Editing RussellWhiteheadPropCalcAx =+ | -

HyperSlate™ = @& | | & ~— Bezier RussellWhiteheadPropCalcAx [PROPOSITIONAL-CALCULUS]: Saved with €fJ) symbols.

B (v o) =

rom

ISR & = | =
C (1 le)
r— PC F (Oracle)

o ov -0

from

[(@vwwwvm]

from

assume
I
BEWEYA (0=X) = (©vv)=(@vX) l
om @AY= (v

from

-

PLoRe Rt O0%Y | | v uc N 006 Doama=] |

As HyperSlate® Tutorial

@ safari File Edit View History Bookmarks Window Help O MM = 9%%%) Tuel0:34AM Q @ =

@® ® < {J @ rpi.logicamodernapproach.com @] (4] th a ||

Plated News v SUNY System ...ess - Logon Ultra Hardwar...are Products Screen Door L...y Von Morris Screen Door ...d Von Morris Apple Amazon eBay Yahoo! .Mac

CIT 2020 » Conference on Instruction and Technology Sign in to hypergrader - selmerbringsjord@gmail.com - Gmail Editing RussellWhiteheadPropCalcAx =+ | -

HyperSlate™ = @& | | & ~— Bezier RussellWhiteheadPropCalcAx [PROPOSITIONAL-CALCULUS]: Saved with €fJ) symbols.

B (v o) =

rom

ISR & = | =
C (1 le)
r— PC F (Oracle)

o ov -0

from

[(@vwwwvm]

from

assume
I
BEWEYA (0=X) = (©vv)=(@vX) l
om @AY= (v

from

-

PLoRe Rt O0%Y | | v uc N 006 Doama=] |

The Grammar of
<y = the Pure Predicate Calculus

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula = (Predicate Termy ... Termy)
| (Term = Term)

Term = (FPunction Termy ... Termy)
| Constant

Connective = Al V| = |

Predicate = P |P|Ps...

Constant = c¢1|cales ...

Function = filfelfs ...

Some Simple Examples

Formula = AtomicFormula
| (Formula Connective For
— Formula

Sally likes Bill.
4'(L1Ikes sally‘ bill)

—

AtomicFormula = (Predicate Termy ... Termy)

—

| (Term = Term)
Sally likes Bill and Bill likes Sally.
Term = (Function Termy ... Termy,) . -
| Constant Sally likes Bill’s mother.
Sally likes Bill only if Bill's mother is tall.
Connective = Al VI]=] e Matilda is Bill’s super-smart mother.
5 plus 5 equals the number 10.
Predicate =|P|P|Ps ...
Constant =|ci|ea]|es ... L X| N
Function = filfelfs - EXICO

Can Roger be counted upon to declare: “Yes that sentence is
okay!” whenever it’s conforms to this grammar?

Some Simple Examples

Formula = AtomicFormula
| (Formula Connective For
— Formula

Sally likes Bill.
4'(L1kes sally‘ bill)

—

AtomicFormula = (Predicate Termy ... Termy)

—

| (Term = Term)
Sally likes Bill and Bill likes Sally.
Term = (Function Termy ... Termy,) . -
| Constant Sally likes Bill’s mother.
Sally likes Bill only if Bill's mother is tall.
Connective = Al VI]=] e Matilda is Bill’s super-smart mother.
Likes 5 plus 5 equals the number 10.
Predicate =|P|P|Ps ...
Constant =|c1]ca|es ... 1
Function = filfelfs - LeXICon

Can Roger be counted upon to declare: “Yes that sentence is
okay!” whenever it’s conforms to this grammar?

Slightly More Complicated Examples

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula = (Predicate Termy ... Termy)

| (Term = Term)

Term = (Function Termq ... Termy)
| Constant

Connective = Al V| = | &

Predicate = P |P|Ps...

Constant = c1]ca|es ...

Function = filfelfs ...

Slightly More Complicated Examples

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula = (Predicate Termy ... Termy)
| (Term = Term)

Term = (Punction Termy ... Termy)
| Constant

Connective = Al V| = | &

Predicate = P |P|Ps...

Constant = c1]ca|es ...

Function = filfelfs ...

If Sally likes Bill then Sally likes Bill.

Slightly More Complicated Examples

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula = (Predicate Termy ... Termy)
| (Term = Term)

Term = (Punction Termy ... Termy)
| Constant

Connective = Al V| = | &

Predicate = P |P|Ps...

Constant = c1]ca|es ...

Function = filfelfs ...

If Sally likes Bill then Sally likes Bill.

Sally likes Bill's mother, or not.

Slightly More Complicated Examples

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula = (Predicate Termy ... Termy)
| (Term = Term)

Term = (Punction Termy ... Termy)
| Constant

Connective = Al V| = | &

Predicate = P |P|Ps...

Constant = c1]ca|es ...

Function = filfelfs ...

If Sally likes Bill then Sally likes Bill.
Sally likes Bill's mother, or not.

Sally likes Bill and Bill likes Jane, only if Bill likes Jane.

Slightly More Complicated Examples

... Termy) If Sally likes Bill then Sally likes Bill.

Sally likes Bill's mother, or not.
Sally likes Bill and Bill likes Jane, only if Bill likes Jane.

Bill's smart mother is a mother.

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula =- (Predicate Termq
| (Term = Term)

Term = (Punction Termy ... Termy)
| Constant

Connective = Al V| = | &

Predicate = P |P|Ps...

Constant = c1]ca|es ...

Function = filfelfs ...

Slightly More Complicated Examples

... Termy) If Sally likes Bill then Sally likes Bill.

Sally likes Bill's mother, or not.
Sally likes Bill and Bill likes Jane, only if Bill likes Jane.

Bill's smart mother is a mother.

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula =- (Predicate Termq
| (Term = Term)

Term = (Punction Termy ... Termy)
| Constant

Connective = Al V| = | &

Predicate = P |P|Ps...

Constant = c1]ca|es ...

Function = filfelfs ...

Slightly More Complicated Examples

Formula = AtomicFormula

| (Formula Connective Formula)

| = Formula
AtomicFormula = (Predicate Term; ... Termy) If Sa”), likes Bill then Sally likes Bill.

| (Term = Term)

Sally likes Bill's mother, or not.

Term = (Punction Termy ... Termy)

| Constant Sally likes Bill and Bill likes Jane, only if Bill likes Jane.

Bill's smart mother is a mother.

Connective = Al V| = | &
Predicate ~ P | P, | P, ... These are all true, yes; but can they be proved?!
Constant = c1|ca|es ...
Function = filfelfs ...

Slightly More Complicated Examples

Formula = AtomicFormula

| (Formula Connective Formula)

| = Formula
AtomicFormula = (Predicate Term; ... Termy) If Sa”), likes Bill then Sally likes Bill.

| (Term = Term)

Sally likes Bill's mother, or not.

Term = (Punction Termy ... Termy)

| Constant Sally likes Bill and Bill likes Jane, only if Bill likes Jane.

Bill's smart mother is a mother.

Connective = Al V| = | &
Predicate ~ P | P, | P, ... These are all true, yes; but can they be proved?!
Constant = c1|ca|es ...
Function =

fulfalfs - Yes!

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

there exists at least one thing x such that ...

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

there exists at least one thing x such that ...

for all x, it’s the case that ...

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...

for all x, it’s the case that ...

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...

Vo ... for all x, it’s the case that ...

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(w) = L
iff

Ve(e > 0 — 30(6 > 0 AVz(d(x,a) < d — d(f(x),L) < €)))

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VT ... foral X, it’s the case that ...
lim f(x) = L

(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

| TT——

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(x) =L

r—a
(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

Every natural number is greater than or equal to zero.

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(x) =L

r—a
(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

Every natural number is greater than or equal to zero.
Va(x > 0)

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(x) =L

r—a
(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

Every natural number is greater than or equal to zero.
Va(x > 0)

There’s a positive integer greater than any positive integer.

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(x) =L

r—a
(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

Every natural number is greater than or equal to zero.
Va(x > 0)

There’s a positive integer greater than any positive integer.
JzVy(y < o)

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(x) =L

r—a
(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

Every natural number is greater than or equal to zero.
Va(x > 0)

JzVy(y < o)

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(x) =L

r—a
(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

Every natural number is greater than or equal to zero.
Va(x > 0)

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(x) =L

r—a
(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

Every natural number is greater than or equal to zero.
Va(x > 0)

Every positive integer x is less-than-or-equal-to a positive integer y.

But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
WhichYields £ First-order Logic = Predicate Calculus simpliciter

Jx ... there exists at least one thing x such that ...
VI ... forall X, it’s the case that ...
lim f(x) =L

r—a
(forall (\epsilon) (if (> \epsilon 0)
(exists (\delta) (and (> \delta @)
(forall (x) (if (< (dist x a) \delta)
(< (dist (f x) L) \epsilon)))D)))
Ve(e >0 — 30(0 > 0AVe(d(z,a) <o —>d(f(x), L) <e€)))

Every natural number is greater than or equal to zero.
Va(x > 0)

Every positive integer x is less-than-or-equal-to a positive integer y.

Vedy(x < y) Vrdy(< (z,y))

The Shoulders Available to
Godel for Standing Upon

Completeness Theorem for
The Propositional Calculus

Let T" be a set {¢1, @2, ...} of formulae in the the propositional calculus.
Then either all of I' are satisfiable, or the conjunction up to and including
the point k (i.e. ¢1 A pa A ... A @) of failure is refutable.

Completeness Theorem for
The Propositional Calculus

Let T" be a set {¢1, ¢o, ...} of formulae in the the propositional calculus.
Then either all of I' are satisfiable, or the conjunction up to and including
the point k£ (i.e. ¢1 A ¢pa A ... A ¢x) of failure is refutable.

Completeness Theorem for
The Propositional Calculus

Let T" be a set {¢1, ¢o, ...} of formulae in the the propositional calculus.
Then either all of I' are satisfiable, or the conjunction up to and including
the point k£ (i.e. ¢1 A ¢pa A ... A ¢x) of failure is refutable.

Let " be a set {¢1, @2, ...} of formulae in the the propositional calculus.
Then either all of I' can be simultaneously true in some scenario, or the
conjunction up to and including the point k (i.e. ¢1 Ao A ... A @) of
failure is refutable (i.e. F =(¢p1 A pa A ... A Pr)).

What does the

Completeness Theorem
say!

Completeness Theorem as an Equation

In first-order logic: NECESSARY TRUTH = PROVABILITY.

Completeness Theorem,
More Precisely Put

For every first-order statement ¢: if ¢ is a
necessary or absolute truth (i.e. true in any
scenario whatsoever), then ¢ is provable.

And the version Godel targeted,
and proved:

For every first-order statement ¢: Either ¢
is true in some scenario, or ¢ is refutable
(= it’s negation —¢) can be proved).

GCT

The Proof-Sketch

The Proof-Sketch

To prove the theorem in the case of first-order logic (= £)),
we need to show that given any set I of formulae in first-order
logic, either there's a scenario on which every member of this
set is true; otherwise, there is a refutation of the set, i.e.a proof
from the set to an outright contradiction ¢ A —¢. We can
accomplish this by finding a procedure & that first takes the set
in question and goes hunting for a scenario that does the trick.
If the scenario is found, we're done. But, if such a scenario can't
be found, then our procedure moves on to find a proof of a
contradiction from [

How?! The procedure & is the building out of a truth tree! If all
the branches in the tree close, then the finding of a proof of a
contradiction uses resolution, and the resolution
guarantee. The guarantee is that if you have a set of formulae
that can’t be true in any scenario, resolution applied to the set

finds a contradiction L = A ={}. QED

The Proof-Sketch

To prove the theorem in the case of first-order logic (= £)),
we need to show that given any set I of formulae in first-order
logic, either there's a scenario on which every member of this
set is true; otherwise, there is a refutation of the set, i.e.a proof
from the set to an outright contradiction ¢ A —¢. We can
accomplish this by finding a procedure & that first takes the set
in question and goes hunting for a scenario that does the trick.
If the scenario is found, we're done. But, if such a scenario can't
be found, then our procedure moves on to find a proof of a
contradiction from I'!

See LAMA-BDLAHGHS. Itree. £ all

fofa

How!?!! The pr¢
the branches_iff.. ,

contradiction uses l"esolutlon and the r'esolutlon
guarantee. The guarantee is that if you have a set of formulae
that can’t be true in any scenario, resolution applied to the set

finds a contradiction L = A ={}. QED

I':={p1 — p2, p3 A D4, —P2, P4 — D1, ---}

[p1 TRUE; p2 TRUE) [p1 FALSE; po FALSE] [p1 FALSE; po TRUE) P1 — P2

| | |

[pg TRUE; P4 TRUE] [pg TRUE; p4 TRUE] [p3 TRUE; p4 TRUE) p3 A Py

[p4 TRUE; P TRUE) [p4 FALSE; pq FALSE] [p4 FALSE; Py TRUE) Py — P1

X X X

Therefore, there is no scenario in which all of the formulae are true!

I':= {p1 = ps, p2, P+ — P6, D5, D7 — P9, Ds,

(pl TRUE; p3 TRUE) (pl FALSE; p3 FALSE] [pl FALSE; ps3 TRUE]

C p TRUE) ps TRUE

] C Py TRUE]

p4 TRUE; pg TRUE
p4 FALSE; pg TRUE p4 FALSE; pg FALSE

@TRUE; D6 TR@ @FALSE; De FAL%

p4 FALSE D6 FALSE
P4 TRUE; pg TRUE
p4 FALSE; pg TRUE P4 FALSE; pg TRUE

Cp 5 TRUE} Cp5 TRUE) Cpg, TRUE)

Cpg) TRUE] Cp5 TRUE)

TRUE .
(p °) @5 TRU@ @5 TRUED (p5 TRU@

Therefore, since we can travel to infinity, there is a scenario in
which all of the formulae are true: any infinite path down will do.

3

P1 — D3

P2

P4 — Deé

P5

Ah, but can we travel to
infinity! The assumption that
there is an infinite branch here
is based on Konig’s Lemma ...

Toward Konig’s Lemma as Train Travel

Long Island Rail Road

Key

Full Time rail mﬁoa
ssible station
Part Time rail station
Major Transit Hub

© 2015 Matropolitan Transportation Authority

MO N

PORT WASHINGTON BRANCH L gt0 G
[

@, G

A &
o .
.
,

LONG BEACH BRANCH

“To infinity and beyond!”

Konig’s Lemma (train-travel version)

In a one-way train-travel map with finitely many
options leading from each station, if there are
partial paths forward of every finite length,
there is an infinite path (= a path “to infinity”).

—()—

—O0—0—0—C

—O0—0—0—C

2

Exercise 2:
Is there an algorithm for traveling this way!?

Exercise 2:
Is there an algorithm for traveling this way!?

No. This strategy for travel is beyond the reach of
constructive mathematics/standard computation.

Exercise 2:
Is there an algorithm for traveling this way!?

No. This strategy for travel is beyond the reach of
constructive mathematics/standard computation.

(Does it not then follow, assuming
that humans can find and “use” a
provably correct strategy for this
travel, that humans can’t be
fundamentally computing machines?)

NY-Centric Proof of the Lemma

(that there is an infinite branch)

Proof: We are seeking to prove that there is an infinite path (= that you can keep going
forward forever = that the number of your stops forward are the size of Z*).

To begin, assume the antecedent of the theorem (i.e. that, (1), there are finitely many
options leading from each station, and that, (2), in the map there are partial paths forward
of every finite size).

Now, you are standing at Penn Station (S/), facing k options. At least one of these options
must lead to partial paths of arbitrary size (the size of any m in Z*). (Sub=-Proof:
Suppose otherwise for indirect proof. Then there is some positive integer n that places a
ceiling on the size of partial paths that can be reached. But this violates (2) —
contradiction.) Proceed to choose one of these options that lead to partial paths of
arbitrary size. You are now standing at a new station (S2), one stop after Penn Station. At
least one of these options must lead to partial parts of arbitrary size (the size of any m in
Z*). (Sub-Proof: Suppose otherwise for indirect proof ...)

Since you can iterate this forever, you'll be on an infinite trip to infinity! Buzz will be happy.

QED

Simple Buzz-Lightyear-Like Branch

Godel as Giant: Some Evidence

THE DISCOVERY OF MY COMPLETENESS PROOFS
LEON HENKIN

Dedicated to my teacher, Alonzo Church, in his 91st year.

§1. Introduction. Thispaperdealswith aspects of my doctoral dissertation'
which contributed to the early development of model theory. What was of
use to later workers was less the results of my thesis, than the method by
which I proved the completeness of first-order logic—a result established by
Kurt Godel in his doctoral thesis 18 years before.’

The ideas that fed my discovery of this proof were mostly those I found in
the teachings and writings of Alonzo Church. This may seem curious, as his
work in logic, and his teaching, gave great emphasis to the constructive char-
acter of mathematical logic, while the model theory to which I contributed
is filled with theorems about very large classes of mathematical structures,
whose proofs often by-pass constructive methods.

Another curious thing about my discovery of a new proof of Gddel’s
completeness theorem, is that it arrived in the midst of my efforts to prove
an entirely different result. Such “accidental” discoveries arise in many parts
of scientific work. Perhaps there are regularities in the conditions under
which such “accidents” occur which would interest some historians, so 1
shall try to describe in some detail the accident which befell me.

&egcived November 17, 1_995‘apd in reyi_segi_f_o-x'm. Ja_nue_u_'y_‘_%,_ 1?96.

Godel as Giant: Some Evidence

THE DISCOVERY OF MY COMPLETENESS PROOFS
LEON HENKIN

Dedicated to my teacher, Alonzo Church, in his 91st year.

§1. Introduction. Thispaper dealswith aspects of my doctoral dissertation'
which contributed to the early development of model theory. What was of
use to later workers was less the results of my thesis, than the method by
which I proved the completeness of first-order logic—a result established by
Kurt Godel in his doctoral thesis 18 years before.’

The ideas that fed my discovery of this proof were mostly those I found in
the teachings and writings of Alonzo Church. This may seem curious, as his
work in logic, and his teaching, gave great emphasis to the constructive char-
acter of mathematical logic, while the model theory to which I contributed
is filled with theorems about very large classes of mathematical structures,
whose proofs often by-pass constructive methods.

Another curious thing about my discovery of a new proof of Gédelﬁ
completeness theorem, is that it arrived in the midst of my efforts to prove
an entirely different result. Such “accidental” discoveries arise in many parts
of scientific work. Perhaps there are regularities in the conditions under
which such “accidents” occur which would interest some historians, so I
\shall try to describe in some detail the accident which befell me.)

l_l_u_:cived November 17, 1_995.an in rcyi_segi_f_o_rm. Ja_nue_u_'y_“%._ 1?96.

But How'd He Handle All of &Z,?

But How'd He Handle All of &Z,?

Godel proves the lemma that if the GCT holds for
formula of degree j, GCT holds of formulae of degree
jt1. So the challenge reduces to formulae of degree I:

But How'd He Handle All of &Z,?

Godel proves the lemma that if the GCT holds for
formula of degree j, GCT holds of formulae of degree
jt1. So the challenge reduces to formulae of degree I:

VX5 X0 ey X AV Voo vy Vi@ (X1 X0y oy Xpos Vis Vo5 <05 Vi)

But How'd He Handle All of &Z,?

Godel proves the lemma that if the GCT holds for
formula of degree j, GCT holds of formulae of degree
jt1. So the challenge reduces to formulae of degree I:

VX5 X0 ey X AV Voo vy Vi@ (X1 X0y oy Xpos Vis Vo5 <05 Vi)

How! By ingenious tree-building, which starts by creating an
enumeration of new constants ¢ = ¢y, ¢,, ...that becomes our “universe
of discourse”/“domain of quantification.” Note that from ¢ we can
algorithmically generate an enumeration of tuples ¢’ = {c);, (¢),, ... of
any finite size. (Those of size k will work for the x-variables, and those
of size n will work for the y-variables.) And now we can build a BIG
tree at the level of the pure predicate calculus, looking for either a
scenario that makes our formula true by traveling with Buzz to infinity,
or getting all branches closed, in which case we turn back to the
resolution guarantee! Let’s make sense of this by hand on paper ...

Gl s W"""W% Aej.cce/ formvlae 3/5)20

V:; \7/’(:)"2—,"') X 37,))',_)...) ym 5»/()(“)(1/ .,./)(K')

C\f(,';—_-c)5 o

s l)

Len v(/p/zf 4 he she Z vy %, vaon sl le s C,',e, rihe /¢> cn Trta

Priesio,
C;- “-K K
g '~<> <c7 T A)M//k)
;22 M
/—)7(7;&.) %ﬁu f/uz%“j; Variedte s (re
S (pe 57
d{’./:: Z&0 Levy <c>';/)
vm A K
A hes ey Lnmgarh <c>K'{[,>

4531 @'7 %7

éc>’< ‘ 4C>T 7<C>Z))<C> (C>37
o
In cheamtted Lom
TN B i
s 22 23 0—‘; 23{ o w
30 3% 23 3)
gy 03 10T
0 W Wow ¥

bﬂ\/m See o kaw%wmaméhkﬂ
O Some _Luvmbzhon % Ay w%‘,,,,tz arr‘&

Goked s Ww’/h% Aejue/ formvlae 3/5)20

%f; V
Xy ¥,) X 37'1))'7-)"') Ym ?/(Y,;K,./ ey Kpe 9

%{1/ ’A‘/) Z} 3/ e v
ples % ; ' g ‘ ‘
e i 1 e s i G)
Cp K

AR P P MRS WA

3 J
/—) 7(/(7&) % fhe side Z ’A_eju W;N’d/(eJ
M §i7add

‘- m m ” <l
d = L Levy Levg e X
4 /

(re f”’”)‘”//k)

ety LT g L0 >m7<C>K'<C>K
(C)’;’.) 465"" 7 <C>.;) ? <C> (C>'5’

11 12 17 4 13 «
s 22 23 x4 25 0 &
gy g5 %

17V 4 w d

Z),,YW‘ See o W,y_/o_ﬁ%,o@—%ooowa—/-rwbhkj
On Sowmet _Lupumbrhon % Ay W\.ﬁ/unrl’l arr’g_

Making this Concrete
Courtesy of HyperSlate®

a

HyperSlate® < Straight v GodelFormulal [FIRST-ORDER-LOGIC]: Saved with @) symbols.

assume

VIV EEINRIENE vx: 3y: L(x, y) A =L(X, y)

from {SAME FORMULA FOR SAT TESTING}

Making this Concrete
Courtesy of HyperSlate®

HyperSlate® @& = < Straight v GodelFormulal [FIRST-ORDER-LOGIC]: Saved with @) symbols.

assume

‘ SAME FORMULA FOR SAT TESTING IR e N R LR Y ’

from {SAME FORMULA FOR SAT TESTING}

assume

ay: L(c1, y) A =L(c1,y)
from {2}

Making this Concrete
Courtesy of HyperSlate®

HyperSlate® @& = < Straight v GodelFormulal [FIRST-ORDER-LOGIC]: Saved with @) symbols.

assume

‘ SAME FORMULA FOR SAT TESTING IR e N R LR Y ’

from {SAME FORMULA FOR SAT TESTING}

assume

ay: L(c1, y) A =L(c1,y)
from {2}

assume

L(c1, c2) A—.L(c1 c2)
from {3}

Making this Concrete
Courtesy of HyperSlate®

HyperSlate® @& = < Straight v GodelFormulal [FIRST-ORDER-LOGIC]: Saved with @) symbols.

assume

‘ SAME FORMULA FOR SAT TESTING IR e N R LR Y ’

from {SAME FORMULA FOR SAT TESTING}

assume

ay: L(c1, y) A =L(c1,y)
from {2}

assume

L(c1, c2) A—.L(c1 c2)
from {3}

assume

@A L(c1,c2) -

from w PC - (Oracle)

Making this Concrete
Courtesy of HyperSlate®

HyperSlate® @& = < Straight GodelFormulal [FIRST-ORDER-LOGIC]: Saved with @) symbols.

assume

from {SAME FORMULA FOR SAT TESTING}

‘ SAME FORMULA FOR SAT TESTING IR e N R LR Y ’

assume

ay: L(c1, y) A =L(c1,y)
from {2}

assume

L(c1, c2) A—.L(c1 c2)
from {3}

assume

@A L(c1,c2)

— |

from .{i)//‘)’/’ PC K- (Oracle)

assume

ac
from {4,5}

-L(c1, c2)

from {5}

Making this Concrete
Courtesy of HyperSlate®

@ Safari File Edit View History Bookmarks Window Help O QO @ @ = Q & © ThuApr7 10:19AM
)
eoe M+ < [)] @ rpi.logicamodernapproach.com ¢ ©) [i'] + 83
=]
I a Sign in to hypergrader - selmerbringsjord@gmail.com - Gmail Editing GodelFormulal G teller 2ch8.pdf truth trees - Google Search
(X}
Topic: T HyperSlate® —2 Bezier GodelFormula? [FIRST-ORDER-LOGIC]: Saved with @3 symbols.
Time: Ap
Zoom meel
#+END_EX/ .
@@html : < .
#+END_QU([assume]
@@html : < |
And th¢
here. SAME FORMULA FOR SAT TESTING RAGENARCE DR}
** FApri] from {SAME FORMULA FOR SAT TESTING}
After sei
collecti¢ [assume
is covery |
(by S Bri R
these { 3y:L(cT,y) A -L(cly)]
dissertal from {2}
as part ¢
proved fi Iﬁsﬂe
theorem: |
(here the
o ma L(cT, ?2) A3—|L(C1, c2)
out; thes om (3}
satisfiat)
refutati¢ assume |
- Zoom-mi
#+BEGIN_(
@@html : <t L(c1, c2)
#+BEGIN_I from {4}
~riSelmer Bi [assgme[
i | I
| -L(cT, c2) .
' il from {5} [Pc (Oracle) |
]
_pJoin Zoot
selhttps: /A B¢
Meeting ! from {4}
Daccrndal z
=i

BOa=®E0 "

Making this Concrete
Courtesy of HyperSlate®

@ Safari File Edit View History Bookmarks Window Help O QO @ @ = Q & © ThuApr7 10:19AM
)
eoe M+ < [)] @ rpi.logicamodernapproach.com ¢ ©) [i'] + 83
=]
I a Sign in to hypergrader - selmerbringsjord@gmail.com - Gmail Editing GodelFormulal G teller 2ch8.pdf truth trees - Google Search
(X}
Topic: T HyperSlate® —2 Bezier GodelFormula? [FIRST-ORDER-LOGIC]: Saved with @3 symbols.
Time: Ap
Zoom meel
#+END_EX/ .
@@html : < .
#+END_QU([assume]
@@html : < |
And th¢
here. SAME FORMULA FOR SAT TESTING RAGENARCE DR}
** FApri] from {SAME FORMULA FOR SAT TESTING}
After sei
collecti¢ [assume
is covery |
(by S Bri R
these { 3y:L(cT,y) A -L(cly)]
dissertal from {2}
as part ¢
proved fi Iﬁsﬂe
theorem: |
(here the
o ma L(cT, ?2) A3—|L(C1, c2)
out; thes om (3}
satisfiat)
refutati¢ assume |
- Zoom-mi
#+BEGIN_(
@@html : <t L(c1, c2)
#+BEGIN_I from {4}
~riSelmer Bi [assgme[
i | I
| -L(cT, c2) .
' il from {5} [Pc (Oracle) |
]
_pJoin Zoot
selhttps: /A B¢
Meeting ! from {4}
Daccrndal z
=i

BOa=®E0 "

Making this Concrete
Courtesy of HyperSlate®

Volunteers to do the following Buzz-
Lightyear-relevant formula, from
earlier in the present slide deck!?

Vxdy y > x

Making this Concrete

Courtesy of HyperSlate®
E.s.

assume

|

[le]VIVIZN§ "Konig's Lemma needed here!"
from {COMMENT}

assume

vx: 3y: G(X, y) ’

from {Teesteel}

assume

: 6(a,y)

from {1}

(FALSUM 4

from {Teesteel}

(FALSUM |8

from {Teesteel}

assume

assume

3ay: G(b, y)

from {3}

assume

A (new) name Vx EIyL(x’ y)
n, for x. <
EIyL(nl,)7) A (new) name
> n, fory.

We must use L(nl, nz)
n, for x.

A (new) name
ns for y.

A (new) name
n, for x.

We must use
n, for x.

For every x, there’s a y s.t. x Is less than .

There's a y s.t. object ny Is less than v.

A (new) name
Object ny is less than object ny.| n, fory.

There's a y s.t. object ny Is less than .

A (new) name
ns for y.

Object nz is less than object ns.

slutten

