
Development of a proof assistant for Dedukti

• Lab: LSV, ENS Cachan, France

• Team: Deducteam

• Advisor: Frédéric Blanqui

Dedukti [11] is a formal proof checker based on a logical framework called
the λΠ-calculus modulo, which is an extension of the simply-typed lambda-
calculus with dependent types (e.g. lists of size n) and an equivalence relation
on types generated by user-defined rewrite rules (like in Agda or Haskell). Proofs
obtained by some proof assistants (e.g. HOL, Coq, Matita) can be checked in
Dedukti by encoding function definitions and axioms by rewrite rules [8, 6, 5].

But, currently, no proof assistant fully uses all the capabilities of Dedukti,
which allows a priori arbitrary user-defined rewrite rules. This is for instance
necessary if one wants to ease the use of dependent types and be able to define
types for representing simplicial sets of arbitrary dimensions, ∞-categories or
models of Voevodsky’s homotopy type theory.

The goal of this internship is to develop a front-end, that is, a proof assistant,
for Dedukti that takes advantage of defining arbitrary rewrite rules for defining
functions and types. Developing a proof assistant includes to develop a language
and interpretation tool for building proofs interactively.

A key feature to scale up, especially with dependent and polymorphic types,
is to allow the user to write down terms with missing information (e.g. the type
of the elements of a list) and provide an inference engine for deducing it. To
start with, the student could adapt the refinement engine of Matita [3].

Such a refinement engine is based on a unification algorithm. To start with,
the student could implement a simple first-order unification algorithm.

A refinement engine also provides the basis on which to implement basic tac-
tics. For instance, applying the logical introduction rule for implication consists
in refining the current proof by the incomplete term λx :?.?. The student will
implement a basic set of such tactics.

Then, several directions can be considered:

• Take into account in the unification algorithm of user-defined rules and
unification hints like in Matita and Coq for handling type classes and
canonical structures [1, 12, 10].

• Provide a tactic to export the current goal into the standard TPTP format
and call any state-of-the-art automated theorem provers to solve it (with

1

http://www.lsv.ens-cachan.fr/
https://www.rocq.inria.fr/deducteam/
https://who.rocq.inria.fr/Frederic.Blanqui/


a preference for those that can output some proof that can be checked by
Dedukti like Zenon and iProver).

• Define a general tactic language following works like Isar [14], Tinycals
[7, 2], Ssreflect [9], MTac [17] or the new implementation of LTac [13].

• Develop a user interface by developing a ProofGeneral mode [4] or a jEdit
mode [16, 15].

Expected abilities: basic knowledge of typed lambda-calculus and OCaml.

References
[1] A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. Hints in uni-

fication. In Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics, Lecture Notes in Computer Science 5674,
2009.

[2] A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. A new type for
tactics. In Proceedings of the ACM SIGSAM International Workshop on
Programming Languages for Mechanized Mathematics Systems, 2009.

[3] A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. A bi-directional
refinement algorithm for the calculus of (co)inductive constructions. Logical
Methods in Computer Science, 8:1–49, 2012.

[4] D. Aspinall. Proof General: a generic tool for proof development. In
Proceedings of the 6th International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer
Science 1785, 2000.

[5] A. Assaf. A framework for defining computational higher-order logics. PhD
thesis, École Polytechnique, France, 2015.

[6] M. Boespflug, Q. Carbonneaux, and O. Hermant. The lambda-pi-calculus
modulo as a universal proof language. In Proceedings of the 2nd Interna-
tional Workshop on Proof eXchange for Theorem Proving, CEUR Work-
shop Proceedings 878, 2012.

[7] C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. Tinycals: step by step tac-
ticals. In Proceedings of the 7th, Electronic Notes in Theoretical Computer
Science 174(2), 2006.

[8] D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-
Pi-calculus modulo. In Proceedings of the 8th International Conference on
Typed Lambda Calculi and Applications, Lecture Notes in Computer Science
4583, 2007.

2

http://dx.doi.org/10.1007/978-3-642-03359-9_8
http://dx.doi.org/10.1007/978-3-642-03359-9_8
http://plmms09.cse.tamu.edu/proceedings.pdf
http://plmms09.cse.tamu.edu/proceedings.pdf
http://dx.doi.org/10.2168/LMCS-8(1:18)2012
http://dx.doi.org/10.2168/LMCS-8(1:18)2012
http://dx.doi.org/10.1007/3-540-46419-0_3
http://ceur-ws.org/Vol-878/paper2.pdf
http://ceur-ws.org/Vol-878/paper2.pdf
http://dx.doi.org/10.1016/j.entcs.2006.09.026
http://dx.doi.org/10.1016/j.entcs.2006.09.026
http://dx.doi.org/10.1007/978-3-540-73228-0_9
http://dx.doi.org/10.1007/978-3-540-73228-0_9


[9] G. Gonthier, A. Mahboubi, and E. Tassi. A small scale reflection extension
for the Coq system. Technical Report 6455 version 15, INRIA and Microsoft
Research, 2014.

[10] A. Mahboubi and E. Tassi. Canonical Structures for the working Coq user.
In Proceedings of the 4th International Conference on Interactive Theorem
Proving, Lecture Notes in Computer Science 7998, 2013.

[11] R. Saillard. Dedukti 2.3, 2014.

[12] M. Sozeau. A new look at generalized rewriting in type theory. Journal of
Formalized Reasoning, 2(1):41–62, 2009.

[13] A. Spiwack. An abstract type for constructing tactics in Coq, 2010.

[14] M. Wenzel. Isar - a generic interpretative approach to readable formal proof
documents. In Proceedings of the 12th International Conference on Theo-
rem Proving in Higher Order Logics, Lecture Notes in Computer Science
1690, 1999.

[15] M. Wenzel. Isabelle/jEdit – a prover IDE within the PIDE framework. In
Proceedings of the 11th International Conference on Intelligent Computer
Mathematics, Lecture Notes in Computer Science 7362, 2012.

[16] M. Wenzel. READ-EVAL-PRINT in parallel and asynchronous proof-
checking. In Proceedings of the 10th, Electronic Proceedings in Theoretical
Computer Science 118, 2012.

[17] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and V. Vafeiadis.
Mtac: a monad for typed tactic programming in Coq. In Proceedings of
the 18th ACM International Conference on Functional Programming, SIG-
PLAN Notices 48(9), 2013.

3

http://hal.inria.fr/inria-00258384
http://hal.inria.fr/inria-00258384
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-39634-2_5
http://dedukti.gforge.inria.fr/
http://dx.doi.org/10.6092/issn.1972-5787/1574
http://hal.inria.fr/inria-00502500
http://dx.doi.org/10.1007/3-540-48256-3_12
http://dx.doi.org/10.1007/3-540-48256-3_12
http://dx.doi.org/10.1007/978-3-642-31374-5_38
http://dx.doi.org/10.4204/EPTCS.118.4
http://dx.doi.org/10.4204/EPTCS.118.4
http://dx.doi.org/10.1145/2500365.2500579

