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Dedukti [11] is a formal proof checker based on a logical framework called
the λΠ-calculus modulo, which is an extension of the simply-typed lambda-
calculus with dependent types (e.g. lists of size n) and an equivalence relation
on types generated by user-defined rewrite rules (like in Agda or Haskell). Proofs
obtained by some proof assistants (e.g. HOL, Coq, Matita) can be checked in
Dedukti by encoding function definitions and axioms by rewrite rules [8, 6, 5].

But, currently, no proof assistant fully uses all the capabilities of Dedukti,
which allows a priori arbitrary user-defined rewrite rules. This is for instance
necessary if one wants to ease the use of dependent types and be able to define
types for representing simplicial sets of arbitrary dimensions, ∞-categories or
models of Voevodsky’s homotopy type theory.

The goal of this internship is to develop a front-end, that is, a proof assistant,
for Dedukti that takes advantage of defining arbitrary rewrite rules for defining
functions and types. Developing a proof assistant includes to develop a language
and interpretation tool for building proofs interactively.

A key feature to scale up, especially with dependent and polymorphic types,
is to allow the user to write down terms with missing information (e.g. the type
of the elements of a list) and provide an inference engine for deducing it. To
start with, the student could adapt the refinement engine of Matita [3].

Such a refinement engine is based on a unification algorithm. To start with,
the student could implement a simple first-order unification algorithm.

A refinement engine also provides the basis on which to implement basic tac-
tics. For instance, applying the logical introduction rule for implication consists
in refining the current proof by the incomplete term λx :?.?. The student will
implement a basic set of such tactics.

Then, several directions can be considered:

• Take into account in the unification algorithm of user-defined rules and
unification hints like in Matita and Coq for handling type classes and
canonical structures [1, 12, 10].

• Provide a tactic to export the current goal into the standard TPTP format
and call any state-of-the-art automated theorem provers to solve it (with
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a preference for those that can output some proof that can be checked by
Dedukti like Zenon and iProver).

• Define a general tactic language following works like Isar [14], Tinycals
[7, 2], Ssreflect [9], MTac [17] or the new implementation of LTac [13].

• Develop a user interface by developing a ProofGeneral mode [4] or a jEdit
mode [16, 15].

Expected abilities: basic knowledge of typed lambda-calculus and OCaml.
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