A revision of Leptopontia T. Scott (Copepoda: Harpacticoida) with description of six new species

RONY HUYS AND SOPHIE CONROY-DALTON
Crustacea Research Group, Z oology Department, The Natural History M useum, C romwell R oad, London, SW 7 5B D

R eceived September 1995, accepted for publication F ebruary 1996

The presumed amphiatlantic distribution of Leptopontia curvicauda T. Scott, 1902 (Copepoda: H arpacticoida) is reviewed and the species being redescribed on the basis of a single male from the Isle of Sylt. Examination of other material previously attributed to L. curvicauda, collected in South Carolina and a wide range of localities in northwestern Europe, resulted in the discovery of four new, morphologically similar species: L. dovpori sp. nov., L. flandrica sp. nov., L. punctata sp. nov. and L. americana sp. nov. In addition, two new species, L. mediterranea sp. nov. and L. breviarticulata sp. nov. are described from the M editerranean and the G alápagos archipelago, respectively. L. curvicauda sensu M arinov (1971) and sensu A postolov (1973) from the Black Sea and sensu K lie (1950) from H elgoland are regarded as species inquirendae. A revised diagnosis of the genus Leptopontia T. Scott is presented.

O1996 The Linnean Society of London
ADDITIONAL KEY WORDS: - revision - copepod - taxonomy - interstitial.
CONTENTS
Introduction . 197
M aterial and methods . 198
Systematics . 199
Leptopontia T. Scott, 1902 . 199
Leptopontia dovpori sp. nov. 200
Leptopontia curvicauda T. Scott, 1902 212
Leptopontia punctata sp. nov. 223
Leptopontia flandrica sp. nov. 230
Leptopontia mediterranea sp. nov. 232
Leptopontia breviarticulata sp. nov. 234
Leptopontia americana sp. nov. 236
Leptopontia curvicauda T. Scott, 1902 sensu M arinov (1971) 237
Leptopontia curvicauda T. Scott, 1902 sensu A postolov (1973) 237
Acknowledgements . 238
R eferences . 238

NTRODUCTION
T. Scott (1902) claimed that Leptopontia T. Scott resembled M esochra Boeck (now Canthocamptidae) and Tedragoniceps Brady (now Tetragonicipitidae) in certain
aspects, a view also held by Monard (1927) who formally allocated it to the C anthocamptidae. The genus was not considered by Sars (1903-1911) but Gurney (1932) placed it, along with E vansula T . Scott and Leptastacus T. Scott, in the E vansula series, one of six generic groupings defined in Gurney's classification of the C anthocamptidae. The two monotypic genera Leptopontia and Arenopontia K unz were moved by Lang (1944) to the Cylindropsyllidae, i.e. in the Leptopontia-R eihe which subsequently acquired subfamilial status (Lang, 1948). This classification gained wide usage although some authors continued to include Leptopontia in the C anthocamptidae (A postolov, 1971). Recently, M artinez Arbizu \& M oura (1994) dramatically altered the concept of the Leptopontiinae and raised it to family rank. For reasons outlined elsewhere (H uys, in prep.) these changes are not adopted here.

A renopontia currently represents one of the most speciose interstitial genera, encompassing 29 species (and subspecies) contained in two subgenera Arenopontia K unz, 1937 and Neoleptastacus Nicholls, 1945. The genus Leptopontia, however, has remained monotypic since its establishment at the turn of the century (T . Scott, 1902). Leptopontia curvicauda T. Scott was one of the very few interstitial copepods discovered during the era marked by the numerous surveys of Thomas and Andrew Scott, long before Wilson (1935) and Nicholls (1935) drew attention on the existence of meiofaunal harpacticoids in sandy beaches on both sides of the Atlantic. Originally described from St. M onans in the Firth of Forth, Scotland, L. curvicauda has now been reported from numerous localities in the British Isles, N.W. European coast, the M editerranean and the Atlantic seaboard of North America. In addition, M ielke (1982) recorded a single specimen of an undescribed Leptopontia species from the G alápagos.

In view of the limited distribution and dispersal of interstitial copepods in general, and Leptastacidae and Paramesochridae in particular (Huys, 1992), a survey of existing records was undertaken in order to test the presumed amphi-A tlantic and boreo-M editerranean distribution patterns of L. curvicauda. The present revision, which was based on material from a wide range of localities, resulted in the discovery of six new species, some of which have been confused previously with the type species L. curvicauda.

MATERIAL AND METHODS

Specimens were dissected in lactic acid and the dissected parts were placed in lactophenol mounting medium. Preparations were sealed with glyceel (Gurr $®$, BDH C hemicals Ltd, Poole, UK). All drawings have been prepared using a camera lucida on a Leitz Diaplan microscope equipped with differential interference contrast. The descriptive terminology applied to segmentation and setation of body appendages is adopted from H uys \& Boxshall (1991). Abbreviations used in the text and figures are: P1-P6, first to sixth thoracopods; exp., exopod; enp., endopod; exp(enp)-1(-2, -3), to denote the proximal (middle, distal) segment of a ramus. Except for L. breviarticulata sp. nov., the type series of all new species are deposited in the collections of the Zoology Department, The Natural History M useum, London.

SYSTEMATICS

The systematics of the Cylindropsyllidae is currently in a state of flux. Huys \& O htsuka (1993) suggested that the Leptopontiinae is not a natural unit and should encompass only Leptopontia, Notopontia Bodiou and Syrticola Willems \& Claeys. In a controversial paper, M artinez A rbizu \& M oura (1994) instead considerably widened the boundaries of the Leptopontiidae (now upgraded to family rank) by maintaining Arenopontia and further incorporating the Psammopsyllinae in this family. A discussion of the generic composition and relationships of the Leptopontiinae is beyond the scope of this paper and will be published separately (H uys, in prep.). For the sake of this paper the Leptopontiinae is regarded as a subfamily of the C ylindropsyllidae in the sense of H uys \& O htsuka (1993).

Leptopontia T. Scott, 1902

D iagnosis

Leptopontiinae. Hyaline frill of cephalothorax and free body somites plain, sometimes striated. R ostrum elongate. Anal operculum with 1 or several small spinous processes, exceptionally without.

Antennule 7 -segmented in O ; 9 -segmented in ot with segment 5 moderately swollen; terminal acrothek in both sexes consisting of 2 setae basally fused to aesthetasc. M axillulary coxal endite with 1 seta. M axilla with 3 setae on allobasis; syncoxal endite cylindrical, with 2 unmodified setae.
P1 exopod 3 -segmented; suture line between $\exp -2$ and exp- 3 sometimes incomplete; exp-2 without outer seta; exp-3 with 1 subapical and 2 apical geniculate setae, outer spine absent. P1 enp-2 with 2 geniculate setae or claws apically and 1 minute accessory seta subapically.

P2-P4 endopods 2 -segmented; inner element enp-1 pinnate and spiniform. Armature formula of female swimming legs:

	Exopod	Endopod
P1	0.0 .021 [or 0.021]	1.120
P2	0.0 .021	1.120
P3	0.0 .112	$[0-1] .010$
P4	0.0 .112	1.020

P5 biramous in both sexes; usually incompletely fused medially in ó; exopod small, with 3 naked setae in both sexes; baseoendopod with outer plumose seta and weakly pronounced, rounded endopodal lobe, bearing 1 or 2 short setae in \mathcal{Q}, unarmed in 0^{\star}.

Sixth pair of legs slightly asymmetrical in δ^{\star}, with outer setule and inner seta, distal margin rounded; represented by small operculum with 2 setules in q.

Sexual dimorphism in antennule, P3 endopod (2 -segmented, minute; spine derived from enp-1 in O lost; enp-2 represented by bifid spine), P4 endopod (2-segmented; spine derived from enp-1 in $\%$ lost, except for L. americana sp. nov.; distal armature consisting of short outer spine and backwardly recurved, denticulate, inner spine), P5, P6, and in genital segmentation.

C audal ramus produced distally into dorsally recurved spinous process; seta I well developed, fused to and closely adpressed to caudal ramus.

T ype species
Leptopontia curvicauda T. Scott, 1902 [by monotypy]
0 ther species
L. dovpori sp. nov.
L. punctata sp. nov.
L. flandrica sp. nov.
L. mediterranea sp. nov.
L. breviarticulata sp. nov.
L. americana sp. nov.

Species inquirendae
Leptopontia curvicauda T. Scott, 1902 sensu K lie (1950)
Leptopontia curvicauda T. Scott, 1902 sensu M arinov (1971)
Leptopontia curvicauda T. Scott, 1902 sensu Apostolov (1973)

Descriptions

Since females of the type species L. curvicauda were not available for study, the new species L. dovpori is selected instead for the model description.

Leptopontia dovpori sp. nov.

T ype locality. Coal Pit, off Norfolk coast (England); $53^{\circ} 33.40^{\prime} \mathrm{N}, 01^{\circ} 34.70^{\prime} \mathrm{E} ; 40 \mathrm{~m}$ depth, coarse gritty sand; leg. Dr R. Hamond, 15 June 1989.

M aterial examined. Holotype $\&$ (dissected on 8 slides) and paratype $\boldsymbol{\sigma}^{*}$ (dissected on 7 slides) deposited in The Natural H istory M useum, London under reg. nos 1994.5825 and 1994.5826, respectively; additional paratypes ($1 \mathrm{Q}, 1 \delta^{\circ}$) in alcohol (reg. no. 1995.385-386).

Other material: 16 ¢ q and 4 o̊ ơ (in alcohol; reg. no. 1995.387-396) from off Dutch Delta, S.W. Netherlands ($51^{\circ} 45^{\prime} 000^{\prime N}$, $3^{\circ} 30^{\prime} 00^{\prime \prime} \mathrm{E}$; depth 14 m); leg. R. H uys, 17 A pril 1986.
Description of female T otal body length from the tip of the rostrum to the posterior margin of the caudal rami: $595 \mu \mathrm{~m}$ (Fig. 1A). M aximum width $65 \mu \mathrm{~m}$ measured at cephalothorax. Integument of thoracic and abdominal somites with distinct pattern of subsurface integumental pits. Pleural areas of cephalothorax not well developed so that cephalic appendages are clearly exposed in lateral aspect (Fig. 2A). Posterior margin of body somites with plain hyaline frill which is striated in the genital doublesomite and free abdominal somites (Figs 1A, 6A,B). Individual somites connected by well developed intersomitic membranes (e.g. Fig. 6A,B). Sternal plates with midventral, backwardly directed spinous process (often bifid at tip) located anterior to each pair of swimming legs (Fig. 7C).

Rostrum (Figs $1 \mathrm{~A}, 2 \mathrm{~A}, \mathrm{~B}, 3 \mathrm{~A}$) triangular, elongate, with slightly convex lateral margins; about 0.8 times the length of first antennulary segment; with 2 delicate sensillae; base surrounded by membranous area (Fig. 7A).

Genital double somite (Figs 1A, 6A, B) slightly longer than wide; original segmentation
not marked by any external or internal cuticular structure. Genital apertures paired (Fig. 6B), located in anterior half of genital double-somite; each closed off by small operculum derived from sixth leg bearing 2 tiny setae of equal length (Fig. 11B). M edian copulatory pore located far anteriorly between genital apertures (Fig. 11A). Seminal receptacles not confirmed. Paired secretory pores present on ventral surface of genital double-somite.

Figure 1. Leptopontia dovpori sp. nov. A, habitus (q), dorsal; B, habitus (δ^{\star}), lateral; C , habitus (${ }^{\wedge}$), dorsal.

A nal somite (Figs 4D, 6F, 9A-C) with dorsal operculum drawn out into median, posteriorly directed, slender spinous process, flanked by two smaller processes which can vary slightly in size and shape (see also Figs 4E, 9A, B). Anus large, terminal, located in between caudal rami (Fig. 9B).

C audal rami (Figs 6E,F, 9A-D) slightly divergent; outer distal corner drawn out into posteriorly directed, dorsally recurved spinous process; with 7 setae; setae I-III well

Figure 2. Leptopontia dovpori sp. nov. (Q). A, cephalothorax, lateral; B, same, ventral [P1 omitted];
C, maxillule; D, labrum, anterior.
developed, precise identification impossible due to secondary migration, posterodorsal one (probably seta I) fused basally and closely adpressed to ramus, possibly tubular (Fig. 9A, C , D); seta V very long and with fracture plane, seta VI minute, seta VII tri-articulate at base. R amus about 3.3 times as long as basal width (measured in lateral aspect along ventral margin).

A ntennule (Fig. 3A) slender, 7-segmented; segment 1 longest, about 3.3 times as long as wide, surrounded by distinct sclerite around proximal posterior margin (Figs 2A,

Figure 3. Leptopontia dovpori sp. nov. (q). A, rostrum and antennule, dorsal; B, mandible; C, same, other view; D, maxilla [secretory pore arrowed]; E, maxilliped.

3A, 7A), with 1 short seta at distal anterior corner and dorsal tube pore near distal margin; segment 4 with very long aesthetasc $(140 \mu \mathrm{~m})$ fused basally to seta and set on distinct pedestal; segment 7 with apical acrothek consisting of short aesthetasc $(20 \mu \mathrm{~m})$ fused basally to 2 setae. All setae bare except for 1 plumose seta on segment 2. Armature formula: 1-[1], 2-[8 + 1 plumose], 3-[5], 4-[2 + ae], 5-[1], 6-[3], 7-[7 + acrothek].

Figure 4. Leptopontia dovpori sp. nov. (q). A, antenna; B, antennary endopod; C, P1, anterior [vestigial seta on enp-2 arrowed]; D, anal operculum and left caudal ramus, dorsal; E, anal operculum of $\begin{gathered}\text { s specimen; } F \text {, antennule (} \delta \text {) [armature posterior to segment } 2 \text { omitted], segments 3-9 disarticulated }\end{gathered}$ (a-g).

Antenna (Fig. 4A,B). C oxa with 2 spinular rows. Allobasis elongate, about 3.8 times as long as maximum width; with 3 spinular rows and backwardly directed seta. Exopod a small segment (Fig. 10D) located in transverse membranous area marking fusion plane of basis and proximal endopod segment; exopodal seta short, about as long as segment. Free endopod with 3 spinular rows along outer margin, 2 pinnate

Figure 5. Leptopontia dovpori sp. nov. (Y). A, P2 (P), anterior; B, P3 (P), anterior; C, P4 (P), anterior; D, P3 endopod (δ), anterior; E, P3 endopod (${ }^{\text {) }) \text {, lateral; F, P4 endopod (} \delta \text {), anterior; G, P4 }}$ endopod (o), lateral; H, P5 (O), anterior; I, P5 ($\mathbf{\delta}^{\circ}$), anterior.
spines along inner margin; distal margin with 1 pinnate spine, 3 geniculate setae and 1 spinulose geniculate seta fused basally to small seta.

M outhparts and labrum fragile and flimsy (Fig. 10A-C), arranged in distinct cone around oral opening (Fig. 10C).

Labrum (Figs 2A, D, 10C) protruding ventrally; distinctly tapering distally; apical part membranous; without any ornamentation.

Figure 6. Leptopontia dovpori sp. nov. (q). A, urosome (q), ventral; B, genital double-somite (O), ventral; C, urosome (δ^{\top}), ventral; D, sixth pair of legs (δ^{\top}); E, posterior margin of anal somite and right caudal ramus, ventral; F, anal somite and left caudal ramus, lateral.

M andible (Fig. 3B,C, 10B,D). C oxa elongate and curved, expanding distally into gnathobase provided with series of small, curved teeth and recurved pinnate seta at dorsal corner; with spinular row near implantation site of palp. Palp 2-segmented (Fig. 10B); basis a swollen elongate segment, unarmed, with 2 spinular rows; endopod elongate, with 1 pinnate seta laterally and 4 bare setae (one with long setule) apically.

M axillule (Fig. 2C). Praecoxa with rectangular, elongate arthrite; arthrite with 1 small seta on the outer margin, 2 long setae and a spinular row at the anterior surface, and 5 setae plus a distally serrate spine around the distal margin. C oxa partly fused to basis; with small endite bearing 1 long seta. Basis with rami entirely incorporated; exopod represented by 1 small and 1 long seta; endopod represented by 2 setae; proximal and distal endites of basis with 2 and 4 setae, respectively.

Figure 7. Leptopontia dovpori sp. nov. (Q). SEM micrographs. A, rostrum and first antennulary segment [small sclerite arrowed]; B, P1 enp-1 [setule arrowed]; C, protopod of P3 (lateral) and spinous processes on sternites [arrowed]; D, P4 endopod. Scale bars: $10 \mu \mathrm{~m}(A), 7.5 \mu \mathrm{~m}(B-D)$.

M axilla (Fig. 3D). Syncoxa with 1 cylindrical endite bearing 1 apical seta and 1 backwardly directed, subapical seta. Allobasis with 3 setae and tube-pore (arrowed in Fig. 3D), drawn out into claw-like, pinnate endite.

M axilliped (Fig. 3E). Syncoxa squarish; unarmed; with 3 spinular rows. Basis unarmed, with spinular row on palmar margin. Endopod represented by stout, distally pinnate claw bearing small seta proximally.

P1 (Fig. 4C). Praecoxa a well developed sclerite. Coxa without ornamentation. Intercoxal sclerite small, transversely elongate. Basis with slender inner seta and curved outer seta; large anterior surface pore, and spinular row near insertion site of exopod. Exopod distinctly 3 -segmented; exp-1 with long pinnate seta; exp-2 bare; exp-3 with 3 geniculate setae, increasing in length adaxially. Endopod with enp-1 8.3

Figure 8. Leptopontia dovpori sp. nov. (δ^{\top}). SEM micrographs. A, antennules, distal part (lateral); B, antennule, segments around geniculation [modified spines arrowed]; C, antennule, middle part [vestigial segment 4 arrowed]; D, antennule, apical segment [acrothek arrowed]. Scale bars: $15 \mu \mathrm{~m}(A), 10 \mu \mathrm{~m}(B)$, $7.5 \mu \mathrm{~m}(C), 6 \mu \mathrm{~m}(\mathrm{D})$.
times as long as wide, and about 1.9 times as long as exopod; with recurved serrate seta near proximal margin; enp-2 with 2 pinnate geniculate setae (longest clearly shorter than enp-1) and 1 tiny seta (arrowed in Figs 4C, 7B); ratio of enp-1:enp-2 about 4.8 .

P2-P4 (Fig. 5A-C). Intercoxal sclerites rectangular, distinctly concave in P3 and P4. C oxae bare. Bases with short naked seta (P2, P4) or long plumose seta (P3). Exopodal segments with well developed hyaline frills. Inner setae of P3-P4 exp-3 serrate. Inner elements of P2-P4 enp-1 spiniform and bipinnate (Fig. 7D). Armature formula of swimming legs:

	Exopod	Endopod
P1	0.0 .021	1.120
P2	0.0 .021	1.120
P3	0.0 .112	1.010
P4	0.0 .112	1.020

Fifth leas (Figs 5H, 6A) closely set together, no intercoxal sclerite. Baseoendopods not fused medially. Baseoendopod with moderately developed endopodal lobe, not extending to distal margin of exopod, with 2 short setae. Exopod a small segment with 1 outer, 1 inner and 1 apical seta. 0 uter basal seta long and plumose.
Description of male Total body length from the tip of the rostrum to the posterior margin of the caudal rami: $550 \mu \mathrm{~m}$ (Fig. 1B,C). Body slightly more slender than in female. Ornamentation of body generally as in the female except for some small differences in the integumental pit pattern. Lateral processes on anal operculum more spinous than in female (Fig. 4E). Sexual dimorphism in antennule, P3 endopod, P4 endopod, P5, P6 and in genital segmentation. Spermatophore about $90 \mu \mathrm{~m}$ in length.

Antennule (Figs 1B, C, 4F:a-g, 8A-D) indistinctly 9-segmented; base surrounded by small sclerite. R elative lengths of first two segments as in female. Fourth segment a small U-shaped sclerite with 1 seta (Figs $4 \mathrm{~F}: \mathrm{a}, 8 \mathrm{C}$). M ajor geniculation between segments 6 and 7 (Fig. 8A); these segments with modified setae (Fig. 8B). Segmental fusion pattern: I, II-VIII, IX-XII, XIII, XIV-XVIII, XIX-XX, XXI-XXII, XXIII, XXIV-XXVIII. Large aesthetasc on segment 5 (Fig. $4 F: c$) $120 \mu \mathrm{~m}$ long, fused basally with seta. Except for single anterior seta all other armature of segment 9 located in posterior concavity so that setae are directed perpendicular to segment axis (Figs $4 \mathrm{~F}: \mathrm{g}, 8 \mathrm{~A}, \mathrm{D}$). A pical acrothek of segment 9 consisting of small aesthetasc (arrowed in Fig. $4 \mathrm{~F}: \mathrm{g} ; 17 \mu \mathrm{~m}$ long), fused basally with 2 setae. Armature formula: 1-[1], 2-[8 + 1 plumose], 3-[6], 4-[1], 5-[6 + 2 modified + ae], 6-[4], 7-[3], 8-[1], 9-[7 + acrothek].

P3 endopod (Fig. 5D,E) 2-segmented, minute; enp-1 with 2 rows of diminutive spinules; enp-2 represented by 1 barbed spine.

P4 endopod (Fig. 5F-G) 2-segmented; enp-1 unarmed but with 1 spinular row; enp2 with 1 bare spine and a larger, posteriorly recurved, pectinate spine (Fig. 11C).

P5 (Figs 5I, 6C). Baseoendopods partly fused medially. Endopodal lobe moderately developed, inner margin clearly convex; without armature. O uter basal spine long and plumose. Exopod small, with 1 seta on both outer and inner margins and a smaller one apically.

Sixth pair of legs (Fig. 6D) asymmetrical with one member fused to genital somite;
functional member slightly larger and articulating; armature consisting of inner slender seta and outer vestigial setule.
V ariability. O ne paratype q had 4 exopodal setae on the right P5; another one had a bifid middorsal process on the anal operculum (Fig. 9C). The accessory smaller processes on the anal operculum are sometimes absent (Fig. 6F).
Etymology. The species is named in honour of Prof. Francis Dov Por, The H ebrew U niversity of Jerusalem.
Remarks. As a result of their close morphological resemblance and almost similar body size L. dovpori and L. curvicauda are easily confounded. L. dovpori differs from the type species in the relative proportions of the endopodal segments of the P1 and in the

Figure 9. Leptopontia dovpori sp. nov. (q). SEM micrographs. A, anal somite and caudal rami, dorsolateral [seta I arrowed]; B, same, posterolateral; C, same, lateral; D, detail of posterior part of caudal ramus, lateral [seta I arrowed]. Scale bars: $15 \mu \mathrm{~m}(\mathrm{~A}), 10 \mu \mathrm{~m}(\mathrm{~B}, \mathrm{D}), 4.3 \mu \mathrm{~m}(\mathrm{C})$.
detailed morphology of the anal operculum (diamond-shaped accessory processes absent). Females can be differentiated by the relative lengths of the endopodal setae on the fifth legs. A character that surprisingly has proven extremely constant within and between populations of L. dovpori is the punctate integumental pattern on the ventral surface of the genital double-somite (Fig. 6B). M ales of L . dovpori have a first antennulary segment that is relatively more slender and longer than in the type species. An additional character that serves to distinguish the males of L. curvicauda from all other known species is the elaborate sexual dimorphism on the P3 endopod.
L. dovpori is thus far known only from a few localities in the southern North Sea.

Figure 10. Leptopontia dovpori sp. nov. (Q). SEM micrographs. A, cephalothorax, ventrolateral; B, same, close-up [M andibular palp arrowed]; C, oral area and mouthparts, lateral [L = labrum; M $1=$ maxillule; $\mathrm{M} 2=$ maxilla; $\mathrm{Mg}=$ mandibular gnathobase; $\mathrm{Mp}=$ mandibular palp]; D, A ntennary allobasis [exopod arrowed]. Scale bars: $20 \mu \mathrm{~m}$ (A), $15 \mu \mathrm{~m}$ (B), $10 \mu \mathrm{~m}$ (C), $6 \mu \mathrm{~m}$ (D).

Leptopontia curvicauda T. Scott, 1902
Original description. - T. Scott (1902): 463-464; Plate X XII, Figs 26-35. Additional description. - M ielke (1975).
T ype locality. In dredgings off St. M onans in the Firth of Forth, Scotland.
M aterial examined. The type material no longer exists. The only specimen that could be positively identified as L. curvicauda is a male (dissected on 6 slides) collected by Dr M ielke from a sandy beach on the Isle of Sylt, Germany; deposited in The Natural H istory M useum.

Characters of female. By far the best illustrations of the female are those by Mielke (1975) of the P1, P5, anal operculum and caudal rami. T otal body length from the

Figure 11. Leptopontia dovpori sp. nov. SEM micrographs. A, fifth pair of legs and genital field (C), lateroventral [copulatory pore arrowed]; B, right genital aperture (O); C, P4 endopod (ô) [modified spine arrowed]. Scale bars: $15 \mu \mathrm{~m}(A), 6 \mu \mathrm{~m}(B, C)$.
tip of the rostrum to the posterior margin of the caudal rami: 510-580 $\mu \mathrm{m}$ (after M ielke, 1975), $600 \mu \mathrm{~m}$ (after T. Scott, 1902). Body less slender than in L. dovpori.

A rmature formula of swimming legs:

	Exopod	Endopod
P1	0.0 .021	1.120
P2	0.0 .021	1.120
P3	0.0 .112	1.010
P4	0.0 .112	1.020

Fifth legs. Baseoendopod with moderately developed endopodal lobe extending to distal margin of exopod, with 2 very long setae (much longer than baseoendopod). Exopod a small segment with 1 outer, 1 inner and 1 apical seta. 0 uter basal seta long and plumose.
Redescription of male. Total body length from the tip of the rostrum to the posterior margin of the caudal rami: $465 \mu \mathrm{~m}$ (Fig. 12A), $550-600 \mu \mathrm{~m}$ (M ielke, 1975). Integument of urosomites with distinct pattern of subsurface integumental pits. Posterior margin of body somites with plain hyaline frill which is striated in the urosomites (Figs 12A, 14A).

R ostrum (Fig. 12A,B) triangular, elongate, with straight lateral margins; about 0.85 times the length of first antennulary segment; with 2 delicate sensillae.

Anal somite (Figs 12D , 14A) with dorsal operculum drawn out into median, posteriorly directed spinous process, flanked by two small processes with diamondshaped tip.

Caudal rami (Figs 12D, 14A) slightly divergent; outer distal corner drawn out into posteriorly directed, dorsally recurved spinous process; with 7 setae; setae I-III well developed, posterodorsal one (probably seta I) fused basally and closely adpressed to ramus; seta V very long and with fracture plane, seta VI minute, seta VII triarticulate at base. R amus 6.2 times as long as basal width (measured in lateral aspect along ventral margin).

Sexual dimorphism in antennule, P3 endopod, P4 endopod, P5, P6 and in genital segmentation. Spermatophore about $90 \mu \mathrm{~m}$ in length.

Antennule (Fig. 12A,B) indistinctly 9 -segmented; base surrounded by small sclerite. Segment 1 longest, about 2.7 times as long as wide, surrounded by distinct sclerite around proximal posterior margin, with 1 short seta at distal anterior corner and dorsal tube pore near distal margin; segment 4 small U-shaped sclerite with 2 setae. M ajor geniculation between segments 6 and 7 . Segmental fusion pattern as in previous species. Large aesthetasc on segment $585 \mu \mathrm{~m}$ long, fused basally with seta. Apical acrothek of segment 9 consisting of small aesthetasc ($20 \mu \mathrm{~m}$ long), fused basally with 2 setae. Armature formula: 1-[1], 2-[8+1 plumose], 3-[7], 4-[2], 5-[6 + 2 modified + ae], 6-[4], 7-[3], 8-[1], 9-[7 + acrothek].

P1 (Fig. 13A). Praecoxa a well developed sclerite. Coxa without ornamentation. Basis with short inner seta and curved outer seta; large anterior surface pore, and spinular row near insertion site of exopod. Exopod distinctly 3 -segmented; exp-1 with long pinnate seta; exp-2 bare; exp-3 with 3 geniculate setae, increasing in length adaxially. Endopod with enp-1 approximately 7.5 times as long as average width (segment distinctly wider in proximal half), and about 1.6 times as long as exopod; with recurved serrate seta near proximal margin; enp-2 elongate, with 2 geniculate
setae (longest about as long as enp-1) and 1 tiny seta; ratio of enp-1:enp-2 about 2.75.

P2-P4 (Fig. 13B-E). Intercoxal sclerites rectangular, distinctly concave. Coxae bare. Bases with short naked seta (P2, P4) or long plumose seta (P3). Inner setae of P3-P4 exp-3 serrate. Inner element of P2 enp-1 spiniform and bipinnate.

P3 endopod (Fig. 13C) 2-segmented, larger than in other species of the genus; enp-1

Figure 12. Leptopontia curvicauda T. Scott, 1902 (()). A, habitus, lateral; B, rostrum and antennule, dorsal; C, fifth and sixth pair of legs [marginal pore arrowed]; D, Anal somite and right caudal ramus, lateral [secondary process arrowed].
with 3 rows of diminutive spinules on bulged outer margin; enp-2 elongate, strongly chitinized, with bifid apex.

P4 endopod (Fig. 13D , E) 2-segmented; enp-1 unarmed but with 1 tiny spinular row; enp-2 with 1 short, unipinnate spine and a larger, posteriorly recurved, pectinate spine.

P5 (Fig. 12C). Baseoendopods not partly fused medially. Endopodal lobe moderately developed, inner margin slightly concave; without armature but with

Figure 13. Leptopontia curvicauda T. Scott, 1902 (ơ). A, P1, anterior; B, P2, anterior; C, P3, anterior; D, P4, anterior; E, P4 endopod, lateral.
pore (arrowed in Fig. 12C). O uter basal spine long and plumose. Exopod small, with 1 seta on both outer and inner margins and a smaller one apically.

Sixth pair of legs (Fig. 12C) asymmetrical; armature consisting of inner slender seta and outer vestigial setule.
V ariability. M ielke (1975) illustrates a specimen with bifid spinous process on the anal operculum.

C

$$
\frac{20 \mu}{D}
$$

Figure 14. Leptopontia curvicauda T. Scott, 1902. A , urosome (${ }^{\star}$), dorsal. Leptopontia punctata sp. nov. B, urosome (q), ventral; C, Genital double-somite (q), ventral; D, P5 (q), anterior.

Remarks. It is unlikely that T. Scott's (1902) illustration of the female P5, showing 3 long setae on the endopodal lobe, is correct. All Leptopontiinae have a maximum of 2 setae in this position, and it therefore is conceivable that T. Scott had either drawn an aberrant specimen or that he had mounted his specimen in a ventrolateral posture thereby superimposing the innermost endopodal seta of the right P5 on the left endopodal lobe. This would also explain the unusually wide baseoendopod in T.

Figure 15. Leptopontia punctata sp. nov. A, habitus (ơ), lateral; B, P2 protopod, endopod and exp-1 (δ^{\star}), anterior; C, P4 protopod, endopod and exp-1 (δ^{\star}), anterior; D, fifth and sixth legs (δ^{\wedge}), anterior; E, anal operculum and right caudal ramus, dorsal.

Scott's illustration. There is little doubt that M ielke's (1975) material is L. curvicauda since his drawings and the present redescription agree with the original description in virtually every important aspect, such as the general body facies, the relative lengths of P1 enp-1 and enp-2, the length of the endopodal setae on the female P5,

Figure 16. Leptopontia punctata sp. nov. A, rostrum and antennule (O), dorsal; B, antennule (${ }^{\star}$), ventral; C, anal operculum and right caudal ramus (Copepodid IV), dorsal; D, same (Copepodid V), dorsal; E, same (Copepodid V), lateral; F, same (adult Ot), lateral.
and the anal operculum. The different setal formula of P4 exp-3 is not considered relevant here since it is almost certainly the result of an erroneous observation.

In the absence of female specimens it is difficult to define diagnostic characters permitting the separation of species, however, it seems that the very long setae on the P5 baseoendopod serve as a reliable character. M ales can easily be differentiated on the basis of the modification on the P3 endopod.

Figure 17. Leptopontia punctata sp. nov. A, P1, anterior; B, P2, anterior; C, P3, anterior; D, P4, posterior.
M any of the records of L. curvicauda are suspect as most workers failed to distinguish between the type species and closely related species such as L. dovpori, L. flandrica sp. nov. and L. punctata sp. nov. In reviewing the situation it seems that the majority of the published European records are false, mainly because they contain insufficient information to distinguish between these four species. A part from the original description (T. Scott, 1902, 1906), the only published record that can be verified absolutely is that of M ielke (1975) of the Isle of Sylt.

Figure 18. Leptopontia flandrica sp. nov. A, habitus ($\left(\underset{)}{ }\right.$), dorsal; B, cephalothorax (${ }^{\boldsymbol{*}}$), lateral; C, genital field ($(+)$ [vestigial setule on genital operculum arrowed]; D, sixth legs (δ^{\top}); E, rostrum, dorsal.
(1) L. curvicauda of K unz (1938) and Wells et al. (1975) is L. punctata sp. nov.
(2) L. curvicauda of Por (1964) may be L. punctata sp. nov.
(3) Indeterminable and improbable records: Germany: V ejsnaes-Flach, G abelsflach and Stoller Grund in K ieler Bucht (Scheibel, 1972), Boknis Eck in K ieler Bucht (Scheibel \& Rumohr, 1979); Wales: Porth-y-Post, Anglesey (Geddes, 1972); England: T resco and St. Martin's, Isles of Scilly (Wells, 1961, 1970); Ireland:

Figure 19. Leptopontia flandrica sp. nov. A, P2 (Y), anterior; B, P3 (P), anterior; C, P3 endopod

Silver Strand, Galway Bay (Bodin \& Jackson, 1989; H olmes \& 0 'C onnor, 1990); France: K ersaint (Bodin, 1988; Bodin \& Boucher, 1981; Bodin \& Jackson, 1989) and Bay of Douarnenez (Bodin, 1984), Finistère; Banyuls-sur-M er (Soyer, 1971); U.S.A.: N orth C arolina, northern part of continental shelf (C oull, 1971).

Figure 20. Leptopontia flandrica sp. nov. A, antennule (O), ventral; B, maxilliped; C, P1, anterior; D, urosome (O), ventral; E , anal somite and right caudal ramus [arrow marking convex dorsal margin of median process]; F, anal somite and left caudal ramus, dorsal.

Leptopontia punctata sp. nov.

L. curvicauda T. Scott, 1902 sensu K unz (1938)

T ype locality. Isle of Bonden, Bohuslän, Sweden.

Figure 21. Leptopontia mediterranea sp. nov. (Copepodid V §). A, habitus, lateral; B, rostrum and antennule, dorsal; C, detail of anterior margin of antennulary segments 3-5 [vestigial setae arrowed]; D, antenna [seta-like element on allobasis arrowed].

M aterial examined. H olotype q (dissected on 7 slides) and paratype ô (dissected on 7 slides) deposited in The Natural History M useum, London; additional paratypes (7 O $\mathrm{P}, 1$ CopIV and 1 CopV) in alcohol; coll. H. K unz.
Description of female T otal body length from the tip of the rostrum to the posterior margin of the caudal rami: $485 \mu \mathrm{~m}$. Maximum width $60 \mu \mathrm{~m}$ measured at

cephalothorax. Integument of thoracic and abdominal somites strongly chitinized, yellow-brownish, completely covered with subsurface integumental pits. These pits also present on segments 1 and 2 of antennule (Fig. 16A), and on the protopodal segments of maxillule, maxilla, and P1 to P4 (Fig. 17A-D). Posterior margin of body somites with plain hyaline frill which is striated in the genital double-somite (Fig.

Figure 23. Leptopontia mediterranea sp. nov. (Copepodid V §). A, P1, anterior; B, P2, anterior; C, P2 endopod, posterior [distal elements omitted]; D, P3, anterior; E, P4, anterior.

14C) and free abdominal somites (Fig. 14B). Individual somites connected by well developed intersomitic membranes (Fig. 14B; see also đ: Fig. 15A).

R ostrum (Fig. 16A) triangular, elongate; about 0.8 times the length of first antennulary segment; with 2 delicate sensillae.

Genital double-somite (Fig. 14B,C) slightly longer than wide; original segmentation not marked by any external or internal cuticular structure. Genital apertures paired

Figure 24. Leptopontia breviarticulata sp. nov. (冒). A, rostrum and antennule, dorsal; B, antenna; C, mandibular gnathobase; D, mandibular palp; E, maxillule; F, maxilliped; G, right caudal ramus, ventral; H, anal operculum [arrowed] and left caudal ramus, dorsal.
(Fig. 14C), located in anterior half of genital double-somite; each closed off by small operculum derived from sixth leg bearing 2 tiny setae. M edian copulatory pore located far anteriorly between genital apertures. Seminal receptacles not confirmed. V entral surface of genital double-somite with paired secretory pores and characteristic pattern of integumental pits as in Fig. 14C.

Anal somite (Figs 15E, 16F) with dorsal operculum drawn out into median,

Figure 25. Leptopontia breviarticulata sp. nov. (q). A, P1, anterior; B, P2, anterior; C, P3, anterior; D, P4, anterior; E, P5, anterior.
posteriorly and dorsally directed spinous process, not flanked by accessory processes.

Caudal rami (Figs 15E, 16F) divergent; outer distal corner drawn out into posteriorly directed, dorsally recurved spinous process; with setal pattern as in other species. Ramus about 7.1 times as long as basal width (measured in lateral aspect along ventral margin).

Antennule (Fig. 16A) slender, 7 -segmented; segment 1 longest, about 3.3 times as long as wide, surrounded by distinct sclerite around proximal posterior margin, with 1 short seta at distal anterior corner and dorsal tube pore near distal margin; segment 4 with long aesthetasc $(115 \mu \mathrm{~m})$ fused basally to seta and set on distinct pedestal; segment 7 with apical acrothek consisting of short aesthetasc $(21 \mu \mathrm{~m})$ fused basally to 2 setae. All setae bare except for 1 plumose seta on segment 2. Armature formula: 1-[1], 2-[8 + 1 plumose], 3-[5], 4-[2 + ae], 5-[1], 6-[3], 7-[7 + acrothek]. Antennae to maxillipeds as in L. dovpori.

Figure 26. Leptopontia americana sp. nov. (ठ). A, rostrum; B, P3 endopod; C, P4 endopod; D, urosome, ventral; E, anal somite and caudal rami, dorsal; F, anal somite and right caudal ramus, lateral.

P1 (Fig. 17A). Praecoxa a well developed sclerite; coxa without ornamentation; both segments with integumental pits. Intercoxal sclerite small, transversely elongate. Basis with slender inner seta and curved outer seta; large anterior surface pore, and spinular row near insertion site of exopod. Exopod distinctly 3-segmented; exp-1 with long pinnate seta; exp-2 bare; exp-3 with 3 geniculate setae, increasing in length adaxially. Endopod with enp-1 7 times as long as wide, and about 1.67 times as long as exopod; with recurved serrate seta near proximal margin; enp-2 with 2 geniculate setae and 1 tiny seta; ratio of enp-1:enp-2 3.1.

P2-P4 (Fig. 17A-C). Intercoxal sclerites rectangular, distinctly concave in P3 and P4; coxae bare; both with integumental pits. Bases with short naked seta (P2, P4) or Iong plumose seta (P3). Exopodal segments with well developed hyaline frills. Inner setae of P3-P4 exp-3 serrate. Inner elements of P2-P4 enp-1 spiniform and bipinnate. Armature formula of swimming legs:

	Exopod	Endopod
P1	0.0 .021	1.120
P2	0.0 .021	1.120
P3	0.0 .112	1.010
P4	0.0 .112	1.020

Fifth leas (Fig. 14B,D) closely set together, no intercoxal sclerite. Baseoendopods not fused medially. Baseoendopod with well developed endopodal lobe, about extending to distal margin of exopod, with 2 long setae. Exopod a small segment with 1 outer, 1 inner and 1 apical seta. 0 uter basal seta long and plumose.
Description of male Total body length from the tip of the rostrum to the posterior margin of the caudal rami: $505 \mu \mathrm{~m}$ (Fig. 15A). O rnamentation of body generally as in the female. Sexual dimorphism in antennule, P3 endopod, P4 endopod, P5, P6 and in genital segmentation. Spermatophore about $100 \mu \mathrm{~m}$ in length.

Antennule (Figs 15A, 16B) indistinctly 9 -segmented; base surrounded by small sclerite. Relative lengths of first two segments as in female. Fourth segment a small U -shaped sclerite with 1 seta. M ajor geniculation between segments 6 and 7 . Segmental fusion pattern: I, II-VIII, IX-X II, XIII, XIV-XVIII, XIX -X X, X XIX XII, XXIII, XXIV-XXVIII. Large aesthetasc on segment 5 (Fig. 15A) $200 \mu \mathrm{~m}$ long, fused basally with seta. Apical acrothek of segment 9 consisting of small aesthetasc ($27 \mu \mathrm{~m}$ long), fused basally with 2 setae. Armature formula: 1-[1], 2-[8 + 1 plumose], 3-[7], 4-[2], 5-[6 + 2 modified + ae], 6 -[$2+3$ modified], 7-[3 modified], 8-[1], 9-[7 + acrothek].

P3 endopod (Fig. 15B) 2-segmented, minute; enp-1 with 2 rows of diminutive spinules; enp-2 represented by 1 barbed spine.

P4 endopod (Fig. 15C) 2-segmented; enp-1 unarmed; enp-2 with 1 small pinnate spine and a larger, posteriorly recurved, pectinate spine.

P5 (Fig. 15D). Baseoendopods partly fused medially; endopodal lobe moderately developed, without armature; outer basal spine long and plumose. Exopod small, with 1 seta on both outer and inner margins and a smaller one apically.

Sixth pair of legs (Fig. 15D) asymmetrical with one member partly fused to genital somite; functional member slightly larger and articulating; armature consisting of inner slender seta and outer vestigial setule.

Etymology. The species name is derived from the Latin punctum, meaning point and refers to the pitted cuticle.
Remarks. K unz (1938) redescribed and figured L. curvicauda from Helgoland and for the first time presented drawings of a male Leptopontia. From his illustrations of the P1 (relative proportions of endopodal segments), female P5 (length of endopodal setae) and male anal operculum it appears that he might well have been dealing with L. punctata. The female anal operculum showing two median processes was probably taken from a copepodid V or an aberrant specimen (cf. Fig. 16C-E). K lie (1950) also reported L. curvicauda from H elgoland and suspected certain inaccuracies in K unz' (1938) description of the male. Detailed comparison suggests that K lie's material is different from L. punctata and L. curvicauda and cannot be identified with any of the species recognized herein. Evidence for this is found in his illustration of the male fifth leg which has a distinctive endopodal lobe and is unusual in the outer exopodal seta being distinctly shorter than the distal and inner ones, a feature also explicitly mentioned in the text description. In addition, K lie's male differs in the unusually long endopodal segments of the P4. Although K lie was the first to recognize the sexual dimorphism on the swimming legs in Leptopontia, his illustration of the male P3 rules out the possibility that he was dealing with the type speciesL. curvicauda. He also pointed out that females were carrying paired egg-sacs each containing 4 eggs rather than 2 as reported in L. punctata (cfr. Kunz, 1938) and L. flandrica sp. nov. (cfr. H uys \& Boxshall, 1991). In the absence of sufficiently detailed information on the female, K lie's material from H elgoland can only be considered species inquirenda in the genus.
L. punctata can readily be distinguished from its congeners by the strongly chitinized, punctate integument covering the body somites and the bases of most appendages, including the antennules, maxillules and maxillae. The species resembles L. curvicauda in P1 endopod structure, however, differs from it in the length:width ratio of the caudal rami, the shape of the anal operculum, and the sexual dimorphism on the P3 endopod.
L. punctata is known from the Isle of Bonden (Wells et al., 1975) and Helgoland (K unz, 1938).

Leptopontia flandrica sp. nov.

Leptopontia sp. sensu Huys \& Boxshall (1991: p. 122, fig. 2.4.2A,B).
Type locality. Southern Bight of the North Sea; $51^{\circ} 45^{\prime} 00^{\prime \prime} \mathrm{N}, 3^{\circ} 30^{\prime} 00^{\prime \prime} \mathrm{E} ; 14 \mathrm{~m}$ depth.
M aterial examined.
(1) H olotype P (dissected on 7 slides) and paratype $\begin{gathered}\text { (dissected on } 5 \text { slides); other }\end{gathered}$
 in The Natural History M useum, London;
(2) National M useum of Ireland: reg. no. 28.990; 1 q in toto on slide; Finavarra, Co. Clare, Ireland; coll. J.M.C. H olmes, 13 M ay 1990, littoral sand.
Description of female Total body length from the tip of the rostrum to the posterior margin of the caudal rami: $405 \mu \mathrm{~m}$ (Fig. 18A). M aximum width $45 \mu \mathrm{~m}$ measured at
cephalothorax. Integument of thoracic and abdominal somites with distinct pattern of subsurface integumental pits (Figs 18A, 20D). Posterior margin of body somites with plain hyaline frill which is striated in the genital double-somite and free abdominal somites (Figs 18A, 20D). Individual somites connected by well developed intersomitic membranes (Fig. 20D).

R ostrum (Fig. 18A, E) triangular, elongate; lateral margins concave in distal half; about 0.9 times the length of first antennulary segment; with 2 delicate sensillae.

Genital double somite (Figs 18A, 20D) slightly longer than wide; original segmentation not marked by any external or internal cuticular structure. Genital apertures paired (Fig. 18C), located in anterior half of genital double-somite; each closed off by small operculum derived from sixth leg bearing 1 diminutive setule fused to operculum. M edian copulatory pore located far anteriorly between genital apertures. Seminal receptacles not confirmed. Ventral surface of genital double-somite with paired secretory pores and patch of cuticular pits on either side of midline.

Anal somite (Figs 18A, 20D-F) with dorsal operculum drawn out into short and broad median, posteriorly directed spinous process, typically flanked by one or two small, sharp processes on either side; process in lateral aspect with distinct kink in dorsal curvature (arrowed in Fig. 20E).

Caudal rami (Fig. 20D-F) divergent, typically flask-shaped; outer distal corner drawn out into posteriorly directed, dorsally recurved spinous process; with setal arrangement as in the other species; ramus about 3.5 times as long as basal width (measured in lateral aspect along ventral margin).

Antennule (Fig. 20A) slender, 7 -segmented; segment 1 longest, about 2.5 times as long as wide, surrounded by distinct sclerite around proximal posterior margin (Figs 18A, 20A), with 1 short seta at distal anterior corner and dorsal tube pore near distal margin; segment 4 with very slender aesthetasc ($72 \mu \mathrm{~m}$) fused basally to seta and set on distinct pedestal; segment 7 with apical acrothek consisting of short aesthetasc ($16 \mu \mathrm{~m}$) fused basally to 2 setae. All setae bare except for 1 plumose seta on segment 2. Armature formula: 1-[1], 2-[8 + 1 plumose], 3-[5], 4-[+ ae], 5-[1], 6-[3], 7-[7 + acrothek].

Antennae to maxillae as in L. dovpori.
M axilliped (Fig. 20B). Syncoxa squarish; unarmed; without spinular rows. Basis unarmed. Endopod represented by stout, distally pinnate claw bearing small seta proximally.

P1 (Fig. 20C). Praecoxa a well developed sclerite. Coxa without ornamentation. Intercoxal sclerite small, transversely elongate. Basis with short inner seta and curved outer seta; with 2 secretory pores on anterior surface. Exopod distinctly 3 -segmented; exp-1 with pinnate seta; exp-2 bare; exp-3 with 3 geniculate setae, increasing in length adaxially with outermost one less than half the size of other ones. Endopod with enp-1 8.0 times as long as wide, and about twice as long as exopod; with recurved serrate seta near proximal margin; enp-2 with 2 geniculate claws and 1 tiny seta; ratio of enp-1:enp-2 6.6.

P2-P4 (Fig. 19A-B, E) shorter and stouter than in preceding species. Intercoxal sclerites decreasing in width in successive legs. C oxae bare, with pore in P2. Bases with short naked seta (P2, P4) or long plumose seta (P3). Exopodal segments with well developed hyaline frills. Inner setae of P3-P4 exp-3 serrate. Inner elements of P2-P4 enp-1 spiniform and bipinnate. Armature formula of swimming legs:

	Exopod	Endopod
P1	0.0 .021	1.120
P2	0.0 .021	1.120
P3	0.0 .112	1.010
P4	0.0 .112	1.020

Fifth leas (Fig. 19H) closely set together (Fig. 20D), no intercoxal sclerite. Baseoendopods not fused medially. Baseoendopod with strongly developed subcylindrical endopodal lobe, extending to distal margin of exopod, with 1 short seta. Exopod a small segment with 1 outer, 1 inner and 1 apical seta, all of about the same length. O uter basal seta long and sparsely plumose.
Description of male. Total body length from the tip of the rostrum to the posterior margin of the caudal rami: $390 \mu \mathrm{~m}$. Body slightly more slender than in female. O rnamentation of body generally as in the female. Sexual dimorphism in antennule, P3 endopod, P4 endopod, P5, P6 and in genital segmentation.

Antennule as in previous species.
P3 endopod (Fig. 19C,D) minute, 2-segmented; enp-1 with 2 spinules; enp-2 represented by 1 barbed spine.

P4 endopod (Fig. 19F,G) 2-segmented; enp-1 unarmed; enp-2 with 1 short pinnate spine and a larger, posteriorly recurved, pectinate spine.

P5 (Fig. 191). Baseoendopods partly fused medially; endopodal lobe strongly developed, without armature; outer basal spine long and plumose. Exopod small, with 1 seta on both outer and inner margins and a finer one apically.

Sixth pair of legs (Fig. 18D) asymmetrical with one member fused to genital somite; functional member slightly larger and articulating; armature consisting of inner slender seta and outer vestigial setule.
E tymology. The species name is derived from the L atin Flandricus, $-a$, meaning Flemish, and refers to the fact that this species is often the most abundant L eptopontia in Belgian offshore waters.
Remarks. L. flandrica can be differentiated on the basis of the following combination of characters: (1) P5 O with subcylindrical endopodal lobe extending to the distal margin of the exopod, (2) rostrum with concave lateral margins in the distal half, (3) P1 endopod with 2 claw-like geniculate setae on enp-2, (4) the compact q genital field with 1 rudimentary armature element on the P 6 , and (5) the contour of the anal operculum in lateral aspect (cf. Fig. 20E).
The species is relatively widely distributed in the Southern Bight of the N orth Sea, however the Irish record from Finavarra indicates that it occurs further north.

Leptopontia mediterranea sp. nov.

T ype locality. Bay of Calvi, C orsica, France; in washings of Posidonia oceanica (L.) D elile taken by SCUBA diving at 4 m depth.
 Natural History M useum, London; coll. C. Heip \& L. Thielemans, M ay 1985.
Description of copepodid V . T Total body length from the tip of the rostrum to the
posterior margin of the caudal rami: $330 \mu \mathrm{~m}$ (Fig. 21A). M aximum width $40 \mu \mathrm{~m}$ measured at cephalothorax. Integument of thoracic and abdominal somites with dense pattern of subsurface integumental pits. Pleural areas of cephalothorax not well developed so that cephalic appendages are clearly exposed in lateral aspect (Fig. 21A). Posterior margin of body somites with plain hyaline frill, finely striated in abdominal somites (Fig. 22A,B). Individual somites connected by well developed intersomitic membranes (Fig. 21A).

R ostrum (Fig. 21A,B) large, triangular, elongate; distinctly tapering in second third; only slightly shorter than first antennulary segment; with 2 delicate sensillae.

A nal somite (Figs 21A ; 22A, C, D) with fine spinules ventrally (Fig. 22A); with dorsal operculum drawn out into median, posteriorly directed spinous process, flanked by two large processes which are longer than the median one.

Caudal rami (Fig. 22C,D) slightly divergent; outer distal corner drawn out into posteriorly directed, dorsally recurved spinous process; with setal arrangement as in other species. Ramus about 3.4 times as long as basal width (measured in lateral aspect along ventral margin).

Antennule (Fig. 21A, B), long, 5 -segmented with partial suture line on segment 5. First segment longest, making up about $1 / 3$ of total antennule length, surrounded by distinct sclerite around proximal posterior margin, with 1 short seta at distal anterior corner and dorsal tube pore near distal margin; segments 3 to 5 with several vestigial setae (arrowed in Fig. 21B); segment 3 with large aesthetasc ($\mathrm{L}: 70 \mu \mathrm{~m}$); segment 5 with apical acrothek consisting of short aesthetasc $(23 \mu \mathrm{~m})$ fused basally to 2 setae. All setae bare except for 1 plumose seta on segment 2. Armature formula: 1-[1], 2-[8 + 1 plumose], 3-[16 +2 setules + ae], 4-[2 +1 setule +1 spinous process], $5-[12+1$ setule + acrothek $]$.

Antenna (Fig. 21D). Coxa with spinular row. Allobasis elongate, with small exopod bearing short seta; with swollen seta-like structure on abexopodal margin at level of exopod (arrowed in Fig. 21D). Free endopod with 2 unipinnate spines laterally, and 1 spine, 3 geniculate setae and 1 geniculate spine fused basally to small seta.

P1 (Fig. 23A). Praecoxa a well developed sclerite. C oxa with 5 rows of tiny spinules on anterior surface. Basis with slender, pinnate inner seta and short outer seta; large anterior surface pore, and spinular row between insertion sites of rami. Exopod indistinctly 3 -segmented; exp-1 with long pinnate seta; exp-2 and exp-3 partly fused along anterior surface; exp-3 with 3 geniculate setae, increasing in length adaxially. Endopod with enp-1 5 times as long as wide, and about 1.12 times as long as exopod; with swollen serrate seta near proximal margin; enp-2 with 2 geniculate setae and 1 tiny seta; ratio of enp-1:enp-2 2.65.

P2-P4 (Fig. 23B-E). C oxae with tiny spinule rows on anterior surface. Bases with short naked seta (P2, P4) or long plumose seta (P3). Exopodal segments with well developed hyaline frills in P3-P4. Inner setae of P3-P4 exp-3 distinctly swollen and serrate.

P3 endopod (Fig. 23D) 2-segmented; enp-1 with 2 spinular rows; enp-2 with articulating swollen spine distally.

P4 endopod (Fig. 23E) 2-segmented; enp-1 with short inner spine and 2 spinular rows; enp- 2 with 1 short pinnate spine and 1 slightly smaller bare spine. Armature formula of swimming legs:

	Exopod	Endopod
P1	0.0 .021	1.120
P2	0.0 .021	1.120
P3	0.0 .112	1.010
P4	0.0 .112	1.020

P5 (Fig. 22B). Baseoendopods completely free medially; endopodal lobe minute, with 1 very small spine; outer basal spine long and plumose. Exopodal lobe small, with 1 seta on both outer and inner margins and a longer one apically.

Sixth pair of legs (Fig. 22B) largely fused to somite, with 2 short setae on either side.

Adults. Unknown.

E tymology. The species name alludes to the type locality.
Remarks. Despite L. mediterranea being based on a late copepolid, the shape and size of the rostrum, in addition to the peculiar structure of the anal operculum bearing paired massive lateral processes leave little doubt that it represents a distinct species. Although it has been shown for L. punctata (Fig. 16C-F) that smaller lateral processes on the anal somite can disappear at the final moult, and consequently would weaken their usefulness as a species discriminant for adults, it seems unlikely that the large processes in L. mediteranea would get absorbed completely as a result of a single moult. The incomplete separation of the middle and distal endopod segments of the P1 suggests that the 3 -segmented condition of the endopod is not fully expressed until the final moult towards the adult. Post-displacement of characters that usually appear late in development provides a relatively simple heterochronic mechanism that can produce instant loss of a character or character state. In this case the 2 -segmented condition of the P1 endopod found in the other leptopontiniid genera Notopontia and Syrticola can easily be the result of delaying the developmental pattern of Leptopontia with a single moult. The reduced setation elements on the distal antennulary segments (arrowed in Fig. 21C) and the armature of the P3 endopod (spine on enp-1 absent) leave no doubt that the holotype is a male copepodid. It is noteworthy that at this stage modifications of the P4 endopod are not yet expressed.

The species is known from the type locality only and represents the second record of the genus in the M editerranean (Soyer, 1971).

Leptopontia breviarticulata sp. nov.

Leptopontia sp. sensu M ielke (1982).
T ype local ity. Playa Borrero, Santa Cruz, G alápagos.
M aterial examined. Holotype $\&$ (dissected on 2 slides); W. Mielke's personal collection.
Description of female T otal body length from the tip of the rostrum to the posterior margin of the caudal rami: $300 \mu \mathrm{~m}$. Integument of thoracic and abdominal somites smooth. Posterior margin of body somites with plain hyaline frill.

R ostrum (Fig. 24A) triangular, elongate; only slightly shorter than first antennulary segment; with 2 delicate sensillae.
A nal somite with dorsal operculum not drawn out into median spinous process but rounded (Fig. 24H).
Caudal rami (Fig. 24G,H) divergent; outer distal corner drawn out into posteriorly directed, dorsally recurved spinous process; setal arrangement as in other species. Ramus about 3 times as long as basal width (measured in lateral aspect along the ventral margin).

Antennule (Fig. 24A) shorter than in other species of the genus, 7-segmented; segment 1 longest, about 2.6 times as long as wide (but probably slightly squashed in preparation), surrounded by distinct sclerite around proximal posterior margin, with 1 short seta at distal anterior corner and dorsal tube pore near posterior margin; segment 4 with very long aesthetasc ($105 \mu \mathrm{~m}$) fused basally to seta and set on distinct pedestal; segment 7 with apical acrothek consisting of short aesthetasc $(18 \mu \mathrm{~m})$ fused basally to 2 setae. All setae bare. Armature formula: 1-[1], 2-[9], 3-[4], 4-[2 + ae], 5-[1], 6-[3], 7-[7 + acrothek].

Antenna (Fig. 24B). C oxa small, without spinular rows. Allobasis elongate, about 2.7 times as long as maximum width; with backwardly directed tubular seta. Exopod a small segment located in transverse membranous area marking fusion plane of basis and proximal endopod segment; exopodal seta long, about 2.7 times as long as segment. Free endopod with 2 spinular rows along outer margin, 2 pinnate spines along inner margin; distal margin with 1 pinnate spine, 3 geniculate setae and 1 spinulose geniculate seta fused basally to small seta.

M andible (Fig. 24C,D). Coxa elongate, expanding distally into gnathobase provided with series of small, curved teeth and recurved pinnate seta at dorsal corner. Palp 2 -segmented; basis a swollen elongate segment, unarmed, with 1 spinular row; endopod elongate, with 1 pinnate seta laterally and 4 bare setae apically.

M axillule (Fig. 24E). Praecoxa with rectangular, elongate arthrite; arthrite with 6 setae and a distally serrate spine around the distal margin, and 2 tubular setae on the anterior surface. C oxa with small endite bearing 1 long seta. Basis with rami entirely incorporated; exopod represented by 1 small and 1 long seta; endopod represented by 2 setae; proximal and distal endites of basis with 2 and 4 setae, respectively.

M axilla as in L. dovpori.
M axilliped (Fig. 24F). Syncoxa and basis unarmed; without spinular rows. Endopod represented by stout, distally pinnate claw bearing small seta proximally.

P1 (Fig. 25A). Praecoxa not observed. Coxa without ornamentation. Basis with short inner and outer seta; with anterior surface pore. Exopod 2 -segmented, with posterior membranous insert marking fusion plane of exp-2 and exp-3; exp-1 with pinnate seta; exp-2 with 3 geniculate setae, increasing in length adaxially. Endopod with enp-1 5.2 times as long as wide, and about 1.7 times as long as exopod; with recurved serrate seta near proximal margin; enp-2 with 2 geniculate setae and 1 tiny seta; ratio of enp-1:enp-2 3.25.

P2-P4 (Fig. 25B-D). Intercoxal sclerites rectangular, distinctly concave in P3 and P4. C oxae bare. Bases with short (P2-P4) or long (P3) naked seta. Exopodal segments with well developed hyaline frills in P3-P4. Inner setae of P3-P4 exp-3 serrate. Inner elements of P2 and P4 enp-1 spiniform and bipinnate. Armature formula of swimming legs:

	Exopod	Endopod
P1	0.021	1.120
P2	0.0 .021	1.120
P3	0.0 .112	1.010
P4	0.0 .112	1.020

Fifth legs (Fig. 25E) closely set together, no intercoxal sclerite. Baseoendopods not fused medially. Baseoendopod with slightly developed endopodal lobe, not extending to distal margin of exopod, with long inner and short, swollen outer seta. Exopod a small segment with 1 outer, 1 inner and 1 apical seta. O uter basal seta long and plumose.
M ale Unknown.
Etymology. The species name is derived from the Latin brevis, meaning short, and articulus, meaning joint, and refers to the short P1 endopod.
Remarks. This species is clearly different from all others in the absence of any processes on the anal operculum, the very long seta on the antennary exopod, the relatively short first antennulary segment, the 2-segmented P1 exopod, the short P1 endopod and the absence of the inner seta on P3 enp-1.
L. breviarticulata is known from the type locality only.

Leptopontia americana sp. nov.

Leptopontia curvicauda T. Scott, 1892 sensu Coull \& Dudley (1985) [partim]
T ype locality. N orth Inlet, South C arolina, U.S.A. $\left(35^{\circ} 20^{\prime} \mathrm{N} 79^{\circ} 10^{\prime} \mathrm{W}\right)$, subtidal sand, 1 m below MLW.

M aterial examined. H olotype: a damaged ô (dissected on 1 slide) deposited in The N atural History M useum, London.
Description of male. O nly the most important differentiating characters are presented here.

T otal body length from the tip of the rostrum to the posterior margin of the caudal rami: $425 \mu \mathrm{~m}$. Integument of thoracic and abdominal somites smooth. Posterior margin of body somites with plain hyaline frill (Fig. 26D).

Rostrum (Fig. 26A) triangular, elongate; with concave lateral margins in distal half.

A nal somite (Fig. 26E,F) with operculum not drawn out into median spinous process but provided with 3 little processes medially and flanked by large spinous process laterally.

Caudal rami (Fig. 26D-F) divergent; short; outer distal corner drawn out into posteriorly directed, dorsally recurved spinous process; with setal arrangement as in the other species of the genus.

Sexual dimorphism in antennule, P3 endopod, P4 endopod, P5, P6 and in genital segmentation. Spermatophore very large, about $1 / 4$ of total body length ($100 \mu \mathrm{~m}$).

A ntennules to maxillipeds as in L. dovpori.

P3 endopod (Fig. 26B) 2-segmented, minute; enp-1 unarmed and bare; enp-2 drawn out into a distally bifid spine.

P4 endopod (Fig. 26C) 2-segmented; enp-1 with inner pinnate seta; enp-2 with pinnate spine apically and subapical pectinate spine. Armature formula of swimming legs:

	Exopod	Endopod
P1	0.0 .021	1.120
P2	0.0 .021	1.120
P3	0.0 .112	modified
P4	0.0 .112	1.020

P5 (Fig. 26D). Baseoendopods not fused medially; endopodal lobe moderately developed, without armature; outer basal spine long and plumose. Exopod small, with 1 seta on both outer and inner margins and a smaller one apically.

Sixth pair of legs (Fig. 26D) asymmetrical with one member fused to genital somite; functional member slightly larger and articulating; armature consisting of inner slender seta and outer vestigial setule.
Etymology. This is the first species to be described from the North American continent.
Remarks. The vial with specimens from North Inlet contained at least two species of Leptopontia, however since the material was in a very bad condition no detailed descriptions could be provided. The current description of L. americana is fragmentary but nevertheless serves to distinguish the species from all its European congeners. L. americana is the only species that has retained the inner seta on the proximal endopod segment of the male P4. The very short caudal rami, the morphology of the anal operculum with the three knob-like structures and the shape of the male P3 endopod are additional differentiating characters.

The species is known from the type locality only.

Leptopontia curvicauda T. Scott, 1892 sensu M arinov (1971)
M arinov's (1971) redescription of L. curvicauda on the basis of Bulgarian specimens from Sozopol lacks the necessary detail for reliable species identification. His illustration of the male P3 showing 2 apical setae on the distal endopod segment is almost certainly based on the male P4. Pending the collection of new material from the Bulgarian Black Sea coast this species has to be ranked species inquirenda in the genus.

Leptopontia curvicauda T. Scott, 1892 sensu A postolov (1973)
Similarly, A postolov (1973) attributed his material from N essebar to L. curvicauda. The presence of several spinous processes on the anal operculum raises the suspicion that part of his illustrations were based on copepodids. This is corroborated by Fig. 16 C - E showing the anal operculum in the copepodid IV and V stages of L . punctata.

In the CIV stage three pairs of spinous processes are found and this number is reduced to two at the following moult towards CV. At the final moult to adult the median pair of processes is replaced by a single middorsal one. In view of the limited information contained in his fragmentary description Apostolov's material can at best be considered species inquirenda in Leptopontia. It is also unclear whether the three specimens of L. curvicauda from the Gulf of Varna listed in an earlier report (A postolov, 1971) belong to the same species.

ACKNOWLEDGEMENTS

We are grateful to the following colleagues who have put specimens of their personal collections at our disposal: Prof. Dr B.C. Coull (Belle W. Baruch Institute, University of South Carolina), Dr W. M ielke (Universität Göttingen), Dr J.M.C. H olmes (N ational M useum of I reland) and Dr R. Hamond (M orston, Norfolk).

REFERENCES

Apostolov A. 1971. Recherches sur la systématique et la distribution des Copépodes H arpacticoïdes de la côte bulgare. Zoologischer Anzeiger 186: 337-347.
Apostolov A. 1973. N otes sur les H arpacticoïdes (C rustacea Copepoda) de la mer N oire. Z oologischer Anzéger 190: 175-189.
Bodin P. 1984. Densité de la meiofaune et peuplements de Copépodes H arpacticoïdes en baie de Douarnenez (Finistère). A nnales de I'I nstitut oćéanographique, M onaco 60: 5-17.
Bodin P. 1988. Results of ecological monitoring of three beaches polluted by the 'Amoco Cadiz' oil spill: development of meiofauna from 1978 to 1984. M arine E cology Progress Series 42: 105-123.
Bodin P, Boucher D. 1981. Evolution temporelle du méiobenthos et du microphytobenthos sur quelques plages touchées par la marée noire de l'Amoco Cadiz. In: Amoco-Cadiz, conséquences d'une pollution accidentelle par les hydrocarbures, Actes Colloque International, CNE X 0, B rest 19-22 novembre 1979, 327-345.
Bodin P, Jackson DF. 1989. A comparison of the intertidal harpacticoid copepod assemblages of sandy beaches in Galway Bay (Ireland) and northern Brittany (France). J ournal of the M arine Biological Association of the U nited Kingdom 69: 573-588.
Coull BC. 1971. M eiobenthic H arpacticoida (C rustacea, Copepoda) from the N orth C arolina continental shelf. Cahiers de Biologie marine 12: 195-237.
Coull BC, Dudley BW. 1985. Dynamics of meiobenthic copepod populations: a long term study (1973-1983). M arine E cology Progress Series 24: 219-229.
Geddes DC. 1972. The C opepoda H arpacticoida of Anglesey and the N orth W ales coast. T he N aturalist, H ull 921: 61-76.
Gurney R. 1932. British Fresh-water Copepoda, 2: i-ix, 1-336. London: The R ay Society.
Holmes JMC, O'Connor JP. 1990. A provisional list of the H arpacticoida (Crustacea: Copepoda) of Ireland. Bulletin of the Irish B iogeographical Society 13: 44-130.
Huys R. 1992. The amphiatlantic distribution of Leptastacus macronyx (T. Scott, 1892) (Copepoda: H arpacticoida): a paradigm of taxonomic confusion; and, a cladistic approach to the classification of the Leptastacidae Lang, 1948. M ededelingen van de K oninklijke A cademie voor W etenschappen, Letteren en Schone K unsten van België 54(4): 21-196.

Huys R, Boxshall GA. 1991. Copepod Evolution: 1-468. London: T he R ay Society.
Huys R, Ohtsuka S. 1993. A new species of Syrticola Willems \& Claeys, 1982 (C opepoda: H arpacticoida) from Japan with notes on the type species. Bulletin of the N atural H istory M useum (Z oology) 59: 83-94.
Klie W. 1950. H arpacticoida (Cop.) aus dem Bereich von Helgoland und der K ieler Bucht. (Fortsetzung). Kieler M erresforschungen 7: 76-128.
Kunz H. 1938. Die sandbewohenden Copepoden von H elgoland, I. T eil. (Studien an marinen Copepoden. II). Kider M eeresforschungen 2: 223-254.
Lang K. 1944. M onographie der H arpacticiden (V orläufige M itteilung): 1-39. U ppsala: Almqvist \& W iksells Boktryckeri Ab, U ppsala.
Lang K. 1948. M onographie der H arpacticiden I: 1-896, figs 1-361; II: 897-1682, figs 362-607, maps 1-378. Lund: H åkan O hlsson.
Marinov TM. 1971. K harpatikoidi ot b'Igarskoto kraibrezhnie na Cherno more. [H arpacticoids of the Bulgarian Black Sea coast.] Izvestiya na Instituta O keanografiya i Ribno Stopanstvo. Varna 11: 43-87. [in Bulgarian with English and Russian summaries].

Martinez Arbizu P, Moura G. 1994. The phylogenetic position of the Cylindropsyllinae Sars (Copepoda, H arpacticoida) and the systematic status of the Leptopontiinae. Z oologische Beiräge N eue Folge 35: 55-77.
Mielke W. 1975. Systematik der Copepoda eines Sandstrandes der Nordseeinsel Sylt. Mikrofauna des M eeresbodens 52: 1-134.
Mielke W. 1982. Interstitielle Fauna von Galapagos. X XIX . D arcythompsoniidae, Cylindropsyllidae (H arpacticoida). M ikrofauna des M eeresbodens 87: 1-52.
Monard A. 1927. Synopsis universalis generum H arpacticoidarum. Z oologischeJ ahrbücher, Abtélung für Systematik 54: 139-176.
Nicholls AG. 1935. C opepods from the interstitial fauna of a sandy beach. J ournal of the M arine B iological Association of the U nited Kingdom, new series 20: 379-405.
Por FD. 1964. Les H arpacticoïdes (Crustacea, Copepoda) des fonds meubles du Skagerak. Cahiers de B iologie marine 5: 233-270.
Sars GO. 1903-1911. C opepoda H arpacticoida. An Account of the C rustacea of Norway, with short descriptions and figures of all the species 5: i-xiv (text), i-xii (plates), 1-449, plates 1-230, suppl. plates 1-54.
Scheibel W. 1972. Q uantitativ-ökologische U ntersuchungen am uferfernen M esopsammon in der Kieler Bucht. U npublished Ph.D Dissertation, Christian Albrechts U niversität, K iel.
Scheibel W, Rumohr H. 1979. M eiofaunaentwicklung auf künstlichen Weichböden in der K ieler Bucht. H elgoländer wissenschaftlichen M eeresuntersuchungen 32: 305-312.
Scott T. 1902. Notes on gatherings of Crustacea collected by the Fishery Steamer "Garland" and the steam trawlers "Star of Peace" and "Star of Hope", of Aberdeen, during the year 1901. Report of the Fishery B oard for Scotland 20(3): 447-485.
Scott T. 1906. A catalogue of the land, fresh-water and marine C rustacea found in the basin of the R iver Forth and its estuary. Copepoda. Proceedings of the Royal Physical Society of E dinburgh 16: 296-375.
Soyer J. 1971. Bionomie benthique du plateau continental de la côte catalane française. III. Les peuplements de C opépodes H arpacticoïdes (C rustacea). Vie et M ilieu (B)21(2): 337-511.
Wells JBJ. 1961. Interstitial copepods from the Isles of Scilly. Crustaceana 2: 262-274.
Wells JBJ. 1970. The marine flora and fauna of the Isles of Scilly. C rustacea: Copepoda: H arpacticoida. Journal of Natural History 4: 255-268.
Wells JBJ, Kunz H, Rao GC. 1975. A review of the mechanisms for movement of the caudal furca in the family Paramesochridae (Copepoda H arpacticoida), with a description of a new species of Kliopsyllus K unz. M ikrofauna des M eresbodens 53: 1-16.
Wilson CB. 1935. A new and important copepod habitat. Smithsonian M iscellaneous Collections 94(7): 1-13.

