Definition 0.1. a) Let V be a finite-dimensional vector space and $W \subset V$ a linear subspace. We denote by $\mathbb{P}(W) \hookrightarrow \mathbb{P}(V)$ the natural inclusion.
b) If $T \subset W$ is an affine subspace we define $\mathbb{P}(T):=\mathbb{P}\left(T^{\prime}\right) \subset \mathbb{P}(V)$ where $T^{\prime} \subset V$ is the linear subspace parallel to T.
c) Let $W \subset V$ be a subspace of codimension 1 and $v \in V-W$. We denote by $\kappa_{v}: W \rightarrow \mathbb{P}(V)-\mathbb{P}(W)$ the map which associates with $w \in W$ the line through $v+w$.
d) For any affine subspace $T \subset W$ we denote by \tilde{T} the closure of $\kappa_{v}(T)$ in $\mathbb{P}(V)$.

Problem 0.2. a) Let V, W, v be as in Definition 1 c) and $T \subset W$ be an affine subspace. Then $\tilde{T} \cap \mathbb{P}(W)=\mathbb{P}(T)$.
b) The map $\kappa_{v}: W \rightarrow \mathbb{P}(V)-\mathbb{P}(W)$ defines an isomorphism of algebraic varieties.
c) For any $d<\operatorname{dim}(W)$ define the structure of an algebraic variety on the set $G r_{a f}(W, d)$ of d-dimensional affine subspaces of W and moreover κ_{v} defines an isomorphism of $G r_{a f}(W, d)$ with an open subset of the Grassmanian of $d+1$-dimensional linear subspaces of V.
d) Let $R \subset \mathbb{P}(V)$ be a finite set and $f: W \rightarrow k^{2}$ a linear surjection map. Then the set $\Lambda_{R, f}$ of affine lines $L \subset k^{2}$ such that $\mathbb{P}\left(f^{-1}(L)\right) \cap R=$ \emptyset is a non-zero open subset of $G r_{a f}\left(k^{2}, 1\right)$.
e) Let $\rho: \mathbb{G}_{m} \rightarrow G L(V)$ be a representation. Then for
i) Any $x \in \mathbb{P}(V)$ the map $f: \mathbb{G}_{m} \rightarrow \mathbb{P}(V), a \rightarrow a x$ can be extended to a morphism $\bar{f}: \mathbb{P}^{1} \rightarrow \mathbb{P}(V)$.
ii) The points $f(0), f(\infty)$ in $\mathbb{P}(V)$ are \mathbb{G}_{m}-invariant.
iii) If $f(0)=f(\infty)$ then x is a \mathbb{G}_{m}-invariant point.
f) Let T be a torus, $\rho: T \rightarrow G L(V)$ be a representation, $e_{i}, 1 \leq$ $i \leq d$ a basis of V such that $\rho(t) e_{i}=\chi_{i}(t) e_{i}, \chi_{i} \in X^{\star}(T), t \in T$ and $\lambda \in X_{\star}(T)$ such that $<\chi_{i}, \lambda>\neq 0$ for all $i, 1 \leq i \leq d$. Then any point $x \in \mathbb{P}(V)$ such that $\rho \circ \lambda(a) x=x$ for all $a \in k^{\star}$ is $\rho(T)$-invariant.
[A hint]. Let $v \in V$ be a non-zero vector on the line x and $V^{\prime} \subset V$ be the subspace spanned by $\rho(t) v, t \in k^{\star}$. Choose a basis $e_{i}, 1 \leq i \leq d$ of V^{\prime} such that

$$
\rho(t) e_{i}=t^{n_{i}} e_{i}, t \in k^{\star}
$$

where $n_{1} \leq n_{2} \leq \ldots \leq n_{d}$.

Let V be a finite-dimensional vector space $W \subset V$ a subspace of codimension $1, X \subset \mathbb{P}(V)$ an irreducible closed subset of dimension d.

Proposition 0.3. $\operatorname{dim}(X \cap \mathbb{P}(W)) \geq d-1$
Proof. I'll prove the result only in the case when $d=1$ and $d=2$ since we will need only these cases. Consider first the case $d=1$. In this case we want to show that $X \cap \mathbb{P}(W) \neq \emptyset$. But if $X \cap \mathbb{P}(W)=\emptyset$ then $X \subset W$. Since X is complete we see that X is a point.

Consider the case $d=2$ and assume that $\operatorname{dim}(X \cap \mathbb{P}(W))<d-1=1$. In other words assume that the set $R:=X \cap \mathbb{P}(W)$ is finite. Since $\operatorname{dim}(U)=2$ the can find two linear functions λ, ν on W such that the restrictions of λ, ν on U are algebraically independent. Let $f: U \rightarrow k^{2}$ be the morphism given by $u \rightarrow(\lambda(u), \nu(u))$. Then the image $Y \subset k^{2}$ of f contains a non-zero open subset U^{\prime} of k^{2}. As follows from Problem 2 c) there exists a line $L \subset k^{2}$ such that $L \cap U^{\prime} \neq \emptyset$ and $\mathbb{P}\left(f^{-1}(L)\right) \cap R=\emptyset$. Let Y be the closure of the intersection $X \cap f^{-1}(L)$. Since $\operatorname{dim}(Y)>0$ we see that $Y \cap \mathbb{P}(W) \neq \emptyset$. On the other hand by the construction we have $Y \cap R=\emptyset$. But this contradicts the assumption that $X \cap \mathbb{P}(W)=$ R.

Theorem 0.4. Let $\rho: T \rightarrow G L(V)$ be a representation of a torus $T, X \subset \mathbb{P}(V)$ a closed T-invariant irreducible subset and $Y \subset X$ the subset of \mathbb{G}_{m}-invariant points. Then
a) if $\operatorname{dim}(X)>0$ then $|Y| \geq 2$.
b) if $\operatorname{dim}(X)>1$ then $|Y| \geq 3$.

As follows from Problem 3 it is sufficient to prove the theorem in the case $T=\mathbb{G}_{m}$.

Proof of a). If $Y=X$ then there is nothing to proof. On the other hand if $Y \neq X$ choose any $x \in X$ which is not \mathbb{G}_{m}-invariant. By Problem 2 d) the map $f: \mathbb{G}_{m} \rightarrow \mathbb{P}(V), a \rightarrow \lambda(a) x$ can be extended to a morphism $\bar{f}: \mathbb{P}^{1} \rightarrow \mathbb{P}(V)$ and $f(0), f(\infty)$ are distinct points of $Y . \square$

Proof of b). It is clear that we can assume that the line $L_{x} \subset V, x \in$ X span V. Choose a basis $e_{i}, 1 \leq i \leq d$ of V such that

$$
\lambda(t) e_{i}=t^{n_{i}} e_{i}, t \in k^{\star}
$$

where $n_{1} \leq n_{2} \leq \ldots \leq n_{d}$ and choose a point $x \in X$ such that that for $v \in L_{x}-\{0\}$ we have $v=\sum_{i=1}^{d} c_{i} e_{i}, c_{i} \in k, c_{1} \neq 0$. Let $\bar{f}: \mathbb{P}^{1} \rightarrow \mathbb{P}(V)$ be the morphism such that $\bar{f}(t)=\lambda(a) x$ for $a \in \mathbb{G}_{m} \subset \mathbb{P}^{1}$ and $y_{0}:=$ $\bar{f}(0) \in Y$. To prove the result we have to construct two other points in Y.

Let $W \subset V$ be the span of $e_{i}, 2 \leq i \leq d$. Consider $Z:=Y \cap \mathbb{P}(W)$. As follows from Proposition 3 we have $\operatorname{dim}(Z) \geq 1$. It is clear that Z is \mathbb{G}_{m}-invariant. Since \mathbb{G}_{m} is connected every irreducible component of Z is also \mathbb{G}_{m}-invariant. It follows now from the part a) that $|Z \cap Y|>1$. Since (?) $y_{0} \notin \mathbb{P}(W)$ we see that $|Y| \geq 3$. \square

Problem 0.5. Let G be a connected algebraic group, $T \subset G$ a maximal torus, $P \subset G$ a proper parabolic subgroup and $G / P^{T} \subset G / P$ the subset of T-fixed points. Then
a) $\left|G / P^{T}\right|>1$ and $\left|G / P^{T}\right|>2$ if $\operatorname{dim}(G / P)>1$.
b) $W_{G}=\{e\}$ iff G is solvable.
c) If $W=\mathbb{Z} / 2 \mathbb{Z}$ iff $\operatorname{dim}(\mathcal{B})=1$.

Lemma 0.6. Let G be a connected algebraic group, and $T \subset G$ be maximal torus G. Then is generated by Borel subgroups containing T.

Proof. We prove the Lemma by induction in $\operatorname{dim}(G)$. Let P be the subgroup of G generated by Borel subgroups contains T. Then (?) P is a closed subgroup of G containing a Borel subgroup. Therefore P is a parabolic subgroup. If $P \neq G$ then there exists $x \in N_{G}(T)$ such that $x P x^{-1} \neq P$ [see Problem 5 a)]. By inductive assumptions $x P x^{-1}$ is generated by Borel subgroups containing T. So $x P x^{-1} \subset P . \square$

Problem 0.7. a) Let G be a connected algebraic group, Then there exists the maximal normal invariant solvable connected subgroup $R(G) \subset$ G and it is closed.
b)There exists the maximal connected normal invariant unipotent connected subgroup $R_{u}(G) \subset G$ and it is closed.
c) $R(G)$ is equal to the connected component of the intersection of all the Borel subgroups of G.

Definition 0.8. Let G be a connected algebraic group,
a) The subgroup $R(G) \subset G$ is called the radical of G.
b) The subgroup $R_{u}(G) \subset G$ is called the unipotent radical of G.
c) G is reductive if $R_{u}(G)=(e)$.
d) G is semisimple if $R(G)=(e)$.
e) The rank $r(G)$ of G is the dimension of a maximal torus of G.
f) The semisimple $\operatorname{rank} \operatorname{sr}(G)$ of G is the dimension of a maximal torus of $G / R(G)$.

Problem 0.9. a) The groups $G L_{n}, n>0$ are reductive.
b) The groups $S L_{n}, n>1, S p(2 n) n>0$ and $S O(n), n>2$ are semisimple.
c) $r\left(S L_{n}\right)=n-1, r(S p(2 n))=n, r(S O(n))=[n / 2]$.
d) Construct an isomorphism $P G L_{2} \rightarrow S O(3)$ where $P G L_{2}:=$ $G L_{2} / Z\left(G L_{2}\right)$ where $Z\left(G L_{2}\right)=\mathbb{G}_{m}$ is the center of the group $G L_{2}$.
e) If we write elements of the group $G L_{2}$ as matrices $\kappa=\left(\begin{array}{ll}a_{11}(\kappa) & a_{12}(\kappa) \\ a_{21}(\kappa) & a_{22}(\kappa)\end{array}\right) \in$ $G L(2, k)$ we see that the functions

$$
\phi_{i, j ; i^{\prime}, j^{\prime}}(\kappa):=a_{i j}(\kappa) a_{i^{\prime} j^{\prime}}(\kappa) / \operatorname{det}(\kappa)
$$

are regular functions of the group $P G L_{2}$. Prove that the ring $k\left[P G L_{2}\right]$ is generated by these functions.

Claim 0.10. If Let G is a connected algebraic semisimple group of semisimple rank 1 then $\operatorname{dim}(\mathcal{B})=1$ and $\left|\mathcal{B}^{T}\right|=2$.

Proof of Claim. It is sufficient to prove the result for the group $G / R(G)$. So we can assume that G is semisimple. Let T be a maximal torus of G and \mathcal{B} be the variety of Borel subgroups of G. Since $r(G)=1$ we have (?) $\operatorname{dim}(T)=1$. So T is isomorphic to \mathbb{G}_{m} and therefore $\left|W_{G}\right| \leq\left|\operatorname{Aut}\left(\mathbb{G}_{m}\right)\right|=2$ and it follows from Problem 5 that $\operatorname{dim}(\mathcal{B})=1$ and $\left|\overline{\mathcal{B}}^{T}\right|=2$.

Fix a point $y \in \mathcal{B}-\mathcal{B}^{T}$ and consider the morphism

$$
f: \mathbb{G}_{m} \rightarrow \mathcal{B}-\mathcal{B}^{T}, f(a):=a y, a \in k^{\star}
$$

As follows from Problem 2 the morphism f extends to a morphism $\bar{f}: \mathbb{P}^{1} \rightarrow \mathcal{B}$. We write $x_{0}:=\bar{f}(0), x_{\infty}:=\bar{f}(\infty)$ and denote by

$$
f_{0}: \mathbb{P}^{1}-\{\infty\} \rightarrow \mathcal{B}-x_{\infty}, f_{\infty}: \mathbb{P}^{1}-\{0\} \rightarrow \mathcal{B}-x_{0}
$$

the restrictions of \bar{f} on $\mathbb{P}^{1}-\{0\}$ and $\mathbb{P}^{1}-\{\infty\}$.
Problem 0.11. Let G be a connected algebraic semisimple group of semisimple rank $1, Y:=\mathcal{B}-\mathcal{B}^{T}$. Then
a) The action of the torus $T=\mathbb{G}_{m}$ on Y is transitive.
b) Fix $y \in Y$ and define $f: \mathbb{G}_{m} \rightarrow Y$ by $f(a)=a y$. Show that existence of $r>0$ such that $f^{\star}(k[Y])=k\left[a^{ \pm} r\right]$ (in other words $f^{\star}(k[Y])$ is the span of characters $\chi_{n r}: a \rightarrow a^{n r}, n \in \mathbb{Z}$.
[A hint] Use Lemma 4.3.
c) The field $k(\mathcal{B})$ is isomorphic to the field $k(t)$ of rational functions.
d) Let $A u t_{k}(k(t)$ be the group of automorphisms of the field $k(t)$ which act trivially on k. For any 2×2-matrix $\kappa=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, k)$ we define

$$
\alpha_{\kappa} \in A u t_{k}\left(k(t), \alpha_{\kappa}\left(r(t):=r\left(\frac{a t+b}{c t+d}\right)\right.\right.
$$

Show that the map $\tilde{\tau}: G L(2, k) \rightarrow \operatorname{Aut}\left(k(t), \kappa \rightarrow \alpha_{\kappa}\right.$ which induces a homomorphism $\tau: P G L_{2} \rightarrow \operatorname{Aut}(k(t)$.
e) Prove the surjectivity of $\tau: P G L_{2} \rightarrow A u t(k(t))$.
f) Let $\tilde{V} \subset\left(\mathbb{P}^{1}\right)^{3}$ be the subset of distinct triples. For any point $v_{0}=\epsilon \tilde{V}$ the map $P G L_{2} \rightarrow \tilde{V}, \kappa \rightarrow \kappa\left(v_{0}\right)$ defines an isomorphism of of affine algebraic varieties.

We see that the action of \underline{G} on \mathcal{B} induces a group homomorphism $f: G \rightarrow P G L_{2}(k)$.

Theorem 0.12. The group homomorphism $f: G \rightarrow P G L_{2}(k)$ is algebraic.

Proof. As follows from Problem 9 e) the functions

$$
\phi_{i, j ; i^{\prime}, j^{\prime}}(\kappa):=a_{i j} a_{i^{\prime} j^{\prime}} / \operatorname{det}(\kappa), \kappa=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in G L_{2}(k)
$$

generate the ring $k\left[P G L_{2}\right]$. So it is sufficient to show that functions

$$
f^{\star}\left(\phi_{i, j ; i^{\prime}, j^{\prime}}\right): G \rightarrow k, f^{\star}\left(\phi_{i, j ; i^{\prime}, j^{\prime}}\right)(g):=\phi_{i, j ; i^{\prime}, j^{\prime}}(f(g))
$$

are regular. Since f is a homeomorphism and G is connected it is sufficient to show the existence of a non-empty open subset $U \subset G$ such that the restriction of $f^{\star}\left(\phi_{i, j ; i^{\prime}, j^{\prime}}\right)$ on U are regular.

We denote by $(g, x) \rightarrow g x$ the natural action of the group G on \mathcal{B}. Let T be a maximal torus of G. As follows from Problem 11 there exists a regular function t on $\mathcal{B}-\mathcal{B}^{T}$ such that

$$
\begin{gathered}
k(\mathcal{B})=k(t), t(a x)=a^{r} t(x), a \in k^{\star}, x \in \mathcal{B}-\mathcal{B}^{T} \\
t(g x)=\frac{a_{11} t+a_{12}}{a_{21} t+a_{22}}, f(g)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
\end{gathered}
$$

We denote by $V \subset \mathcal{B}-\mathcal{B}^{T^{3}}$ the subset of distinct triples, choose a point $v_{0}=\left(x_{1}, x_{2}, x_{3}\right) \in V$ and define

$$
U:=\left\{g \in G \mid g x_{i} \in \mathcal{B}-\mathcal{B}^{T}, i=1,2,3\right.
$$

$U \subset G$ is an open subset containing $\{e\}$ and the map $\tau: U \rightarrow V, g \rightarrow$ ($g x_{1}, g x_{2}, g x_{3}$) is regular.

Consider

$$
U^{\prime}:=\left\{\gamma \in P G L_{2} \mid \gamma x_{i} \in \mathcal{B}-\mathcal{B}^{T}, i=1,2,3\right.
$$

As follows from Problem 11 f) the map $\theta: U^{\prime} \rightarrow V, \kappa \rightarrow \kappa\left(v_{0}\right)$ defines an isomorphism of of affine algebraic varieties. But it is clear that $f_{U}=\theta^{-1} \circ \tau . s q u a r e$

