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Universal Artificial Intelligence (UAI)

A foundational theory of AI

UAI

Framework

Learning Goal Planning

Answers: What is the right thing to do?
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Framework

x

Agent Environmentat

et

At each time step t, the agent

submits action at

receives percept et

History æ<t = a1e1a2e2 . . . at−1et−1

Set of histories: (A× E)∗
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AIXI takes a Model-Based Bayesian RL approach

Start with a prior over environments

Learning After gaining experience, update prior to posterior over
environments

Sometimes convenient to think of this as single mixture environment

Planning Calculate the long-term Bayes-Optimal solution

Expectimax search: max over actions, expectation over percepts
At root, probability of percept generated according to current posterior
At each child, update posterior given history we would have observed
at that point (very different from planning in a known model)
“Solves” the exploration-exploitation dilemma: If we would gain more
reward by information gathering, we will do so
Optimal over prior distribution
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Agent and Environment

Agent
Policy
π : (A× E)∗ → A
Next action
at = π(æ<t)

Environment
Distribution
µ : (A×E)∗×A E
Probability of next
percept:
µ(et | æ<tat)
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a1 = 1 a1 = π(ε)

e1 ∼ µ( · | a1)

a2 = π(a1e1)

e2 ∼ µ( · | a1e1a2)
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Expectimax Planning

The expected return is called value: V π
µ (æ<t) = Eπµ[R(æ1:∞) | æ<t]

R(æ1:∞) = r1 + γr2 + · · · γm−1rm︸ ︷︷ ︸
effective horizon

+ γmrm+1 + · · ·︸ ︷︷ ︸
<ε

≈ R(æ1:m)
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a1 = 1 Optimal policy:
π∗ = arg maxπ V

π
µ

An ε-optimal policy can be
found in any environment µ

a∗1 = arg max
a1

∑

e1

µ(e1 | a1) max
a2

∑

e2

µ(e2 | a1e1a2) . . .max
am

∑

em

µ(em | æ<mam)R(æ1:m)
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Principles

Occam
Prefer the simplest consistent hypothesis

Epicurus
Keep all consistent hypotheses

Bayes

Pr(Hyp | Data) =
Pr(Hyp) Pr(Data | Hyp)∑
Hi∈H Pr(Hi) Pr(Data | Hi)
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Remaining questions

What is the class of hypothesis?

What is the prior?

Turing
“It is possible to invent a single machine which can
be used to compute any computable sequence.”
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Solomonoff Induction

Use computer programs p as hypotheses/environments

Given Turing-complete programming language U , programs can

describe essentially any environment

be checked for consistency: is p(a<t) = e<t?

be used for prediction: compute p(a<tat)

be ranked by simplicity: Pr(p) = 2−`(p)

Solomonoff=Epicurus+Occam+Turing+Bayes
Make a weighted prediction based on all consistent
programs, with short programs weighted higher
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Ray Solomonoff: A Formal Theory of Inductive Inference12

1Ray J Solomonoff. “A formal theory of inductive inference. Part I”. . In:
Information and control 7.1 (1964), pp. 1–22.

2R.J. Solomonoff. “A formal theory of inductive inference. Part II”. . In: Information
and Control 7.2 (June 1964), pp. 224–254.
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Solomonoff-Hutter’s Universal Distribution

M(e<t | a<t) =
∑

p : p(a<t)=e<t

2−`(p)

a<t action sequence

e<t percept sequence

p computer program

`(p) length of p

Occam: Simpler program higher weight

Epicurus: All consistent programs

Bayes: Discard inconsistent programs

Turing: Any computable environment

Predict with

M(et | æ<tat) =
M(e<tet | a<tat)
M(e<t | a<t)
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Results Solomonoff Induction

Theorem (Prediction error)

For any computable environment µ and any actions a1:∞:

∞∑

t=1

Eµ
[
M(0 | æ<tat)− µ(0 | æ<tat)︸ ︷︷ ︸

prediction error at time t

]2 +≤ 1

2
ln 2 ·K(µ)

Solomonoff induction only makes
finitely many prediction errors

The environment µ may be
deterministic or stochastic
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Agent can learn any computable environment
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Expectimax in Unknown Environments: AIXI

AIXI replaces µ with M : πAIXI = arg max
π

V π
M

a∗1 = arg max
a1

∑

e1

M(e1 | a1) max
a2

∑

e2

M(e2 | a1e1a2) . . .max
am

∑

em

M(em | æ<mam)R(æ1:m)

Learn any
computable
environment

Acts
Bayes-optimally

One-equation
theory for Artificial
General Intelligence

Computation time:
exponential×infinite
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Bayes Optimality and Optimal Exploration

AIXI is guaranteed to learn to predict percepts it receives
(on-sequence)

But what about those it does not receive due to actions it did not
take? (off-sequence)

AIXI is guaranteed to be Bayes-Optimal

Very subjective notion of optimality as it depends on believing the
prior
Seems better to aim for asymptotic optimality: In the limit of data
take actions optimally in any environment
AIXI is not asymptotically optimal, in fact the two are at odds [8]
Bayes: Immediate, incomplete Asymptotic: Long-term, complete
Very recent work suggests optimistic approaches or Thompson
sampling give us asymptotic optimality [12, 6]
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Benefits of a Foundational Theory of AI

AIXI/UAI provides

(High-level) blue-print or inspiration for design

Common terminology and goal formulation

Understand and predict behaviour of yet-to-be-built agents

Appreciation of fundamental challenges (e.g.
exploration/exploitation)

Definition/measure of intelligence
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AIXI Approximation [15] [4]

Bayesian optimality notion

“As AIXI is only asymptotically computable, it is by no means an
algorithmic solution to the general reinforcement learning problem.
Rather, it is best understood as a Bayesian optimality notion for decision
making in general unknown environments.”

Approximating AIXI

Next: How to construct tractable approximations of AIXI?
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Monte-Carlo AIXI Framework [13]
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Approximate Learning and Planning

Approximating Expectimax (§4)

Use a generalisation of Upper Confidence Bound for Trees (UCT) (Kocsis
and Szepesvari 2006) to approximate the expectimax operation

Environment Model (§5)

Use an agent-specific extension of Context Tree Weighting (CTW)
(Willems, Shtarkov, and Tjalkens 1995), a Bayesian model averaging
algorithm for prediction suffix trees, for prediction and learning
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MC-AIXI-CTW: Approximating Expectimax

Planning with expectimax search takes exponential time

Sample paths in expectimax tree (anytime algorithm)
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Monte Carlo Tree Search
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e′1

a1 = 1 a1 = arg max
a

V +(a)

P (e1 | a1)

a2 = arg max
a

V +(a1e1a)

P (e2 | a1e1a2)

upper confidence bound

V +(a) = V̂ (a)︸︷︷︸
average

+
√

log T/T (a)︸ ︷︷ ︸
exploration bonus

unexplored: high log T/T (a)
T (a) = times explored (a)

promising: high V̂ (a)

MCTS famous for good performance in Go (Gelly et al., 2006)
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Context Tree Weighting (CTW)
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0
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CTW “mixes” over all 22D context trees of depth ≤ D

CTW(e<t | a<t) =
∑

Γ

2−CL(Γ)Γ(e<t | a<t)

M(e<t | a<t) =
∑

p

2−`(p) [[ p(a<t) = e<t ]]

Computation time:

M(et | æ<tat) Infinite

CTW(et | æ<tat) Constant (linear in max depth D)

Tom Everitt (ANU) Universal Artificial Intelligence July 16, 2016 38 / 63



Comparison of MC-AIXI-CTW and AIXI Model Classes

From §6: “Compare this to the action chosen by the AIXI agent, where
class M consists of all computable environments ρ and K (ρ) denotes the
Kolmogorov complexity [7] of ρ. Both use a prior that favours simplicity.
The main difference is in the subexpression describing the mixture over the
model class. AIXI uses a mixture over all enumerable chronological
semimeasures, which is completely general but incomputable. Our
approximation uses a mixture of all prediction suffix trees of a certain
maximum depth, which is still a rather general class, but one that is
efficiently computable.”
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Efficiency / Experimental Results [13]
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Discussion / Additional approaches to AIXI Approximation

Optimal Ordered Problem Solver3

An Approximation of the Universal Intelligence Measure4

Compress and Control5

Feature Reinforcement Learning6

3Jürgen Schmidhuber. “Optimal Ordered Problem Solver”. In: Machine Learning
54.3 (Mar. 2004), pp. 211–254.

4Shane Legg and Joel Veness. “An Approximation of the Universal Intelligence
Measure”. In: (Sept. 2011), p. 14. arXiv: 1109.5951.

5Joel Veness et al. “Compress and Control”. In: (2014). arXiv: 1411.5326.
6Marcus Hutter. “Feature Reinforcement Learning: Part I. Unstructured MDPs”.

In: Journal of Artificial General Intelligence 1.1 (Jan. 2009), pp. 3–24.
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