‘@
OPEN & ACCESS Freely available online @ PLoS one

Lymnaea schirazensis, an Overlooked Snail Distorting
Fascioliasis Data: Genotype, Phenotype, Ecology,
Worldwide Spread, Susceptibility, Applicability

Maria Dolores Bargues'*, Patricio Artigas', Messaoud Khoubbane', Rosmary Flores’, Peter Gloer?, Raul
Rojas-Garcia®, Keyhan Ashrafi*, Gerhard Falkner®®, Santiago Mas-Coma’

1 Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain, 2 Minchner Malakologische Mitteilungen Heldia, Friedrich-Held
Gesellschaft, Hetlingen, Germany, 3 Laboratorio de Biologia de Parasitos y Vectores, Escuela de Biologia, Benemérita Universidad Auténoma de Puebla, Puebla, México,
4 Department of Medical Microbiology and Parasitology, School of Medicine, Gilan University of Medical Sciences, Rasht, Iran, 5 Staatliches Museum fiir Naturkunde
Stuttgart, Stuttgart, Germany, 6 Département Systématique et Evolution, UMS “Taxonomie et Collections”, Muséum National d’Histoire Naturelle, Paris, France

Abstract

Background: Lymnaeid snails transmit medical and veterinary important trematodiases, mainly fascioliasis. Vector specificity
of fasciolid parasites defines disease distribution and characteristics. Different lymnaeid species appear linked to different
transmission and epidemiological patterns. Pronounced susceptibility differences to absolute resistance have been
described among lymnaeid populations. When assessing disease characteristics in different endemic areas, unexpected
results were obtained in studies on lymnaeid susceptibility to Fasciola. We undertook studies to understand this disease
transmission heterogeneity.

Methodology/Principal Findings: A ten-year study in Iran, Egypt, Spain, the Dominican Republic, Mexico, Venezuela,
Ecuador and Peru, demonstrated that such heterogeneity is not due to susceptibility differences, but to a hitherto
overlooked cryptic species, Lymnaea schirazensis, confused with the main vector Galba truncatula and/or other Galba/
Fossaria vectors. Nuclear rDNA and mtDNA sequences and phylogenetic reconstruction highlighted an old evolutionary
divergence from other Galba/Fossaria species, and a low intraspecific variability suggesting a recent spread from one
geographical source. Morphometry, anatomy and egg cluster analyses allowed for phenotypic differentiation. Selfing, egg
laying, and habitat characteristics indicated a migration capacity by passive transport. Studies showed that it is not a vector
species (n=28572 field collected, 20 populations): snail finding and penetration by F. hepatica miracidium occur but never
lead to cercarial production (n=338 experimentally infected).

Conclusions/Significance: This species has been distorting fasciolid specificity/susceptibility and fascioliasis geographical
distribution data. Hence, a large body of literature on G. truncatula should be revised. Its existence has henceforth to be
considered in research. Genetic data on livestock, archeology and history along the 10,000-year post-domestication period
explain its wide spread from the Neolithic Fertile Crescent. It is an efficient biomarker for the follow-up of livestock
movements, a crucial aspect in fascioliasis emergence. It offers an outstanding laboratory model for genetic studies on
susceptibility/resistance in F. hepatica/lymnaeid interaction, a field of applied research with disease control perspectives.
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Introduction veterinary impact, among which fasciolids are the most important
[1]. Fasciola hepatica and F. gigantica are two large-sized fasciolid

Freshwater snails of the family Lymnaeidae (Gastropoda) act as trematode parasite species that cause fascioliasis, a disease which
mtermediate hosts or vectors of numerous digenean trematode affects humans and livestock species almost everywhere [2]. This
species. Many lymnaeid species are of applied interest as they highly pathogenic liver parasitosis has been emerging in many
transmit several trematode species of large-scale medical and countries of Latin America, Europe, Africa and Asia in the last two
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decades [2,3]. This emergence phenomenon has partly been
related to climate change [4,5], given the high dependence of both
lymnaeid snails and fasciolid larval stages on climatic and
environmental characteristics [6-8].

Although livestock species play an important reservoir role,
transmission studies have shown that the metacercarial infective
stage from different origins, such as sheep, cattle, pig and donkey,
represent similar infectivity sources [9,10]. On the contrary, the
specificity of fasciolid species regarding concrete lymnaeid species
[1] represent a crucial factor in establishing the geographical
distribution of the disease in both animals and humans. Moreover,
disease prevalences and intensities also depend on the ecological
characteristics (population dynamics, anthropophylic characteris-
tics, type of water bodies, etc.) of the different lymnaeid vector
species. That is why different lymnaeid species appear linked to the
different transmission patterns and epidemiological scenarios of
this very heterogeneous disease in humans [11,12]. The
continental differences in lymnaeid faunas also explain that in
the Americas fascioliasis is only caused by F. hepatica, owing to the
absence of lymnaeids of the genus Radix which act as transmitters
of F. gigantica [1]. Likewise, as in other vector-borne diseases, this
relationship supports the use of lymnaeids as biomarkers of the
disease at both local and large scales and can thus be useful for the
validation of mathematical modelling and remote sensing—
geographical information system (RS-GIS) tools for the control
of the disease [8,13].

Despite the applied interest of lymnaeid snails, the present
knowledge on the genetics of this gastropod group as well as on their
parasite-host interrelationships is far from being sufficient. A good
example of this situation is the systematic-taxonomic confusion in
which this molluscan family has been immersed [1]. At lymnaeid
species level, the problems are found mainly due to the interspecific
morphological and anatomic uniformity numerous species present,
usually resulting in serious difficulties in specimen classification,
sometimes even impeding it [14-16]. Moreover, intraspecific
variation of shell shape is particularly well marked within lymnaeids
depending on environmental conditions [17,18], although a genetic
component in shell shape has been shown at least in some lymnaeid
populations [19]. Thus, there are many specimen classification
problems, mainly related to: (i) species of the “stagnicoline” group in
Europe and North America [14,20]; (i) the “radix” group in
Europe and Asia [20]; (i11) the “fossarine” or “Galba/ Fossaria” group
in the Americas [15] (Fossaria is a synonym of Galba [21]; terms
“fossarine’ or “Galba/ Fossaria” group here used only in the meaning
frequently found in American malacological literature of the last
century).

At snail host level, trematodes show a marked specificity, from
usually oioxenous (one digenean species/one snail species) or
stenoxenous (one digenean species/a few, closely related snail
species, 1.e. those belonging to the same genus) to less frequently
oligoxenous (one digenean species/numerous, family-, subfamily- or
tribe-related snail species) [22-24]. Variability in the susceptibility
of a concrete snail species to infection by a concrete digenean species
has shown to be related to differences between snail populations and
also between individuals among a concrete snail population [24,25].
Differences in compatibility between a trematode species and
different geographical populations of the same snail host species are
known, including Fasciola [26,27]. Among lymnaeids, pronounced
differences in susceptibility have been highlighted among snail
populations encountered in close proximity [28,29], and some snail
populations have been mentioned to even show a total lack of
susceptibility or resistance [29-31].

However, the aforementioned different susceptibility phenom-
ena in lymnaeids have to be considered with great caution. Many
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of these lymnaeid species involved in fascioliasis transmission
maintain a confusing systematic-taxonomic status. When compar-
ing different lymnaeid DNA sequences, several populations
originally classified as belonging to different species showed
identical DNA marker sequences, and other populations originally
classified as pertaining to the same species presented different
DNA marker sequences. Sometimes sequence differences were
very few, suggesting intraspecific variability (different haplotypes).
However, occasionally differences detected among populations
classified as pertaining to the same species were numerous,
sufficient as to consider different species involved. Moreover, the
number of sequence differences between species sometimes
appeared lower than that between populations of the same species
[1,14,16]. This clearly underlines both the classification problems
and the systematic-taxonomic confusion present in Lymnaeidae.
Consequently, several susceptibility differences described could in
fact be related to different lymnaeid species instead of different
populations of the same lymnaeid species.

The crucial implications of lymnaeid vectors for fascioliasis
transmission, epidemiology and control demonstrate the impor-
tance of developing new tools to facilitate specimen classification,
genetic characterisation of natural populations and laboratory
strains, and to elucidate the systematics and taxonomy of
Lymnaeidae. The failure of all malacological and non-malacolog-
ical tools applied to date suggests the analysis of DNA sequences
and phylogenetic methods to be worthwhile. The first attempt
made by a research collaboration of parasitologists, molecularists
and malacologists was successful [1]. This success, together with
the rapid realisation that locally restricted studies were insufficient
because of the very large geographical distribution and spreading
capacities of many lymnaeids belonging to very confusing
lymnaeid groups, suggested early on that large, transboundary
studies would be needed. In this sense, a worldwide lymnaeid
molecular characterisation initiative was instigated [12,16]. The
great spreading capacity of lymnaeids means that sometimes not
even the continental scale is sufficient, and intercontinental
sequence comparisons are needed to classify specimens correctly.
As an example: the sympatric Lymnaea viatrix and L. cubensis, which
were noted to be involved in the human fascioliasis high
hyperendemic area of the Bolivian Altiplano [32], later proved
to only involve morphologically variable Galba truncatula of
European origin [33-35]. The intercontinental spreading of
lymnaeids and its role in fascioliasis dissemination is well known
[2,27,36].

Of the different DNA markers used hitherto in lymnaeids, the
18S gene of the nuclear ribosomal DNA (rDNA) appears to be too
conserved and its few variable positions may only be useful at
generic and suprageneric taxon levels [15,16,33,37]. Ribosomal
DNA ITS-2 and secondarily I'TS-1 are the most useful sequences
for studies at species level [1,14,15,35,38,39,40]. These two
spacers are useful for: (1) classification of lymnaeid specimens, (ii)
characterisation of lymnaeid intraspecific genetic interpopulational
variablity to furnish the genetic base on which to understand
fasciolid-lymnaeid specificity, different susceptibilities or compat-
ihilities of geographical strains or even resistances, (iii) establish-
ment of valid species and their geographical distributions, and (iv)
assessment of species interrelationships to arrange a natural
systematic-taxonomic classification, which will allow for an
analysis of coevolution with fasciolids [12,16]. Interestingly, one
mutation at the level of the ITS-1 and another at ITS-2 have
proved useful to distinguish between resistant and susceptible
populations of P. columella in Cuba [41], although nothing
evidently suggests that these mutations are linked to resistance/
susceptibility.
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Within mitochondrial DNA (mtDNA), only fragments of 16S
and cox] have been sequenced in lymnaeids [15,40,42—44]. Recent
knowledge indicates that mtDNA markers, including both
mitochondrial genes and the ribosomal 125 and 16S genes within
the mitochondrial genome, should be used with great caution
when dealing with lymnaeid species belonging to different genera
and even those well-separated within the same genus [45]. Of
particular concern is the saturation of nucleotide positions.
Additionally, it has also been documented that incomplete gene
sequences do not necessarily contain a sufficiently significant
portion of the whole gene, ie. parts of the gene presenting
evolutionary hot spots may be missed [46]. Consequently, the use
of mtDNA markers for this initiative is restricted to (i) sequence
comparisons and phylogenetic analyses of only closely related
species within the same genus, (ii) studies of intraspecific variability
of species by sequence comparisons of individuals and populations,
(i) genetic characterisation of laboratory strains, (iv) studies on the
spread of populations of a species, and (v) studies on genetic
exchange between different neighboring populations [12].

The present paper summarises results obtained in analyses of
lymnaeid specimens of given populations originally ascribed to
the main fascioliasis vector species G. truncatula in Europe, Asia,
and Africa, and/or also to similar lymnaeid vector species
belonging to the Galba/Fossaria group in North America, the
Caribbean and South America. Such analyses were performed
after obtaining unexpected results in experimental studies about
lymnaeid susceptibility to Fasciola infection when assessing disease
transmission characteristics in human hypo- to hyperendemic
fascioliasis areas in the different continents. Multidisciplinary
studies carried out to understand experimentally-tested, abnor-
mal fasciolid susceptibility of these widely spread lymnaeid G.
truncatula-like populations have taken more than 10 years.
Characterisation studies have been made by nuclear rDNA
and mtDNA sequences, phylogenetic tree reconstruction, phe-
notypic differentiation by shell morphometry, morphoanatomical
characterisation, fecundation studies, ecological observations,
and assessment of the geographical spread in correlation with
historical These results demonstrate that another
lymnaeid species, Lymnaea (s. L) schirazensis, genetically distant
but phenotypically very close, has always been confused with G.
truncatula and/or other similar lymnaeid vector species in all these
continents. The implications for fascioliasis are discussed, as this
hitherto overlooked species has been distorting results of fasciolid
specificity/susceptibility analyses as well as the geographical
distribution of the disease. The existence of this G. truncatula-like
lymnaeid species frequently present in animal fascioliasis
endemic areas and usual in human fascioliasis endemic areas
ought be henceforth considered to avoid misunderstandings
concerning transmission. Moreover, results indicate that L.
schirazensis can be used as a useful biomarker of foreign livestock
introduction, a crucial aspect in fascioliasis spreading and
emergence [12]. Additionally, L. schirazensis offers an outstanding
new laboratory model for studies on genomics and proteomics
about susceptibility/resistance in F. hepatica/lymnaeid interac-
tion, an important field of applied research with disease control
perspectives.

events.

Materials and Methods

Lymnaeid snail material

The snail specimens studied (n = 8572 specimens) were collected
in the field along a ten-year period, from 20 lymnaeid populations
present in geographical areas with human and/or animal
fascioliasis endemicity of eight countries (Figure 1):
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— Iran: 1) Taleb Abad river, Bandar Anzali, Gilan province
(37°27'46" N; 49°37'07" E; —23 m below sea level-b.s.l.): 243
living specimens collected and analysed to assess potential
natural infection by Fasciola through cercarial shedding
verification; 2) garden of the Medicine Faculty, Rasht, Gilan
province (37°11'39" N; 49°38'04" E; 26 m above sea level-
a.s.l): 81.

— Egypt: 3) El Kazza, Hosh Esa district, Behera governorate
(30°50"54" N; 30°16'16" E; 1 m asl): 1956; 4) Tiba,
Delengate district, Behera governorate (30°50'34" N;
30°29'11" E; 4 m a.s.l.): 887; 5) Boulin El Aly, Kafr El Dawar
district, Behera governorate (31°10°42" N; 30°10'54” E; 0 m
a.s.l.): 369.

— Spain: 6) Albufera of Valencia, Valencia province
(39°17'42''N; 0°20'41"" W; —1 m b.sl): 1291; 7) Nules-
Moncofar, Castellon province (39°50'01” N; 0°06'28"” W; 34 m
a.sl): 2077.

— the Dominican Republic: 8) Constanza, Departamento de La
Vega (18°54'25"" N; 70°44 25"" W; 1,184 m a.s.1): 265; 9) Rio
Grande, Constanza, Departamento de La Vega (18°52'37"" N;
70°43'38"'" W; 1,182 m as.l): 32.

— Mexico: 10) Los Molinos, subcuenca Nexapa, Atlixco, Puebla
(18°56'57"N; 98°23'25"W; 1,952 m a.s.l.): 149; 11) Escuela A.
Obrego, La Trinidad Tepango, Atlixco, Puebla (18°51'46" N;
98°26'33" W; 1,774 m a.s.l): 213; 12) Xalpatlaco, Atlixco,
Puebla (18°55'58" N; 98°26'22"” W; 1,903 m a.s.l): 56; 13)
Jiutepec, Morelos, Huauchinango (18°53'01" N; 99°11'12" W;
1,377 m a.s.l): 31.

— Venezuela: 14) Laguna de Fe y Alegria, El Valle, Estado de
Merida (8°37'29” N; 71°08'30" W; 1,837 m as.l): 38; 15)
Hotel Valle Grande, El Valle, Estado de Merida (8°40'28" N;
71°06'03" W; 2,174 m a.s.l.): 114.

— Ecuador: 16) Guarandauco, Chillogallo (0°17'48" S; 78°38'55"
W; 3,158 m asl): 75; 17) La Buena Esperanza, Cayambe
(0°03'39" N; 78°0825" W; 2,821 m a.s.): 283; 18) Machachi,
Santo Domingo (0°27'23" S; 78°33'43” W; 2,810 m a.s.l.): 317.

— Peru: 19) Bailos del Inca, Cajamarca (07°12'54" N; 78°26'08"
W; 2,611 m as.l): 72; 20) Rio Lurin, Lima (12°12'28" S;
76°52'00" W; 154 m a.s.l.): 23.

Lymnaeid materials of the species G. truncatula from Albufera of
Valencia, Spain, and Qued Tiout, Essaouira, Marrakesh,
Morocco were used for comparative analyses.

Snail laboratory cultures

Lymnaeids were transported under isothermal conditions to the
laboratory of Valencia. The possible natural infection by fasciolids
was always individually verified prior to the launch of laboratory
cultures. This was performed by keeping each lymnaeid specimen
isolated in a Petri dish containing a small amount of natural water.
After 24 h, the presence or absence of motionless metacercarial
cysts or moving cercariae was verified in each Petri dish. A few
non-infected specimens from each population were used for
species classification of each population by means of DNA
sequencing processes.

Afterwards, non-infected lymnaeids were arranged in standard
breeding boxers containing 2000 ml fresh water according to
lymnaeid species classification, to assure pure specific cultures.
Finally, snails were adapted to and maintained under experimen-
tally controlled conditions of 20° C, 90% relative humidity and a
12 h/12 h light/darkness photoperiod in precision climatic
chambers (Heraeus-Vétsch VB-0714 and HPS-500). The water
was changed weekly and lettuce added ad lLbitum.
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Figure 1. Maps of the Old and New Worlds showing localities where Lymnaea schirazensis was collected: A) Old World: 1 =Taleb Abad
river, Bandar Anzali, Gilan province, Iran; 2 = Medicine Faculty, Rasht, Gilan province, Iran; 3 =El Kazza, Hosh Esa district, Behera
governorate, Egypt; 4=Tiba, Delengate district, Behera governorate, Egypt; 5=Boulin El Aly, Kafr El Dawar district, Behera
governorate, Egypt; 6 = Albufera of Valencia, Valencia province, Spain; 7 = Nules-Moncofar, Castellon province, Spain; B) New World:
8=_Constanza, Departamento de La Vega, the Dominican Republic; 9=Rio Grande, Constanza, Departamento de La Vega, the
Dominican Republic; 10=Los Molinos, subcuenca Nexapa, Atlixco, Puebla, Mexico; 11=Escuela A. Obrego, La Trinidad Tepango,
Atlixco, Puebla, Mexico; 12 = Xalpatlaco, Atlixco, Puebla, Mexico; 13 = Jiutepec, Morelos, Huauchinango, Mexico; 14=Laguna de Fe y
Alegria, El Valle, Estado de Merida, Venezuela; 15=Hotel Valle Grande, El Valle, Estado de Merida, Venezuela; 16 = Guarandauco,
Chillogallo, Ecuador; 17 =La Buena Esperanza, Cayambe, Ecuador; 18 =Machachi, Santo Domingo, Ecuador; 19 =Bafos del Inca,
Cajamarca, Peru; 20 =Rio Lurin, Lima, Peru. For a higher resolution situation of each locality, see respective coordenates in text.
doi:10.1371/journal.pone.0024567.g001
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Voucher specimens and taxonomic nomenclature

aspects

Voucher specimens of L. schirazensis, both experimentally raised
and molecularly classified as well as from molecularly classified
populations collected in the field, have been deposited in the
Department of Parasitology, Faculty of Pharmacy, University of
Valencia, Spain, and the Staatliche Naturhistorische Sammlungen
Dresden, Museum fiir Tierkunde, Dresden, Germany. Other field-
collected specimens are kept at Laboratorio de Biologia de
Parasitos y Vectores, Escuela de Biologia, Benemérita Universidad
Autéonoma de Puebla, Puebla, México.

The list of species (and subspecies) of molluscs and trematode
parasites included in this study, according to the zoological
nomenclature, 1s included in Table S1. The generic name Lymnaea
is used here throughout in the broad taxonomic meaning (sensu
lato=s. L).

Molecular techniques

DNA extraction. DNA was extracted from more than one
specimen of a given population when this was deemed necessary for
sequence verification. Only snails that appeared free of helminth
infection were used in the molecular analyses. To reduce the risk of
contamination of DNA from helminths further (which are more
likely to be localized in other tissues), DNA was only isolated from
the foot of each snail. Use of just the feet, rather than all the soft
tissues, also prevented the development in the DNA pellets of the
white flocculate substance (probably of polysaccharides) and
melanic pigments that can inhibit Polymerase Chain Reaction
(PCR) and cause amplification of non-specific products [15,34].

Snail feet fixed in 70% ethanol were used for DNA extraction
procedures. After dissection under a microscope, half of the foot
was suspended in 400 ul of lysis buffer (10 mM Tris-HCI, pH 8.0,
100 mM EDTA, 100 mM NaCl, 1% sodium dodecyl sulfate SDS)
containing 500 pg/ml Proteinase K (Promega, Madison, WI,
USA) and digested for 2 hr at 55° C with alternate shaking each
15 min. Steps of the procedure were performed according to
methods outlined previously [1,15,33]. Total DNA was isolated
according to the phenol-chloroform extraction and ethanol
precipitation method [47]. Each pellet was dried and resuspended
in 30 pl sterile TE buffer (pH 8.0). This suspension was stored at
—20° C until use.

DNA sequence amplification. DNA sequences were
amplified by PCR using 46 ul of genomic DNA for each 50 pl
PCR reaction, according to methods outlined previously
[1,15,33,35]. Each one of the five DNA markers were PCR
amplified independently for each lymnaeid specimen and each PCR
product was sequenced for a bona-fide haplotype characterization.
A set of 8 conserved oligonucleotide primers was used for the
amplification of five superimposed fragments of the 18S ribosomal
RNA gene using specific primers and a standard protocol [15,34] to
amplify specific 18S rDNA regions. Ribosomal DNA spacers I'T'S-2
and ITS-1 were amplified using primers designed in conserved
positions of 5.8S and 28S rRNA genes and 18S and 5.8S rRNA
genes of several eukaryote Metazoa species, respectively [1,15,39].
The target 16S gene region was amplified by PCR using a set of
universal primers [48]. Amplification procedures and thermal cycler
conditions were carried out as previously described for lymnaeids
[42]. A cox] gene fragment was amplified using universal primers
[49]. Amplifications were generated in a Mastercycle epgradient
(Eppendorf, Hamburg, Germany), by 30 cycles of 30 sec at 94° C,
30 secat 50° C and 1 min at 72° C, preceded by 30 sec at 94° C and
followed by 7 min at 72° C for I'TS-2 and I'TS-1, and by 40 cycles of
30 sec at 90° G, 1 min at 48° C and 1 min at 72° C, preceded by
2.5 min at 94° C and followed by 10 min at 72° C for cox1. Ten pl
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of each PCR product was checked by staining with ethidium
bromide on 1% Nusieve® GTG agarose (FMC) gel electrophoresis,
using Molecular Weight Marker VI (Boehringer Mannheim) at
0.1 ng DNA/ul as control.

Purification and quantification of PCR products. Primers
and nucleotides were removed from PCR products by purification
with Wizard™ PCR Preps DNA Purification System (Promega,
Madison, WI, USA) according to the manufacturer’s protocol and
resuspended in 50 pl of 10 mM TE buffer (pH 7.6). The final DNA
concentration was determined by measuring the absorbance at 260
and 280 nm.

DNA sequencing. The sequencing of the entire 18S rRNA
gene, the complete rDNA I'TS-2 and I'TS-1, and the fragments of
the mtDNA 16S and cox] genes was performed on both strands by
the dideoxy chain-termination method [50]. It was carried out
with the Taq dye-terminator chemistry kit for ABI 373A and ABI
3700 capillary system (Perkin Elmer, Foster City, CA, USA), using
PCR primers.

DNA haplotype nomenclature

The codes for the sequences obtained follow the standard
nomenclature previously proposed for lymnaeid snails [12,16,39].
Note that haplotype codes are only definitive in the case of
complete sequences. When dealing with fragments or incomplete
sequences, haplotype codes are provisional.

Software programs

Sequence alignments. Sequences were aligned using
CLUSTAL-W version 1.8 [51] and MEGA 4.0 [52], and assembly
was made employing Staden Package [53]. Subsequently, minor
corrections were manually introduced for a better fit of nucleotide
correspondences in microsatellite sequence regions. Homologies were
performed using the BLASTN programme from the National Center
for Biotechnology information website (http://www.ncbi.nlm.nih.
gov/BLAST). Genetic distances were measured using parameters
provided by PAUP v.4.0 b10 [54].

Sequence comparisons. The following sequences from
GenBank-EMBL were used for comparative analyses (in the
following, names of taxa according to articles in which sequences
were described; see Table S1 for systematic-taxonomic notes):

— 185 rRNA gene: complete sequences of Lymnaea (Lymnaea)
stagnalis (GenBank Accession Number Z73984), Lymnaea
(Stagnicola) palustris (273983), Omphiscola glabra (273982), and
Galba truncatula (£73985) [33]; L. cubensis (£83831) [15,34], L.
viatrix and L. neotropica (both species with the same sequence
AM412222) [15], and L. fumalis (FN182190) [45], all four from
respective type localities; L. cousint and L. meridensis (both species
with the same sequence FN598151), and Pseudosuccinea columella
(FN598152) [55]; Radix auricularia (£73980) and R. balthica
(273981) [33]. Other incomplete sequences available at
GenBank were not used to avoid problems in comparative
sequence analyses.

— rDNAITS-2: L. (S.) palustris palustris (AJ319620), L. (S.) palustris
turricula (AJ319618), L. (S.) fuscus (AJ319621), and Catascopia
occulta (AJ319642) [1,14]; C. catascoprum (AF013143), C.
emarginata (AF013141, AF013142), C. elodes (AF013138), and
Hinkleyia caperata (AF013139) [38]; G. truncatula H1 (AJ296271),
H2 (AJ243017), and H3 (=L. watrix sensu Ueno et al,
1975;=L. cubensis sensu Ueno et al., 1975) (AJ272051)
[1,15,35]; L. cubensis (AM412223), L. vatrix (AM412224), L.
neotropica (AM412225) [15], L. humilis (FN182191) [45], L.
cousini (FN598153), and L. menidensis (FIN598154) [55], all six
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sequences from respective type localities; P. columella

(FN598156) [55].

— rDNA ITS-1: L. (S.) palustris palustris (AJ626849), L. (S.) palustris
turricula (AJ626853), L. (S.) fuscus (AJ626856), and C. occulta
(AJ626858) [39]; C. catascopium (AF013143), C. emarginata
(AF013142), C. elodes (A¥013138), and Hinkleyia caperata
(AF013139) [38]; G. truncatule HA (AJ243018), HB
(AJ296270), and HC (= L. vatrix sensu Ueno et al., 1975;=L.
cubensis sensu Ueno et al., 1975) (AJ272052) [1,15,35,39]; L.
cubensis (AM412226), L. wviatrix (AM412227), L. neotropica
(AM412228) [15], L. hwmlis (FN182193) [45], L. cousini
(FN598157), and L. meridensis (FN598159) [55], all six
sequences from respective type localities; P. columella

(FN598160) [55].

— mtDNA 16S rRNA gene: Fossaria bulimoides (AF485657), F.
obrussa (AF485658), S. elodes (AF485652), and Stagnicola
bonnevillensis (AF485655) [43]; F. bulimoides (EU038315) and S.
elodes isolate 44106 (EU038305) [56]; L. cubensis (FIN182204)
and L. humilis (FN182195) [45].

— mtDNA cox] gene: S. elodes (EU038352) [56]; S. elodes
(AY227368), F. bulimoides (AY227367), and Austropeplea tomentosa
(AY227365) [44]; G. truncatula from Spain (AM494011) [15]
and Germany (EU818799) [57]; L. cubensis from Cuba
(AM494009-type locality) [15] and the USA (FN182205)
[45], L. viatrix (AM494010-type locality), L. neotropica from Peru
(AM494008-type locality) [15] and Argentina [58], L. humilis
(FN182197-9~type locality) [43], L. cousini (FN598161—type
locality, and FIN598162-3) and L. meridensis (FN598164—type
locality) [55]; P. columella from Australia (AY227366) [44] and
Puerto Rico (FN598165) [55].

Representation of the 188 rRNA secondary
structure. The previously published secondary structure
prediction for Limicolaria kambeul 18S rRNA [59], based on the
general eukaryote 18S rRNA secondary structure [60], was used
and extended to encompass lymnaeid sequences.

Phylogenetic inference

Phylogenies were inferred from DNA sequences using maxi-
mum-likelihood (ML) estimates with PAUP [54]. ML parameters
such as model, base frequencies, transition/transversion ratio (ts/
tv), the shape parameter for the gamma distribution, and the
proportion of invariant sites, were optimized using the hierarchical
likelihood ratio test (hNLRT) and the Akaike information criterion
(AIC) [61,62), implemented in Modeltest 3.7 [63]. Starting branch
lengths were obtained using the least-squares method with ML
distances.

To provide an assessment of the reliability of the nodes in the ML
tree, three methods were used. First, a bootstrap analysis using 1000
replicates was made with heuristic search in PAUP. Second, a
distance-based phylogeny using the neighbour-joining (NJ) algo-
rithm [64] with ML pairwise distances was obtained. Statistical
support for the nodes was evaluated with 1,000 bootstrap replicates,
with and without removal of gapped positions. Third, a Bayesian
phylogeny reconstruction procedure was applied to obtain posterior
probabilities (BPP) for the nodes in the ML tree, by using the same
evolutionary model as above, implemented in MrBayes 3.1 [65]
with four chains for 1,000,000 generations and trees were sampled
every 100 generations. The first 1,000 trees sampled were ruled out
(“burn-in”), and clade posterior probabilities (PP) were computed
from the remaining trees. Alternative methods of phylogenetic
reconstruction allowing for an evaluation of the support for each
node were also applied. A distance-based phylogeny using the NJ
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algorithm with LogDet distances was obtained. Statistical support
for the nodes was evaluated with 1,000 bootstrap replicates.

Due to different limitations recently shown by mtDNA markers
for interspecific sequence analyses in invertebrates [46,66,67],
phylogenetic reconstruction by combined sequences data sets was
made from ribosomal and mitochondrial markers separately.
Combined sets analysed were: a) I'T'S-1 and I'T'S-2, considered as
the markers to fit best for the analysis of relationships between
species, as has already been verified in Lymnaeidae [16]; b) 18S,
I'TS-1 and I'TS-2, to increase the support for evolutionarily older
divergence nodes; ¢) 16S and cox1, to evaluate mtDNA genome
information; and d) cox1 gene, by using both the three and only the
first two codon positions to assess potential saturation.

Phylogenetic analyses were performed using reference sequences
of lymnaeid DNA (see species and Acc. Nos. in list noted above in
chapter of sequence comparisons), after adding the following
sequences stored at databases: ITS-2: Radix auricularia HI
(AJ319628) and R. balthica H1 (AJ319633); I'TS-1: R. auricularia
HA (JF922878) and R. balthica HA (JF922879); 16S: L. (L.) stagnalis
(AF485659), L. (S.) palustris (U82082), G. truncatula (HQ283236), L.
viatrix (HQ283239), L. humilis HA and HB (FN182195, FN182196),
L. cousint (HQ283237), L. meridensis HA, P. columella (U82073) and R.
auricularia (AF485659). coxl: L. (L.) stagnahs (EU818795), L. (S.)
palustris (EU818801), R. auricularia (EU818800). The intergenic
region sequence (AY030361) [68] including both ITSs of a
planorbid species, Biomphalaria pfeferi, was used as outgroup. For
the combined sets using 18S and 16S, B. alexandrina 18S
(BAU65225), ITSs (AY030371) and 16S (AY030204) [68] were
used for outgroups, similarly as B. alexandrina cox] (AF199110).

Phenotypic study

Only specimens from pure laboratory cultures experimentally
maintained in climatic chambers and with previous molecularly
assessed lymnaeid species classification were used for snail
description and intraspecific variability studies.

Shells and egg clusters of lymnaeids were measured, according
to traditional malacological methods [19], using a computerised
image-analysis system (CIAS) [69]. This system is based on a
DXC-930P colour video camera (Sony, Tokyo) fitted to a
stereomicroscope, and connected to computer running image
analysis software (ImageProH Plus 4.5; Media Cybernetics Inc.,
Silver Spring, MD).

For anatomical studies, adult lymnaeids were collected in the
field and allowed to relax overnight in water containing menthol.
They were then immersed in hot water (70° C) for 40 s before
transfer to water at room temperature. The soft parts were drawn
from the shells with forceps applied to the cephalopedal mass, and
fixed in slightly modified Railliet-Henry’s fluid (930 ml distilled
water, 6 g NaCl, 50 ml 40% formalin, and 20 ml glacial acetic
acid). The fixed snails were then dissected under a stereomicro-
scope, so that drawings of the reproductive system could be made
using a camera lucida.

Egg clusters were obtained from living lymnaeids experimen-
tally maintained in climatic chambers. Living egg clusters were
measured with CIAS. For egg clusters, cluster roundness
(CR=CP?/4nCA) measurements were used to quantify the
cluster shape. It is a measure of how circular an object is (the
expected perimeter of a circular object divided by the actual
perimeter). A circular object will have a roundness of 1.0, while
more irregular objects will have larger values [70].

Experiments for selfing verification and characterisation

To verify the capacity of snails to give rise to offspring by selfing
(= autofecundation), egg clusters laid inside the breeding containers,
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in which pure laboratory cultures were kept within the climatic
chambers, were isolated in Petri dishes. Immediately after egg
hatching, each newborn snail specimen was isolated in a small Petri
dish provided with water and microalgae (Oscilatoria formosa) as food.
The growth of the snail and its possible egg cluster laying were
thereafter followed on a daily basis. Small portions of fresh lettuce
were added to complement the food diet when lymnaeid size was
sufficient. This follow-up was continued not only until the first egg
cluster appeared in the Petri dish, but expanded for up to several
weeks until snail death. The purpose was to obtain numerous egg
clusters from each isolated snail and to analyse their laying capacity.
The following characteristics were assessed: snail life span (= days
elapsed from day of hatching to day of death); prelaying period
(=days elapsed from day of hatching to day when first cluster was
laid); laying period (= days of sexual activity elapsed from first to last
day when clusters were laid by a snail specimen, inclusive);
postlaying period (=days elapsed between last laying day and
death); total laying capacity (= number of clusters/life span in days);
laying rate in the sexually active period (=number of clusters/
laying period in days). Shape and size of the living clusters were
measured with CIAS, and egg numbers per cluster were noted to
verify a potential correlation with the size and age of the respective
snail individual at the day of laying.

Liver fluke experimental infection assays

Isolates of F. hepatica from Poland and Peru, and F. gigantica from
Egypt and Vietnam, maintained in the laboratory according to
previously described methods [35], were used for experimental
infection assays of the laboratory-reared lymnaeids.

Liver fluke eggs in fresh water were maintained in complete
darkness at 20° C to start the embryogenic process. Embryogenesis
was followed at intervals of four days until fully embryonated
containing a developed miracidium. Developed miracidia were
forced to hatch by putting fully embryonated eggs under light and
used for the experimental infection of snails. Snails of the

and respective GenBank accession numbers.

Overlooked Snail Distorting Fascioliasis Data

geographical strains from El Kazza and Tiba in Egypt and from
Albufera of Valencia in Spain were used for experiments. These
lymnaeid strains were selected due to their higher adult survival
rates under experimental conditions. Only laboratory-borne
specimens were used. Snails of different size and age within the
length range of 3.5-7.5 mm were used to assess infection
susceptibility.

Lymnaeids were mono- or trimiracidially infected by the
aforementioned F. hepatica and F. gigantica isolates, by exposing
each snail to one or three miracidia for four hours in a small Petri
dish containing 2 ml of fresh water. During this short period, snail
specimens were forced to stay inside water and the disappearance
of the miracidium was taken as verification of its successful
penetration into the snail. Therefafter, snails were returned to the
same standard conditions in the climatic chamber (2000 ml
containers, 20° C, 90% r.h., 12 h/12 h light/darkness, dry lettuce
ad libitum) until day 30 post-infection (dpi). In that day, they were
once again isolated in Petri dishes to permit daily monitoring of
potential cercarial shedding by individual snails. Lettuce was
provided ad lbitum to each snail in a Petri dish during this
monitoring period until death of the snail.

Results

DNA sequences

Sequence characteristics are noted in Table 1. Data includes
length and GC/AT content, obtained for each one of the five
DNA markers analysed in the populations of L. schirazensis from
the twenty localities of eight countries (Figure 1) with their
corresponding haplotype codes and GenBank Accession Nos.

18S rRNA gene

All of the 20 populations of L. schirazensis presented the same
18S sequence (Table 1). When comparing this 18S sequence with
that of G. trucatula, a total of 19 variable positions appeared. They

Table 1. Nuclear ribosomal DNA and mitochondrial DNA marker sequences obtained from populations of Lymnaea schirazensis

Sequence length  GC or AT Accession

DNA marker Populations Haplotype No. (nucleotide No.) content (%) No.
rDNA 18S all populations studied L.schir-18S-H1 1852 bp GC 514 FR772291
rDNA ITS-2 Iran, Egypt, Spain, the Dominican Republic, Venezuela, L.schir-H1 436 bp GC 539 JF272601

and one population from Peru (Bafios del Inca)

Mexico, Ecuador and one population from Peru (Rio Lurin) L.schir-H2 444 bp GC 53.8 JF272602
rDNA ITS-1 Iran, Egypt, Spain, the Dominican Republic and Venezuela L. schir -HA 531 bp GC 56.1 JF272603

Mexico, Ecuador and Peru L. schir -HB 533 bp GC 55.9 JF272604
mtDNA 16S rRNA all populations except one L.schir-165-HA 421 bp AT 69.6 JF272605

one population from the Dominican Republic (Constanza) L.schir-16S-HB 421 bp AT 69.6 JF272606
mtDNA cox1 Iran, Egypt, Spain, the Dominican Republic, Mexico L.schir-cox1-Ha 672 bp AT 69.5 JF272607

(populations from Los Molinos, Escuela A. Obrego in La

Trinidad Tepango, and Jiutepec), Venezuela, Ecuador

(population from Machachi) and Peru (population from

Rio Lurin)

one population from Mexico (Xalpatlaco in Atlixco, Puebla) L.schir-cox1-Hb 672 bp AT 69.3 JF272608

one population from Ecuador (La Buena Esperanza) L.schir-cox1-Hc 672 bp AT 69.6 JF272609

one population from Peru (Bafos del Inca) L.schir-cox1-Hd 672 bp AT 69.1 JF272610

numbers. H= haplotype.
doi:10.1371/journal.pone.0024567.t001
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included 6ts, 2 tv and 11 insertions/deletions (indels) in a
1853 bp-long pairwise alingment, most differences being located
in the variable Helix E-10 of the V2 region according to the
secondary structure (Figure 2).

A multiple 18S sequence alignment was 1867 bp long. It
included: several Galba/Fossaria vector species such as L. cubensts, L.
viatrix (the sequence being identical to that of L. neotropica), G.
truncatula, L. humilis, and L. cousini (sequence identical to that of L.
menidensis); the peculiar species P. columella; three representatives of
stagnicolines (L. (L.) stagnalis, L. (S.) palustris and O. glabra); and two
of the Radix group (R. auricularia and R. balthica). This alighment
showed a total of 64 variable nucleotide positions (3.43%
nucleotide divergence). Thirty-two of these 64 polymorphic sites
appeared grouped in the short sequence between positions 206
and 266, which corresponds to the helix E10-1 of the variable area
V2 of the secondary structure (Figure 2).

Second internal transcribed spacer rDNA ITS-2

Two different I'TS-2 haplotypes were found among the L.
schirazensis populations analysed (Table 1). Their pairwise com-
parison showed only 8 polymorphic sites, corresponding to 8 indels
caused by the tetranucleotide microsatellite repeat TGCT, present
twice in haplotype 1 between positions 128 and 135 of the
alignment but absent in haplotype 2.

The very high number of nucleotide differences detected in
the pairwise comparisons of these two I'TS-2 sequences with the
three ITS-2 haplotypes of G. truncatula available at GenBank is
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noteworthy. In the different alignments performed, with a bp
length varying between 469 to 477, a total of 130-139 differences
appeared, including 18-19 ts, 11 tv and 101-109 indels (Table 2).

When comparing the L. schirazensis ITS-2 sequences with the
other species of the Galba/Fossaria group, the pairwise ITS-2
distance matrix obtained with PAUP (only parsimony informative
sites considered) showed that the numbers of nucleotide differences
were unexpectedly high in all cases. The lowest of these numbers
appeared when comparing with G. fruncatula, although rather high
(64-66). Regarding L. humilis, L. cousini and L. meridensis, it ranged
from 99 to 118. It appeared to be similarly high (121-136) with
regard to L. cubensis, L. wviatrix and L. neotropica. Nucleotide
differences were also numerous when L. schirazensis was compared
with stagnicolines and Pseudosuccinea (Table S2).

First internal transcribed spacer rDNA ITS-1

Two different I'T'S-1 haplotypes were also found among the L.
schirazensis populations analysed (Table 1). The pairwise compar-
ison of these two sequences showed only 3 polymorphic sites,
corresponding to two insertions in positions 296 and 297 (AA or --)
and to one mutation in position 443 (A or T) in haplotypes A and
B, respectively.

A very high number of nucleotide differences also appeared in
the pairwise comparisons with the three I'TS-1 haplotypes of G.
truncatula. In the different alignments performed, with a bp length
varying from 558 to 560, a total of 134-138 differences appeared,
including 31-32 ts, 21-23 tv and 81-83 indels (Table 2).

Variable areas vwwv v VvV VVVVVVVVVV VVVVVVVVVV VWVVVVVVVVY V V 'A% v
1111 2 2 2222222222 2222222222 2222222222 2 2 45 799

Helix 66668E999E EEEEEEEEEE EEEEEEEEEE EEEEEEEEEE E E11111-1 1EEEEE2233 3444
8 11111111111 1111111111 1111111111 1 122222 8 8222227825 5147

0 0000000000 0000000000 0000000000 0 1 111111
1 1111312121111 11113113311 11111171111 1 125777

POSITIONS 11111 1111
11112 2222222222 2222222222 2222222222 2333333455 7778811233 4777

6777925550 3333333444 4444444555 5555555666 6199999688 2493535301 3359

9234892786 3456789012 3456789012 3456789012 6214578402 5749696437 6323

L. (L.) stagnalis Z73984 GTG~T====C CGTG===== C CGGGGCGACT CGTGC-~~-G C-CGTAC-CC -AACGCT-GC TGTA
L. (S.) palustris Z73983 vee=eCA==, ... ===== . mlatesealsieiee  wssleramm=——_ =, emse =TosBas=ss sens
0. glabra 273982 TAAC.—===. soss===—m 4 sessssssss sessETm——4 s—eiaas —ee =.G-A..-T. ....
L. cubensis ZB83831%* eee—.ABA--. T..CGTGCCG ...T..A.GC ....GTCGC. .-..... CTT GCG..-.-T- C.CG
L. viatrix AM412222* +s+s=.AA--, T...CCTCCG ...T..A.GC ....GTCGC. .-.....CTT -CG..-.CT- C.CG
G. truncatula Z73985 see=sAl==y To=m——== Co TTTCe 4o s GG === ===m=m== B=coaoe =TT =CG.A..=.~- C..G
L. schirazensis «..—.AA--. G-CCATTCAT TCACTT.CG. G..-—=———— +=+++..CIT -CG..-.CT- C.CG
L. humilis FN182190* eee—o AA--T Toee—e—u CG ...C..AGGC ..A.G-=——- - R CTT -CG..-.CT- CCCG
L. cousini FN598151%* see=sADA——., Te—————e CG ...C..A.GC ..A.G--——- S—ccsss CTT -CG..-.CT- C.CG
P. columella FN598152 ve.—AB——. T-C.GTCCCG ..A--G.GGC ..G-———=—- r-.....CTT -CG..-.CT- C...
R. auricularia Z73980 vee=CAB==. ....====CT .TTC...GGG T.C.====== TCGTACT-TA GCG.A-C-T- C...
R. balthica 273981 eee=eCATTe eoee====CT .TTC...GGG T.Com=mmm== TCGTACT-TT -CG.A.C=-.- C...
DIFFERENCE NUMBER 1 1111111112 2222222223 3333333334 4444444445 5555555556 6666
1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234

Figure 2. Nucleotide differences in a total of 64 variable positions found in the complete 18S rDNA sequence of the lymnaeid
species compared and their location in the secondary structure. Helix, Position and Difference number=numbers to be read in vertical.
Position = numbers refer to positions obtained in the alignment made with MEGA 4.0. Identical = .; Indel = —. Shaded area corresponds to Helix E10-1
of the variable area V2 where differences in the 185 rRNA gene of Lymnaeidae are concentrated [33]. GenBank Accession Nos.=2773980—273985 [33];
783831 [34]; AM4122222 [15]; FN182190 [45]; FN598151- FN598152 [55]; L. schirazensis from present paper. Sequence correspondences: * L. cubensis,
L. viatrix, L. humilis and L. cousini without definitive genus ascription; 18S identical in L. viatrix and L. neotropica [15]; 18S identical in L. cousini and L.

meridensis [55].

doi:10.1371/journal.pone.0024567.g002
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When comparing L. schirazensis ITS-1 sequences with the other
species of the Galba/Fossaria group, the pairwise ITS-1 distance
matrix obtained with PAUP showed that the numbers of
nucleotide differences were also very large. The comparison with
G. truncatula furnished the second lowest number (81-84), after that
of the comparison with L. meridensis (77-80). Regarding L. humilis
and L. cousinz, it ranged from 87 to 92, and it appeared to be
similarly high (83-92) with regard to L. cubensis, L. viatrix and L.
neotropica. The number of nucleotide differences increased
considerably when L. schirazensis was compared with stagnicolines
(132-143) and Pseudosuccinea (129-130) (Table S3).

Table 2. Sequence differences detected in pairwise comparisons of ITS-2 and ITS-1 between Lymnaea schirazensis and the most
morphologically similar species Galba truncatula.
Alignment length  Total differences  Substitutions Insertions+deletions
Transitions Transversions
Compared species No. of bp No. % No. % No. % No. %
ITS-2:
L. schirazensis H1 vs. G. truncatula H1 477 139 29.14 19 3.98 1 2.31 109 22.83
L. schirazensis H1 vs. G. truncatula H2 477 138 28.93 18 3.77 1 231 109 22.83
L. schirazensis H1 vs. G. truncatula H3 477 139 29.14 19 3.98 1 231 109 22.83
L. schirazensis H2 vs. G. truncatula H1 469 131 27.93 19 4.05 1 234 101 21.53
L. schirazensis H2 vs. G. truncatula H2 469 130 27.72 18 3.84 1 2.34 101 21.53
L. schirazensis H2 vs. G. truncatula H3 469 131 27.93 19 4.05 1 234 101 21.53
ITS-1:
L. schirazensis HA vs. G. truncatula HA 560 136 24.28 31 5.53 22 3.93 83 14.82
L. schirazensis HA vs. G. truncatula HB 560 137 24.46 32 5.71 22 393 83 14.82
L. schirazensis HA vs. G. truncatula HC 560 138 24.64 32 5.71 23 411 83 14.82
L. schirazensis HB vs. G. truncatula HA 558 134 24.01 32 573 21 3.76 81 14.52
L. schirazensis HB vs. G. truncatula HB 558 135 24.19 33 5.91 21 3.76 81 14.52
L. schirazensis HB vs. G. truncatula HC 558 136 2437 33 5.91 22 3.94 81 14.52
doi:10.1371/journal.pone.0024567.t002

16S rRNA gene of the mtDNA

Two different sequences of the 16S fragment were found
(Table 1). They differred by only 2 mutations (C/A in position 85
and A/G in position 305 of their pairwise alignment, in HA/HB,
respectively).

Nucleotide comparison with other Galba/ Fossaria species showed
a total of 46 variable positions (10.75%), of which 31 were
mutations (7.24%) and 15 were indels (3.50%). This alighment
demonstrated that L. schirazensis was different from any other
Galba/Fossania at the level of this mtDNA gene (Figure 3). In
pairwise comparisons, minimum differences were 18 mutations

POSITION

111111111122222222222223333333444444

1144688222455588833333466777880004468022222
4690913368027312925612458445245342595742835678

L. schirazensis 16S-HA
L. schirazensis 16S-HB
L. cubensis 165-HB

F. bulimoides

L. humilis 16S-HA

L. humilis 16S-HB

F. obrussa

C. elodes*

TAAATGTTCGGTGTATTTATT---AAATCTATTGTAAAAGTAT---
CGG.CAA..AA.A...A.T.ACAT-.T.A.G.AA..TT.....CCT
CGG.CAA..A......A.T.ACTTT.T.AA..AA..TT.....CCT
.GGT.A...AA.AATAA. .AAG--...AT..A.A. et esee———
.GGT.A...AA.AATAA. .AAG--...AT. .A.Acccc.A. . o ===
.GGT.A.-.AA-AATAA- .AAG--.-.AT..A.A~-. ..~
.GGT.A...AA.AATAA..AAG--...AT..A.A......-..CC-

-, T

Figure 3. Variable positions showed by the mtDNA 16S sequence fragment in a 433-bp-long alignment including the two
haplotypes of Lymnaea schirazensis and other Galba/Fossaria species. Numbers (to be read in vertical) refer to positions obtained in the
alignment made with MEGA 4.0. Identical =. ; Indel = — . Haplotype codes only provisional due to incomplete sequences of the gene. L. cubensis 16S-
HB (FN182204), L. humilis 16S-HA (FN182195) and L. humilis 16S-HB (FN182196) [45]; F. bulimoides (AF485657) and F. obrussa (AF485658) [43]; * the
sequence ascribed to the stagnicoline C. elodes (EU038305) [56] concerns in fact a Galba/Fossaria species-see analysis in [45].

doi:10.1371/journal.pone.0024567.g003
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(4.2%) when compared with L. humilis, and a maximum of 22
mutations (5.14%) appeared in comparisn with L. cubensis.
Nucleotide differences were more numerous when comparing
with the stagnicolines S. elodes and S. bonnevillensis. The four species
alignment showed a total of 56 variable positions (12.93%), 47 of
which were mutations (10.85%) and 9 indels (2.08%) (alignment
not shown).

mtDNA cytochrome ¢ oxidase subunit | cox1

Four different coxl sequences were obtained (Table 1). When
aligned, a total of 661 positions were conserved and only 11 were
variable, comprising 2 parsimony informative and 9 singleton sites
(Table 3). When comparing with species of the Galba/Fossaria
group and other proximal lymnaeid species available at GenBank,
whose coxl fragment sequences were similar in length to those
obtained in the present study, the higher number of nucleotide
differences appeared evident in a pairwise coxl distance matrix
(Table S4). A comparison with more distant species such as
stagnicolines (S. elodes) and Radix group (Austropeplea tomentosa) was
not necessary.

The amino-acid sequence of that COX1 gene fragment was 224
aa long. A pairwise comparison showed a 100% identity between
the three L. schirazensis haplotypes coxl-a, cox1-b and coxl-c, and
only one amino-acid difference (isoleucine/threonine, respectively)
in position 96 with L. schirazensis haplotype cox1-d from Baiios del
Inca, Peru. The provisional haplotypes COXI1-I and COXI-II
were assigned, respectively. The comparison with the amino acid
sequence of other species of the Galba/Fossaria group and other
proximal lymnaeid species showed that COXI1-I of L. schirazensis
was identical to that of other species, such as L. viatrix, L. humilis
and L. menidensis. However, L. schirazensis COX1-11 appeared to be
unique (Figure 4).

Phylogenetic analysis

Combined ITS-1 and ITS-2 sets. This single data-set
generated a robust tree, indicating phylogenetic accordance
between the two spacers. The ML model best fitting this data-
set was HKY85+], using a ts/tv ratio of 2 (kappa = 3.8979086),
base frequencies for A, C, G and T of 0.21534, 0.26862, 0.22661
and 0.28943, respectively, and a proportion of invariable
sites = 0.087. To assess the reliability of the nodes in the ML
tree (Figure 5 A), a bootstrap analysis using 1,000 replicates was
made using branch-swapping algorithm (tree-bisection-
reconnection TBR) with heuristic search and the neighbour-
joining (NJ) algorithm with the ML pairwise distances in PAUP.

Table 3. Nucleotide differences found in the sequences of
the 672-bp-long mtDNA cox1 gene fragment of the four L.
schirazensis haplotypes described.

Positions 2 2 2 3 3 3 4 4 5 6
6 7 7 8 3 4 6 1 5 2 5
31 3 7 9 5 0 7 9 2 1
L.schirazensis cox1-a c cGe6GTTTATGGC
L.schirazensis cox1-b T C c C .
L.schirazensis cox1-c C c C A AT
L.schirazensis cox1—d . T . C cC G C

Positions = numbers (to be read in vertical) refer to variable positions obtained
in the alignment made with MEGA 4.0; . =identical to nucleotide in first line;
haplotype codes only provisional due to incomplete sequences of the gene.
doi:10.1371/journal.pone.0024567.t003
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Finally, a Bayesian phylogeny reconstruction procedure was
applied to obtain posterior probabilities (BPP) for the nodes in
the ML tree with MrBayes 3.1.

In the ML tree obtained (Figure 5 A), P. columella appeared basal
to two large groupings, namely stagnicolines (including both
Palaearctic and Nearctic species), and the Galba/Fossaria clade
which comprised the F. he¢patica main vector species. Lymnaea
schirazensts appeared included within the latter. However, contrary
to what would be expected, L. schirazensis did not cluster together
with G. truncatula, of Old World origin, or other morphologically
similar lymnaeids such as the New World L. cubensis, L. viatrix and
L. neotropica. Surprisingly, it appeared linked to the Nearctic L.
humilis and the two Neotropical L. cousini and L. meridensis, within a
relatively well supported branch (82/78/88 in NJ/ML/BBP).

The topology obtained with the NJ algorithm using LogDet
distances (figure not shown) was identical to that shown by the ML
tree (Figure 5 A).

When adding two Radix species (data matrix of 24 taxa with
1,767 characters), the ML model best fitting was HKY85+G+I,
using a ts/tv ratio of 1.45 (kappa = 2.872483), base frequencies for
A, G, G and T of 0.22764, 0.25354, 0.23176 and 0.28705,
respectively, a shape parameter (alpha) =0.99, and a proportion of
invariable sites = 0.13. In the ML tree obtained (Figure 5 B), Radix
species clustered independently in a branch basal to all the
remaining lymnaeids. Unexpectedly, the location of L. schirazensis
changed, now becoming basal to the other Galba/Fossaria members
which clustered together although with very low supports. The
topology of the NJ LogDet tree was similar (figure not shown), but
with L. schirazensis in a subclade with G. truncatula showing low
bootstrap (only 59).

Combined 18S, ITS-1 and ITS-2 set. This three ribosomal
marker data set (matrix of 17 taxa and 3,540 characters) also
generated a robust tree. The ML model best fitting was HKY85+1,
using a ts/tv ratio of 1.48 (kappa =2.9601982), base frequencies
for A, C, G and T of 0.22150, 0.25100, 0.25820 and 0.26930,
respectively, and a proportion of invariable sites = 0.44. In the ML
tree obtained (Figure 6 A), L. schirazensis appeared clustering
together with G. truncatula (79/81/- in NJ/ML/BPP), and the
branch including L. humilis, L. cousini and L. meridensis appeared as
the sister group inside the Galba/Fossaria clade. The topology
obtained with the NJ algorithm using LogDet distances (figure not
shown) was identical.

Combined 16S and coxl set. The data matrix analysed
contained 19 taxa and 1,118 characters. The ML model best
fitting was HKY85+G+l, using a ts/tv ratio of 1.78
(kappa =5.083228), base frequencies for A, C, G and T of
0.33500, 0.10560, 0.12210 and 0.43730, respectively, a shape
parameter (alpha)=0.39, and a proportion of invariable
sites = 0.35. The ML tree (Figure 6 B) showed L. schirazensis
haplotypes clustering together with the branch of L. humilis, L.
coustnt and L. meridensis, although with low support values (60/—/
60). The topology furnished by the NJ algorithm using LogDet
distances (figure not shown) was similar, with that clade supported
by a 64% bootstrap.

coxl sets. 'T'wo phylogenetic reconstructions were performed,
one by using complete sequences of the coxl fragment and another
after deleting the third codon position. The data matrix contained
28 taxa, with 672 and 448 characters, respectively. In the trees
obtained (figures not shown), very low alpha values, paraphylies
and low support values in external nodes, as well as inconsistency
of relationships between Radix, Pseudosuccinea and stagnicolines,
suggest sequence saturation. Therefore, a saturation effect may also
be expected at the level of the relationships of L. schirazensis with
other Galba/Fossaria species, given the very high nucleotide
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Nucleotidic Country Variable Amino acid
haplotype positions haplotype
11111122222222222222
11123468902246801111111122222
12345678901262666665666642345678901234
L.cubensis coxla Cuba DIGTLYMIFGIWLTANMIGGGGRPSGDPILYQHLFWFF L.cubensis COX1-I
L.cubensis coxlb HER @ ieeimeiaeelameeam i e S e S S A1 L.cubensis COX1-I
L.viatrix coxla Argentina sesessnssVessssssssssessnnses seaeea L.viatrix COX1-I
L.neotropica coxla POEN @ ieesies Beevars s e seie e e e B deeianee L.neotropica COX1-I
L.neotropica coxlb Argentine == Luewsiee seswiesesae B g e R L.neotropica COX1-II
F.bulimoides* USA = mmmmm i aaees 2422242427222 00svvinnnn -——= F.bulimoides COX1*
G.truncatula coxla BPEEI 0 e amon s e e v S e e W SRR G.truncatula COX1-I
G.truncatula¥* Germany = ==m——————— Pevssassansens Pommm———————— G.truncatula COX1-I*
L.schirazensis coxla many countries  ....eeeeee Vicososssansnnas ceseeeraneas L.schirazensis COX1-I
L.schirazensis coxlb Mexico = === sieesaeses W s e s s e i R e L.schirazensis COX1-I
L.schirazensis coxlc Ecuador sessssnrssVessassssssnvsssssssnssassas L.schirazensis COX1-I
L.schirazensis coxld Peru T P L.schirazensis COX1-II
L.humilis coxla OER: 00000 scmpecspeevmoe N it i L.humilis COX1-I
L.humilis coxlb USA ——— A ————— SR—— — L.humilis COX1-I
L.humilis coxlc USA. = seesassess Vesaasnsassssiesssassssosses L.humilis COX1-I
L.cousini coxla Ecuador === .s.ieeeas NoaWoea s s saieeseanh saeiee e s L.cousini COX1-I
L.cousini coxlb Colombia @ = ..eeess NN awaaimes aimnn s s Wiwwamwass L.cousini COX1-II
L.cousini coxlc Colombia = =  .eewwen ViaVewuisassassesseans Nesownenss L.cousini COX1-II
L.meridensis coxla Venezuela s A T W T L R T " L.meridensis COX1-I
P.columella coxla Puerto Rico A P.columella COX1l-I
P.columella** Australia = = = —---—- AL (R | S G [P T - P.columella COX1-I**

Figure 4. COX1 amino acid sequence differences detected in the alignment of the haplotypes of the lymnaeid species studied,
together with species of the Galbal Fossaria group and other proximal lymnaeid species available in GenBank. Only cox1 sequence
fragments of a lenght similar to that of sequences obtained in present paper are included. Variable positions=Numbers (to be read in vertical) refer
to positions obtained in the alignment made with MEGA 4.0. — =position not sequenced; ? =undetermined amino acid. Haplotype codes only
provisional due to incomplete sequences of the gene. * Sequences somewhat shorter and including a few undetermined amino acids; ** sequences
somewhat shorter although presumably identical to haplotype cox1a of the same species.

doi:10.1371/journal.pone.0024567.9004

differences at I'TS levels. Consequently, care should also be taken
when considering phylogenetic results furnished by the
aforementioned 16S and cox1 single data set.

Diagnostic description of Lymnaea (s. I.) schirazensis
Kister, 1862

Type locality. Shiraz, Iran [71].

Other localities. See detailed data on localities of Iran,
Egypt, Spain, the Dominican Republic, Mexico, Venezuela,
Ecuador and Peru in the “Lymnaeid snail material” section above.

Shell. The shell was brownish to reddish light brown, thin-
walled, elongated conical, usually with four regular convex whorls
and up to 5.5 whorls in the longer specimens (Figure 7). The
whorls were somewhat inflated, slightly shouldered, with silky and
longitudinally striated surface and separated by a deep, well-
marked suture, increasing rather slowly in diameter. The
columella was straight, unfolded, and the umbilicus open. The
last or body whorl was almost %4 times as high as the shell height,
presenting a slight twisting trend along its basal part visible in the
biggest shells when viewed dorsally, and which was due to the
enlargement of the basal lip of the peristome (in the way of
Pseudosuccinea columella). The spire was pointed. The aperture was
elongatedly oval, slightly oblique, mid-sized and wider at the base.
The thin peristome was patent throughout, the umbilicus partially
covered by a widened columellar lip. The shell showed a tendency
to be approximately one and a half to two times as long as it is
wide, and its aperture tends to be slightly less than half as long as
the shell. Measurements and calculated ratios of natural and
experimental populations were noted (see Table 4 and Table S5,
respectively).

@ PLoS ONE | www.plosone.org
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External morphological characteristics. The cephalope-
deal mass was pale greyish. The eyes were black, relatively big in
size (Figure 8 A-C). Tentacles were elongate, slender, pyramidal,
with narrow base (Figure 8 A-E). The mantle roof was dark, from
dark brown to blackish throughout, with small unpigmented
white-greyish round spots including several tiny circles at the
beginning of the border of the pulmonary region and a few
scattered further away in between the initial large round spots
(Figure 8 F-I). The border of the mantle was light grey. The black
pigmentation of the hypopeplear region of the mantle roof gave a
dark appearance to the shell of living specimens by transparency
(Figure 8 D,E). This dark appearance did not depend on the
characteristics of the natural habitat, as it was maintained across
the different laboratory-reared snail generations (quite the opposite
of what happens with several darkish populations of other
lymnaeid species under experimental conditions).

Anatomy. Morphoanatomical features were studied (see
Figure 9 and Figure S1). The renal tube extended straight from
the pericardial region toward the mantle collar, diagonally across
the roof of the palial cavity and parallel to the pulmonary vein and
renal vein. It was a straight tube, lined with a folded epithelium,
white to white-yellowish, that tapered, smoothed and became
transparent distalward until the level of the septum between
pulmonary and hypopeplear cavities. In that place, it turned with
an almost right-angle to form a short ureter (which lacked the two
distinct flexures present in other close species) and finally opened
behind the pneumostome. A very slender muscle thread appeared
lengthwise on the ventral surface of the renal tube. A layer of very
thin transverse parallel muscle fibers gave the inner side of the
pulmonary wall a densely striated appearance (Figure 9 A,B).

September 2011 | Volume 6 | Issue 9 | e24567



Overlooked Snail Distorting Fascioliasis Data

Heyreyd g
sepiqloueld
VIHD EoINeq Y 001/001/001
VIHO Menoune 3y ——| AIPSE
VIHO &fewnjod d 2aU29NSopPNasd
gaLHD sisuazeldiyas 7 A_ 001/001/001
gzH) sisuazeljyas 1 1 eepesuw/A]
VIHO s/suazedyas *7 4
SS/PE/BE
96/001/001
V LHO stsuaplaw -7 001/66/66 ~~/T8/6L
VLHO fuisnoo 7 M_ EuESSOS
/eqen
VIHO sijjwny =7 001/66/001
gzHD eimeaund} ‘9 L
DEHD gimeoundy 'H
Y1IHO EImEounsy ‘9 . 001/001/001
ESILONLL ) coc
VLHO eaidosioau 7 |_ o
VEIHO XJ8IA 7 001001001 |
~. 8S/L9/
VIHO s1suaqna 7 001/€6/9¢ \
@eieded ‘H eifapyuiy I8/€6/1L
001/001/001
wnidoaseles ‘9
£8/08/3L mw;_._.ww,_.:mSw
ejeutbiews ) ) o 001/001/66
sapofa "9 doasezes 98/~
VLHD B3n230 3 Soteoeeg sauljoaubels
V2ZHO snasnj (§) "7
14 saujjoojubelg oijoseaejey

V2gHO gnapun “d ('s) -7 " (ejosiubels) eeeuwAq
VIHO sisnfed d (S) 7  001/001/001

001/66/001 alIs/suoIMISANS 50'0

MHayeid g
aepigioue|d
VIHO gfaumjod d —— X
BaUIONSOPNasd
Y LHO sisuspliaw ] . 001/L6/001
001/001/001
V1HD fu1snoa -j
88/8L/C8
Y IHD shiwny =7 4
gLHO SISuazedyas 7 1 001/001{001
HEHD sisuazenyas 7 4 88/98/66
VIHD sisuszeqyas 7 1 /86/001 dresecy seproeuwAl
001/001/001 /eqen
azHD einieaun) ‘o _
DEHD eymeauny) ‘5
VY LHD eymeaund) '5 a
LL/89/69
Y LHD eaidosnjosu J -/L9/S9
Y LHD X1peia g
i 001/001/001 —
VIHD sisuaqna *7 © 56/L6/98 .
ejesades - £6/16/88
} H eifopain | 0 _.ac:oc_
. 001/001/001 /
wnjdoosejed - . ! sauljoaiuberg
~001/001/001 ps1ean
ejeubiews 9 99/C6/L6
sapoja -9 eidoasejen
B1N220 * sauljoojubey
YLHO Bl 2 Somseieq S
VZHD snasnj ('s) 1
1_ sauljoaiubels onaleaejed
VZHO enaum «d ('§) -7 (j0oube)S) BORUWAT
VIHD stysnfed d ('§) "7 001/001/001
04/06/001 B)IS/SUOHNIISANS GO0 —

@ PLoS ONE | www.plosone.org

September 2011 | Volume 6 | Issue 9 | e24567

12



Overlooked Snail Distorting Fascioliasis Data

Figure 5. Phylogenetic trees of lymnaeid species studied based on maximum-likelihood (ML) estimates: A) data set of ITS-1 and
ITS-2, with the planorbid B. pfeifferi as outgroup (—Ln=10016.27013); B) same data set of ITS-1 and ITS-2 with B. pfeifferi as
outgroup, after adding Radix species (—Ln = 10078.46520). Scale bar indicates the number of substitutions per sequence position. Support for
nodes a/b/c: a: bootstrap with NJ reconstruction using PAUP with ML distance and 1000 replicates; b: bootstrap with ML reconstruction using PAUP
with 1000 heuristic replicates; c: Bayesian posterior probability with ML model using MrBayes. See Table S1 for systematic-taxonomic notes.

doi:10.1371/journal.pone.0024567.9005

The ovotestis showed a lobulate surface formed by several acini,
with a collecting canal which continued into the ovispermiduct.
The latter presented a short and very thin proximal segment
emptying into the seminal vesicle, an expanded portion of
bosselated surface, which narrowed down into a slender distal
segment ending in the carrefour surrounded by the albumen
gland, oviduct and spermiduct (Figure 9 C-F).

The voluminous albumen gland covered the carrefour and the
origin of a bosselated, transverse tubular oviduct which followed a
somewhat convolute course, described a nearly complete circle in
contact with the albumen gland, and continued into a striated,
oblong nidamental gland (Figure 9 C,D and Figure S1 A,B). The
initial part of the nidamental gland increased in width to keep the
diameter throughout its length or even slightly enlarged in its distal
part, to subsequently narrow to give rise to a wrinkled-walled
uterus followed by a short vagina. The latter shows a first conical
narrowing part and a final short tubular part (without any bulbous
swelling or sphincter-like thickening present in other close species)
(Figure 9 E-G and Figure S1 A,B), opening into the female genital
pore with a slightly thickened lip. All parts of the female
reproductive system proximal to the vagina itself showed a
pronounced width.

The yellowish spermatheca (Figure S1 A,B) had an oval body
and gave rise to a thin, relatively long spermathecal duct which
emerged laterally from the spermatheca instead of from its
terminal extremity. The almost uniformly thin, smooth-walled
spermathecal duct extended diagonally between the nidamental
gland and the prostate until joining the final part of the uterus and
the beginning of the vagina. The spermathecal duct was not
dilated at its distal end (Figure 9 E-G and Figure S1 B).

Emerging from the carrefour, the spermiduct showed an initial
slightly dilated part with a granular outer surface slendering into a
uniformly thin, straight duct which ran on the ventral surface of
the nidamental gland. The distal portion of the spermiduct
widened to form a prostate of granular surface, relatively small
size, narrower than the nidamental gland. The small, oblong, light
grey prostate gland varied in shape from inverted-pear-like to
elongated-potato-like, without ventral lengthwise fissure (Figure 9
E,F and Figure SI C). In cross section, the prostate showed a
simple, slit-like lumen (lacking internal folds known in other
lymnaeids) (Figure 9 H and Figure S1 D). The prostate gave
distally rise to a smooth-walled vas deferens which ran shortly in
contact with the vagina and extended until looping caudalward.
After this loop, the vas deferens became a uniformly thin, long
duct to finally merge into a curved, penial sheath or phallotheca
(Figure 9 E,F and Figure S1 EF).

The penis sheath was regularly cylindrical, with a very slightly
thicker proximal part (which showed no patent circlet of minute
knobs or ring of papillae described in close species). The penis
sheath was about a little bit more than half as long than the
praeputium. The maximum width of the praeputium was around
two or even three times thicker than the penis sheath. The shape of
the praeputium was usually elongate-conical, gradually narrowing
to terminate in the male genital pore, although it also appeared
cylindrical thoughout most of its length and only tapering distally
(Figure 9 E,F and Figure S1 E.F). This conical shape of the
praeputium appeared to be an exception among the typical
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conical praeputium shape in Lymnaeidae. The length of the
praeputium measured 0.73-1.96 mm (mean 1.13 mm) while that
of the penis sheath was 0.36-0.94 mm (mean 0.72 mm), with a
praeputium length/penis sheath length ratio of 1.20-2.23 (mean
1.60).

The radula was characterised by a tricuspid central tooth,
presenting the large central cusp, a mid-sized right cusp and a
small left cusp. The first lateral teeth were usually bicuspid, with
two large cusps. In Mexico and also Iran there was a faint
tendency to display a small associated denticle appearing at the
mner border of the endocone, thus appearing tricuspid. The
subsequent four to six lateral teeth were invariably bicuspid, the
intermediate teeth were tricuspid, and the marginal ones multi-
cuspidate.

Egg clusters. Shape variability of egg clusters and eggs was
studied (Figure 10), and measurements and calculated ratios were
noted (Table 5). Egg clusters were saccular, transparent, with a
very thin outer membranous wall. The shape of these egg clusters
showed an evident trend from kidney- to banana-like; the more
curved and relatively more elongated and narrow the more
numerous were the eggs inside. Small clusters containing only very
few eggs (2-5) appeared rounded to oval, but the elongate-curved
shape became soon apparent when the egg number increased.
Eggs were from spherical to slightly ovoid, with a uniformly thick
outer shell, usually appearing well separated from each other.

Habitat

The ecological characteristics of L. schirazensis appeared to be
very peculiar, mainly due to three aspects: (i) its marked
amphibious characteristics, (i) its frequency in antropophilic
habitats, and (iii) the wide range of altitudes at which it is present.

Its pronounced terrestrial behaviour was surprising. In the
laboratory, snails of this species appeared crawling on or attached
to the lateral walls of the containers outside water. When taken
with forceps and forced deep into water, they quickly moved out of
it again.

In nature, this species was almost never found in water, nor
even close to water edges, sometimes up to 1 m or farther from it
(Figure 11 I). Outside water, it was usually found on the soil
surface under grass besides slow running large rivers (Figure 11 B)
or even under relative high bushes completely away from sunhine
(Figure 11 H). The smallest amount of water to keep humidity was
sufficient for this species to maintain populations, as in ditches of
rural paths and dirt tracks (Figure 11 L,N) or even artificial cement
canals in gardens (Figure 11 A) and drainage canalizations around
buildings and dwellings (Figure 11 K). Man-made small irrigation
canals around plant cultures also appeared to offer appropriate
conditions for its development (Figure 11 C,D), as well as large
drainage cement canals with almost no vegetation (Figure 11 E).
Worth mentioning was its presence on mud and livestock
footprints in and around animal farms (Figure 11 M).

Besides this link to antropophilic habitats and livestock-
inhabited places, it was also found, however, in more silvatic
habitats. Examples were specimens under the dense vegetation of
the edges of fast running waters in mountain rivers and streams,
where populations undoubtedly derived from dragging and floods
by the water from upper areas (Figure 11 IJ,G).
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Figure 6. Phylogenetic trees of lymnaeid species studied based on maximum-likelihood (ML) estimates: A) data set of 18S, ITS-1
and ITS-2, with B. alexandrina as outgroup (—Ln=13171.38533); B) data set of 16S and cox1, with B. alexandrina as outgroup
(—Ln=5282.96177). Scale bar indicates the number of substitutions per sequence position. Support for nodes a/b/c: a: bootstrap with NJ
reconstruction using PAUP with ML distance and 1000 replicates; b: bootstrap with ML reconstruction using PAUP with 1000 heuristic replicates; c:

Bayesian posterior probability with ML model using MrBayes. See Table S1 for systematic-taxonomic notes.

doi:10.1371/journal.pone.0024567.9006

Its distribution from lowlands to highlands was also worth
mentioning. Thus, it was present below sea level, e.g. —23 m at
the river edge near the Taleb Abad river mouth at the Caspian
Sea, near Bandar Anzali city, in the northern Gilan province of
Iran, or the very low altitude of localities such as El Kazza in the
Nile Delta region of Egypt, the Mediterranean coast between the
villages of Nules and Moncofar in Castellon province of Spain,
and Rio Lurin, near Lima, Peru. On the other extreme, this
lymnaeid also inhabited high altitude areas such as the 2,821 m of
La Buena Esperanza, Cayambe, the 3,158 m of Guarandauco,
Chillogallo, both in Ecuador, or the 2,611 m of Bafios del Inca,
Cajamarca, Peru. Intermediate altitudes were those of the 1,184 m
altitudes around Constanza city in the central mountains of the
Dominican Republic, those around 1,770-1,950 m of the localities
close to Puebla in Mexico, and the 1,800-2,170 m range along the
El Valle valley in Merida, Venezuela.

Interestingly, in none of the aforementioned geographical zones
did this snail species appear to be the only lymnaeid present in the
area. Its populations may appear mixed or close to populations of
other lymnaeids (its smaller size may be a competing handicap
with regard to other species). Accompanying lymnaeids were other
morphologically and ecologically very similar species of the Galba/

Fossaria group inhabiting the same place or water body, or
neighbouring localities within the same fascioliasis endemic areas.
Thus, Galba truncatula was found in all the areas studied in the Old
World (Iran, Egypt, Spain). In the New World, Lymnaca cubensis
shared the same areas in the Caribbean (the Dominican Republic)
and Mexico, L. humilis in Mexico, and G. truncatula, L. cubensis, L.
coustnt and L. neotropica in South America (Venezuela, Ecuador,
Peru).

Worth mentioning was that specimens of L. schurazensis
sometimes appeared so mixed or close to one another with
specimens of G. truncatula, that one was convinced to deal with a
population of only one species, e.g. in Spain (Figure 11 D,E).

Selfing and egg cluster laying

Egg cluster laying was verified to occur in all of the specimens
from different populations maintained individually isolated after
hatching (Table 6). Age and size when laying began differed
somewhat from one individual to another within a population, less
in populations of the New World (Mexico) than in those of the Old
World (Egypt, Spain). Despite range overlap, those from Mexico
proved to be markedly sexually precocious in age when compared to
those from Egypt and Spain. Snail size when laying began did not

Figure 7. Shells of Lymnaea schirazensis in ventral, dorsal and from-below views, showing intraspecific variability: A,B) specimen
(7.20 mm high) from Tiba, Delengate district, Behera governorate, Egypt; C) specimen (7.00 mm) from Albufera of Valencia,
Valencia province, Spain; D-F) specimen (7.10 mm) from Albufera of Valencia, Valencia province, Spain; G,H) specimen (7.80 mm)
from Nules-Moncofar, Castellon province, Spain; I,J) specimen (7.84 mm) from Laguna de Fe y Alegria, El Valle, Estado de Merida,
Venezuela. Scale bars: A—E,G—J=4 mm; F=2 mm.

doi:10.1371/journal.pone.0024567.g007
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show a similar correlation, suggesting that development speed and
reaching a sufficient size may be more important for sexual activity.
Comparison of the measurements of the first and first five
clusters laid by each individual snail also showed that slight
differences may be found according to the populations. Results
indicated that there is no gradual increase in cluster size nor in the
number of eggs per cluster within the laying of a snail specimen.
Thus, sometimes the first egg cluster laid by a snail individual was
larger and contained more eggs than those laid afterwards (2nd to
fifth clusters) by the same specimen (Table 6). However, somewhat
larger clusters including a slightly larger number of eggs/cluster
were laid by older and larger snail specimens (up to 20 and 22
eggs/cluster in specimens from Egypt and Spain, respectively).
Snail life span was relatively short, of around 2.5-6.8 months. It
includes a sexually active period of cluster laying lasting a total of
39-161 days, sometimes even only very few days before death.
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Table 4. Lymnaeid shell measurement comparison between different natural populations of Lymnaea schirazensis and Galba
truncatula from different countries.

Shell parameters Height Maximum  Aperture Aperture Last spire Spiral angle Whorl SH/SW SH/AL SH/LSL
(abbreviation) (SH) width (SW) length (AL) width (AW) length (LSL) (SSA) number ratio ratio ratio
Lymnaea

schirazensis:

Iran, Taleb Abad  5.21-7.14 2.60—3.79 230—3.24 1.48-2.26 3.91-5.17 33.12—-61-25 4-5 1.59-2.14 1.95—-2.94 1.25—1.44
bridge (n=30) (5.91£0.53) (3.24*£0.31) (2.68*0.25) (1.83%0.19) (4.44%+0.33) (46.13+6.39) (4.27+0.45) (1.83%0.13) (2.24*0.22) (1.33£0.05)
Egypt, El Kazza 5.10—6.91 2.65—4.11 2.19-3.12 1.41-2.29 4.06—5.40 27.75—5520 4-5 1.67—2.01 1.96—2.34 1.22—1.38
(n=30) (5.91+045) (3.24+0.32) (2.76*0.23) (1.73%£0.20) (4.62+0.34) (43.48+7.22) (4.10%0.31) (1.83*£0.08) (2.15*0.10) (1.28%+0.04)
Egypt, Tiba 5.45-7.21 2.87—4.03 2.33-3.6 1.45—2.66 4.21-5.89 3436—56.55 4-5 1.63—2.13 191-242 1.22—-1.37
Delengate (n=30) (6.40+0.49) (3.50£0.31) (3.02*0.28) (2.03%£0.29) (5.03*0.44) (46.89+5.32) (4.03+0.18) (1.84*0.10) (2.12%+0.12) (1.27%+0.03)
Egypt, Bulin El 4.43—-6.82 2.53—-3.67 2.13-3.25 1.31-1.93 3.37-5.25 33.89—-56.21 4-5 1.62—1.98 1.95-2.35 1.22—1.38
Aly (n=30) (5.67+0.62) (3.10£0.33) (2.68*0.29) (1.62*0.19) (4.35%0.49) (45.39+5.24) (4.13%£0.35) (1.80+0.08) (2.08%0.09) (1.28+0.03)
Spain, Albufera 4.27—-7.42 2.52—-4.02 1.94—-3.39 1.18—2.37 3.48—5.52 30.63—57.17 4-5 1.59-2.01 1.90—2.53 1.21-1.36
Valencia (n=30) (5.89%0.61) (3.28+0.34) (2.75*0.30) (1.79%0.22) (4.57£0.42) (46.30+5.54) (4.17%0.38) (1.80+0.09) (2.15%0.13) (1.29£0.04)
Spain, Castellon 5.25—7.80 2.92-431 2.56—4.12 1.48—2.30 4.12—5.98 3461—-56.28 4-5 1.62—2.18 1.89—2.31 1.26—1.35
(n=30) (5.99+0.51) (3.32*£0.28) (2.85%£0.30) (1.73%£0.16) (4.59+0.37) (46.58+5.02) (4.43%0.50) (1.81*0.11) (2.11%£0.09) (1.30£0.02)
Dominican Rep., 3.50—5.73 2.09—-3.27 1.74—2.90 1.20—-1.77 2.92—-4.48 38.74—56.48 4 1.50—2.07 1.76—247 1.18—1.39
Constanza (n=30) (4.94+0.54) (2.80*0.31) (2.50+0.32) (1.52*+0.16) (3.87+0.42) (48.09+5.55) (4.00+0.00) (1.76+0.10) (1.98+0.15) (1.27£0.05)
Mexico, Xalpatlaco 2.98—4.25 1.70—2.47 1.40—2.29 0.98—1.47 2.42-3.51 26.14—5354 34 1.54—1.91 1.76—2.46 1.18—1.31
(n=33) (3.57+0.38) (2.08+0.18) (1.80*+0.23) (1.17%£0.12) (2.89*0.30) (41.10+6.15) (3.42+0.51) (1.71x0.10) (1.98+0.14) (1.23+0.03)
Mexico, Trinidad ~ 4.02—5.37 2.50—3.01 2.05—2.67 1.43-1.71 3.30—4.19 3444—-4548 4-5 1.61—1.81 1.93—-2.02 1.22—1.28
Tepango (n=8) (4.86+0.43) (2.80+0.20) (2.46*+0.20) (1.56*+0.10) (3.87*0.29) (39.80+3.67) (4.13%£0.35) (1.74*0.06) (1.98%+0.04) (1.26+0.02)
Venezuela, Laguna, 5.93—8.06 3.10—4.12 247-3.84 1.74—2.62 4.60—6.09 29.21-55.68 4-5 1.66—2.26 1.78—2.71 1.19—1.38
El Valle (n=4) (6.78+0.63) (3.61£0.26) (3.23*£0.27) (2.14%£0.22) (5.34%0.42) (43.20+£5.71)  (420*0.41) (1.88*0.14) (2.11%£0.21) (1.27£0.05)
Ecuador, Buena 241-535 1.39-2.82 1.16—2.44 0.77—1.42 2.06—4.07 25.05—4390 3—4 1.63—2.05 1.87—2.38 1.11-1.33
Esperanza (n=30) (3.37+0.83) (1.77%£0.38) (1.62*0.36) (1.00*0.18) (2.68*0.57) (34.52+4.72)  (3.40*0.50) (1.89+0.10) (2.08%0.15) (1.25*0.05)
Ecuador, 5.76—7.27 2.88—3.82 253-341 1.46—2.27 4.45—5.53 23.66—48.47 4-5 1.71-2.15 1.99—-2.41 1.25—-1.35
Guarandauco (6.30+0.33) (3.25*£0.23) (291*0.19) (1.71%£0.16) (4.85*0.27) (36.34%5.71)  (4.07%0.25) (1.94+0.09) (2.17%£0.12) (1.30£0.03)
(n=30)

Ecuador, Machachi 5.53—6.91 2.49—-3.51 2.30—3.31 1.45—-1.85 3.95-5.18 29.05—43.26 4-5 1.78—2.35 2.05—2.62 1.30—1.42
(n=30) (5.88+0.31) (2.96+0.19) (2.56*+0.24) (1.61*=0.10) (4.37*0.24) (35.37+3.34) (4.23+0.43) (1.99%£0.11) (2.30*+0.14) (1.35*0.03)
Peru, Banos del 4.00—5.56 2.04—2.88 1.82—2.62 1.19—-1.50 3.07—4.17 29.13—39.99 3—4 1.77-2.03 2.10—2.22 1.29—-1.34
Inca (n=4) (4.79+0.86) (2.47%£0.39) (220£0.42) (1.35%£0.17) (3.62*0.62) (34.57+4.56) (3.75%£0.50) (1.94+0.12) (2.18%0.05) (1.32£0.02)
Peru, Rio Lurin 3.82—3.89 1.99—-2.20 1.67—1.78 1.05—-1.14 3.04—3.08 3256—36.52 4 1.77-1.92 2.15-234 1.24—1.28
en Lima (n=2) (3.85+0.05) (2.09*0.15) (1.72*0.08) (1.10%0.06) (3.06=0.02) (34.54+2.80) (4.00*0.00) (1.85*0.11) (2.24%0.13) (1.26+0.02)
Galba truncatula:

Spain, Albufera 6.79—9.33 3.70—4.90 3.30—4.07 2.05-2.72 5.28—6.80 33.94-59.26 4-5 1.55—-1.96 1.84—2.38 1.25—-1.47
Valencia (n=30) (7.73£0.64) (4.29%£0.29) (3.58*0.20) (2.40%0.17) (5.78%+0.40) (42.73+5.34) (4.67+0.48) (1.80*0.09) (2.16*0.14) (1.34%0.05)
Marocco, Oued 6.57—8.29 3.79—4.60 3.29-4.29 240-3.15 5.19—11.09 4091-61.66 4-—5 1.64—2.02 1.84—2.14 0.69—-1.36
Tiout (n=30) (7.58+0.48) (4.26+0.22) (3.86*0.28) (2.77%0.21) (6.05%+1.02) 50.77£537) 430*047) (1.78%£0.08) (1.97%£0.07) (1.27%0.11)
Range include minimum and maximum extremes, with mean=standard deviation SD in parentheses. Measurements in mm. n=number of specimens measured.
doi:10.1371/journal.pone.0024567.t004

However, the final postlaying period may reach slightly more than
1.5 months in given specimens (Table 6 and Table 7; Figure 12). Both
life span and laying period appeared to be longer in Old World
(Egypt, Spain) specimens than in the New World (Mexico) specimens.

This correlated with the number of clusters laid per snail, which
was pronouncedly higher in Old than in New World specimens.
Similar differences between Old and New World specimens were
observed in the total laying capacity and the laying rate in the
sexually active period.

Usually, snails only laid one egg cluster on the days they laid. Two
clusters were sometimes laid by a snail specimen in the same day,
although this appeared to be very rare in Old World (Egypt, Spain)
specimens and occurred almost never (only once) in the New World
(Mexico) specimens. Throughout the laying period, the number of
days when no cluster was laid was larger in Old World (Egypt,
Spain) specimens than in New World (Mexico) specimens. This fact
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Figure 8. External aspect of Lymnaea schirazensis: A-E) living specimens showing (i) large, round, black eyes, (ii) long, slender
tentacles and (iii) dark shell (A =lighted from down; B-D =lighted from above; F =epi— and infralighted simultaneously); F-1) dark
brown to blackish mantle roof of specimens from Spain (F, G) and Mexico (H, I) showing small unpigmented white-greyish round
spots, including several tiny circles (artificially remarked in white with computer effects in 1) at the beginning of the border of the

pulmonary region (I=yellow rectangle in H).
doi:10.1371/journal.pone.0024567.g008

seemed to be mainly related to the longer laying period in Old
World specimens, as the differences in the maximum number of
non-laying days between two laying days when comparing Old and
New World specimens were too small (Table 7; Figure 12).

Natural infection studies and experimental transmission

assays

Along the ten-year study period, none of the 8,572 snail
specimens from the 20 localities of the 8 countries belonging to this
lymnaeid species proved to be naturally infected with fasciolid
larval stages. This is the opposite of what happened with other
lymnaeid vector species also collected in the same endemic areas.
In other species, naturally infected specimens were detected
through cercarial shedding even despite the usual very low snail
infection prevalences.

Several experimental infection assays including a total of 338
snail specimens from different geographical origins with miracidia
from experimentally-reared strains of F. fhepatica and F. gigantica,
also from different geographical origins, did not allow for
successful fluke larval development. None of the infected
specimens appeared to become parasitised nor reached cercarial
shedding (Table 8). Only in two specimens from Albufera of
Valencia, Spain, infected with miracidia of F. epatica from Poland,
could a few rediae be observed by transparency through the snail
shell at 23 dpi, although neither shed cercariae thereafter. In a
subsequent experiment with the same snail- and fluke-strains for
verification, no infection and not even rediae were obtained in
spite of the higher number of lymnaeid specimens infected.

Results on survivorship of snails after infection showed
pronounced differences according to snail strains and fluke species
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and strains used. There were experiments in which no snail
infected by either F. hepatica or F. gigantica was able to survive after
30 dpi, up to other experiments in which snails survived for more
than 100 or even 150 dpi, thus suggesting no negative effects.
Nonetheless, results suggested a lower survival rate in infections by
F. gigantica than by F. hepatica. Furthermore, in F. hepatica infection
assays, a faster and higher snail mortality rate appeared when
using trimiracidial instead of monomiracidial infection (Table 8).

Discussion

Genetic distances

The twenty lymnaeid populations found in the eight countries of
Asia, Africa, Europe, the Caribbean, North America and South
America, show DNA sequences proving that all of them belong to
the same species. The fact that this species presents an 18S rRNA
sequence only is easily understandable given the slow evolution
characteristics of this highly conserved gene [33,34]. The low
number of nucleotide differences at rDNA ITS-2 and I'TS-1 level
fits within the known intraspecific variability ranges of these two
species markers [1,16,39]. However, it poses a question mark
when considering the very wide geographical distribution
(Figure 1), markedly variable habitats (Figure 11), and ecology
(e.g., large altitudinal range) this lymnaeid species shows. Even the
low number of only two and four haplotypes in the mtDNA 16S
and cox] gene fragments, respectively, including but a very few
variable positions in both genes, is also surprising given the faster
evolution of these mtDNA genes when compared to nuclear
rDNA genes and spacers in invertebrates in general [46] and in
lymnaeids in particular [45].

September 2011 | Volume 6 | Issue 9 | e24567



Overlooked Snail Distorting Fascioliasis Data

/D e, ¥ 1,2mm

renal
muscle

ventricle

auricle renal

Ve{ 250 pm @

g '_ pulmonary

ureter

auricle X
. ventricle

pulmonary
cavity

septum

mantle collar
r (B)
oviduct pouch
| —

ovispermiduct 0.5 mm
ag

nidamental gland

0.8 mm ‘ 7 .
‘ ovotestis f '

albumen

oviduct

spd ng

seminal
vesicle
oviduct albumen
oviduct gland |,
pouch
nidamental oviduct
gland
spermiduct
vagina spermatheca

prostate

uterus

nidamental
gland

penis sheath
vas

deferens

preputium

vagina

defere\:\:s
"?‘ 2

preputium

uterus

Figure 9. Aspects of soft part anatomy of Lymnaea schirazensis: A, B) renal tube and ureter in renal region extending between
pericardium and mantle collar; C) carrefour in detail, with arrows indicating ducts to albumen gland (ag), spermiduct (spd) and
nidamental gland (ng); D) oviducal crown turned to show detail of the region of oviduct pouch; E, F) reproductive system in two ventral
views; G) female complex in dorsal view; H) prostate section showing absence of internal folds. Scale bars: A=1.5 mm; B=1.2 mm;
C=0.5 mm; D=0.9 mm; E=0.8 mm; F=1 mm; G=0.6 mm; H=250 um (drawings R. Rojas; plate configuration S. Mas-Coma).
doi:10.1371/journal.pone.0024567.g009
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Figure 10. Gradual evolution of egg cluster lays in experimentally raised Lymnaea schirazensis and Galba truncatula: A-O) L.
schirazensis: note trend to kidney shape in early lays (E-K) and final trend to banana-shape in late trends (L-O); only in very early
lays, when shape is still round-oval (A, B) and may sometimes become elongate (C, D), it can be confused with clusters of G.
truncatula. P-Z) G. truncatula: note general trend to round-oval shape (P-R, V-X) and occasional variation to elongate shape (S-U, Y,
Z). Materials of L. schirazensis from strains originally collected in Xalpatlaco, Mexico (A, B, F, |, J), Jiutepec, Mexico (C), Albufera of Valencia, Spain (D, E,
G, L, 0), Tiba, Egypt (H), Escuela Obrego, Mexico (K). Materials of G. truncatula from strains originally collected in Qued Tiout, Marrakesh, Marocco (P-T,

Y, Z) and Albufera of Valencia, Spain (U-X). Scale bar=2 mm.
doi:10.1371/journal.pone.0024567.g010

The interspecific comparison of the sequences of the snail
species here in question demonstrates that it is a unique lymnaeid.
It is genetically well different from G. truncatula and other species of
the Galba/ Fossaria group, as well as from stagnicolines and P.
columella. At 18S rRNA level, L. schirazensis presents peculiar
nucleotides in the helix E10—1 of the variable V2 area, which
clearly differs from all other species (Figure 2). This fact in a well
conserved gene such as 18S is worth mentioning [34]. At I'TS-2
and ITS-1 level, the two main markers for species distinction
[1,16,39], the very high number of nucleotide differences L.
schirazensis shows when compared to all other lymnaeids must be
highlighted. This is surprising when considering the pronounced
morphological similarity of L. schirazensis with other lymnaeid
species, mainly of the Galba/ Fossaria group.
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Concerning the sequences of the 16S and coxl gene fragments,
nucleotide differences between L. schirazensis and all other
lymnaeids are also numerous (Figure 3 and Table S4), although
less pronounced than those appearing in both I'TSs despite the
faster evolution of mtDNA. This may be related to the well known
saturation of nucleotide positions in these two mitochondrial
genes, a phenomenon previously described in Lymnaeidae [45].

The aforementioned surprising genetic distance results shown
by the nuclear rDNA and mtDNA markers used can only be
explained if the following conclusions are accepted:

— the very high interspecific variation suggests an old evolutionary
divergence of L. schirazensis from other lymnaeid species of the
Galba/ Fossaria group as well as from stagnicolines and P. columella;
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— the morphological similarity of L. schirazensis with other
lymnaeid species of the Galba/ Fossaria group indicates it to be
a cryptic species by evolutionary convergence, probably as a
consequence of adaptation to a similar amphibious way of life
and similar habitats;

the very low intraspecific variability of L. schirazensis suggests a
very recent worldwide spread from only one original strain and
geographical source.

Galba truncatula is the lymnaeid species on which the largest
number of studies has focused for decades, and one of the snail
species with the largest body of literature and longer list of synonyms
among molluscs in general. This very wide multidisciplinary body of
literature is related to its applied importance as the main vector of F.
hepatica throughout many countries [12,29], in a life cycle which was
the first to be elucidated among trematodes [72]. Thus, it is
surprising that another widely distributed lymnaeid species, similar
in morphology, biology and ecology, has always been confused with
and kept masked under G. truncatula until now.

Species ascription and specimen classification confusion

The very long list of species and varieties described long ago
and later synonymised with G. truncatula [73] has been reviewed
to analyse whether a species description published in the past
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Table 5. Egg cluster and egg measurement comparison between different experimentally-maintained populations of Lymnaea
schirazensis and Galba truncaula from different geographical origins.
Clusters Eggs
Species and Area Roundness Length Maximum  CL/CW No. of eggs/ CEN/CA Length Width EL/EW
populations (CA) (CR) (CL) Width (CW) ratio cluster (CEN) ratio (EL) (EW) ratio
Lymnaea schirazensis:
Tiba, Delengate, Egypt 4.77—13.27 1.46—3.63 3.34-6.88 1.96—4.33 1.08—2.52 6—19 1.02—2.10 0.62-0.87 0.53-0.72 1.08—1.41
(n=30 clusters+189 eggs) 8.31+2.14) (2.22+0.53) (4.74*0.94) (3.01+0.65) (1.61*+0.32) (11.50*£3.30) (1.40*+0.28) (0.72*0.04) (0.61=0.03) (1.18*0.06)
Albufera, Valencia, Spain ~ 4.55—12.72  1.23-2.21 281—-6.07 1.94-3.78 1.19-2.14 6—23 1.32—2.48 0.63—0.82 0.52—0.65 1.11-1.35
(n=30 clusters+195 eggs) (7.77+1.89 (1.70+0.23) (433*0.70) (2.61+0.49) (1.68*+0.26) (14.00+4.63) (1.78*+0.27) (0.72*0.04) (0.59*+0.03) (1.21%+0.05)
Laguna, Atlixco, Mexico 1.80—6.49 1.31—-2.08 2.07—447 1.19—246 1.43—228 3—-12 1.29-2.19 0.57—0.71 0.46—0.59 1.12—-1.35
(n=30 clusters+130 eggs) (3.87+1.33) (1.55*0.17) (3.10£0.61) (1.71+0.36)  (1.83+0.23) (7.07=3.00) (1.78£0.25) (0.65*0.03 (0.53%+0.02) (1.23£0.06)
Esc. Obregon, Trinidad 1.47-6.33 1.22—-1.63 1.73—4.21 1.01-2.03 1.47—-242 2-10 1.11-2.02 0.60—0.83 0.48—0.65 1.11-1.36
Tep., Mexico (n=30 (3.69£1.29) (1.42%0.12) (2.96*0.61) (1.62+0.28) (1.83+0.22) (5.87*+2.13) (1.59£0.25) (0.67£0.03) (0.59%+0.02) (1.21£0.06)
clusters+92 eggs)
Xalpatlaco 1, Atlixco, 1.34-7.22 1.13-1.76 1.72—4.19 1.02—2.48 1.33-2.05 2-10 1.11-224 0.56-0.83 0.46—0.69 1.12—1.40
Mexico (n=30 (422+1.80) (1.38%+0.12) (3.01*0.75) (1.76%+0.38) (1.70%0.19) (6.67*2.37) (1.64+0.32) (0.69+0.07) (0.56*+0.06) (1.23+0.06)
clusters+98 eggs)
Xalpatlaco 2, Atlixco, 2.04—7.49 1.25-2.05 2.02—-441 1.19-292 139-2.02 3-18 1.00—2.40 0.58—0.79 0.48—0.68 1.12-1.35
Mexico (n=30 (4.79£1.50) (1.52%0.18) (3.33%0.62) (1.94+0.41) (1.73%£0.18) (8.60*3.29) (1.78£0.30) (0.65+0.04) (0.54%+0.03) (1.21£0.05
clusters+136 eggs)
Jiutepec, Morelos, Mexico 1.67—6.77 1.01-2.34 1.75—4.15 1.20—2.90 1.23-229 2-10 1.03—-229 061-0.86 0.50—0.69 1.14—1.49
(n=30 clusters+106 eggs) (4.54+1.47) (1.43+0.31) (3.21+£0.64) (1.87*0.35) (1.72*0.22) (6.13%1.93) (1.39+0.36) (0.74%0.07) (0.59%+0.06) (1.25*0.07)
TOTAL 1.34-1327 1.01-3.63 1.72—6.88 1.01—4.33 1.08—252 2-23 1.00-248 0.56—-0.87 0.46—0.72 1.08—1.49
(5.31+2.41) (1.60*+0.39) (3.53*0.96) (2.07*+0.65) (1.71%+0.26) (8.55*4.17) (1.62+0.33) (0.69+0.06) (0.57+0.05) (1.22+0.06)
Galba truncatula:
Albufera, Valencia, Spain  2.35—6.54 1.08—1.30 1.84—3.69 1.58—-248 1.10—-166 2-9 0.83—1.74 0.55—0.93 0.51-0.73 1.03—1.53
(n=15 clusters+92 eggs)  (4.58+1.29)  (1.18+0.06) (2.73*0.53) (2.11*£0.26) (1.29*0.18) (6.132.23) (1.31+0.21) (0.71*+0.07) (0.60+0.04) (1.18%*0.10)
Oued Tiout, Essaouira, 3.82—11.67 1.00—1.82 242—-479 1.90—3.27 1.03—2.17 5-15 0.81—1.84 0.62—0.87 0.52—0.77 1.09—-1.32
Marruecos (n=42 (6.45+£1.48) (1.24£0.15) (3.39%0.60) (2.43%+0.29) (1.45%0.28) (7.81%+2.37) (1.21£0.24) (0.75£0.05) (0.62%+0.05) (1.20=£0.05)
clusters+100 eggs)
TOTAL 235-11.67 1.00—1.82 1.84—479 1.58-3.27 1.03-2.17 2-15 081—-1.84 055-093 051-0.77 1.03—1.53
(5.95+1.64) (1.22%+0.13) (3.29%0.67) (2.34*+0.32) (1.41%£0.26) (7.37*2.43) (1.24+0.23) (0.73%+0.06) (0.61+0.05) (1.19+0.08)
Range include minimum and maximum extremes, with mean=standard deviation SD in parentheses. Measurements in mm (area in mm?). n=number of specimens
measured.

could fit the characteristics of the lymnaeid species here in
question. The older species name, fully fitting our material,
appears to be Lymnaea schirazensis, described in 1862-1863 [71]
from material collected in the locality of Shiraz, Iran, by von
dem Busch who never published the description of his snail
material (see Figure S2 and Figure S3). Consequently, the
decision has been taken to ascribe the material described herein
to the binomium Lymnaea schirazensis Kuster, 1863. This species
cannot be found in the literature published in recent decades.
This ‘disappearance’ was undoubtedly due to its synonymy with
G. truncatula, a proposal of Hubendick [73] apparently accepted
by other specialists. Lymnaea schirazensis appears to have been
given systematic validity and reported separately from G.
truncatula only in Russia [74].

An exhaustive analysis of the old literature (see numerous
references in [73]) suggests that several old species and variety
names also synonymised with G. truncatula probably referred to L.
schirazensis instead of to G. truncatula. The following items, in
chronological order, are worth listing given the geographical
locality the type materials came from:

— the four G. truncatula varieties distinguished in Algeria [75]
suggest that at least one of them could be the species here in
question: mgjor (not that of Moquin-Tandon) from Mostagha-
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Figure 11. Environments of localities where Lymnaea schirazensis was collected: A) Garden of the Medicine Faculty, Rasht, Gilan
province, Iran; B) Taleb Abad river, Bandar Anzali, Iran; C) El Kazza, Behera governorate, Egypt; D) Nules-Moncofar, Castellon
province, Spain; E) Albufera of Valencia, Valencia province, Spain; F) Constanza, Departamento de La Vega, the Dominican
Republic; G) Rio Grande, Constanza, Departamento de La Vega, the Dominican Republic; H) Xalpatlaco, Atlixco, Mexico; I) Escuela
A. Obrego, La Trinidad Tepango, Atlixco, Puebla, Mexico; J) Laguna de Fe y Alegria, El Valle, Merida, Venezuela; K) Hotel Valle
Grande, El Valle, Merida, Venezuela; L) Guarandauco, Chillogallo, Ecuador; M) Machachi, Santo Domingo, Ecuador; N) Baihos del
Inca, Cajamarca, Peru.

doi:10.1371/journal.pone.0024567.9011
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nem, munutissima from Alger, Géryville and Bone, submalleata
from Djelfa, and lanceolata from Alger;

— L. persica from the same type locality of Shiraz, Iran [76] is a
synonym already previously proposed [77];

— L. hordeum from River Euphrates, Mesopotamia [78];
— L. delaunayi from Pasajes, northern Spain [79];

— the variety thiesseae from Euboea, Greece [80] is very probably
synonymous; this synonymy was already aptly discussed [81];

— the two varieties neapolitana from Sebeto, near Naples, Italy [82]
and telouetensis from Mount Atlas [83] merit further analysis.

The insufficient original description of L. zrmanjae from Zrmanja
river, Dalmatian Croatia [84] may also lead to suspect a
synonymy, although erroneously, as the latter indeed belongs to
the family Hydrobiidae, as verified by the same author somewhat
later (Brusina, 1902 in [85]) (see also Table S1).

These old names proposed in Europe and the Near East should
be reviewed, but also more recent ones proposed for similar Galba/
Fossaria lymnaeids in Europe, Asia and North America, so that
further valuable information about the geographical distribution
and worldwide spread of L. schirazensis can be obtained.

The coexistence with other very similar lymnaeid species of the
Galba/ Fossaria group within the same fascioliasis endemic areas,
such as G. truncatula in the Old World, and L. cubensis, L. humilis, L.
cousini and L. neotropica additionally to G. truncatula in the New
World, suggests that a wider distribution of L. schirazensis may
have been masked by lymnaeid specimen misclassifications. All of
the aforementioned lymnaeids are vectors of fascioliasis and very
easily confused when only classified from external characteristics

@ PLoS ONE | www.plosone.org
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Table 6. Characteristics of the first and five first egg clusters laid by experimentally-maintained Lymnaea schirazensis specimens of
four populations from different geographical origins, followed up from the day of their individual isolation immediately after
hatching.
SNAILS CLUSTER CLUSTER CHARACTERISTICS
Age (prelaying Size Order Area Roundness Length Maximum CL/CW No. of eggs/ CEN/CA
POPULATIONS period in days)* (height)** No. (CA) (CR) (CL) Width (CW) ratio cluster (CEN) ratio
Tiba, Delengate, 35—-50 2.84—391 st 3.79-7.98 1.26—2.62 2.74—4.77 1.83-291 1.09-175 2-12 0.44—2.06
Egypt (n=10 snails) (44.30*5.54) (3.45+0.30) (5.94+1.47) (1.93*£0.46) (3.79£0.66) (2.41*+0.28) (1.58*+0.22) (6.40%3.17) (1.08+0.50)
1st to 5th  0.69—10.91 1.26—4.38 1.67—4.92 0.66—3.23 1.09—2.62 1-14 0.39—6.04
(4.43%+231) (2.15*£0.67) (3.25*£0.86) (2.08*+0.67) (1.64*+0.36) (5.23%3.33) (1.35%0.05)
Albufera, Valencia, 25—44 446—582 1st 393-7.11 1.24-236 2.87—4.69 1.64—2.40 1.54—2.09 2-10 0.50—2.35
Spain (n=10 snails) (37.40*6.48) (5.05+0.41) (5.13+£1.24) (1.52+0.37) (3.44+0.59) (1.99%0.25) (1.73*0.16) (7.40%2.76) (1.45%+0.53)
1st to 5th  2.89-8.10 1.16—2.36 2.34-5.09 1.49—-2.42 127-210 2-17 0.50—3.68
(5.00+1.29) (1.45+0.21) (3.38+0.56) (1.95%0.23) (1.73*0.16) (8.91*2.87) (1.86+0.68)
Esc. Obregon, 33-41 321-433 st 1.08—3.73 1.24-1.71 1.52—-3.07 091-1.64 134-194 4-10 2.15-5.54
Trinidad Tep., (35.40*2.67) (4.01+0.31) (2.22+0.84) (1.39+0.13) (2.17+0.49) (1.31%£0.21) (1.65*0.18) (6.50*1.84) (3.18+1.21)
Mexico (n=10 snails)
1st to 5th  1.08—8.93 1.19—1.92 1.52—4.45 091-261 1.34—-207 2-10 0.90—5.54
(3.35+1.43) (1.37+0.14) (2.68+0.60) (1.600.31) (1.68*0.17) (6.32*1.66) (2.12%+0.93)
Jiutepec, Morelos, 27-35 451-5.69 1st 3.14—733 131-286 244—-543 1.58—3.17 1.21-239 5—-13 1.21-2.64
Mexico (n=10 snails) (30.802.44) (5.04+0.44) (5.08+1.50) (2.09+0.56) (3.73+0.91) (2.18%£0.45) (1.74+0.43) (9.40*2.88) (1.89+0.50)
1st to 5th  1.33—-9.08 1.21—3.55 1.62—5.43 1.03—-3.17 1.21-2.39 2—-13 0.40—4.54
(4.91+1.88) (1.72+0.53) (3.50+0.89) (2.010.49) (1.75*0.27) (8.66*2.83) (1.97+0.86)
TOTAL(n =40 snails) 25—-50 2.84—-582 st 1.08—798 1.24—2.86 1.52—-5.43 091-3.17 1.09—2.39 2—-13 0.44—5.54
(36.98+6.64) (4.39+0.78) (4.59+1.89) (1.73+0.49) (3.28+0.93) (1.97%£0.51) (1.67+0.27) (7.43*2.87) (1.90+1.08)
1st to 5th  0.69—10.91 1.16—4.38 1.52—543 0.66—3.23 1.09—2.62 1-17 0.39—6.04
(4.40+1.84) (1.63+0.51) (3.18+0.79) (1.89%0.47) (1.70+0.24) (7.38*3.06) (1.86+0.91)
Cluster measurement range include minimum and maximum extremes, with mean=standard deviation SD in parentheses. Measurements in mm (area in mm?).
n=number of specimens measured; * Days elapsed from day of hatching to day when first cluster was laid; ** Length of snail in the day it laid the first cluster.
doi:10.1371/journal.pone.0024567.t006

or by non-expert scientists, mainly when specimens are small or
mid-sized [15]. A size larger than the one of L. schirazensis is
reached by Galba truncatula [29], L. cubensis [86], L. humilis [87],
and L. cousini [88,89]. Only L. neotropica is of a size similar to that
of L. schirazensis [15]. Galba truncatula is present in the Gilan
province of Iran [89], in the Nile Delta region [90,91], along the
Mediterranean coast of the Valencian Community, Spain [1,92],
and in Merida State of Venezuela [93]. Lymnaea cubensis is known
throughout Hispaniola, including both the Dominican Republic
[94] and Haiti [95], Puebla province of Mexico [96] and Merida
State of Venezuela [93,97]. Lymnaea humilis is the species most
frequently mentioned to be involved in fascioliasis transmission in
Mexico (see review in [45]), sometimes under the names of L.
modicella and L. obrussa [28,98], both synonymised with L. humailis
[73], and also reported in Puebla State [96]. Lymnaea cousini has
been reported in fascioliasis endemic Andean areas of Ecuador
[55,73,99], and also in Merida State of Venezuela [88,93].
However, this Venezuelan material later proved to belong to
another species, namely L. meridensis [55]. Lymnaea neotropica has
been reported, under the name of L. watrix [15], in several
fascioliasis endemic Andean valleys of Peru, as is the case of
Cajamarca [100,101].

Genotypic and phenotypic differentiation between
L. schirazensis and G. truncatula

Henceforth, when DNA sequencing techniques are used, the
molecular differentiation of L. schirazensis and G. truncatula can be

easily made by comparison with the following sequences already
available at GenBank/EMBL:
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— L. schirazensis: specific classification can be based on the
nucleotide sequences of ITS-2 rDNA, ITS-1 rDNA, mtDNA
16S, and mtDNA coxl; for supraspecific classification, the
nucleotide sequences of the 18S rDNA and of both I'TSs can be
used (Table 1); the amino-acid sequence of the mtDNA COX1
protein does not appear to be helpful for any discrimination.

— G. truncatula: specific classification can be based on the
nucleotide sequences of I'T'S-2 rDNA [1,15,35]; I'TS-1 rDNA
[15,35,39], and mtDNA cox]l [15,57]; for supraspecific
classification, the nucleotide sequences of the 18S rDNA [33]
and of both ITSs can be used; the mtDNA COX1 amino-acid
sequences [15,57] do not appear to be useful at any level.

When DNA sequencing techniques are not available, to avoid
further confusion between L. schirazensis and G. truncatula given the
evident difficulty in distinguishing both species due to the
morphological variability of their very similar shell, the following
differential phenotypic characteristics ought to be considered:

— Shell size: smaller in L. schirazensis (T'able 4), reaching a shell
length of up to 12.00 mm in G. truncatula [29], whereas it shows
a maximum of only 8.06 mm in L. schirazensis; other shell
characteristics may be helpful, such as the regularly convex
whorls and straight columella in L. schirazensis (Figure 7 A-D)
when compared to the stepped whorls and folded columella in
G. truncatula (Figure 13 A-F); however, shell variability may
easily give rise to confusion when based only on these aspects;

— Tentacles: of different form, being elongate, slender and with a
narrow base in L. schirazensis (Figure 8 A-E), whereas they are
wider and with a wide base in G. truncatula (Figure 13 G);

— Eyes: of different size, being relatively big and markedly larger
in L. schirazensis than in G. truncatula (Figure 13 H,I);

— Egg clusters: of different shape trend, showing an evident trend
from kidney- to banana-like, the more curved, elongated and
narrow the more numerous are the eggs inside, in L. schirazensis
(Figure 10 A-O); clusters tend to keep a rounded to oval shape
even when containing more eggs, in G. truncatula (Figure 10 P-Z);

— Egg number per cluster: although no significant differences
were found between both species in our study, according to the
literature it appears that a higher mean egg number per cluster
of 12-15 may be the usual rule in G. truncatula, with exceptions
of a lower number depending on the soils of the different areas
and sometimes even on the season [29]; this mean number
shows a lower level range of around 6-14 in L. schirazensis
(Table 5);

— Mantle colour: mantle roof from dark brown to blackish
throughout, with unpigmented white-greyish round spots, this
black pigmentation giving a dark appearance to the shell of
living specimens by transparency in L. schirazensis (Figure 8 D—
I); in G. truncatula the hypopeplear region of the mantle roof
shows larger unpigmented whitish spots giving a pale
appearance to the shell of living specimens by transparency
(Figure 13 I-K);

— Radula: first bilateral teeth bicuspid in most populations,
although in given populations a small associated denticle
appears thus becoming tricuspid in L. schirazensis, whereas it
appears tricuspid in G. truncatula;

— Male organs: with different praeputium length/penis sheath
length ratio, which is of 1.20-2.23 (mean 1.60) in L. schirazensis
(Figure 9 E,F and Figure S1 EF); in G. truncatula the length of
the praeputium is 0.82-2.80 mm (mean 1.41 mm) and that of
the penis sheath is 0.22-0.64 mm (mean 0.37 mm), with a
praeputium length/penis sheath length ratio of 2.50-5.90
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Figure 12. Comparison showing interpopulational differences of mean characteristics of life span and selfing reproduction
capacity of isolatelly-maintained Lymnaea schirazensis specimens of four populations from different geographical origins,
experimentally followed up from the day of their individual isolation immediately after hatching. Populations studied: Albufera of
Valencia, Valencia, Spain; Tiba, Delengate district, Egypt; Escuela A. Obrego, La Trinidad Tepango, Atlixco, Puebla, Mexico; and Jiutepec, Morelos,
Huauchinango, Mexico. n =10 snail specimens followed per population (for details on intrapopulational variability ranges during the laying period,
see Table 6 and Table 7); tlc=mean total laying capacity (number of clusters/life span in days); Irsp=mean laying rate in sexually active period
(number of clusters/laying period in days); tnld =mean total non-laying days within laying period.

doi:10.1371/journal.pone.0024567.g012

(mean 3.44), according to data obtained by measuring
specimens from Oland, (Sweden), Kiihren, Ettenheim and
Reusten (Germany), and Scharflinge (Austria) (Figure 13 M,N);

Ecology: with different water dependence, showing marked
amphibious characteristics with a pronounced terrestrial
behaviour in L. schirazensis (see habitat types in Figure 11 A-
M), whereas aquatic inside freshwater borders or amphibious
but more water-dependent in G. truncatula.

Phylogenetic relationships and supraspecific
classification

The phylogenetic analyses performed (Figure 5 A,B and Figure 6
A,B) confirms the ascription of L. schirazensis to the Galba/ Fossaria
group, as already suggested by the morphoanatomic characteris-
tics of this species. Thus, its transfer to the genus Radix as proposed
by some researchers (e.g., http://clade.ansp.org/malacology/
collections/search.php?mode = browsetypes&targetfamily =
naeinae) does not appear supported.

Unfortunately, there is great confusion around the generic
names proposed for truncatula and proximal species in the Americas
(the Central American cubensis, the North American fumilis and
bulimoides, and the South American wvatrix and diaphana, only to

Lym-
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mention the most important), all of which share the capacity of
transmitting F. hepatica [1]. Besides the genus Galba Schrank, 1803
(type species: truncatula) [1,14,20,34,102,103], in which it was
included [50], other genera having frequently been used to include
the New World Galba/ Fossaria species, such as cubensis and viatrix,
are: Fossaria Westerlund, 1885 (type species: truncatula) [104-107],
Nasonia Baker, 1928 (type species: cubensis) (see [73]), the subgenus
Fossaria (Bakerilymnaea) Weyrauch, 1964 (type species: cubensis)
[104,106,108], and the subgenus Lymnaea (Afrogalba) Kruglov et
Starobogatov, 1985 (type species: misassigned to cubensis; correct
type species 1s mweruensis Connolly, 1929) [109].

In the many phylogenetic reconstruction assays performed, L.
schirazensis appeared in three different positions:

In the same clade with L. humilis, L. cousint and L. meridensis:
That situation was the one obtaining higher support values,
appearing in a higher number of phylogenetic trees, and
supported by both rDNA (I'T'Ss) and mtDNA (16S—cox1) sets.
This may support the classification of L. schirazensis within the
genus Pseudogalba Baker, 1913 (new name proposed for
Simpsonia Baker, 1911; type species: humilis) (see [73]). However,
the node branching L. schirazensis together with L. humilis, L.

cousini and L. mendensis never appeared with sufficiently high
support values.
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Basal to all other Galba/ Fossaria members: This situation does
not appear to fit any of the genera erected within Galba/ Fossaria
so far.

Clustering together with G. #runcatula: This relationship
supporting its inclusion in the genus Galba is the one appearing
in fewer trees.

Consequently, prudence suggests to keep L. schirazensis within
the genus Lymnaea sensu lato for the time being.

Ecological adaptability, migration capacity and
geographical distribution

Ecological characteristics of L. schirazensis are peculiar when
compared to other Lymnaeidae. The amphibious behaviour differ
between lymnaeid groups. Radix and stagnicoline species prefer
permanent, larger and deeper water bodies, which they leave only
sporadically. On the opposite, Galba/ Fossaria species may be found
on mud or wet sites very close to water in both temporary and
permanent water bodies [1,5]. This approaches L. schirazensis to
Galba/ Fossaria. However, no other lymnaeid shows such a
preferential terrestrial behaviour.

Its amphibious characteristic and wide habitat range, mainly its
presence in habitats with very small amounts of freshwater, suggest
a great adaptation capacity. Additionally, its frequency in
antropophilic and man-made habitats and its survival capacity
outside water suggests that this snail can be passively transported
by livestock and/or human activities, as demonstrated in G.
truncatula [12], which shows similar habitat characteristics [29].

Selfing in L. schirazensis remembers the autofecundation
preference in G. truncatula [29,110-113] and other Galba/Fossaria
species (Khoubbane et al., unpublished). Its laying capacity
(Table 6 and Table 7) appears to be greater than in G. truncatula
[29], with a higher number of clusters/month laid per specimen
along the laying period. Both selfing and high laying capacity will
undoubtedly facilitate its capacity to colonise neighbouring or
distant places and expand geographically. Selfing, high egg laying,
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Table 8. Characteristics and results of experimental infection assays of Lymnaea schirazensis from different geographical origins
with miracidia from experimentally-reared strains of Fasciola hepatica and F. gigantica also from different geographical origins.
Size of snails Fasciola
infected species used No. snails Postinfection

Experiment Snail strain Infected (height in infection  Fasciola Miracidial surviving at survival** Infection

No. origin snail No. in mm) assay strain origin dose (No.) 30 dpi* (%) (days) results

1 El Kazza, Egypt 30 3.5-5.0 F. hepatica Pachago, Peru 1 26 (86.67%) 9—152 (81.4) no snail infected

2 Valencia 65 35-6.5 F. hepatica Hosh Essa, 1 6 (9.23%) 6—70 (17.2) no snail infected
Albufera, Spain Egypt

3 Valencia 30 3.5-6.0 F. gigantica Gizza, Egypt 1 0 (0%) 9—29 (13.0) no snail infected
Albufera, Spain

4 Valencia 17 50-75 F. gigantica Gizza, Egypt 1 0 (0%) 9 (9.0) no snail infected
Albufera, Spain

5 Valencia 10 45-6.0 F. hepatica Bialowieza, 1 6 (60%) 23-91 (60.7) 2 snails showing few
Albufera, Spain Poland rediae*** at 23 dpi*

6 Valencia 56 4.0-6.5 F. hepatica Bialowieza, 1 54 (96.4%) 30—111 (65.8)  no snail infected
Albufera, Spain Poland

7 Valencia 10 4654 F. hepatica Cajamarca, 3 0 (0%) 17—30 (25.1)  no snail infected
Albufera, Spain Peru

8 Tiba Delengate, 20 3.6—6.1 F. gigantica Quy Nhon, 1 14 (70.0%) 14—78 (37.7) no snail infected
Egypt Vietnam

*dpi =days postinfection; ** =range include minimum and maximum extremes, with mean in parentheses; *** =rediae in these two snail specimens never produced

cercarial shedding.

doi:10.1371/journal.pone.0024567.t008

short life span, great spreading and colonisation capacity are
typical of r-strategist organisms (see review on r/K selection in
[114]).

This suggests that L. schirazensis may be far more widespread.
Such a wider distribution may not only concern the eight countries
noted, but also neighboring countries and others further north or
south. However, studies are needed to assess whether its terrestrial
life trend, outside water, may restrict its capacity to colonise colder
areas, contrary to G. truncatula which inhabits high latitude regions
[29,73]. In Asia, L. schirazensis has been noted to have a
distribution covering Iran, Afghanistan, mid-Asia and the
Caucasus [74]. Although the geographical proximity suggests that
it may be present further away from Iran, the more northern,
colder latitudes indicate that a molecular verification of these
Asian lymnaeids is indispensable.

Phylogeography and continental spread during the
historical postdomestication period

The wide distribution of L. schirazensis in different continents is
bewildering. The very low variability in its DNA sequences
indicate that such a distribution was reached relatively recently.
Molluscs are known to be able to follow long-distance dispersal,
transported by migrating birds but mainly by human activities.
Certain freshwater snail vectors have been reported even very far
away from their area of origin (e.g., different continents) [115],
including examples of lymnaeids [12,35,36]. A few bird species
cross the Atlantic Ocean [116,117], but the probability of a
lymnaeid transport by a bird is very low owing to the low number
of bird individuals undertaking this journey every year. Yet, proof
of an incredible transequatorial dispersal of snails by birds is there
[118].

Evidence suggests that G. fruncatula may remain in dried mud
stuck to the feet of ruminants, then go into hibernation or
estivation, and be able to reactivate once in a new location
following contact with water or sufficient humidity [12]. Thus,
livestock import/export appears related to the continental spread
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Figure 13. Galba truncatula: A-G) Shells in ventral and dorsal views of specimens from Albufera of Valencia in Spain (A,B: 9.33 mm
high), Sachsen in Germany (C: 6.20 mm), Nules in Spain (D,E: 6.00 mm), and Qued Tiout in Morocco (F,G: 8.29 mm). H) Eyes and
tentacles in living specimen. 1) Comparison of living L. schirazensis (left) and G. truncatula (right) showing differences in (i) eyes, (ii)
tentacles and (iii) mantle roof colour through the shell (by infralighting). J,K) Mantle roof in specimens from Nules, Spain (J) and
Iran (K). L) Part of reproductive system in ventral view. M,N) Male terminal organs in specimens from Nules, Spain (M) and Iran (N).
Scale bars: A—G=3 mm; H=1.2 mm; I=1.5 mm; JK=2 mm; L=2.5 mm; M\N=1 mm.

doi:10.1371/journal.pone.0024567.g013

of G. truncatula. Results from our field and laboratory work suggest
that L. schirazensis has spread following the same passive transport
way of G. truncatula: (1) similarity of livestock-frequented habitats
(usually found in mud poached by livestock hooves), (ii) long
survival outside freshwater (allowing for long distance transport),
(iti) selfing (facilitating invasion of new areas), and (iv) high and fast
egg laying capacity (facilitating establishment in a new area).
Hence, a review of human history, commercial routes and
livestock import/export between the countries inhabited by L.
schirazensis offers a likely way of understanding its recent spread
(Figure 14 and Figure 15). This chronological spread shows a clear
parallelism with the origin and spread of F. fepatica and also in part
with the spread followed by G. truncatula [12].

Spreading origin in the Fertile Crescent. Historical
evidence suggests that the original area from where L. schirazensis
spread may have been in the Near East, around 10,000 years ago
at the dawn of the Neolithic in the region known as the Fertile
Crescent, including modern-day Israel, Jordan, Lebanon, western
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Syria, southeast Turkey, Iraq and western Iran [119]. This region
was a major domestication center of livestock, mainly goats and
sheep, but also cattle and pigs [120,121]. The presence of L.
schirazensts in Gilan, Iran, and the probable synonyms of L. persica
from Shiraz, Iran [76,77] and L. hordewm from River Euphrates,
Mesopotamia [78] agree with such an origin (Figure 14). This
Neolithic culture expanded geographically 6,400 years ago [12].

Old World spread into Africa, Europe and Asia. A first
spreading of L. schirazensis probably occurred into northern Egypt
together with sheep and goats from the 7th millenium BC
[122,123].

Its introduction into Spain may be related to the extensive use of
a Mediterranean route by sea and/or along Mediterranean coastal
regions [124]. The genetic diversity in Portuguese sheep suggests a
flow from the Fertile Crescent to the Iberian Peninsula, occurred
with the Phoenicians, Greeks and/or Romans [125], and also later
in the 11th and 12th centuries, without forgetting the well-
documented exchange between Iberia and the Maghreb during

September 2011 | Volume 6 | Issue 9 | e24567



Overlooked Snail Distorting Fascioliasis Data

“resistant” G. truncatula

Atlantic populations, La Vienne and

Saint-Martin-Terressus, France

RS DI Asia

ped]

Black Sea
Central
> Asia

Crescent IRAN

L. hordeum, River
Euphrates, Mesopotamia

..., Afghanistan

New L. var. lanceolata, Alger
World telouetensis, | yar, major, Mostaghanem
Mount Atlas | yar, minutissima, many localities
L. var, submalleata, Dj

. Shiraz

Gulf of Oman

Africa

Figure 14. Old World spread of Lymnaea schirazensis combined haplotype ITS-2 H1-ITS-1 HA-16S HA-cox1 Ha during the livestock
postdomestication 10,000-year period from the “Fertile Crescent’’ region of origin in the Near East, including expansion route into
the New World from southern Spain during the early period of colonization about 500-400 years ago (green lines and red dots). For
historical and archeological data supporting this recent spread, see text. Green dot of Shiraz, Iran=type locality of L. schirazensis; black
lines = spreading routes into Europe and Africa to cover the geographical distribution suggested by the presumed species and variety synonyms (see
text) and “resistant” Galba truncatula populations described in France [29]; brown lines =spreading routes into Asia according to the geographical
distribution noted by Kruglov [50].

doi:10.1371/journal.pone.0024567.g014

the Moslem period [124]. The high diversity of Iberian goat later Jamaica [134]. This suggests that L. schirazensis may also be

breeds [126] and cattle migration along the Mediterranean coast present on those large islands, confused with L. cubensis as in the
[127], further substantiate the importance of the Mediterranean in Dominican Republic.
past livestock movements by connecting Iberia to the Near East, By 1525, cattle had already spread throughout much of Central
North Africa, and southern Europe [125,128]. and South America. A similar intense livestock introduction
These trans-Mediterranean and circum-Mediterranean ancient process followed to present-day Mexico, Venezuela and Peru.
livestock movements may also explain the likely presence of L. Livestock was initially imported into Mexico from the Caribbean,
schirazensis in Greece, southern Italy, and northern Spain, as well as mainly Cuba [135] but later also directly from Spain [136]. Thus,
northwest Africa, namely in Algeria and also Morocco, if the Puebla became a thriving agricultural area from the early period
probable synonyms here proposed are molecularly confirmed in [133]. However, South America was colonised “from the back”
the future. The quotations of L. schirazensis in Russia [74], if  instead of directly from Europe [133], including first Peru,
molecularly verified in the future, may be attributable to the entering through the northern Tumbes and taking advantage of
ancient exchange between Asian and European sheep [129]. The the rural Andean routes of the Inca people after a maritime route
Silk Road, active from around 138 years BC until the 15th through Panama [133,137]. Later, directly entering through the
century, connected eastern China with the Near East by three Caribbean Sea, it was Venezuela, where livestock multiplied in the
routes through Kirgistan, Tajikistan, Uzbekistan and Turkmeni- Merida mountainous area in the 1600 s [138]. In the early
stan [130]. Camels, taurine and zebu cattle were mainly used for colonialisation period, ship exchange activities between the
the transportation of goods and merchandise [131] (Figure 14). Peruvian Tumbes area and Mexico and southern Central America
Trans-Atlantic spread into the Americas. The spread of L. took place.
schirazensis into the Americas may have benefitted from livestock Although a trans-Andean livestock introduction route was
transported by the Spanish conquerors during the early launched between western Andean Venezuela and Colombian
colonisation period. Cattle and sheep were the species most Bogota and also further southward [139], the introduction of L.
transported, although goats were also included. Livestock schirazensts with livestock and humans is very likely to have
continued to be exported from the Old World to the Americas occurred from northern Peru. Livestock trade between Quito and
during the 16th, 17th and 18th centuries taking advantage of an Lima through Cajamarca became very intense at a certain period
intense regular commercial exchange [12]. [133]. Nevertheless, the presence of L. schirazensis in Colombia
In the Caribbean, a founding population of approximately 300 should not be ruled out, as indeed the only published report of
cattle was first introduced in Hispaniola in 1493. Cattle mostly non-infected G. fruncatula in Aguas Tibias, Purace municipality,
originated from Andalusia [132]. Sevilla, with its fluviatile port, Coconuco, may also be a misclassification [140] (Figure 15).
was the point of ship departure, which suggests that L. schirazensis
may be present in southern Spain, too. Hispaniola was used as Implications for fascioliasis
base station for further expeditions [133]. Thus, livestock A Galba/Fossaria species unique due to its unsuitability
multiplied pronouncedly on Hispaniola and animals were taken for fasciolid transmission. In the fascioliasis endemic areas
from there and introduced first into Cuba, then Puerto Rico and analysed, our studies demonstrated that the pronouncedly
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doi:10.1371/journal.pone.0024567.g015

different susceptibility/resistance characteristics of Galba/ Fossaria
species, initially considered to be related to different strains of both
lymnaeids and F. hepatica, were indeed due to the presence of a
hitherto-overlooked lymnaeid species. This unnoticed species was
mixed and confused with G. truncatula and other lymnaeids whose
transmission capacity was experimentally assessed.

In these areas, a naturally-infected L. schirazensis specimen was
never found, despite (i) inhabiting localities where high fascioliasis
prevalences are known, and (i1) being present in habitats where G.
truncatula and other Galba/ Fossaria species are typically found to be
infected (e.g., mud frequented by livestock). This absence of
natural infection agrees with the total lack of susceptibility to
laboratory infection by different geographical strains of F. hepatica
and F. gigantica. Experimental assays have shown that fasciolid
larval stages do not develop until cercarial shedding inside L.
schirazensis. In several experiments, snails showed a short survival
after infection, whereas in other assays the long post-infection
survival of snails indicated no negative effects due to infection.
These results were independent of snail age and size (Table 8).

When considering the infection incompatibility of L. schirazensts,
its phylogenetic relationships are surprising (Figure 5 and Figure 6).
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The phylogenetic trees locate it inside the Galba/ Fossaria group,
whose members are all F. fepatica transmitters [15], as L. humilis
and L. cousini [45,55], with which it shares the same branch. The
terrestrial trend of L. schirazensis may have evolutionarily been the
original cause of susceptibility loss due to the very low fasciolid
miracidium contact likelihood in a lymnaeid entering water only
very sporadically.

Geographical distribution of G. truncatula and other
similar Galba/Fossaria vector species. Lymnaca schirazensis
has always been confused with G. truncatula in the Old World (with
the exception of Russia and neighbouring countries, where its
classifications should, however, be molecularly verified [74]) and
with G. truncatula or other Galba/ Fossaria species in the Americas.
Hence, the distribution of these F. kepatica vectors [29,73] should
be re-assessed.

The strict Fasciola sp./lymnaeid sp. specificity [1] has allowed
for the use of lymnaeid vectors as biomarkers of the distribution of
the disease in humans and animals [16,141]. Relationships
between lymnaeid vector species and the different epidemiological
scenarios and transmission patterns of fascioliasis are worth
emphasizing [12]. Factors important for fascioliasis epidemiology
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and control such as type of water habitats, population dynamics,
temperature thresholds, seasonality, or infection susceptibility
differ depending on the different lymnaeid species. Fascioliasis
forecast mathematical indices are based on lymnaeid-interacting
climatic factors such as air temperature, rainfall/irrigation and/or
potential evapotranspiration [7,8,142—144]. Forecasting by Re-
mote Sensing (RS) and Geographical Information System (GIS)
methods is based on a more complex suite of lymnaeid-interacting
environmental factors, such as surface hydrology, vegetation
indices and temperature data [13,145-149]. Henceforth, when
evaluating the local accurateness of mapping results, potential
confusion of lymnaeid species ought to be verified. Such confusion
throughout different zones inside an endemic area may explain
local disease data which do not fit lymnaeid distribution maps.
Similarly, the parallelism between the geographical distribution of
F. hepatica and G. truncatula in low resolution maps is to be
reassessed once more data on the distribution of L. schirazensis
become available.

A new biomarker for the
movements and fascioliasis spread. Genetic data, and
paleontological, archeological and historical records, have shown
a  worldwide spread linking livestock  (transportation,
transhumance and trade of mainly cattle, sheep and goats),
parasites (I hepatica and F. gigantica), and lymnaeid vectors (G.
truncatula) during the animal post-domestication period (last 10,000
years) [12]. Our results in field and laboratory studies suggest that
L. schirazensis is another species having been involved in the same
evolutionary framework. Its link with livestock movements
indicates that L. schirazensis may be a good biomarker for the
follow-up of fascioliasis spread. Fascioliasis introduction into the
Dominican Republic, where G. truncatula is absent, is an example.

Fasciolid susceptibility/resistance in G. truncatula and
other lymmnaeid vectors. Trematode-snail specificity is a
complex phenomenon related to infectivity, susceptibility,
resistance, immunity, compatibility, host attraction, finding and
recognition, phylogeny, and genetic variability [150]. In F. hepatica
and F. gigantica, lymnaeid spectrum limits are not clear [1,16].
Contradictory results have always been related to different
susceptibilities of different allopatric populations [12].

When experimentally comparing different G. truncatula popula-
tions, all were susceptible to F. hepatica infection [26,27,151].
However, different infectivity rates appear regarding the same
geographical strain of F. hepatica, even including marked snail
inter- and intrapopulational differences within a reduced endemic
area [152]. Similar results also appear in other lymnaeid species
concerning both fasciolids [29,30]. Galba truncatula populations
never showing cercarial shedding in endemic zones and resistant
to F. hepatica in the laboratory have been described [29].
Differences in miracidium infection capacity related to different
geographical F. hepatica strains [153] and different definitive host
species [29] have been discussed.

However, assumptions on F. hepatica/ G. truncatula susceptibility/

follow-up of livestock

resistance in endemic areas might be erroneous due to overlooked
confusion with L. schirazensis. In the field, misclasifications can be
easily understood due to (i) morphological similarity, (i) habitat
resemblance, and (iii) even mixing of the two species within what
appears to be only one population (as in Nules-Moncofar, Spain).
In the laboratory, confusion is also easy because in L. schirazensis
miracidium penetration is successful. Molecular and morpholog-
ical tools allowing for the distinction of L. schirazensis have to be
applied henceforth in susceptibility/resistance studies. The three
“resistant” G. truncatula populations described in France [29,154]
are examples to be verified in that way.
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A new laboratory model for studies on susceptibility/
resistance in F. hepatica/lymnaeid interaction. Trematode/
snail interactions is a research field with disease control applications.
Lymnaea schirazensis assembles features to become a good model for
studies on genomics and proteomics characteristics of resistance to
fasciolid infection: A) host attraction, finding and recognition by the
F. hepatica miracidium take place; B) miracidium penetration and a
certain sporocyst-redial development occurs, opening for studies on
larval development abortion; C) its genetic link with Galba/ Fossaria
suggests functional aspects and genetic basis of immunological
response similar to those in the main F. hepatica vectors; D)
amphibious resemblance with Galba/ Fossaria members suggest
physiological similarities with the main F. hepatica vectors; E) its
laboratory rearing is easier than in G. truncatula and other Galba/
Fossaria vectors, owing to: (i) easy adaptation to experimental
conditions, (i1) sexual precocity, (iii) high fecundity, (iv) short adult
life span, and (v) selfing permitting the launch of genetically pure
laboratory strains; F) postinfection survival allows for reinfection
assays to assess immunological sensitisation.

Supporting Information

Figure S1 Photographs showing soft parts of Lymnaea schirazensis: A,
B) part of reproductive system in ventral view (prostate removed in B);
C) prostate and beginning of vas deferens; D) section of prostate
showing absence of internal folds; E, F) male terminal organs.

(TIFF)

Figure S2 Original description of Lymnaea schirazensis by Kiister
in 1863 [71] according to snail materials collected by von dem
Busch in the locality of Shiraz, Iran (described under species
number 78, page 53, issue 184, year 1863).

(TIFF)

Figure S3 Original figures of Lymnaea schirazensis by Kiister in
1862 [71] according to snail materials collected by von dem Busch
in the locality of Shiraz, Iran (drawings in plate 11: figure numbers
28 and 29 showing natural size specimens and figures 30 and 31
showing enlarged specimen, in issue 182, year 1962).

(TIFF)

Table S1 List of species (and subspecies) of molluscs
and trematode parasites included in this study accord-
ing to the zoological nomenclature, in alphabetical order
according to names used in the text. Clarification notes in
brackets; s.l. = sensu lato.

(PDF)

Table S2 Pairwise distances between rDNA ITS-2
nucleotide sequences according to PAUP, including the
Lymnaea schirazensis sequences obtained, together
with species of the Galba/Fossaria group and selected
species representing stagnicolines and Pseudosuccinea
available in GenBank. Below diagonal=total character
differences; above diagonal = mean character differences (adjusted
for missing data).

(PDF)

Table S3 Pairwise distances between rDNA ITS-1
nucleotide sequences according to PAUP, including the
Lymnaea schirazensis sequences obtained, together
with species of the Galba/Fossaria group and selected
species representing stagnicolines and Pseudosuccinea
available in GenBank. Below diagonal=total character
differences; above diagonal = mean character differences (adjusted
for missing data).

(PDF)

September 2011 | Volume 6 | Issue 9 | e24567



Table S4 Pairwise distances between mtDNA coxl
nucleotide sequences according to PAUP, including the
lymnaeid species studied, together with species of the
Galba/Fossaria group and other proximal lymnaeid
species available in GenBank (only coxl sequence
fragments of a length similar to that of sequences
obtained in present paper). Below diagonal = total character
differences; above diagonal = mean character differences (adjusted
for missing data). Haplotype codes only provisional due to
incomplete sequences of the gene.

(PDTF)

Table S5 Lymnaeid shell measurement comparison
between different experimentally-maintained popula-
tions of Lymnaea schirazensis from different geograph-
ical origins of Mexico. Range include minimum and
maximum extremes, with meanZstandard deviation SD in
parentheses. Measurements in mm. n=number of specimens
measured.

(PDF)
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Figure S1. Photographs showing soft parts of Lymnaea schirazensis:

A, B) part of reproductive systemin ventral view (prostate removed in B);

C) prostate and beginning of vas deferens;
D) section of prostate showing absence of internal folds;

E, F) male terminal organs.
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78. Limnaeus Schirazensis von dem Busch.
Tafel 11. Fig. 28. 29, nat, Gr, 30, 31 vergr.

Testa perforata, acuminato -ovata, solidiuscula, striatula, interdum subtiliter malleata, corneo-
albida, nitidula; spira late conica, sutura impressa, anfractibus 5 convexis, superne -planulatis; apertura
ovali, superne rotundato- angulata, peristomate subcontinuo, plica columellari indistincta.

Limnaeus Schirazensis, von dem Busch Mss.

Gehiuse mit durchgehender linglicher Nabeltffnung, zugespitzt eiformig, ziem-
lich solide, fein gestrichelt, mit stirkeren Wachsthumssireifen, zuweilen mit feinen
hammerschligigen Eindriicken, hornweisslich, die Basis mehr weiss. Das Gewinde
kegelformig , abgeseizt, spitzig, die Naht eingetieft; Windungen gewdlbt, der Ober-
rand derselben abgeflacht, die letzte bauchig, unten schnell verschmilert. Mtndung
eiformig, oben mit abgerundeter Ecke, der Mundsaum gerade, durch den kurzen, auf
der Miindungswand anliegenden, ibrigens freien Spindelumschlag verbunden, unten
elwas ausgebogen, mit ditnner weisslicher Schwiele, innerhalb des Randes von oben
herab eine sehr dtnne gelbliche Schwielenleiste. Die Spindelfalte kaum angedeutet,
Hohe 3/, Breite 2Ys*“. (Sammlung von Dr. von dem Busch.)

Aufenthalt: bei Schiras in Persien. :

Bemerkung. Vorstehende Art ist zunéichst mit L. truncatulus (minutus) verwandt.
Sie unterscheidet sich durch die gedrungene Form, weiteren Nabel und hihere Mindung mit

stumpfer Ecke. Ob aber nicht Uebergiinge zwischen beiden Arten vorkommen, somit schirazensis

mit truncatulus zu verbinden wire, kann ich aus dem geringen vorliegenden Material von ersterem
nicht entscheiden.

Figure S2. Original description of Lymnaea schirazensis by Kiister
in 1863 [71] according to snail materials collected by von dem Busch
in the locality of Shiraz, Iran (described under species number 78,
page 53, issue 184, year 1863).

2.

Figure S3. Original figures of Lymnaea schirazensis by Kiister in
1862 [71] according to snail materials collected by von dem Busch
in the locality of Shiraz, Iran (drawings in plate 11: figure numbers
28 and 29 showing natural size specimens and figures 30 and 31
showing enlarged specimen, in issue 182, year 1962).
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Table S1. List of species (and subspecies) of molluscs and trematode parasites included in this
study according to the zoological nomenclature, in alphabetical order according to names used in
the text. Clarification notes in parentheses; s.I. = sensu lato.

LYMNAEIDAE SPECIES:

Austropeplea tomentosa (L. Pfeiffer, 1855)

Catascopia catascopium (Say, 1817)

Catascopia elodes (Say, 1821) (= Stagnicola elodes auctt.)

Catascopia emarginata (Say, 1821)

Catascopia occulta (Jackiewicz, 1959) (the synonymy with Limnaea palustris var. terebra
Westerlund, 1885 has recently been proposed, although it is still pending molecular
confirmation — see: Vinarski MV, Glder P (2008) Taxonomic notes on Euro-Siberian freshwater
molluscs. 3. Galba occulta Jackiewicz, 1959 is a junior synonym of Limnaea palustris var.
terebra Westerlund, 1885. Mollusca 26, 2: 175-185)

Galba pusilla Schrank, 1803

Galba truncatula (O.F. Mdller, 1774)

Galba truncatula variety lanceolata (Bourguignat, 1864)

Galba truncatula variety major (Bourguignat, 1864)

Galba truncatula variety minutissima (Bourguignat, 1864)

Galba truncatula variety neapolitana (Bellini, 1904)

Galba truncatula variety submalleata (Bourguignat, 1864)

Galba truncatula variety telouetensis (Pallary, 1922)

Galba truncatula variety thiesseae (Clessin, 1879)

Hinkleyia caperata (Say, 1829)

Lymnaea (Lymnaea) stagnalis (Linnaeus, 1758

Lymnaea (Stagnicola) fuscus (C. Pfeiffer, 1821) (genus/subgenus status of Stagnicola still
under discussion)

Lymnaea (Stagnicola) palustris (O.F. Muller, 1774) (genus/subgenus status of Stagnicola still
under discussion)

Lymnaea (Stagnicola) palustris palustris (O.F. Miuller, 1774) (genus/subgenus status of
Stagnicola still under discussion)

Lymnaea (Stagnicola) palustris turricula (Held, 1836) (species/subspecies status of turricula still
under discussion; genus/subgenus status of Stagnicola still under discussion)

Lymnaea s.I. bulimoides Lea, 1841 (= Fossaria bulimoides auctt.)

Lymnaea s.l. cousini Jousseaume, 1887

Lymnaea s.I. cubensis L. Pfeiffer, 1839

Lymnaea s.I. delaunayi Folin, 1878

Lymnaea s.I. diaphana King et Broderip, 1830 (authorship of the original publication is indicated
as: P.P. King, assisted by W.J. Broderip; hence, should be better translated as King et Broderip,
as already mentioned in Sherborn Index Animalium: Zoological Journal, Part 19, vol. V, July
1832)

Lymnaea s.l. hordeum Mousson, 1874

Lymnaea s.l. humilis Say, 1822

Lymnaea s.l. meridensis Bargues, Artigas, Khoubbane et Mas-Coma, 2011

Lymnaea s.I. modicella Say, 1825

Lymnaea s.l. neotropica Bargues, Artigas, Mera y Sierra, Pointier et Mas-Coma, 2007

Lymnaea s.l. obrussa Say, 1825 (= Fossaria obrussa auctt.)

Lymnaea s.I. persica G.B. Sowerby I, 1872

Lymnaea s.I. schirazensis Kuster, 1862 (in [71], although text description was in 1863 and figure
description in 1862, the year 1862 prevails because the name was already correctly cited in the
figure legends of the 1862 plate — see article 12.2.7 of the International Code of Zoological
Nomenclature)

Lymnaea s.I. viatrix d'Orbigny, 1835 (= feminine spelling of original Limnaeus viator, see:
Paraense WL (1976) Lymnaea viatrix: a study of topotypic specimens (Mollusca: Lymnaeidae).
Rev Brasil Biol 36: 419-428; according to articles 31.2.1 and 34.2.1 of the International Code of
Zoological Nomenclature, correct species name is viator, even when using the feminine genus
Lymnaea Lamarck, 1799; however, the present paper does not appear to be the appropriate



place to reintroduce such a correction in the literature and thus the spelling viatrix used by
everybody in recent decades is herein also used throughout)

— Lymnaea s.I. zrmanjae Brusina, 1866 (cited as possible synonym of Galba truncatula in [73];
ascription to genus erroneus; belongs to Hydrobiidae as verified by the same author somewhat
later (Brusina, 1902 in [85]); correct ascription: Tanousia zrmanjae (Brusina, 1866))

— Omphiscola glabra (O.F. Mlller, 1774)

— Pseudosuccinea columella (Say, 1817)

— Radix auricularia (Linnaeus, 1758)

— Radix balthica (Linnaeus, 1758)

— Stagnicola bonnevillensis (Call, 1884) (ascription to Stagnicola doubtful; should be
momentaneously better included in Lymnaea s.1.)

PLANORBIDAE SPECIES:
— Biomphalaria glabrata (Say, 1818)
— Biomphalaria pfeifferi (Kraus, 1848)

TREMATODE SPECIES:

— Fasciola gigantica Cobbold, 1855

— Fasciola hepatica (Linnaeus, 1758)
— Schistosoma mansoni Sambon, 1907



Table S2. Pairwise distances between rDNA ITS-2 nucleotide sequences according to PAUP, including the Lymnaea schirazensis
sequences obtained, together with species of the Galba/Fossaria group and selected species representing stagnicolines and
Pseudosuccinea available in GenBank.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 - 0.22359 0.25714 0.30118 0.36408 0.32425 0.26633 0.26382 0.26633 0.34699 0.34521 0.41822 0.38095 0.36461 0.27390
2 91 - 0.06971 0.26256 0.33573 0.30133 0.19895 0.19634 0.19895 0.32955 0.33048 0.39320 0.34444 0.32164 0.21374
3 108 29 - 0.25522 0.33413 0.29491 0.21485 0.21220 0.21751 0.30986 0.30986 0.38889 0.32044 0.29885 0.23018
4 128 115 110 - 0.16143 0.14044 0.21316 0.21053 0.21053 0.33915 0.33835 0.42489 0.36779 0.34805 0.24359
5 150 140 139 77 - 0.03373 0.27322 0.27049 0.27322 0.32500 0.32581 0.39243 0.37379 0.34921 0.29443
6 119 113 110 58 14 - 0.21807 0.21495 0.21807 0.31759 0.31842 0.36388 0.34625 0.32410 0.26765
7 106 76 81 81 100 70 - 0.00249 0.00249 0.21782 0.21523 0.33957 0.28144 0.25000 0.26171
8 105 75 80 80 99 69 1 - 0.00499 0.21452 0.21192 0.33690 0.27844 0.24684 0.25895
9 106 76 82 80 100 70 1 2 - 0.21782 0.21523 0.33957 0.28144 0.25000 0.26171
10 127 116 110 136 130 121 66 65 66 - 0.00000 0.28645 0.27378 0.24752 0.31269
11 126 116 110 135 130 121 65 64 65 0 - 0.27792 0.26241 0.24566 0.31269
12 179 162 161 198 166 135 127 126 127 112 107 - 0.14532 0.14213 0.40751
13 152 124 116 153 154 134 94 93 94 118 111 59 - 0.03063 0.36145
14 136 110 104 134 132 117 79 78 79 100 99 56 14 - 0.34277
15 106 84 90 95 111 91 95 94 95 101 101 152 120 109 -

Below diagonal = total character differences; above diagonal = mean character differences (adjusted for missing data). Sequence
correspondences: 1 = L. (S.) p. palustris H1 from Denmark [39]; 2 = C. occulta H1 from Poland [39]; 3 = C. catascopium from USA [38]; 4
= L. cubensis H1 from Cuba [15]; 5 = L. viatrix H1 from Argentina [15]; 6 = L. neotropica H1 from Peru [15]; 7 = G. truncatula H1 from
Europe [15]; 8 = G. truncatula H2 from Morocco [15]; 9 = G. fruncatula H3 from Bolivia [15]; 10 = L. schirazensis H1 (present paper); 11 =
L. schirazensis H2 (present paper); 12 = L. humilis H1 from USA [45]; 13 = L. cousini H1 from Ecuador [55]; 14 = L. meridensis H1 from
Venezuela [55]; 15 = P. columella H1 from Puerto Rico [55].






Table S3. Pairwise distances between rDNA ITS-1 nucleotide sequences according to PAUP, including the Lymnaea schirazensis
sequences obtained, together with species of the Galba/Fossaria group and selected species representing stagnicolines and
Pseudosuccinea available in GenBank.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 - 0.26476 0.27237 0.28958 0.28884 0.30816 0.26360 0.26151 0.26360 0.28571 0.28274 0.32727 0.29184 0.29652 0.33613
2 139 - 0.08068 0.27879 0.27606 0.29901 0.20816 0.21020 0.21020 0.28543 0.28457 0.29550 0.30000 0.29762 0.32922
3 140 43 - 0.28542 0.28429 0.31020 0.22727 0.22934 0.22934 0.27536 0.27443 0.28427 0.29839 0.29388 0.33755
4 139 138 137 - 0.07648 0.06312 0.15106 0.15319 0.15532 0.16896 0.16371 0.19000 0.20898 0.19200 0.28266
5 145 143 143 40 - 0.09560 0.15524 0.15726 0.15927 0.16893 0.16569 0.20157 0.19574 0.20623 0.28049
6 151 151 152 32 50 - 0.19462 0.19669 0.19876 0.18474 0.17944 0.20363 0.20240 0.20800 0.28306
7 126 102 110 71 77 94 - 0.00198 0.00397 0.17410 0.17271 0.20417 0.18644 0.19665 0.27426
8 125 103 111 72 78 95 1 - 0.00595 0.17622 0.17484 0.20625 0.18856 0.19874 0.27215
9 126 103 111 73 79 96 2 3 - 0.17834 0.17697 0.20833 0.19068 0.20084 0.27215
10 138 143 133 86 87 92 82 83 84 - 0.00188 0.17969 0.17115 0.15686 0.27719
11 136 142 132 83 85 89 81 82 83 1 - 0.17451 0.16795 0.15157 0.27623
12 162 151 141 95 103 101 98 99 100 92 89 - 0.13187 0.12200 0.28481
13 143 153 148 107 101 101 88 89 90 89 87 72 - 0.02698 0.28270
14 145 150 144 96 106 104 94 95 96 80 77 66 15 - 0.29724
15 160 160 160 132 138 137 130 129 129 130 129 135 134 140 -

Below diagonal = total character differences; above diagonal = mean character differences (adjusted for missing data). Sequence
correspondences: 1 = L. (S.) p. palustris HA from Denmark [39]; 2 = C. occulta HA from Poland [39]; 3 = C. catascopium from USA [38]; 4 =
L. cubensis HA from Cuba [15]; 5 = L. viatrix HA from Argentina [15]; 6 = L. neotropica HA from Peru [15]; 7 = G. truncatula HA from Europe
[15]; 8 = G. truncatula HB from Morocco [15]; 9 = G. truncatula HC from Bolivia [15]; 10 = L. schirazensis HA (present paper); 11 = L.
schirazensis HB (present paper); 12 = L. humilis HA from USA [45]; 13 = L. cousini HA from Ecuador [55]; 14 = L. meridensis HA from
Venezuela [55]; 15 = P. columella HA from Puerto Rico [55].






Table S4. Pairwise distances between mtDNA cox1 nucleotide sequences according to PAUP, including the lymnaeid species studied, together with
species of the Galba/Fossaria group and other proximal lymnaeid species available in GenBank.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 - 0.00149 0.05655 0.02083 0.02232 0.03443 0.11161 0.12000 0.11458 0.11458 0.11458 0.12054 0.10714 0.10714 0.10565 0.11458 0.11458 0.11310 0.10268 0.14583 0.15123
2 1 - 0.05804 0.01935 0.02083 0.03286 0.11012 0.11833 0.11310 0.11310 0.11310 0.11905 0.10565 0.10565 0.10417 0.11310 0.11310 0.11161 0.10119 0.14435 0.14969
3 38 39 - 0.04315 0.04464 0.05008 0.10119 0.10500 0.10417 0.10119 0.10119 0.10417 0.10714 0.11012 0.11161 0.10565 0.10565 0.10417 0.09375 0.14881 0.15278
4 14 13 29 - 0.00149 0.02191 0.09970 0.10667 0.10863 0.10565 0.10565 0.10863 0.10119 0.09821 0.09970 0.10119 0.10119 0.09970 0.09226 0.14435 0.14969
5 15 14 30 1 - 0.02347 0.10119 0.10833 0.11012 0.10714 0.10714 0.11012 0.10268 0.09970 0.10119 0.10268 0.10268 0.10119 0.09375 0.14583 0.15123
6 22 21 32 14 15 - 0.10798 0.10829 0.11111 0.10798 0.10798 0.11111 0.10955 0.10955 0.11111 0.11111 0.11111 0.10955 0.10329 0.14867 0.14867
7 75 74 68 67 68 69 - 0.00333 0.09673 0.09375 0.09226 0.09970 0.08929 0.08780 0.08929 0.09226 0.09226 0.09077 0.09375 0.14286 0.14815
8 72 71 63 64 65 64 2 - 0.09833 0.09500 0.09500 0.10167 0.09667 0.09500 0.09667 0.09833 0.09667 0.09500 0.10000 0.15000 0.15000
9 77 76 70 73 74 71 65 59 - 0.00595 0.00893 0.00744 0.08929 0.09375 0.09226 0.09226 0.09375 0.09226 0.08780 0.12500 0.12963
10 77 76 68 71 72 69 63 57 4 - 0.00595 0.01042 0.09077 0.09226 0.09375 0.08929 0.09077 0.08929 0.08482 0.12500 0.12963
11 77 76 68 71 72 69 62 57 6 4 - 0.01339 0.08929 0.09077 0.09226 0.08631 0.08780 0.08631 0.08185 0.11905 0.12346
12 81 80 70 73 74 71 67 61 5 7 9 - 0.09524 0.09673 0.09821 0.09673 0.09821 0.09673 0.08631 0.12649 0.13117
13 72 71 72 68 69 70 60 58 60 61 60 64 - 0.00744 0.00595 0.05804 0.05804 0.05655 0.05804 0.13542 0.14043
14 72 71 74 66 67 70 59 57 63 62 61 65 5 - 0.00149 0.05655 0.05655 0.05506 0.05952 0.13542 0.14043
15 71 70 75 67 68 71 60 58 62 63 62 66 4 1 - 0.05804 0.05804 0.05655 0.06101 0.13690 0.14198
16 77 76 71 68 69 71 62 59 62 60 58 65 39 38 39 - 0.00298 0.00446 0.05506 0.13542 0.14043
17 77 76 71 68 69 71 62 58 63 61 59 66 39 38 39 2 - 0.00149 0.05655 0.13690 0.14198
18 76 75 70 67 68 70 61 57 62 60 58 65 38 37 38 3 1 - 0.05804 0.13542 0.14043
19 69 68 63 62 63 66 63 60 59 57 55 58 39 40 41 37 38 39 - 0.13393 0.13889
20 98 97 100 97 98 95 96 90 84 84 80 85 91 91 92 91 92 91 90 - 0.00000
21 98 97 99 97 98 95 96 90 84 84 80 85 91 91 92 91 92 91 90 0 -

Only cox1 sequence fragments of a length similar to that of sequences obtained in present paper are included. Below diagonal = total character
differences; above diagonal = mean character differences (adjusted for missing data). Haplotype codes only provisional due to incomplete
sequences of the gene. Sequence correspondences: 1 = L. cubensis cox1-a from Cuba [15]; 2 = L. cubensis cox1-b from USA [45]; 3 = L. viatrix
cox1-a from Argentina [15]; 4 = L. neotropica cox1-a from Peru [15]; 5 = L. neotropica cox1-b from Argentina [58]; 6 = F. bulimoides from USA,
without provisional code ascription due to undetermined nucleotides in the sequence [44]; 7 = G. truncatula cox1-a from Spain [15]; 8 = G. truncatula
from Germany, without provisional code ascription due to undetermined nucleotides in the sequence [57]; 9 = L. schirazensis cox1-a from Iran,
Egypt, Spain, Dominican Republic, Mexico, Venezuela, Ecuador and Peru (present paper); 10 = L. schirazensis cox1-b from Mexico (present paper);
11 = L. schirazensis cox1-c from Ecuador (present paper); 12 = L. schirazensis cox1-d from Peru (present paper); 13 = L. humilis cox1-a from USA
[45]; 14 = L. humilis cox1-b from USA [45]; 15 = L. humilis cox1-c from USA [45]; 16 = L. cousini cox1-a from Ecuador [55]; 17 = L. cousini cox1-b
from Colombia [55]; 18 = L. cousini cox1-c from Colombia [55]; 19 = L. meridensis cox1-a from Venezuela [55]; 20 = P. columella cox1-a from
Puerto Rico [55]; 21 = P. columella from Australia, without provisional code ascription due to the shorter sequence fragment [44].






Table S5. Lymnaeid shell measurement comparison between different experimentally-maintained populations of Lymnaea schirazensis from
different geographical origins of Mexico.

Shell parameters Height Maximum width Aperture length Aperture width  Last spire length Spiral angle Whorl number ~ SH/SW ratio SH/AL ratio  SH/LSL ratio
(abbreviation) (SH) (SW) (AL) (AW) (LSL) (SSA)

ﬂﬂ;eu%iﬁha'v'n”g'“’ 4.41-7.23 2.43-3.81 1.91-3.16 1.27-2.00 3.24-5.29 33.13-51.52 4-5 1.59-1.99 2.04-2.52 1.26-1.40

(n = 30) 9 (5.21 £ 0.84) (2.87 £ 0.43) (2.34 £ 0.36) (1.56 + 0.24) (3.90 £ 0.61) (42.60+3.88)  (4.07+0.25) (1.82+0.08) (2.23+0.12) (1.34+0.03)

Escuela Obregon,

Trinidad Tepango 4.95-6.29 2.80-3.56 2.53-3.15 1.53-2.16 3.94-5.16 39.67-64.59 4 1.64-1.94 1.78-2.23 1.21-1.31

(n=30) (5.59 + 0.35) (3.11 £0.21) (2.84 £ 0.20) (1.83 £0.14) (4.48 £ 0.29) (4761+5.17)  (4.00+0.00) (1.80+0.08) (1.98+0.10) (1.25+0.02)

Xalpatlaco

population 1 4.34-7.30 2.12-3.99 1.88-3.13 1.27-2.44 3.17-5.19 26.48-53.49 4-5 1.66-2.05 1.96-2.62 1.22-1.44

(n = 30) (5.88 + 0.76) (3.14 £ 0.48) (2.61 £ 0.35) (1.81 £ 0.30) (4.37 £ 0.54) (4176 £+7.03)  (4.30+0.47) (1.88+0.10) (2.26+0.14) (1.35+0.05)

Xalpatlaco

population 2 3.27-5.86 1.82-3.16 1.51-2.95 1.06-1,72 2.57-4.59 28.22-48 .47 3-4 1.58-1.95 1.84-2.29 1.23-1.36

(n=30) (4.43 £ 0.65) (2.48 £0.31) (2.15 £0.32) (1.39 £ 0.16) (3.42 £ 0.49) (38.94+522) (3.97+0.18) (1.78+0.09) (2.07+0.11) (1.30 +0.03)

Atlixco,

Puebla 3.73-7.25 2.34-3.82 1.85-3.34 1.29-2.02 2.97-5.47 31.08-60.36 4-5 1.60-1.93 1.93-2.25 1.24-1.35

(n=14) (5.05 + 0.94) (2.82 £ 0.43) (2.38 £ 0.44) (1.61 £ 0.25) (3.87 £ 0.73) (43.94+7.17) (4.07+027) (1.79+0.10) (2.13+0.09) (1.31+0.03)

TOTAL 3.27-7.30 1.82-3.99 1.51-3.34 1.06-2.44 2.57-5.47 26.48-64.59 35 1.58-2.05 1.78-2.62 1.21-1.44

(n=134) (5.26 + 0.87) (2.89 + 0.45) (2.47 £ 0.41) (1.64 £ 0.28) (4.02 £ 0.65) (42.85+6.31)  (4.08+0.30) (1.82+0.09) (2.13+0.16) (1.31+0.05)

Range include minimum and maximum extremes, with mean t standard deviation SD in parentheses. Measurements in mm. n = number of

specimens measured.
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