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Abstract The ecology of scleractinian corals may be

understood through comparisons between population

demographic data and environmental parameters. Growth

(growth constant and maximum size) and demographic

parameters (population structure stability, instantaneous

mortality rate, average age of individuals, percentage of

immature individuals, age at maximum biomass, and

average age of biomass) of the solitary, non-zooxanthel-

late, and temperate coral Caryophyllia inornata were

investigated at six sites along an 8� latitudinal gradient of

temperature and solar radiation (SR) on the western Italian

coasts. Growth parameters were homogeneous among

populations across the investigated latitudinal range. While

demographic parameters were not correlated with depth

temperature, populations were progressively less stable and

showed a deficiency of young individuals with increasing

SR, likely as a result of the lowered energetic resources due

to reduced zooplankton availability. These results contrast

with data from another Mediterranean non-zooxanthellate

solitary coral, Leptopsammia pruvoti, investigated along

the same gradient, which shows no correlation between

population demography and temperature or SR.

Keywords Global warming � Demography � Temperate

coral � Caryophylliid � Solar radiation � Temperature �
Latitudinal gradient

Introduction

Many scleractinians are sensitive to environmental factors

such as nutrients (Muscatine et al. 1989; Orejas et al.

2011), water flow (Purser et al. 2010), substrate slope and

structure (Vertino et al. 2010), waves (Lasker 1990), pH

(Goffredo et al. 2014; Fantazzini et al. 2015), light

(Rodolfo-Metalpa et al. 2008), and temperature (Goffredo

et al. 2008; Kružić et al. 2012). Latitude is the main factor

influencing variation in solar radiation (SR) and sea surface

temperature (SST; Kain 1989), which are widely used as

monitoring parameters for ecological studies (Gerrodette

1979; Goffredo et al. 2008; Caroselli et al. 2012) and have

notable implications for organism biology (Carricart-

Ganivet 2004; Cantin et al. 2010; Caroselli et al. 2011;

Kružić et al. 2012). The Mediterranean Sea extends for

about 14� of latitude, making it a good system model to

study whether and how biological processes vary with SR

and temperature along a latitudinal gradient (e.g., Goffredo

et al. 2007). The latitudinal variation of SR and SST gen-

erally influences scleractinian demography and growth

(Dodge et al. 1974; Hughes 1984; Goffredo et al. 2008;

Cantin et al. 2010; Hamel et al. 2010), such as in the

Mediterranean species Cladocora caespitosa that shows

differential growth rates in response to temperature and

nutrients (Kružić et al. 2012). Net calcification rates are

frequently related to temperature in both temperate
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(Goffredo et al. 2009) and tropical corals (Lough and

Barnes 2000; Rodolfo-Metalpa et al. 2006; Cooper et al.

2008; Cantin et al. 2010; Carricart-Ganivet et al. 2012).

Coral reproductive cycles are often regulated by tempera-

ture and photoperiod (Chornesky and Peters 1987; Gof-

fredo et al. 2006; Airi et al. 2014), and larval survivorship

and development are influenced by many environmental

parameters (Jokiel and Guinther 1978; Edmunds et al.

2001; Brooke and Young 2005; Graham et al. 2008).

Physiological processes (e.g., calcification, photosynthesis,

and respiration) of organisms, including corals, are strongly

dependent on environmental conditions (Edmunds and

Gates 2002; Reynaud et al. 2003; Krief et al. 2010).

Some aspects of the ecology of scleractinians may be

understood by comparing population demographic data and

environmental parameters (Goffredo et al. 2008; Caroselli

et al. 2012). Some gorgonians, reef-building corals, and

solitary scleractinians record annual growth bands in their

skeleton (Dodge et al. 1974; Chadwick-Furman et al. 2000;

Goffredo and Lasker 2008; Goffredo et al. 2010; Caroselli

et al. 2012), which can be counted to determine their

individual age. In some species where mechanisms

decoupling growth from age (e.g., colony fragmentation,

fusion, and partial mortality) are negligible (Hughes and

Jackson 1985; Babcock 1991), growth and population

dynamic models based on age can be applied to describe

demographic characteristics (Grigg 1984; Chadwick-Fur-

man et al. 2000; Goffredo et al. 2010; Caroselli et al. 2012).

The Beverton–Holt age-based model is a population

dynamic model that estimates demographic data based on

the previous generation’s data (Beverton and Holt 1956).

Data on demographic parameters such as population turn-

over time can be used to design strategies for reef

restoration and bioremediation of degraded coastal areas

(Goffredo and Chadwick-Furman 2003; Goffredo and

Lasker 2008).

This study focuses on Caryophyllia inornata (Duncan

1878), a non-zooxanthellate solitary scleractinian coral

widely distributed in the Mediterranean Sea and in the

eastern Atlantic Ocean, from the UK to Azores Islands, up

to 100 m depth (Zibrowius 1980). The species colonizes

shaded hard substrates like the vaults and walls of caves,

crevices, and wrecks and, in some cases, can dominate

coral cover (Zibrowius 1980; Caroselli et al. 2015b). Its

abundance along western Italian coasts ranges from 100 to

1500 individuals m-2 (Caroselli et al. 2015b). Caryophyl-

lia inornata is gonochoric, brooding and displays an unu-

sual reproductive cycle characterized by continuous

production of brooded and apparently agamic embryos by

females, males, and sexually inactive individuals (Goffredo

et al. 2012a; Marchini et al. 2015).

The aims of this study were (1) to determine whether the

growth and demographic parameters of C. inornata from

six populations were related to SR and temperature varia-

tion along a wide latitudinal gradient, and (2) to compare

the responses of C. inornata and two solitary dendrophyl-

lids, Balanophyllia europaea (zooxanthellate) and Lep-

topsammia pruvoti (non-zooxanthellate), previously

investigated along the same latitudinal gradient with the

same methods (Goffredo et al. 2008; Caroselli et al. 2012).

Materials and methods

Sample collection

Specimens of C. inornata (Fig. 1a) were collected between

May 14, 2009, and April 14, 2011, from six sites along a

latitudinal gradient in the Mediterranean Sea from 44�200N
to 36�450N (Caroselli et al. 2015b; Fig. 2). The samples

were collected at depths ranging from 11 to 16 m, where a

high population density of C. inornata has been reported

(Caroselli et al. 2015b). Samples were collected from

crevices (see Table 1 for the number of samples collected

at each site), excluding the Elba site where they were

collected under the wings of a sunken plane wreck. At each

site, all samples were collected along a transect ranging

between 4 and 8 square patches of 0.01 m2 each (number

of patches: Genova, GN, n = 6; Calafuria, CL, n = 8;

Elba, LB, n = 4; Palinuro, PL, n = 6; Scilla, SC, n = 6;

Pantelleria, PN, n = 7; Table 1).

Sample analysis

Specimens were dried at 50 �C for 4 d and observed under

a stereoscope to remove fragments of substratum and

calcareous deposits produced by other organisms. The low

drying temperature was selected to avoid phase transitions

in the skeletal aragonite/calcite composition (Vongsavat

et al. 2006), under investigation in these samples by

diffractometric analyses (Goffredo et al. 2012b). Polyp

length (L: maximum axis of the oral disk, Fig. 1b), width

(W: minimum axis of the oral disk), and height (h: oral–

aboral axis) were measured with Vernier calipers (Met-

rica, Milano, Italy). The dry skeletal mass (M) was mea-

sured with a digital precision balance. The number of

annual growth bands was counted in approximately 30

skeletons randomly selected from each population, to

obtain an empirical relationship between size and age. The

selected samples were subjected to computerized tomog-

raphy (CT) for growth band counts, as some forms of

scleractinian corals (such as temperate corals) record two

annual growth bands in their skeletons, a high-density

band in winter and a low-density band in summer (Dodge

et al. 1974; Goffredo et al. 2008, 2010; Caroselli et al.

2012; Fig. 1c, d).
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Growth and population demography modeling

The age of each scanned individual was obtained using CT

(Fig. 1c, d), and the mean annual growth rate was esti-

mated by dividing a polyp’s length by its age. As for other

Mediterranean solitary corals (Goffredo et al. 2008; Car-

oselli et al. 2012), the mean annual growth rate showed an

exponential negative relationship with individual age

(Fig. 3), as required for the application of the von Berta-

lanffy growth model (von Bertalanffy 1938):

Lt ¼ L1 1 � e�kt
� �

ð1Þ

where Lt is individual length at age t, L? is the asymptotic

length (maximum expected length in the population), k is a

growth constant (larger for fast growth up to the asymptotic

length, smaller for slow growth), and t is the age of the

individual. To apply this growth model, L? and k, along

with their confidence intervals (CI), were estimated for

each population through a regression analysis by least

squares procedure developed in the software MATLAB

R2012a (MathWorks, Natick, USA), since this method has

superior fitting properties (Sparre and Venema 1998) than

traditional methods (e.g., Pauly 1984). The obtained von
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Fig. 1 Caryophyllia inornata:

a living polyp; b corallite.

Dotted line indicates polyp

length (L maximum axis of the

oral disk); c computerized

tomography (CT) scan of a

mature corallite (8 yr); d CT

scan of a juvenile corallite

(3 yr). The multiple CT views

facilitated the recognition of

high-density bands (h)
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Fig. 2 Map of the Italian coastline indicating sites where samples

were collected. GN Genova, 44�200N, 9�080E; CL Calafuria, 43�270N,

10�210E; LB Elba Isle, 42�450N, 10�240E; PL Palinuro, 40�020N,

15�160E; SC Scilla, 38�010N, 15�380E; PN Pantelleria Isle, 36�450N,

11�570E
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Bertalanffy age–length relationship was used to estimate

the age of all samples for which CT scans were not

performed.

The theoretical population age structure and the popu-

lation age structure stability were estimated by a linear

regression analysis of the natural logarithm of the number

Table 1 Depth temperature (DT), mean annual solar radiation (SR),

number of patches and collected samples, asymptotic length (L?),

growth constant (k), coefficient of determination of the semilog

regression of Eq. 2, which is an estimator of population structure

stability (r2) and demographic parameters of each population

Variable Site

Genova Calafuria Elba Palinuro Scilla Pantelleria General

Code GN CL LB PL SC PN

DT (�C), annual

mean (SE)

18.24 (0.45) 16.74 (0.38) 17.63 (0.38) 18.94 (0.44) 18.20 (0.41) 19.15 (0.41)

SR (W m-2),

annual mean

(SE)

161.8 (9.3) 174.9 (10.6) 183.4 (10.6) 194.9 (10.8) 203.2 (10.4) 214.2 (10.1)

Number of

patches

6 8 4 6 6 7

Number of

samples

collected

86 62 241 93 47 39

L? (mm) (95 %

confidence

limit)

21.9 (0.0–56.7) 7.1 (3.8–10.4) 22.5

(12.1–32.9)

22.5

(10.2–34.7)

12.3 (6.9–17.6) 16.1

(11.4–20.9)

15.8

(13.1–18.5)

k (95 %

confidence

limit)

0.048

(0.000–0.099)

0.234

(0.035–0.432)

0.041

(0.017–0.066)

0.048

(0.015–0.082)

0.101

(0.022–0.180)

0.073

(0.040–0.105)

0.072

(0.054–0.090)

r2 0.803 0.853 0.829 0.523 0.437 0.449

Instantaneous

rate of

mortality

Z (95 %

confidence

limit)

0.354

(0.180–0.530)

0.541

(0.283–0.799)

0.223

(0.156–0.290)

0.136

(0.058–0.259)

0.102

(0.014–0.190)

0.081

(0.013–0.149)

Observed% of

immature

individuals

81.4 95.2 58.9 39.8 42.6 38.5

Theoretical% of

immature

individuals

91.9 98.0 79.3 67.3 51.3 43.4

Observed mean

age (yr) (95 %

confidence

limit)

4.6 (4.0–5.1) 3.3 (2.9–3.7) 6.5 (6.0–7.0) 8.5 (7.7–9.2) 8.3 (7.2–9.4) 8.8 (7.5–10.1)

Theoretical

mean age (yr)

2.3 1.4 3.9 5.7 9.1 11.6

Observed age at

max% of

biomass (yr)

5 2 11 10 10 15

Theoretical age

at max% of

biomass (yr)

6 4 9 11 15 18

Observed mean

age of biomass

(yr)

6.7 4.4 10.2 10.8 11.1 11.5

Theoretical

mean age of

biomass (yr)

7.7 4.9 11.7 14.8 21.1 25.3
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of individuals (frequency) in each age class (Nt) against

their corresponding age (t):

ln Ntð Þ ¼ at þ b ð2Þ

where a is the slope, indicated also with sign changed as

Z (instantaneous rate of mortality), which represents the

decrement of the number of individuals with age and is the

reciprocal of the turnover time of the population (Pauly

1984; Goffredo and Chadwick-Furman 2003; Goffredo

et al. 2010). The intercept b corresponds to the natural

logarithm of the number of individuals at age zero (N0)

(Pauly 1984; Caroselli et al. 2012). In a theoretical steady-

state population (i.e., no age cohort missing or overrepre-

sented, as would be the case if a major disturbance event

had recently altered recruitment patterns; Grigg 1984),

100 % of the variance in the frequency of age classes is

explained by age and the r2 of the regression line of Eq. 2

is equal to one. Populations deviating from the steady state

will have lower r2 values (Sparre et al. 1989; Goffredo

et al. 2004; Caroselli et al. 2012).

The Beverton and Holt model was applied to describe

the population dynamics of C. inornata in each population

and to obtain the theoretical population parameters (Bev-

erton and Holt 1956; Chadwick-Furman et al. 2000; Gof-

fredo et al. 2008, 2010; Goffredo and Lasker 2008;

Caroselli et al. 2012). Population age structures sampled in

the field are usually underrepresented in the younger age

classes, as smaller individuals are difficult to observe and

collect in situ while diving. The ‘‘theoretical’’ population

obtained with the Beverton and Holt demographic model

also reconstructs the youngest age classes and is an addi-

tional estimation of population demographic traits. The

observed mean age of the individuals at each site was

computed from the age of collected samples dated with the

growth curve (Eq. 1). The theoretical mean age was esti-

mated as that of the theoretical number of individuals at

each site. The observed percentage of individuals below

sexual maturity was obtained by summing the frequencies

of the age classes below sexual maturity, which is *8 yr

(*6.1 mm length; Marchini et al. 2015). The theoretical

percentage of individuals below sexual maturity was

determined by summing the frequencies of the theoretical

number of individuals in the age classes below sexual

maturity at each site. The observed biomass distribution per

age class was obtained by the sum of each corallite mass in

each age class. The theoretical biomass distribution per age
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bFig. 3 Relationship between mean growth rate and individual age at

a Genova, b Calafuria, c Elba Isle, d Palinuro, e Scilla, f Pantelleria

Isle. Data were fitted with exponential curves to verify the assump-

tions of the von Bertalanffy growth model. n = number of individuals

dated by computerized tomography (CT) scans
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class was then obtained by multiplying the theoretical

number of individuals in each age class for the expected

biomass at that age. The observed age at maximum per-

centage biomass was estimated as the age class represent-

ing the highest percentage biomass, using the observed

biomass distribution. The theoretical age at maximum

percentage biomass was determined in the same way, using

the theoretical distribution. The observed mean age of

biomass in the populations was calculated as the sum of the

products of the observed biomass in each age class multi-

plied by its age and then divided by the total observed

biomass. The theoretical mean age of biomass in each site

was calculated in the same way, but using the theoretical

biomass.

Temperature and solar radiation

In this study, for each site, environmental parameters (DT

and SR) were collected for a period equal to the mean

turnover time of populations, which was 6 yr (calculated as

the reciprocal of the instantaneous rate of mortality, Z).

Thus, for each site, 72 average monthly values of DT and

SR were collected for the 6 yr prior to the month of sam-

pling. With this method, the mean values of environmental

parameters considered were those experienced by the

polyps for most of their lifespan. Data were obtained from

data banks, as commonly done to study the influence of

environmental parameters on coral growth (e.g., Harriott

1999; Peirano et al. 1999, 2005; Lough and Barnes 2000;

Carricart-Ganivet 2004; Cantin et al. 2010).

Temperature data (�C) were recorded every 2–3 h by

digital thermometers (i-Button, DS1921G-F5#, Maxim

Integrated Products, Dallas Semiconductors) placed at the

experimental sites to record seawater temperature over time

intervals that varied by site. Thermometers were replaced

every 3 months to avoid problems of encrustation and

overgrowth by marine organisms. SST historical data (�C)

were obtained for each site from the National Mareographic

Network of the Superior Institute for Environmental Pro-

tection and Research (ISPRA; http://isprambiente.gov.it).

These data are measured by SM3810 mareographic stations

located close to the sampling sites and provided by the

Society for Environmental and Industrial Monitoring

(SIAP ? MICROS). For each site, historical at-depth tem-

peratures were estimated by linear regression between DT

and SST. In this study, the average DT of the 6 yr preceding

sampling (n = 72 monthly temperatures) was considered.

Monthly values of SR (W m-2) were obtained from the

data bank of the Satellite Application Facility on Climate

Monitoring (CM-SAF/EUMETSAT; http://www.cmsaf.

eu). These are estimates derived from real-time satellite

measurements and datasets registered with intersensor

calibrated radiances. Mean annual solar radiation was

calculated for the 15 km square associated with each study

site by averaging 72 monthly values for each site.

Statistical analyses

An analysis of variance (ANOVA) was used to compare

the mean DT and SR among the six sites, after checking

that the assumptions for parametric statistics were ful-

filled. Pearson’s correlation coefficients were calculated

between physical parameters (DT and SR) and population

parameters, namely instantaneous rate of mortality (Z),

population structure stability (r2), observed and theoretical

percentage of individuals below sexual maturity, observed

and theoretical mean age, observed and theoretical age at

maximum percentage of biomass, and observed and the-

oretical mean age of biomass. Pearson’s correlation coef-

ficients were also calculated with a bootstrapping

procedure (1000 resamples) for a more careful and reliable

analysis (Efron 1981). A nonparametric Kolmogorov–

Smirnov test was used to test for differences in the age

frequencies of the six populations. All analyses were done

using SPSS Statistics 22.

Results

The mean annual values of SR ranged from 161.8 W m-2

at GN to 214.2 W m-2 at PN (Table 1). Mean annual

values of DT ranged from 16.74 �C at CL to 19.15 �C at

PN (Table 1). Mean SR and DT were significantly different

among sites (ANOVA, p\ 0.01). While SR decreased

with higher latitude, DT did not correlate with latitude

(Fig. 4).

Each population showed an exponential decrease in

mean growth rate with increasing age, with age variance

explaining 13–57 % of mean growth rate variation (Fig. 3).

Mean growth rate decreased from 0.8–1.2 mm yr-1 for

immature individuals (0–7 yr) to 0.5–0.7 mm yr-1 for

mature individuals (7–14 yr; Fig. 3).

L? and k for each population were homogeneous among

sites (95 % CI overlapped; Table 1); therefore, data from

all the individuals dated by growth bands in all populations

were pooled. The general L? and k values were then

estimated (Table 1) to obtain a general von Bertalanffy

growth curve (Fig. 5) describing the age–length relation-

ship across all sampling sites. All 95 % CI of k values for

each population overlapped with the 95 % CI of the gen-

eral k value (Table 1). The 95 % CI of L? of the CL

population did not overlap with the 95 % CI of the general

L? value (Table 1). However, for the CL population, the

difference between the age of each sample estimated with

the general growth curve and that estimated with the CL

growth curve had a mean of 0.060 yr and a 95 % CI in the
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range -0.324 to 0.444 yr (i.e., containing zero), indicating

that the difference in the age estimated by the two curves

was negligible. Moreover, for the CL population, the dif-

ference between the age of each sample estimated with the

general growth curve and the one obtained by growth band

counts had a mean of 0.111 yr and a 95 % CI in the range

-0.348 to 0.570 yr (i.e., containing zero), indicating that

the general growth curve was a good estimator of coral age

at CL. All 568 individuals collected were dated using the

general growth curve (Eq. 1; Fig. 5). The oldest individual

came from the Scilla population (SC) with an estimated age

of 22 yr and a length of 12.55 mm.

The age–frequency distributions (Fig. 6) differed among

populations (Kolmogorov–Smirnov test, p\ 0.001). The

observed and theoretical population demographic parame-

ters are given in Table 1 and shown in Fig. 6. Based on the

bootstrapping correlation coefficients, the instantaneous

rate of mortality (Z, ranging from 0.541 at CL to 0.081 at

PN; Table 1), population structure stability (r2, ranging

from 0.803 at GN to 0.437 at SC; Table 1), and observed

and theoretical percentage of individuals below sexual

maturity (ranging from 95.2 % at CL to 38.5 % at PN, and

98.0 % at CL to 43.4 % at PN, respectively; Table 1) were

negatively correlated with SR (decreasing southward),

while the observed and theoretical mean age (ranging from

3.3 yr at CL to 8.8 yr at PN, and 1.4 yr at CL to 11.6 yr at

PN, respectively; Table 1) and theoretical age at maximum

percentage of biomass (ranging from 4 yr at CL to 18 yr at

PN; Table 1) were positively correlated with SR (increas-

ing southward; Table 2). No demographic parameter was

correlated with DT.

Discussion

In all populations along the investigated latitudinal gradi-

ent, C. inornata showed determinate growth, characterized

by a decreasing growth rate with increasing age, as pre-

viously demonstrated in other animals (Sebens 1987).

Latitudinal variation in environmental conditions can affect

the size of organisms (Lough and Barnes 2000), influenc-

ing coral growth rate and maximum size within the limits

allowed by the organism’s biology (Carricart-Ganivet

2004; Cantin et al. 2010). Determinate growth is a char-

acteristic of some colonial octocorals (Goffredo and Lasker

2008) and scleractinians, such as branching Pocillopora

spp. (Grigg and Maragos 1974), massive Goniastrea

aspera (now renamed as Coelastrea aspera; Sakai 1998;

Huang et al. 2014), and free-living Manicina areolata

(Johnson 1992), but this characteristic is mainly found in

solitary corals, such as B. europaea (Goffredo et al. 2008),

B. elegans, Paracyathus stearnsii (Gerrodette 1979), L.

pruvoti (Goffredo et al. 2010; Caroselli et al. 2012), the
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free-living deep coral Flabellum alabastrum (Hamel et al.

2010), and the free-living fungiids Diaseris distorta (now

renamed as Cycloseris distorta; Yamashiro and Nishihira

1998; Gittenberger et al. 2011), Ctenactis echinata, Fungia

scutaria (now renamed as Lobactis scutaria; Gittenberger

et al. 2011), F. fungites, the subgenus Fungia (Danafungia)

spp. (now renamed as Danafungia spp.; Goffredo and

Chadwick-Furman 2003; Gittenberger et al. 2011), and

Heliofungia actiniformis (Knittweis et al. 2009). The

growth rate of colonies or single polyps can be affected by

several environmental factors and differs greatly among

scleractinians (Chornesky and Peters 1987; Goffredo et al.

2008; Caroselli et al. 2012; Kružić et al. 2012). Measure-

ments of growth in natural populations refer mostly to

zooxanthellate scleractinians, while only few studies have

focused on non-zooxanthellate species. Exceptions include

studies on deepwater Lophelia pertusa (Gass and Roberts

2006), temperate B. regia from the French Atlantic coast

(Brahmi et al. 2010), and L. pruvoti from the Mediter-

ranean Sea (Caroselli et al. 2012). Since the age–length

relationships of C. inornata were homogeneous among

sites, a general growth curve was obtained (Fig. 5) to

describe the growth of individuals across the whole

Mediterranean latitudinal range of this species. It must be

noted that the species range also extends to the Atlantic,

where environmental conditions are very different and

growth could respond differently to latitudinal gradients.

Growth rates estimated in this study agree with the only

previous study of growth in this species, from Spain

(Teixidó et al. 2011). In the Mediterranean Sea, the lati-

tudinal variation of temperature greatly influences the

population characteristics of some scleractinian corals

(Goffredo et al. 2008; Kružić et al. 2012; Airi et al. 2014;

Caroselli et al. 2015b), even though some exceptions have

been reported. Previous studies on solitary scleractinians

living in the same sites and analyzed using the same

methods as in the present study showed homogeneous

growth for the non-zooxanthellate L. pruvoti along the

same latitudinal gradient (Caroselli et al. 2012), while in

the zooxanthellate B. europaea, k decreased and L?
increased with increasing temperature (Goffredo et al.

2008). The apparent insensitivity of the growth of C.

inornata and L. pruvoti (i.e., homogeneous growth

parameters) to SR and temperature variations along the

latitudinal gradient may be explained by their biology and/

or ecological mechanisms: (1) the lack of photosynthetic

Table 2 Correlation analyses

between solar radiation and

depth temperature (independent

variables) and demographic

parameters (dependent

variables) in the sampled

populations (n = 6 sites)

n r2 r r2
BS rBS

Solar radiation

Instantaneous rate of mortality (Z) 6 0.654 -0.883* 0.759 -0.871*

Population structure stability (r2) 6 0.778 -0.809 0.759 -0.871*

Observed% of individuals below sexual maturity 6 0.744 -0.862* 0.785 -0.886*

Theoretical% of individuals below sexual maturity 6 0.899 -0.949** 0.906 -0.952**

Observed mean age 6 0.768 -0.876* 0.794 0.891*

Theoretical mean age 6 0.883 0.939** 0.889 0.943**

Observed age at maximum% of biomass 6 0.687 0.829* 0.643 0.802

Theoretical age at maximum% of biomass 6 0.878 0.937** 0.874 0.935**

Observed mean age of biomass 6 0.657 0.811 0.740 0.860*

Theoretical mean age of biomass 6 0.877 0.937** 0.884 0.940**

Depth temperature

Instantaneous rate of mortality (Z) 6 0.690 -0.769 0.558 -0.743

Population structure stability (r2) 6 0.592 -0.830 0.552 -0.747

Observed% of individuals below sexual maturity 6 0.654 -0.809 0.587 -0.766

Theoretical% of individuals below sexual maturity 6 0.555 -0.745 0.483 -0.695

Observed mean age 6 0.674 -0.821* 0.598 0.773

Theoretical mean age 6 0.526 0.725 0.489 0.699

Observed age at maximum% of biomass 6 0.564 0.751 0.387 0.622

Theoretical age at maximum% of biomass 6 0.565 0.751 0.491 0.701

Observed mean age of biomass 6 0.579 0.761 0.483 0.695

Theoretical mean age of biomass 6 0.555 0.745 0.497 0.705

r2 = Pearson’s coefficient of determination, r = Pearson’s correlation coefficient, r2
BS and rBS = Pearson’s

coefficients calculated with bootstrapping

* p\ 0.05; ** p\ 0.01
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symbionts, which generally stimulate calcification and

growth in zooxanthellate corals (Al-Horani 2005; Goffredo

et al. 2009) and lower their photosynthetic efficiency when

exposed to excessive temperature (Al-Horani 2005); (2) a

wide range of optimal temperatures for calcification in this

species; (3) synergies between 1 and 2; or (4) a

notable adaptation capability of these species to environ-

mental conditions. Assessment of demographic character-

istics provided new insights into these hypotheses.

The lack of significant correlation between demographic

parameters and DT was expected. Temperature is an

important environmental parameter whose latitudinal

variation influences the biometry, abundance, growth, and

demography of some Mediterranean zooxanthellate corals

(Goffredo et al. 2007, 2008, 2009), while the only asym-

biotic scleractinian studied in the Mediterranean (L. pru-

voti) seemed unaffected by temperature differences among

sites (Caroselli et al. 2012). However, any comparison

between C. inornata and B. europaea must be interpreted

cautiously, since the two species were sampled at different

depths (*14 and *6 m, respectively) that may be sub-

jected to slightly different thermal regimes throughout the

year. Calcification is depressed when temperature is out-

side of the species-specific optimal range (Howe and

Marshall 2002). A recent study indicated that C. inornata

calcification was unaffected by temperature differences

along the same Mediterranean latitudinal gradient investi-

gated in this study (Caroselli et al. unpublished). The cal-

cification tolerance to a wide range of temperature as

observed in the non-zooxanthellate L. pruvoti studied at the

same sites (Caroselli et al. 2012) may be due to the absence

of symbiotic zooxanthellae, which need appropriate tem-

peratures for regular metabolism (Carricart-Ganivet et al.

2012). Supporting the possible high adaptation capability

of C. inornata to latitudinal variation in temperature, the

Caryophylliidae family (Dana 1846) is widespread from

shallow (Cairns et al. 2005) to deep waters (Squires 1959),

from coastal Antarctic (Cairns 1982) to the Arctic Circle

(Roberts et al. 2003), and Caryophyllia is the most diverse

genus within non-zooxanthellate scleractinians (Kitahara

et al. 2010).

Unexpectedly, most of the parameters of this non-

zooxanthellate species analyzed were significantly corre-

lated with SR along the investigated Mediterranean lati-

tudinal range. The stability of population structure (r2 of

Eq. 2), the instantaneous rate of mortality (Z), and the

percentage of immature individuals decreased with

increasing SR (southward) (Table 1). In addition, the

average age of populations (from 4.6 yr for the northern-

most site, GN, to 8.8 yr for the southernmost, PN), the

mean age of biomass (from 6.7 at GN to 11.5 at PN), and

the age at maximum biomass (from 5 yr at GN to 15 yr at

PN) increased with increasing SR (Tables 1, 2). All these

correlations indicate that with increasing SR (southward),

populations were less stable and presented deficits of young

individuals. This trend strictly refers to the investigated

latitudinal range in the Mediterranean Sea and cannot

predict the response of Atlantic populations, which could

be very different. Since this species is non-zooxanthellate,

SR is likely to have no direct effect on the species, but the

SR latitudinal gradient could be related to other abiotic

and/or biotic parameters that were not investigated in this

study. For example, plankton in seawater of the western

Mediterranean Sea decreases moving southward

(D’Ortenzio and Ribera d’Alcalà 2009). The wind effect,

winter layers mixing, and coastal upwelling create a bio-

mass gradient for phyto- and zooplankton from north to

south along the western Italian coastline (D’Ortenzio and

Ribera d’Alcalà 2009). Low presence of zooplankton may

cause feeding deficits and reduced available energy for

polyps (Coma and Ribes 2003; Leuzinger et al. 2012); thus,

the observed deficit of immature individuals could be

related to an energetic trade-off between growth and

reproduction (Kozłowski and Wiegert 1986). The reduced

stability and deficit of immature individuals in southern

populations (high SR) could be explained through the

allocation of energy to growth at the expense of repro-

duction. While there are few studies on energy allocation

of shallow non-zooxanthellate corals under energetic defi-

cit, there are several studies on zooxanthellate species.

Tropical Montipora digitata subjected to low light regime

(and thus energetic depletion) for 1 yr showed a reduced

growth rate, while the energy allocation for reproduction

increased at intermediate levels of resource availability,

ceasing completely only at the lowest resource availability

(Leuzinger et al. 2012). Populations of Mediterranean B.

europaea showed reduced k growth constant with

increasing temperature (Goffredo et al. 2008), probably

due to the inhibition of photosynthesis by zooxanthellae,

which reduced the availability of energy (Caroselli et al.

2015a). Growth rate decreased in populations of Orbicella

sp. characterized by high temperatures (Carricart-Ganivet

2004), while species of Porites (Lough and Barnes 2000),

Acropora, and Pocillopora (Crossland 1981) showed the

opposite growth trend. Caryophyllia inornata growth

parameters do not correlate with environmental gradients;

thus, skeletal deposition seems unaffected by temperature

and light regime, while reproduction could be affected. The

species may reduce energetic investment in reproductive

output in favor of growth as a response to the zooplankton

deficit. This could explain the lack of immature corals in

the southernmost populations, suggesting a correlation

between SR and abundance along the investigated latitu-

dinal gradient. However, a recent study at the same sites

showed that population abundance was not correlated with

SR (Caroselli et al. 2015b). This could depend on the lower
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mortality rate (Z) in the southernmost populations; the

deficit of young individuals could be counterbalanced by

the decreasing morality rate, resulting in the observed

homogeneous abundance across sites. As an alternative

hypothesis, the deficit of immature individuals in southern

populations of the Mediterranean Sea could be related to

larval vicariance as a result of the marine flow that follows

the western Italian coastline from south to north throughout

the year (Istituto Idrografico della Marina 1982). The

northern Italian populations may benefit from the flow of

larvae from north-flowing currents, while southern popu-

lations cannot benefit from the same effect because they lie

on the southern border of the species’ distribution (Zi-

browius 1980). However, the relevance of this effect also

depends on the competency period of the planulae, which

is affected by the reproductive mode. Brooding corals such

as C. inornata (Goffredo et al. 2012a) tend to have larvae

that rapidly reach competency relative to broadcast-

spawning corals (Jackson 1986; Harrison and Wallace

1990; Goffredo and Zaccanti 2004). However, the larval

traits of this species are not known, and further studies on

larval behavior are needed to clarify whether larval

vicariance could contribute to the observed deficit of young

individuals in southern populations. In any case, these data

must be interpreted cautiously because the mass mortality

in the northwestern Mediterranean Sea in 2003 (Rodolfo-

Metalpa et al. 2006) may have changed the abundance of

northern populations and may have biased the analysis.

The demography of C. inornata populations showed the

same tolerance to temperature recorded for the non-zoox-

anthellate solitary scleractinian L. pruvoti studied at the

same sites (Goffredo et al. 2010; Caroselli et al. 2012).

Even though C. inornata shares several biological features

and a tolerance to temperature with L. pruvoti, at least at

these sites, the trend of demographic parameters with SR

differs between the two species. The deficit of immature C.

inornata polyps with increasing SR may be related to

reduced plankton availability, but it contrasts with the lack

of trend with SR variations along the latitudinal gradient

for L. pruvoti (Caroselli et al. 2012). The different

responses of the two species and their different range of

population density values (C. inornata has an abundance

up to ten times lower than L. pruvoti) (Goffredo et al. 2007;

Caroselli et al. 2015b) could be explained if C. inornata

had a more specialist diet than L. pruvoti, resulting in lower

availability of resources when zooplankton abundance is

depleted. Unfortunately, the feeding strategies of the two

species have not yet been investigated, and further analyses

are needed to verify this hypothesis.

In conclusion, this research shows that the growth rate

of C. inornata is homogeneous along a Mediterranean

latitudinal gradient covering 2.4 �C of DT variation and

52 W m-2 of SR variation. In this latitudinal range, while

population dynamics parameters are uncoupled with DT,

they are strongly related to variation in SR, with popula-

tions becoming progressively less stable and with fewer

young individuals with increasing SR (southward). The

implications of SR for demography are attributed to indi-

rect effects of zooplankton availability. Previous studies on

Mediterranean solitary corals hypothesized that zooxan-

thellate species were more sensitive to high temperatures

than non-zooxanthellate species. This work suggests that

this may be the case for DT, but that non-zooxanthellate

species may be negatively affected in their demography by

the indirect effects of SR.
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