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Abstract

A generalized Nekrassov–Mehmke iterative method for finding solution of
linear system of algebraic equations Ax = b is given by the decomposition
A = Tm − Em − Fm, where Tm is a banded matrix of bandwidth 2m + 1. We
study the convergence of the new method based on the ideas given in [1–3]. Some
successive overrelaxation modifications, symmetric and 2-stage schemes of the
Nekrassov–Mehmke iterations are proposed. Interesting numerical examples
are presented.
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1. Introduction. Let us consider the linear system Ax−b = 0, (det A 6= 0),
or

(1) ai1x1 + ai2x2 + · · · + ainxn − bi = 0 = fi(x1, x2, . . . , xn), i = 1, 2, . . . , n.

Suppose that the matrix A is strictly diagonally dominant (SDD), i.e. |aii| >
∑n

j 6=i |aij |, i = 1, 2, . . . , n. In this paper we propose new iterative algorithms
based on the classical methods of Nekrassov–Mehmke. Using Nekrassov–Mehmke
iteration scheme, (or Gauss–Seidel scheme), see Nekrassov [4], Mehmke [5] and
Mehmke and Nekrassov [6], the sequence of consecutive approximations xk

i , is
computed in this way:

(2) xk+1
i = −

i−1
∑

j=1

aij

aii
xk+1

j −

n
∑

j=i+1

aij

aii
xk

j +
bi

aii
, i = 1, 2, . . . , n; k = 0, 1, 2, . . . .
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Henceforth, we shall call the above scheme the Nekrassov–Mehmke 1-method
(NM1). Let A = (aij) be an n × n matrix and Tm = (tij) be a banded matrix of
bandwidth 2m + 1 defined as

tij =

{

aij , |i − j| ≤ m,

0, otherwise.

Let

Tm =



















a11 · · · a1,m+1
...

. . .
. . .

am+1,1
. . . an−m,n

. . .
. . .

...
an,n−m · · · an,n



















,

Em =















−am+2,1
...

. . .

−an,1 · · · −an,n−m−1















,

Fm =















−a1,m+2 · · · −a1,n

. . .
...

−an−m−1,n















.

Applying the Nekrassov–Mehmke method (NM1) to system Ax = b with the
decomposition of A = Tm − Em − Fm, i.e.

(3) xk+1 = (Tm − Em)−1Fmxk + (Tm − Em)−1b,

Salkuyeh [1] proved that the generalized Nekrassov–Mehmke method (GNM1)
is convergent for any initial point x0.

2. Main results. I. New generalized Nekrasov–Mehmke method.
In a number of cases the success of the procedures of type (2) depends on the
proper ordering of the equations (and xi, i = 1, . . . , n) in system (1). Despite this
fact the following modification of the Nekrassov–Mehmke method is known (see
Faddeev and Faddeeva [7]):

(4) xk+1
i = −

i−1
∑

j=1

aij

aii
xk

j −

n
∑

j=i+1

aij

aii
xk+1

j +
bi

aii
, i = n, n−1, . . . , 1; k = 0, 1, 2, . . . .

From now on, we shall call the above scheme the Nekrassov–Mehmke 2-method
(NM2). In [7] Faddeev and Faddeeva especially pointed out that of certain interest
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are such iteration processes in which the cycles studied in the two Nekrassov–
Mehmke methods (NM1) and (NM2) are alternated. The method (NM2) does
not possess better convergence in comparison with the method (NM1). Under
the circumstances if matrix A is positive definite, then the eigenvalues of matrix
G in the matrix equations x = Gx+t are real and this allows us to apply different
methods for improving the rate of convergence, i.e., as an example, Abramov’s
technique [8].

In this paper the following generalization of the (NM2) method– generalized
Nekrassov–Mehmke method (GNM2) is proposed

(5) xk+1 = (Tm − Fm)−1Emxk + (Tm − Fm)−1b, k = 0, 1, 2, . . . .

We give a convergence theorem for the method (GNM2).

Theorem 1. Let A be an (SDD) matrix. Then for any natural number

m < n the (GNM2) method is convergent for any initial guess x0.

Proof. The proof follows the ideas given in [1]. The following result obtained
by Jin, Wei and Tam [3] is more often applicable: Let M = (mij) and N = (nij)
be n × n matrices with M being strictly diagonally dominant. Then for the
spectral radius we have

(6) ρ(M−1N) ≤ ρ = max
i

ρi,

where

ρi =

n
∑

j=1

|nij |

|mii| −

n
∑

j 6=i

|mij |

, i = 1, 2, . . . n.

Let M = Tm − Fm and N = Em in the (GNM2) method. Obviously, the matrix
Tm − Fm is an (SDD) matrix. Hence M and N satisfy relation (6). Having in
mind that matrix A is an (SDD) matrix, it can be easily verified that ρi < 1,

i = 1, . . . , n. Therefore ρ
(

(Tm − Fm)−1 Em

)

≤ ρ < 1 and this completes the

proof. �

Remarks. 1. The definition of matrixes M and N in Theorem 1 depends
on the parameter m. We denote ρ by ρ(m). By a little computation one can see
that (see, also [1])

(7) ρ(1) ≥ ρ(2) ≥ · · · ≥ ρ(n) = 0.

2. Let R(m) = (Tm − Fm)−1 Em be the iteration matrix of the (GNM2)
method. From relation (7) we cannot deduce that ρ

(

R(m+1)
)

≤ ρ
(

R(m)
)

. But

equation (7) shows that we can choose a natural number m ≤ n such that ρ
(

R(m)
)
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is sufficiently small. To illustrate this, let us consider the system (a classical
example by Faddeev and Faddeeva [7]):

∣

∣

∣

∣

∣

∣

∣

∣

∣

0.78x1 − 0.02x2 − 0.12x3 − 0.14x4 = 0.76

−0.02x1 + 0.86x2 − 0.04x3 + 0.06x4 = 0.08

−0.12x1 − 0.04x2 + 0.72x3 − 0.08x4 = 1.12

−0.14x1 + 0.06x2 − 0.08x3 + 0.74x4 = 0.68

The exact solution of the system is x = (1.534965, 0.122010, 1.975156, 1.412955).
For Nekrassov–Mehmke method (NM2) applied to system Ax = b with the de-
composition A = D − E − F, i.e. xk+1 = (D − F )−1Exk + (D − F )−1b (D is
the diagonal of A, −E its strict lower part and −F its strict upper part) for the
matrix R∗ = (D − F )−1 E we have

R∗ =











0.0633138 −0.00719144 0.021073 0

0.0187862 0.00782178 −0.00698373 0

0.187688 0.0465466 0.012012 0

0.189189 −0.081081 0.10818 0











,

and for the spectral radii ρ of R∗: ρ(R∗) = 0.10569. Let m = 2. For generalized
Nekrassov–Mehmke method (GNM2) for the matrix R(m) = (Tm − Fm)−1 Em we
have

R(2) =











0.0385524 0 0 0

−0.0113048 0 0 0

0.0272475 0 0 0

0.193052 0 0 0











,

and for the spectral radii ρ of R(2): ρ(R(2)) = 0.0385524, i.e., ρ(R∗) = 0.10569 >

ρ(R(2)) = 0.0385524.
II. New successive overrelaxation modification of the Nekrassov–

Mehmke method. Let

L =











0 0 · · · 0
a21 0 · · · 0
...

...
...

an1 an2 · · · 0











, R =











0 a12 · · · a1n

0 0 · · · a2n
...

...
...

0 0 · · · 0











,

P =











a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann











.

Consider the iteration scheme xk+1 = Bxk + d. Since we move from the current
point xk to the updated point xk+1, we may think of it as the addition of a
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displacement to the old approximation xk+1 = xk + rk. Even though this method
will converge if ρ(B) < 1, convergence will be slow if the spectral radius of B

is close to 1. We could try to speed up convergence by modifying the iteration
xk+1 = xk + ωrk = ωxk+1 + (1 − ω)xk. Intuitively, if rk is a good direction, we
might think of accelerating the movement by setting ω > 1. We may form a
convex combination of the new and the old point as follows:

(8)
x̂k+1 = ωxk+1 + (1 − ω)xk

= ω
(

Bxk + d
)

+ (1 − ω)xk = Bωxk + ωd.

The iteration procedure (8) is stable if ρ(Bω) < 1. For instance, we may try the
idea on Nekrassov–Mehmke 2-method (NM2) – (4). We may replace (4) by the
following iteration:

(9)
zk+1
i = −

i−1
∑

j=1

aij

aii
xk

j −
n

∑

j=i+1

aij

aii
xk+1

j +
bi

aii
,

xk+1
i = ωzk+1

i + (1 − ω)xk
i , i = n, n − 1, . . . , 1; k = 0, 1, 2, . . . .

Hence, we shall call the above scheme the successive overrelaxation Nekrassov–
Mehmke 2-method (SORNM2). We give the following convergence theorem for
the relaxation method (9).

Theorem 2. The iteration procedure (9) is stable if

(10) ρ
(

(

I + ωP−1R
)−1 (

(1 − ω)I − ωP−1L
)

)

< 1.

Proof. In order to analyze the effect of this modification, let us rewrite
method (9) in a compact form, based on the following decomposition of A: A =
L+P +R. With this notation the (SORNM2) scheme may be rewritten in matrix
form as

(11)
zk+1 = P−1

(

b − Rxk+1 − Lxk
)

,

xk+1 = ωzk+1 + (1 − ω)xk.

Eliminating zk+1 and rearranging yields

(

I + ωP−1R
)

xk+1 =
(

(1 − ω)I − ωP−1L
)

xk + ωP−1b,

i.e.,

xk+1 =
(

I + ωP−1R
)−1 (

(1 − ω)I − ωP−1L
)

xk + ω
(

I + ωP−1R
)−1

P−1b

we arrive at inequality (10), which completes the proof of Theorem 2. �
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For other results, see Niethammer and Schade [9], Niethammer [10],
Eiermann, Niethammer and Varga [11], Gaitanos, Hadjidimos and Yeyios

[12], Kinashi, Sawami and Niki [13], Brezinski and Redivo-Zaglia [14].

III. New 2-stage modification of the Nekrassov–Mehmke method
(4). Niethammer and Schade [9] proposed the relaxed SOR method applied to
the linear system Ax = b, with coefficient matrix being the identity plus the skew–
symmetric matrix. Kinashi, Sawami and Niki [13] consider the iterative method
for numerical solution of the linear system Ax = b, with the regular splitting
A = D − L + U, where D is a diagonal matrix, L and U are strictly lower and
strictly upper triangular matrices, respectively, and L ≥ 0, U ≥ 0 on the base of
Nekrassov–Mehmke 1-method (NM1) – (2):

xk+1 = −(D − L)−1Uxk + (D − L)−1b.

Kinashi, Sawami and Niki [13] construct the following 2-stage Nekrassov–Mehmke
method Nekrassov–Mehmke 2-method (NM1) – (2-NM1) method.

xk+1 =
1

2
(D − L)−1(D − L − U)xk +

1

2
(D − L)−1b.

Following the ideas given by Kinashi, Sawami and Niki [13] we construct 2-stage
Nekrassov method based on the Nekrassov–Mehmke 2-method (NM2) – (4). Let
A = D + L − U. Substituting L = A − D + U in the (NM2)-method we have

(12)

xk+1 = −(D − U)−1(A − (D − U))xk + (D − U)−1b

= xk − (D − U)−1Axk + (D − U)−1b

= xk − (D − U)−1(Axk − b).

Applying the Nekrassov–Mehmke 2-method (NM2) to system Axk − b = 0 again,
we obtain

xk+1 = xk − (D − U)−1((D − U)xk+1 + Lxk − b)

= xk − xk+1 − (D − U)−1Lxk + (D − U)−1b;

xk+1 =
1

2
xk −

1

2
(D − U)−1Lxk +

1

2
(D − U)−1b,

i.e.,

(13) xk+1 =
1

2
(D − U)−1(D − U − L)xk +

1

2
(D − U)−1b, k = 0, 1, 2, . . . .

Hereafter, we shall call the above scheme the 2-stage Nekrassov–Mehmke method
based on the Nekrassov–Mehmke 2-method (NM2) – (2-NM2) method. Evidently,
the (2-NM2) method yields considerable improvement in the rate of convergence
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for Nekrassov–Mehmke iterative method (NM2). For the (NM2) method we have
the following expression:

(14) xk+1 = −(D − U)−1Lxk + (D − U)−1b, k = 0, 1, 2, . . . .

Here, we introduce the following convergence theorem for the (2-NM2) method.
Theorem 3. If the (NM2)-method is convergent, then the (2-NM2) procedure

(13) is also convergent.

Proof. The proof follows the ideas given in [13]. We denote HNM2 = −(D−

U)−1L as the (NM2)-iteration matrix and H2−NM2 =
1

2
(I − (D−U)−1L) for the

iteration matrix of (2-NM2)-method. Thus,

(15) H2−NM2 =
1

2
(I + HNM2) .

Denoting ρ(HNM2) and ρ(H2−NM2) as the spectral radii of HNM2 and H2−NM2,

from (15) we obtain ρ(H2−NM2) =
1

2
ρ (I + HNM2) ≤

1

2
(1 + ρ(HNM2)) . Since

0 ≤ ρ(HNM2) < 1, the following inequality holds:

ρ(H2−NM2) ≤
1 + ρ(HNM2)

2
< 1

which completes the proof of Theorem 3. �

Remarks. 1. Let ∆(HNM2) = D(0, ρ(HNM2)) ∩ D(−1, 2ρ(HNM2)), where
D(O, r) is the disk of centre O and radius r. Then the following theorem is valid:

Theorem 4. If the eigenvalue λ(HNM2) of the NM2-iteration matrix satis-

fies the following condition λ(HNM2) ∈ ∆(HNM2), then the following inequality

holds: ρ(H2−NM2) ≤ ρ(HNM2).
The proof follows the ideas given in [13], and will be omitted. For the con-

vergence region, see Fig. 1.
To illustrate Theorem 4, consider the system

∣

∣

∣

∣

∣

x1 − 0.1x2 = 0.8

14x1 + 2x2 = 18.

The exact solution of the system is x(1, 2). For initial approximation we choose
x0(0.9, 1.9). We give results of numerical experiments for each of the methods
(14) and (13). In Table 1 the following notations are used:

– in the first column a serial number of iteration step has been used;
– in the second column results are given (array x[ ]) using the 2-stage Nekrassov–

Mehmke method which is based on the Nekrassov–Mehmke 2-method (NM2).
The convergence test is ‖xk+1 − xk‖2 < 10−5;

– in the third column results are given (array y[ ]) using the Nekrassov–
Mehmke 2-method (NM2). The convergence test is ‖yk+1 − yk‖2 < 10−5.
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Fig. 1. Convergence region ∆(HNM2)

Evidently, 2-NM2 method is better than NM2 method. The eigenvalues
of HNM2 are λ1 = −0.7; λ2 = 0, λ(HNM2) ∈ ∆(HNM2) = D(0, ρ(HNM2)) ∩
D(−1, 2ρ(HNM2)) and ρ(H2−NM2) ≤ ρ(HNM2). We note that the eigenvalues of
H2−NM2 are µ1 = 0.15; µ2 = 0.5.

2. Now define the splitting ωA = (Tm − ωEm) − (ωFm + (1 − ω)Tm), where
Tm is a banded matrix of bandwidth 2m + 1.

We define the new
Successive Over Relaxation Generalized Nekrassov–Mehmke method (GNM1)

– (SORGNM1):

(16)
xk+1 = (Tm − ωEm)−1(ωFm + (1 − ω)Tm)xk + (Tm − ωEm)−1ωb,

k = 0, 1, 2, . . . ,

based on method (3) [1].
Successive Over Relaxation Generalized Nekrassov–Mehmke method (GNM2)

– (SORGNM2):

(17) xk+1 = (Tm−ωFm)−1(ωEm+(1−ω)Tm)xk+(Tm−ωFm)−1ωb, k = 0, 1, 2, . . .

based on method (5) and
Symmetric Successive Over Relaxation Generalized Nekrassov–Mehmke method

(SSORNM) consists from the cyclic procedures

(18)
xk+1/2 = (Tm − ωEm)−1(ωFm + (1 − ω)Tm)xk + (Tm − ωEm)−1ωb,

xk+1 = (Tm − ωFm)−1(ωEm + (1 − ω)Tm)xk+1/2 + (Tm − ωFm)−1ωb.
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T a b l e 1

1 X[1] = 0.98500000000000000000 Y [1] = 1.0700000000000000000

X[2] = 2.3000000000000000000 Y [2] = 2.7000000000000000000

2 X[1] = 0.99775000000000000000 Y [1] = 0.95100000000000000000

X[2] = 2.2025000000000000000 Y [2] = 1.5100000000000000000

3 X[1] = 0.99966250000000000000 Y [1] = 1.0343000000000000000

X[2] = 2.1091250000000000000 Y [2] = 2.3430000000000000000

4 X[1] = 0.99994937500000000000 Y [1] = 0.97599000000000000000

X[2] = 2.0557437500000000000 Y [2] = 1.7599000000000000000

5 X[1] = 0.99999240625000000000 Y [1] = 1.0168070000000000000

X[2] = 2.0280490625000000000 Y [2] = 2.1680700000000000000

6 X[1] = 0.99999886093750000000 Y [1] = 0.98823510000000000000

X[2] = 2.0140511093750000000 Y [2] = 1.8823510000000000000

7 X[1] = 0.99999982914062500000 Y [1] = 1.0082354300000000000

X[2] = 2.0070295414062500000 Y [2] = 2.0823543000000000000

8 X[1] = 0.99999997437109375000 Y [1] = 0.99423519900000000000

X[2] = 2.0035153687109375000 Y [2] = 1.9423519900000000000

9 X[1] = 0.99999999615566406250 Y [1] = 1.0040353607000000000

X[2] = 2.0017577740566406250 Y [2] = 2.0403536070000000000

10 X[1] = 0.99999999942334960938 Y [1] = 0.99717524751000000000

X[2] = 2.0008789004834960937 Y [2] = 1.9717524751000000000

11 X[1] = 0.99999999991350244141 Y [1] = 1.0019773267430000000

X[2] = 2.0004394522600244140 Y [2] = 2.0197732674300000000

12 X[1] = 0.99999999998702536621 Y [1] = 0.99861587127990000000

X[2] = 2.0002197264327536621 Y [2] = 1.9861587127990000000

13 X[1] = 0.99999999999805380493 Y [1] = 1.0009688901040700000

X[2] = 2.0001098632617880493 Y [2] = 2.0096889010407000000

14 X[1] = 0.99999999999970807074 Y [1] = 0.99932177692715100000

X[2] = 2.0000549316377057073 Y [2] = 1.9932177692715100000

15 X[1] = 0.99999999999995621061 Y [1] = 1.0004747561509943000

X[2] = 2.0000274658198746060 Y [2] = 2.0047475615099430000

16 X[1] = 0.99999999999999343159 Y [1] = 0.99966767069430399000

X[2] = 2.0000137329100905659 Y [2] = 1.9966767069430399000

17 X[1] = 0.99999999999999901474 Y [1] = 1.0002326305139872070

X[2] = 2.0000068664550682724 Y [2] = 2.0023263051398720700

18 Y [1] = 0.99983715864020895510

Y [2] = 1.9983715864020895510

19 Y [1] = 1.0001139889518537314

Y [2] = 2.0011398895185373143

20 Y [1] = 0.99992020773370238802

Y [2] = 1.9992020773370238802

39 Y [1] = 1.0000000909543680130

Y [2] = 2.0000009095436801300
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This gives the recurrence

(19) xk+1 = Rωxk + rω, k = 0, 1, 2, . . . ,

where
(20)

Rω = (Tm − ωFm)−1(ωEm + (1 − ω)Tm)(Tm − ωEm)−1(ωFm + (1 − ω)Tm),

rω = ω(Tm − ωFm)−1b + (Tm − ωFm)−1(ωEm + (1 − ω)Tm)(Tm − ωEm)−1ωb

= ω(Tm − ωFm)−1
(

I + (ωEm + (1 − ω)Tm) (Tm − ωE−1
m

)

b.

For other results, see [15].
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