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Sufficient conditions the entire functions
1
() B(F;2) = / F(t) exp(izt) dt
-1
to have finite many zeros outside a region of the kind
S(o)={z=z+iy: —c0o<z <00,y <(1+]z])77,0 < o < 0}

are proposed provided the complex function F' € L(—1,1) is such that either F(—t) = F(t),
or F(—t) = —F(t),—1 < t < 1. Asymptotics of the zeros of entire functions of the kind (*),
having only real zeros, is studied.
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0. Introduction

In this paper the Fourier transform of a complex function of a real variable
having compact support is called finite. Let F' be such a function and denote
by [a,b],a < b the minimal compact interval of R containing its support. If F'
is L-integrable, then its Fourier transform

(0.1) / * P(t) explizt) dt,

as a function of the complex variable z, is an entire function of exponential type.
As it is well-known, such functions play an important role in the analysis. They
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find applications, e.g., in the theory of approximations, harmonic analysis, and
in convolutional calculus.

A classical result due to R. Paley and N. Winer, says that an entire
function of (normal) exponential type o is in L?(—o0,00) iff it has the form

(0.2) /_‘: F(t) exp(izt) dt,

where F € L?(—o0,0). It is quite evident that the study of zero-distribution of
entire functions of the kind (0.1) can be reduced to that of the entire functions
of the kind (0.2) with F' € L(—o,0). Indeed, the linear substitution t ——
t + (a + b)/2 transforms the entire function (0.1) into

o
exp(i(a + b)z/2) F(t+ (a +b)/2) exp(izt) dt,
-0
where 0 = (b — a)/2. Then, replacing ¢t by t/o and afterwards z by oz, one
comes, in fact, to entire functions of the kind (*).
It is evident that the zero-distribution of the entire functions of the kind

(0.1) is "equivalent” to that of the function defined by the Laplace-type trans-
form of the kind

(0.3) / * Pt) exp(et) dt,

where F' € L(a,b). More precissely, the zeros of the entire functions (0.1) and
(0.3) are related by means of the correspondance z «— —iz.

It seems that the first study of the zero-distribution of entire functions
of the kind (0.3) with a = 0 and b = 1 is due to G. Pélya [4]. But the corre-
sponding results play an auxiliary role in the paper just mentioned, since the
main attention in it is paid to the zero-distribution of entire functions defined
as finite cos- or sin-Fourier transforms. More precisely, sufficient conditions are
given in order that such functions to have only real zeros as well as their zeros
to be separated either by that of the entire function sin z, or cos z.

A more systematical study of the zero-distribution of the entire functions
(0.3) is performed by E. Titchmarsh [7]. By the author, the main result in his
paper is that if n(r) is the number of the zeros of the function (0.3) in the disk
|z| < r, then n(r) ~ 7=1(b — a)r,r = oco.

Further, as R.E. Langer claimed [2], in M.L. Cartwright’s paper [1] it is
proved that if @ = —1,b = 1 and the function F' is continuous at the points
—1,1 and has bounded variation in the interval [—1, 1], then there exists a strip
of the kind |Rz| < K containing all the zeros of the function (0.3). Moreover,
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if the function F is continuous on the whole interval [—1,1] and w(F';0) is its
modulus of continuity, then the zeros of the function (0.3) are located in a region
determined by the inequality |Rz| < K|z|w(F;|z|™}).

The results in this paper concerning the asymptotics of the zeros of the
entire functions (x*) may be regarded as such of Cartwright’s type, but the
"width” of the domain S(o), containing almost all the zeros of the functions
E(F;z), is determined by the growth of Fourier’s coefficients of the function
F(t/). The results for the asymptotics of the zeros of functions of the kind (x)
having only real zeros may be considered as refinements of Pélya’s ones. They
also generalize some results published in the papers [5] and [6].

1. Location of the zeros of a class of meromorphic functions

Let an,n € Z be dinstinct real numbers such that lim,| 00 lan| = 0.
Suppose that v and A,,n € Z are real and the series in

(1.1) Az) ==+ z‘f’;n

is uniformly convergent on each bounded subset of the region C\ {a,,n € Z}.

[1.1] Suppose that the real number v # 0 and let p,,n € Z be real and
positive numbers such that 300 p, = 1. Define a}, = an + An(ypn)~',n €
Z and let C, be the circle with diameter ay...a}, if A, # 0 and let C,, =0,
otherwise. Then, the meromorphic function (1.1) has no zeros outside the union
of the circles Cyp,n € Z.

The proof is rather elementary. Suppose that v > 0. If A, # 0, then the
homografic transformation w = A, (z — a,)~! maps the outside of C, onto the
half-plane Rw < yu,. If 2o is outside UpezCh, then

2(£ 2 £ o)< £

n=—oo n=—oo

i.e. zg cannot be a zero of the function (1.1). If v < 0, then the above reasonings
can be applied to the function —A(z).

Remark. In Part VI of N. Obrechkoff’s paper [3] is studied the zero-
distribution in the complex plane of some classes of rational functions. On p. 144
it is mentioned that the derived theorems could be applied also to meromorphic
functions of the kind (1.1).
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2. Mittag-Leffler’s decomposition of a class of meromorphic
functions

[2.1] If the complex function F € L(—1,1), then

(2.1) BIESZ) o 3 BT,

- z € C\ 7Z.
sin z

n=—oo

Moreover, the series in the above equality is uniformly convergent on
each bounded subset of the region C\ 7Z.

This assertion can be proved by means of a classical method due to
CaucHY. To that end denote by Ry, N € N the rectangle with vortices 7(N +
1/2)+iN,—m(N +1/2)+iN,—n(N +1/2)—iN,n(N +1/2)—iN. If B C C\nZ
is bounded, then there exists Ng € N such that B is in the interior of Ry for
each N > Np. For such N’s and z € B define

1 E(F;()

In(F;z) = 2mi Ry (€ —2)sin(

dg.

Then,
(B2 = E(F;z) Z (- 1),,E(F ;TN

sin z -
N z—Tn

and, hence, in order to verify the validity of (2.1), it is sufficient to prove that
limy 00 IN(F;2) = 0 uniformly with respect to z € B.

There exists ¢ = q(B, No) € (0,1) such that |2(~ 1| < q for each z € B
provided ¢ € Ry and N > Ng. Then,

pNMn(F)

lIn(f;2)| < 21— gN’

z € B,N > N,

where py = 4(m(N + 1/2) + N) is the perimeter of Ry and
My (F) = max{¢ € Ry : |E(F;()(sin ¢)™"|}.

It is clear it remains to show that limy_,oo My (F) = 0. Since

1
B(F;—2) = /_ F(=t)explizt)dt

——— 1 —
B(F.2) = /_ FT=Bexplizt) de



Zero-Distribution of a Class of Finite Fourrier Transforms 83

we have to prove that (¢ = £ + in)

. AV (in Y =1] —
N o o<e<n (VIR mmn E(F; Oein €)™ = 0

and
. . . -1 _
1\;l—rpoog=1r(N+I?/az‘))(,05n5N |[E(F;¢)(sin¢)™"| =0

under the only assumption that the function F' € L(—1,1).
For each ( = £ +iN,§ € R, |sin(| > (1/4) exp N provided N is so large
that 1 — exp(—2N) > 1/2. Then,

1
(B3¢ +iN)Gsin +iN) 7! < (1/4) [ |FOlexp(-N(1+2) at
-1
and, hence, limy_,c0 E(F;€ +iN)(sin(§¢ +iN))~! = 0 uniformly with respect to
¢ € R. Further,
E(F;n(N +1/2) + in)(sin(m(N + 1/2) + in))~?

1
= 2(—=1)N(expn + exp(—n)) ! /_1 F(t) exp(—nt) exp(im(N +1/2)t) dt
= 2(=1)M(1 + exp(—2n)) ! /1 F(t)exp(—n(1 +t)) exp(im (N + 1/2)t) dt

-1

2
= —2i(1 + exp(—2n))~} / F(t — 1) exp(—nt) exp(im(N + 1/2)t) dt.
0
The following assertion is a version of the classical lemma of Riemann-
Lebesgue:
[2.2] If the complex function ¢ € L(0,a),0 < a < oo, then

i ,
2. i _ : _
(2.2) Ael!{ff\l-l—»oo/o (t) exp(—nt) exp(iAt) dt = 0

uniformly on 7 € [0, c0).

Suppose that € > 0, then there exist 7 = 7(¢) € (0,a) and T = T'(¢) > 0
such that

/OT o(t) exp(—nt) exp(iXt) dt| < €

for each A € R and 7 € [0,00) as well as

/a p(t) exp(—nt) exp(iAt) dt| <
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for each A € R and > T. Hence, it has to be proved that whatever 0 < 7 < T <

00,7 < a may be, then (2.2) holds uniformly on n € [r,T]. The last assertion

may be established by approximating the function exp(—nt) in the L-norm by

step-functions and afterwards applying the classical Riemann-Lebesgues lemma.
An immediately corollary of (2.2) is that

Jim E(F;n(N +1/2) + in)(sin(n(N +1/2) +in)) ™ =0

uniformly on 77 € [0, 00]). Thus the validity of representation (2.1) is established.
In the same way it can be proved that:

[2.3] If the complex function F € L(—1,1), then

oy BRI § Gty

n=—oo

2€C\n(Z+1/2)

and, moreover, the series in (2.3) is uniformly convergent on each bounded subset
of the region C\ 7(Z + 1/2).

Remark. The expansions (2.1) and (2.2) can be regarded as general-
izations of the representation of the meromorphic function
f_ll f(t) cos(zt + o) dt
cos(z — ) ’

as a sum of elementary fractions given in TSCHAKALOFF’S paper [8]. In order
to get it he has proved that

a,BER,

1 .
Jim [ (t)(exp yt + exp(—yt)(expy + exp(—y)) " explimnt) di =,
0
uniformly with respect to y € (—o00,00) provided the real function ¥(t) is R-
integrable on the interval [0, 1].
3. The results

[8.1] Suppose the complex function F € L(—1,1) is such that either
F(—t) = F(t) or F(—t) = —F(t),—1 <t <1 and, moreover

(a) E(F;mn) = O(lnl—z_’\)a)‘ >0, |n|— oo;

()  Y(E,F)= Y (-1)"E(F;mn) #0.

n=-—0o
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Then, whatever € € (0,\) may be, the entire function E(F;z) has finite
many zeros outside the region S(A — ¢).
From [2.1] it follows that

2E(F;2) = (B, F) + i (_1)n7mE(F; ™)

n=—oo

(3.1)

sin z zZ—Tn

for each z € C\ nZ* (Z* = Z\ {0}) and, moreover, the series in (3.1) is
uniformly convergent on each bounded subset of the region C\ 7Z*. Suppose
that F(—t) = F(t),-1 <t <1, then

1 1
E(F;z) = /_1 F(t) exp(—izt) dt = /_1 F(—t)exp(izt) dt

= /1 f(t) exp(izt) dt = E(F;x)
-1

for each z € R, i.e. all E(F;nm),n € Z* are real.

Let £ € (0,)\),7 € (0,¢) and define D() = Y jeze(1 + [k])™1 7, 0 =
(D(7))"'(1 + |n])"'"",n € Z* and a;, = ™ + (v(E, F)pn) " mnE(F;mn),n €
Z*. Let Cp be the circle with diameter 7n...a}, if E(F;7n) # 0 and C, = O,
otherwise. Then, by assertion [1.1] the entire function E(F';z) has no zeros
outside the union of the circles Cy,n € Z*.

Further, all but finite many of the circles Cp,n € Z* are in the region
S(X\ —€). If this is not the case, then there exists a sequence of points z,, =
Tn, + Wn,,v € N such that z,, € Cp, N OS(A —¢), ie. z, € (mny,ay,) and
[Yn,] = (1 4 |zn,|)~**¢,v € N. But this leads to a contradiction. Indeed,
if rp, = (1/2)|7n, — a}, | is the radius of the circle Cp,, then on one hand
lun,| < Tn, = O(In,|~*+7),v — o0, but on the other, |yn,| = |zn,|7}T(1 +
|~Tn.,|_l))‘+€ - |7Tnu|—'\+€,l/ — o0.

A simple example illustrating assertion [3.1] provides the function

F(t) = i exp(—ikmt) 5 S oteR
B (1 + |k[)2+ ’ '

k=—00
Indeed,

E(F;mn) = i (1+ |k|)~2> /1 exp(i(n — k)mt) dt = 2(1 + |n|)"2"*,n € Z.
1

k=—o00 -
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Moreover,

Y(E,F)=2-2 Z (—1)"—1(1 + |n|)_2_)‘
nez*

o0
=2-4) (-)"'(1+n)**>2-2"">0.

n=1

Remark. The validity of the assertion [3.1] when F(—t) = —F(t),—1 <
t <1 is a corollary of the fact that iF(t) = —iF(t) = (iF(t)),-1<t< 1.

[8.2] Suppose the complex function F' € L(—1,1) is such that either

F(—t) = F(t) or F(—t) = —F(t),—1 <t <1 and, moreover, that:

(a) E(F;nr(n+1/2) = O(|n|'2")‘), A>0, |n|— oo,

oo

() 6B, F)= ) (-)"E(F;n(n+1/2)) # (0).

n=—oo

Then, whatever € € (0, \) may be, the entire function E(f;z) has finite
many zeros outside the region S(\ — €).

The proof is based on the representation

m(n+ 1/2)E(F;m(n + 1/2))
z—m(n+1/2) ’

12) _ c- .
=8B, F)= Y (-1)

z
n=—oo

32 ~ EUL2) (1:

which is a corollary of the expansion (2.3). The requirements (a) and (b) of the
above assertion are satisfied, e.g. by the function

F(t) = i exp(—i(k + 1/2)nt)

T+ kP2 ,A>0,t e R.

k=—00
Suppose that the series
oo
(3.3) Z (=1)"E(F;mn)
n=-—00
is convergent and define (|r| < 1)

Y(E,F;r) = E(F;0) + i(—l)"E(F; mn)r" + i(—l)"E(F; —mn)r™,|r| < 1.

n=1 n=1
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A simple calculation yields that

'y(E,F;r)=/1 1o F(t)dt.

_1 1+ 2rcosmt + r?

By Abel’s theorem for the power series y(E, F) = lim,1-07(E, F;7).
Hence, the requirement that (E, F) # 0, under which the assertion [3.1] was
proved, may be replaced by lim,_,1—ov(E, F;r) # 0, i.e. by

1 2
. 1—r
(3-4) A /_1 1 + 2r cos 7t + 2 F(t)dt # 0.

Similarly (|r| < 1),

(3.5) 0(E,F;r) = i (—1)"E(F;m(n + 1/2))r"
1 o |
N /—1 1+ 2rcos 7t + r2F(t) exp(imt/2) di

and, hence, §(E, F') # 0 iff

1 1— ,,.2
.6 i ) t
(2.6) rlgllo /_1 1+ 2rcosnt + T2F(t) exp(int/2) dt # 0,

provided the series

(e o]

(3.7) > (-1)"E(F;m(n +1/2))

n=-—oo

is convergent.
It is not so ”hopeless” to check the validity of (3.4) and (3.6). Indeed,
suppose that F is real and, moreover, m(F') = inf_j<;<1 F'(t) > 0. Then,

/ ' L= F(t)dt

_11+2rcoswt+r?

m(F) /" 1—172 m(F)
> = = .
= 7w J_x1l+2rcost+r? d ™ 2m = 2m(F) >0

If, in addition, F' is even, then

. 2
1—1r

+ 2 + F(t it /2
/_.1 1 r cos 7t 7'2 ( )exp(z / )dt
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/2 —iand
2 Am(F) / =y costdt
™ Jo 1+2rcos2t+r?
am(F) ! 1—172 2m(F) 1 +r 21
== = t
T Jo (1—7)2+4rt2 T infT oyl e
and, hence,
: XL 2) dt
i .
r 120 /__1 1+ 2r cosmt + r?2 (F expQirt/2)
2m(F 1
A ik =t tanz—_\/—;—=2m(F)>0.

arc
T wm rol-0 T l1-r

Let the real function f € L(0,1) and define

1
(3.8) U(f;z):/0 f(t) cos zt dt
and

1
(3.9) V(fis)m /0 F(t)sin 2t dt

Evidently, U(f;2) = E(F;z) and V(f;2) = E(—iG;z), where F(t) =
G(t) = (1/2)f(t) and F(—t) = —G(—t) = (1/2)f(t) for 0 < t < 1. Then, the
following assertions are corollaries of [3.1] and [3.2], respectively:

[3.8] Let the real function f € L(0,1) is such that:

(@  U(fimn) =O(In|">),A >0, |n| - oo;

(o)

(b) YU, f) = Z (=1)Y(f;mn) #0.

n=-—00

Then, whatever € € (0,\) may be, the entire function U(f;z) has finite
many zeros outside the region S(\ — ).

[3.4]. Let the real function f € L(0,1) is such that:

(@  V(fim(n+1/2) = O(In|">"*),A > 0, |n| — oo;

®)  SVif)= DY (-1)"V(f;m(n+1/2)) #0.

n=-—oo

Then whatever € € (0,\) may be, the entire function V(f;z) has finite
many zeros outside the region S(\ — ¢).
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More precisely, the proofs of assertions [3.3] and [3.4] are based on the
expansions

7rnU(f, 7m)

(3.10) f%gizfl=7(u;f)+ Z (=" ,z € C\ 7Z,
(3.11) z_‘;().sez_) =5V, H- > (_1)n7r(n + i/;?);if:rl(;zz-; 1/2)),

n=—oo

z2€C\m(Z+1/2),
which are corollaries of the expansions (3.1) and (3.2) respectively.
Examples:

1. Suppose the real function f(t),0 <t < 1 has second derivative with
bounded variation and, moreover, f'(0) = f/(1) = 0. Then,

"

U(fjnm) =

I -
= /0 sin wntdf"” (t)

and, hence, U(f;7n) = O(n™3),n — oo. Since

Z( D" Gt = (1/12)(t— ), <1,

Y(U; £) = U(£;0) —2 ) _(-1)" U (f;7n)

n=1

1 1
- / £(8)dt — (1/6) / (t — 2)df"(t) = (1),
0 0

i.e. under the additional condition that f(1) # 0, the entire function U(f;z)
has finite many zeros outside the region S(1 — €) whatever € € (0,1) may be.

2. Suppose the real function f(t),0 <t < 1 has second derivative with
bounded variation and, moreover, f(0) = f'(1) = 0. Then,

1
V(f;m(n+1/2)) = W_ll—/—Z);)—‘i{f”(o) +/O cosm(n + 1/2)tdf”(t)},
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ie. V(f;m(n+1/2)) = O(n=3),n — oo. Since,

Z ;:sz_:—);l@cosw(n +1/2)t = (1/4)(1 = t?), |t| <1,

n=0

1
NWD=UﬂW@—ﬂD—Af®#

Hence, if 6(V; f) # 0, then, the entire function V(f;z) has finite many zeros
outside the region S(1 — ) whatever ¢ € (0,1) may be.

[8.5] Suppose that {an,n € N} is an increasing sequence of real and
positive numbers such that lim, o0 an = 00, A, > 0,n € N,y € R* = R\ {0}
and that at least one of the series in

12 A(z) = —y - < E
(3.12) (z) == 722+an+,§z—an

is absolutely uniformly convergent on each bounded subset of the region C \
{—an,an,n € N}.

If v < 0, then the meromorphic function A has no nonreal zeros and
_each of the intervals —I, = (—an+1,an),(—a1,0),(0,a1),In = (an,an+1),n € N
contains only one of its zeros. If v > 0, then A has a pair of conjugate pure

imaginary zeros, a simple zero in each of the intervals —I,,I,,n € N and has
no other zeros.

Since limz 4, +0 AN (z) = limz—,—q,—0 An(z) = oo and limgz—q,,,,—0 AN(Z)
= limz—_q,,,+0 AN(Z) = —o0 for each n =1,2,3,..., N — 1, the rational func-

tion o %
A, Ap
An(2) vy ;z+an+n§12_an
has an odd number of zeros in each of the intervals —I,,,I,,, n =1,2,3,...,
N — 1. Moreover, since it is even, the number of its zeros in the interval —1I, is
the same as in the interval I, for each n =1,2,3,... ,N — 1.
In the representation

Pn(z ud
Mm=&8,%w=gw—@

the real polynomial Py, which is of degree 2N, has at least 2(N — 1) = 2N —2
real zeros. Hence, the function Ay has exactly one zero in each of the intervals
I, In,n=123,...,N —1.
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Further, limgz——q,+0 An(z) = limg_q,-0 An(z) = —o0 and An(0) =
—~. Hence, either Ay has no nonreal zeros and each of the intervals —I,_,, (—a1,0),
(0,a1),In,n = 1,2,3,...,N — 1 contains only one of its zeros if v < 0, or

Apn has a pair of conjugate pure imaginary zeros, a simple zero in each of the
intervals —I,,, I,,n = 1,2,3,...,N — 1 and no other nonreal zeros if v > 0.
Since limy—00 ANn(2) = A(2z) uniformly on each bounded subset of the region
C\ {—an, an,n € N}, the same conclusions hold for the meromorphic function
A because of a classical theorem due to A. Hurwitz.

[8.6] Suppose that the real function f € L(0,1) is such that:

1
(a) / f(t)cosmntdt = O(n~2"2),A >0, n— oo;
0

1
® (=) /0 () cosmnt) dt > 0,n € NU {0}

Then, the entire function U(f;z) has no nonreal zeros and each of the
intervals I, = (mn,w(n + 1)),n € NU {0} contains exactly one of its zeros.
Moreover, if ,,n € NU{0} is its zero in I,, then 0 < z, —7n = O(n~**¢),n —
oo whatever € € (0,\) may be.

Since the requirement (b) yields that

VU, f) = U(£;0) +2)_(-1)"U(f;n) >0,

n=1

the validity of the above assertion is a corollary of the expansion (3.10) and the
assertions [3.5] and [3.1].
[8.7] Suppose that the real function f € L(0,1) is such that

(a) /01 f@t)sinw(n +1/2)tdt = O(n"2"2),A >0, n — oo;

(®) (=™ /01 f@)sinw(n+1/2)tdt >0, ne NU{0}.

Then, the entire function V(f;z) has no nonreal zeros and each of the
intervals I, = (w(n + 1/2),n(n + 3/2)),n € NU {0} contains exactly one of its
zeros. Moreover, if x, is its zero in I,, then 0 < xp,—m(n+1/2) = O(n=**+¢),n —
oo whatever € € (0,\) may be.
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This assertion is a corollary of the expansion (3.11) and the assertions
[8.5] and [3.1]. Indeed, from the requirement (b) it follows that

5V, f) =23 _(-1)"V(f;n(n+1/2)) > 0.

n=0

Examples:

1. Denote ¢(t) = 2t2 —t4,0 < t < 1, then a simple calculation yields

1
8 3\ 24 cos z
/; w(t)cosztdt—;(l—;) sinz + e i

Hence, U(p;mn) = 24(—1)"(7n)~4, i.e. the function ¢ satisfies the conditions of
assertion [3.6]. Moreover, if &, is the zero of U(y; z) in the interval (7n,7(n +
1)),n € NU {0}, then 0 < &, — mn = O(n~2*¢) whatever ¢ € (0,2) may be.

2. Let ¥(t) = 2t3/3 — t5/5, then

1 8 3N\ 24 cos s
V(y;2z) = ;U(<p;z) o (1 - ;) sinz + =

that

Hence, V(¢;m(n + 1/2)) = 8(=1)*(x(n + 1/2))~* (1 = 3((n + 1/2)7)72%), ie.
the function v satisfies the conditions of assertion [3.7]. Therefore, if 7, is
the zero of V(¢;z) in the interval (w(n + 1/2).m(n + 3/2)),n € NU {0}, then
0 < 7 — m(n + 1/2) = O(n~2*¢) whatever ¢ € (0,2) may be.

It is not surprising that the requirement (b) of assertions [3.5] and [3.7]
is satisfied by the functions U(y;z) and V (¥; z), respectively. It can be proved
that, in fact, it holds under the only assumption that the function f is nonneg-
ative and increasing in the interval [0,1]. This may be established in the same
way as in Pélya’s paper [4]. That means the following assertion holds:

[3.8]. Suppose that the function f(t),0 < t < 1 is nonnegative and
increasing. Then, both functions U(f;z) and V(f;z) have only real and simple
zeros. Moreover:

(A) IfU(f;nm) = O(n~272),A > 0,n — oo and oy, is the only zero of
U(f;2) in the interval (mn,n(n+1)),n € NU{0}, then 0 < oy, —7n = O(n~***)
whatever € € (0,\) may be.

(B) If V(f;(n + 1/2)7) = O(n~**¢),A > 0,n — oo and B, is the only
zero of V(f;z) in the interval (m(n + 1/2),7(n + 3/2)),n € NU {0}, then 0 <
Bn — m(n +1/2) = O(n~**¢) whatever ¢ € (0,\) may be.
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