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1. Introduction and Statement of Results

1.1. Functions of Exponential Type and the Indicator Function

Let f be an entire function and let M(r) := max|z|=r |f(z)|. Unless f is a
constant of modulus less than or equal to 1, its order is defined [3, Chapter 2]
to be

ρ := lim sup
r→∞

log logM(r)

log r
.

A constant c such that |c| ≤ 1 has order 0, by convention. If f is of finite
positive order ρ, then T := lim supr→∞ r−ρ logM(r) is called its type.

A function f , analytic in any unbounded subset S of the complex plane,
like the sector S := {z = r eiθ : α < θ < β}, is said to be of exponential type τ
in S if for each ε > 0 there exists a constant K, depending on ε but not on z,
such that |f(z)| < K e(τ+ε)|z| for all z ∈ S.

In view of the preceding definitions, an entire function of order less than 1
is of exponential type τ for any τ ≥ 0; functions of order 1 type T ≤ τ are
also of exponential type τ . It is easily seen that a trigonometric polynomial of
degree at most n is the restriction of an entire function of exponential type n
to R. Trigonometric polynomials are bounded on the real axis and they are
2π-periodic. It is known (see [3, Theorem 6.10.1]) that if f(z) is an entire
function of exponential type τ which is periodic on the real axis with period ∆
then it must be of the form f(z) =

∑n
ν=−n aν e2πiνz/∆ with n ≤

⌊

(∆/2π) τ
⌋

.

Let f be of exponential type in the sector {z = r eiθ : r > 0, α < θ < β}.
The indicator function of f is defined to be

hf (θ) := lim sup
r→∞

log |f(reiθ)|
r

(α < θ < β) .
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Unless hf (θ) ≡ −∞, it is continuous. For this and other properties of the
indicator function see [3, Chapter 5]. For an entire function f of exponential
type, the indicator function hf (θ) is defined for all θ. It is clear that if f is
an entire function of exponential type τ , then hf (θ) ≤ τ for 0 ≤ θ < 2π. It
may be noted that if P (z) :=

∑n
ν=0 aν z

ν is a polynomial of degree at most
n, then f(z) := P (eiz) is an entire function of exponential type n such that
hf (π/2) ≤ 0. Furthermore, maxx∈R |f(x)| = max|z|=1 |P (z)|.

1.2. A Fundamental Property of Functions of Exponential Type

The following result [3, Theorem 6.2.4], a consequence of the Phragmén-

Lindelöf principle, plays an important role in the study of functions of expo-
nential type. As an alternative reference for this result we mention [11, Theo-
rem 12.6.1], which should be read in conjunction with [11, Theorem 1.6.14].

Theorem A. Let f be analytic and of exponential type in the open upper

half-plane H+ such that hf (π/2) ≤ c. Furthermore, let f be continuous in the

closed upper half-plane and suppose that |f(x)| ≤M on the real axis. Then

|f(x+ iy)| < M ecy (−∞ < x <∞, y > 0) (1)

unless f(z) ≡M eiγ e−icz for some real γ.

If f is analytic and of exponential type in the lower half-plane such that
hf (−π/2) ≤ c and |f(x)| ≤M on the real axis, then Theorem A, applied to the

function f(z), shows that |f(x+ iy)| ≤M ec|y| for y < 0. Hence, by Liouville’s
theorem, an entire function f of exponential type 0 can be bounded on the real
line (in fact, on any line) only if it is a constant.

1.3. The Operator f 7→ f ′ and Bernstein’s Inequality

If f is an entire function of exponential type τ then so is f ′. By a result
of Bernstein ([2, p. 102], see septième corollaire), if f is an entire function of
exponential type τ such that |f(x)| ≤ 1 for all real x then |f ′(x)| ≤ τ for all
real x. It may be added that |f ′(x0)| = τ for some x0 ∈ R only if f(z) is of the
form a eiτz + b e−iτz, where a ∈ C, b ∈ C and |a| + |b| = 1. In other words, the
following result holds.

Theorem B. Let f be an entire function of exponential type τ and suppose

that |f(x)| ≤ 1 on the real axis. Then, either f is a constant or else f is of

order 1 type at most τ and

|f ′(x)| ≤ τ (−∞ < x <∞) . (2)

Besides, |f ′(x0)| = τ for some x0 ∈ R only if f(z) ≡ a eiτz + b e−iτz, where

a ∈ C, b ∈ C and |a| + |b| = 1.

Amongst the extremals there are functions, like cos τ(z+α), α ∈ R, which
are real at every point of the real axis and then there are those, like eiτz, which
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are non-real except at the points 0, ±π/τ, ±2π/τ, . . . . In other words, the
sharp upper bound for |f ′(x0)|, x0 ∈ R, given by (2), is the same, whether f(x)
is real for all x ∈ R or it is non-real almost everywhere on R.

1.4. The Operator f 7→ f ′ + eiγ τf , γ ∈ R

It was shown by Duffin and Schaeffer [4, Theorem II] that if f is an entire
function of exponential type τ such that f(x) is real and |f(x)| ≤ 1 on the real

axis, then, at any point z ∈ C with ℑz = y, we have

|f ′(z)|2 + τ2|f(z)|2 ≤ τ2 cosh 2τ y . (3)

Unless f(z) is of the form cos τ (z + α), the equality sign can occur only at
points on the real axis where f(x) = ±1.

Inequality (3) says in particular that if a function f satisfies the conditions
of Theorem B and is real on the real axis, then

|f ′(z) + iτf(z)| ≤ τ (z ∈ R) . (4)

How large can |f ′(z)+iτf(z)| be at any given point z of the complex plane?
We would like to know the answer to this question, first when f is simply an
entire function of exponential type τ such that |f(x)| ≤ 1 on the real axis and
then when f(x) is, in addition, real for real x.

If f is any entire function of exponential type τ such that |f(x)| ≤ 1 on the
real axis then, by Theorem B, |f ′(x)| ≤ τ for all real x. Hence,

Λ(z) := f ′(z) + i τ f(z) (5)

is an entire function of exponential type τ and |Λ(x)| ≤ 2τ on the real axis.
The same can be said about the function Λ(z) := Λ(z). Applying Theorem A
with c = τ and M = 2τ , to Λ, we obtain

∣

∣f ′(x− iy) − iτ f(x− iy)
∣

∣ ≤ 2τ eτ y (−∞ < x <∞, y > 0) .

Hence

|f ′(x+ iy) + iτf(x+ iy)| ≤ 2τ e−τ y (−∞ < x <∞, y < 0) . (6)

In order to obtain an estimate for |Λ(z)| at a point z of the open upper
half-plane H+, we note that f ′(z) + iτf(z) cannot be of the form 2τ eiγ e−iτz,
since otherwise f(z) would be of the form (2τeiγz+ d) e−iτz for some constant
d and |f(x)| would not be bounded on the real axis. Hence, by applying (1)
with c = τ and M = 2τ , to Λ, we obtain

|f ′(x+ iy) + iτf(x+ iy)| = |Λ(x+ iy)| < 2τ eτy (−∞ < x <∞, y > 0) . (7)

Whereas inequality (6) gives the sharp upper bound for |f ′(z) + iτf(z)| at
any point z of the lower half-plane for a function f satisfying the conditions
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of Theorem B, inequality (7) leaves much to be desired. The following result
(Theorem 1) says considerably more for y > 1/4τ . We shall show by means of
an example that the improved bound for |f ′(z) + iτf(z)|, given in (8), though
not attained, cannot be replaced by anything smaller than (1−3 e−2) (2y)−1 eτy,
at least for y > 1/τ .

Theorem 1. Let f be an entire function of exponential type τ and suppose

that |f(x)| ≤ 1 on the real axis. Then, the sharp estimate for |f ′(z) + iτf(z)|
at any point of the lower half-plane is given by (6), whereas at points of the

open upper half-plane H+, we have

|f ′(z) + iτf(z)| <
{

2τ eτy , if 0 < y ≤ 1/(4τ),

(2y)−1 eτy , if 1/(4τ) ≤ y <∞ .
(8)

These estimates for |f ′(z)+iτf(z)| can be improved if f is, in addition, real
on the real axis. In fact, the following result holds.

Theorem 2. Let f satisfy the conditions of Theorem 1 and suppose that

f(x) is real for all real x. Then

|f ′(z) + iτf(z)| ≤ τ e−τy (y := ℑz < 0) , (9)

whereas for z ∈ H+, we have

|f ′(z) + iτf(z)| <
{

τ eτy , if 0 < y ≤ 1/(2τ),

(2y)
−1

eτy , if 1/(2τ) ≤ y <∞ .
(10)

The example f(z) := sin τz shows that |f ′(z) + iτf(z)| can be equal to
τ e−τy at any point of the lower half-plane and so (9) is sharp. The bound
given in (10) is not attained but we shall give an example which shows that
it cannot be replaced by anything smaller than

(

(1 − 3 e−2)/2
)

(2y)−1 eτy, at
least for y > 1/(2τ).

1.5. The Paley-Wiener Space

An entire function f is said to belong to the Paley-Wiener space Pτ if it
is of exponential type τ and is square integrable on the real axis. It is known
that if f ∈ Pτ , then f(x) → 0 as x→ ±∞ and that f ′ belongs to Pτ also. For
these results see [3, Chapters 6 and 11].

By a fundamental theorem of Plancherel, if ϕ ∈ L2(−∞,∞) then there
exists a function f ∈ L2(−∞,∞) such that

lim
A→∞

∫ ∞

−∞

∣

∣

∣
f(x) −

∫ A

−A

eixt ϕ(t) dt
∣

∣

∣

2

dx = 0 .

Furthermore,
∫ ∞

−∞

|f(x)|2 dx = 2π

∫ ∞

−∞

|ϕ(t)|2 dt
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and

lim
A→∞

∫ ∞

−∞

∣

∣

∣
ϕ(t) − 1

2π

∫ A

−A

e−ixt f(x) dx
∣

∣

∣

2

dt = 0 .

The function f is called Fourier transform of ϕ.
It was proved by Paley and Wiener (see [7, p. 13]; also see [3, p. 103]) that

any function f belonging to Pτ is the Fourier transform of a function ϕ whose
support lies in [−τ, τ ]. Their result may be stated as follows.

Theorem C. The entire function f is of exponential type τ and belongs

to L2 on the real axis if and only if

f(z) =

∫ τ

−τ

eizt ϕ(t) dt , (11)

where ϕ ∈ L2(−τ, τ) and

∫ ∞

−∞

|f(x)|2 dx = 2π

∫ τ

−τ

|ϕ(t)|2 dt . (12)

We shall refer to (11) as the “Paley-Wiener representation” and to (12) as
the “Parseval’s formula”.

The following result is the L2 analogue of Theorem 1.

Theorem 3. Let f be an entire function belonging to the Paley-Wiener

space Pτ . Then

∫ ∞

−∞
|f ′(x+ iy) + iτf(x+ iy)|2 dx

∫ ∞

−∞
|f(x)|2 dx

≤
{

4τ2 e−2τy , if −∞ < y ≤ 1
2τ ,

(e2y2)
−1

e2τy , if 1
2τ ≤ y <∞ .

(13)

The estimates given in (13) cannot be improved. It is notable that the
inequality

∫ ∞

−∞
|f ′(x+ iy)+ iτf(x+ iy)|2 dx ≤ 4τ2 e−2τy

∫ ∞

−∞
|f(x)|2 dx, which

is trivial for any y ≤ 0, remains true for 0 < y ≤ 1/(2τ).

We also consider the L2 analogue of Theorem 2.

Theorem 4. Let f be an entire function belonging to the Paley-Wiener

space Pτ such that f(x) is real for all real x. Furthermore, let

U(y, ξ) := ξ2(e4yτ )1−ξ + (1− ξ)2 (e4yτ )ξ (−∞ < y <∞, 0 ≤ ξ ≤ 1) . (14)

Then, for any real y, we have
∫ ∞

−∞
|f ′(x+ iy) + iτf(x+ iy)|2 dx

∫ ∞

−∞
|f(x)|2 dx

≤ 2 τ2e−2τy max
0≤ξ≤1

U(y, ξ) . (15)

In § 3 we give an example (see Example 5) which shows that inequality (15)
is sharp.

The following result is to be compared with the first half of Theorem 2,
namely (9); the thing to note is the restriction on y.
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Corollary 1. Let f be an entire function belonging to the Paley-Wiener

space Pτ such that f(x) is real for all real x. Then

∫ ∞

−∞
|f ′(x+ iy) + iτf(x+ iy)|2 dx

∫ ∞

−∞
|f(x)|2 dx

≤ 2 τ2e−2τy
(

y ≤ ln 2

2τ

)

. (15′)

The estimate given in (15′) cannot be improved and the inequality does not
remain true for any y > (ln 2)/(2τ).

It is quite tricky to determine the value of max0≤ξ≤1 U(y, ξ), the quantity
that appears on the right-hand side of (15). Our proof of Corollary 1 consists
mainly in showing that max0≤ξ≤1 U(y, ξ) = 1 for y ≤ (ln 2)/(2τ), which
we found quite hard to accomplish. However, it is fairly easy to determine
max0≤ξ≤1 U(1/τ, ξ), which we do and use it to find the maximum of U(y, ξ)
over [0, 1] for any y ∈

(

(ln 2)/(2τ), 1/τ
)

.

Corollary 2. Let f be an entire function belonging to the Paley-Wiener

space Pτ such that f(x) is real for all real x. Then

∫ ∞

−∞
|f ′(x+ iy) + iτf(x+ iy)|2 dx

∫ ∞

−∞
|f(x)|2 dx

≤ τ2
( ln 2

2τ
≤ y ≤ 1

τ

)

. (15′′)

The estimate given in (15′′) cannot be improved.

1.6. Functions g Such That g(z) ≡ eiγ eiσz g(z), σ > 0, γ ∈ R

Let g be an entire function belonging to the Paley-Wiener space Pσ such
that g(z) ≡ eiγ eiσz g(z) for some γ ∈ R. Then

hg

(π

2

)

= −σ + hg

(

−π
2

)

≤ 0

and so f(z) := e−iγ/2 e−iσz/2 g(z) is an entire function of exponential type σ/2.
Besides, for any real x, we have

f(x) = e−iγ/2 e−iσx/2 g(x)

= e−iγ/2 e−iσx/2 e−iγ e−iσx g(x) = e−iγ/2 e−iσx/2 g(x) = f(x) ,

which means that f(x) is real on the real axis. Applying Corollaries 1 and 2
(with σ/2 in place of τ), to f , we obtain the following result.

Proposition 1. Let g be an entire function belonging to the Paley-Wiener

space Pσ such that g(z) ≡ eiγ eiσz g(z) for some γ ∈ R. Then

∫ ∞

−∞
|g′(x+ iy)|2 dx

∫ ∞

−∞
|g(x)|2 dx

≤
{

(σ2/2) e−2σy , if y ≤ (ln 2)/σ,

(σ2/4) e−σy , if (ln 2)/σ ≤ y ≤ 2/σ .
(16)

The estimates given in (16) are the best possible.
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If p is a polynomial of degree n having all its zeros on the unit circle then
p(z) ≡ eiγ zn p(1/z) for some γ ∈ R. However, the class of all polynomials
satisfying p(z)≡eiγzn p(1/z), which are called “self-inversive” [6], is much wider
than the class of all polynomials of degree n having all their zeros on the unit
circle. If p is a self-inversive polynomial of degree at most n then g(z) := p(eiz)
is an entire function of exponential type such that g(z) ≡ eiγ einz g(z) for some
γ ∈ R. Proposition 1 is related to a result in [5] about entire functions of
exponential type satisfying f(z) ≡ eiγ eiτz f(z) for some γ ∈ R. It extends
inequality (5) of that paper, in the case where the parameter p appearing
therein is 2.

1.7. Functions Belonging to Lp, p > 0 on the Real Line

Although the Paley-Wiener space has some special significance it is natural
and meaningful to wonder how large

∫ ∞

−∞
|f ′(x + iy) + if(x + iy)|p dx can be

for any given y ∈ (−∞,∞) if f ∈ Lp(R) for some positive p other than 2.
By a result of Plancherel and Pólya (see [8] or [3, Theorem 6.7.1]), if f is an

entire function of exponential type τ belonging to Lp(R) for some p > 0, then

∫ ∞

−∞

|f(x+ iy)|p dx ≤ epτ |y|

∫ ∞

−∞

|f(x)|p dx (y ∈ R) . (17)

It is also known [10, Theorem 1] that, for any two constants A ∈ C, B ∈ C,
not both zero and ℑ(A/B) ≥ 0 in case B 6= 0, we have

∫ ∞

−∞

∣

∣

∣

Af(x) +Bf ′(x)

A+ iτB

∣

∣

∣

p

dx ≤
∫ ∞

−∞

|f(x)|p dx (p > 0) ;

in particular,

∫ ∞

−∞

|f ′(x) + iτf(x)|p dx ≤ (2τ)p

∫ ∞

−∞

|f(x)|p dx (p > 0) . (18)

Let f be an entire function of exponential type τ belonging to Lp(R) for
some p > 0. Then, also f ′ + iτf is an entire function of exponential type τ
which, by (18), belongs to Lp(R) for the same p. Applying (17) to f ′ +iτf and
then making use of (18), we see that

∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|p dx ≤epτ |y|

∫ ∞

−∞

|f ′(x) + if(x)|p dx

≤(2τ)p epτ |y|

∫ ∞

−∞

|f(x)|p dx (y ∈ R) .

(19)

Inequality (19) says in particular that for any y ≤ 0, we have

∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|p dx ≤ (2τ)p e−pτy

∫ ∞

−∞

|f(x)|p dx . (19′)
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Thus, if yp, p > 0 denotes the largest number such that, for any entire
function of exponential type τ belonging to Lp(R), inequality (19′) holds for
all y ≤ yp, then yp ≥ 0. However, by (13), the precise value of y2 is 1/(2τ).
This raises the following question.

Question 1. What is the exact value of yp for any given p > 0 ?

If f is an entire function of exponential type belonging to Lp(R) and taking
only real values on the real axis then (see [10, Corollary 4])

∫ ∞

−∞
|f ′(x) + iτf(x)|p dx
∫ ∞

−∞
|f(x)|p dx

≤ (2τ)p 2−p
√
π Γ( 1

2 p+ 1)

Γ( 1
2 p+ 1

2 )
. (20)

From (20) and (17) it follows that if f is an entire function of exponential
type τ which belongs to Lp(R) for some p > 0 and is real on the real axis, then
for y ≤ 0, we have

∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|p dx

≤ (2τ)p 2−p
√
π Γ( 1

2 p+ 1)

Γ( 1
2 p+ 1

2 )
e−pτy

∫ ∞

−∞

|f(x)|p dx (p > 0) . (20’)

Comparing this inequality with (15′) we see that for p = 2 the restriction on y
can be relaxed; in fact, it can be replaced by “y ≤ (ln 2)/(2τ)”. For any given
p > 0, let ηp denote the largest number such that for any entire function of
exponential type τ belonging to Lp(R) and taking only real values on the real
axis, inequality (20′) holds for all y ≤ ηp. We know that η2 = (ln 2)/(2τ) but
for other values of p we only know that ηp ≥ 0.

Question 2. What is the exact value of ηp for any given p > 0 ?

2. Auxiliary Results

Inequalities (8) and (10) are mainly based on Lemma 1, which we deduce
from a generalized version of Schwarz’s lemma, due to Pick (see [1, p. 3]),
known as the invariant form of Schwarz’s lemma.

Let U denote the open unit disk |z| < 1. Schwarz’s lemma in its simplest
form says that if ω is holomorphic in U, |ω(z)| ≤ 1 for all z ∈ U and ω(0) = 0,
then |ω(z)| ≤ |z| for |z| < 1; in particular, |ω′(0)| ≤ 1. Here is its extension
due to Pick. For sake of completeness, we also include an outline of its proof.

The Schwarz-Pick Theorem. Let ψ be holomorphic in the open unit disk

U and |ψ(ζ)| ≤ 1 for all ζ ∈ U. Then

(1 − |ζ0|2)|ψ′(ζ0)| + |ψ(ζ0)|2 ≤ 1 (ζ0 ∈ U) . (21)



M. A. Qazi and Q. I. Rahman 273

At a point ζ0 ∈ U where ψ vanishes, equality holds in (21) only if

ψ(ζ) = eiα ζ − ζ0

ζ0ζ − 1
, α ∈ R . (22)

Proof. We distinguish two cases.

(i) First let |ψ(ζ0)| = 1. Then, by the maximum modulus principle, ψ is a
constant, so that ψ′(ζ0) = 0 and (21) holds.

(ii) Next let ψ(ζ0) = b, |b| < 1. Then the function

ω(ζ) :=
ψ

(

ζ+ζ0

ζ
0
ζ+1

)

− b

b ψ
(

ζ+ζ0

ζ
0
ζ+1

)

− 1

satisfies the conditions of Schwarz’s lemma enunciated above, namely, “it is
holomorphic in U, |ω(ζ)| ≤ 1 for all ζ ∈ U and ω(0) = 0”. Hence |ω′(0)| ≤ 1.
Since

ω′(0) = − (1 − |ζ0|2)ψ′(ζ0)

1 − |ψ(ζ0)|2
,

as is easily seen, inequality (21) holds.

(a) Now, let us find all functions ψ, if there are any, which vanish at the
origin and for which |ψ′(0)| = 1. We may write ψ(ζ) =

∑∞
n=1 an ζ

n, where the
expansion is valid for all ζ ∈ U. Since |ψ(ζ)| ≤ 1 for all ζ ∈ U, we have

1

2π

∫ π

−π

|ψ(r eiθ)|2 dθ =

∞
∑

n=1

|an|2 r2n ≤ 1 (0 ≤ r < 1) .

Hence, for |a1| (which is the same as |ψ′(0)|) to be equal to 1, the other
coefficients a2, a3, . . . must all vanish, which means that ψ(ζ) must be of the
form eiα ζ for some real α.

(b) Next, we shall use the observation made in (a) to determine the extremals
when ψ(ζ0) = 0 but ζ0 6= 0. For equality in (21), we must have

(1 − |ζ0|2) |ψ′(ζ0)| = 1 . (23)

We recognize (1 − |ζ0|2)ψ′(ζ0) to be ϕ′(0), where

ϕ(ζ) := ψ
( ζ + ζ0

ζ0ζ + 1

)

.

The function ϕ satisfies the conditions of the Schwarz-Pick theorem and ϕ(0)=0.
Hence, for (23) to hold, i.e. for |ϕ′(0)| to be equal to 1, we must, in view of
(a), have ϕ(ζ) ≡ eiα ζ for some real α. This means that if ψ(ζ0) = 0, where
0 < |ζ0| < 1, then equality holds in (21) if and only if ψ(ζ) is as in (22). �
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Lemma 1. Let F be holomorphic and |F (z)| ≤ 1 in the open upper half-

plane H+. Then

2y |F ′(z)| + |F (z)|2 ≤ 1 (y := ℑz > 0) . (24)

At a point z = z0 ∈ H+ where F vanishes, equality holds in (24) only if

F (z) = eiβ z − z0
z − z0

, β ∈ R . (25)

Proof. The function

ψ(ζ) := F
(1 + ζ

1 − ζ
i
)

is holomorphic and |ψ(ζ)| ≤ 1 in the open unit disk. Applying (21) to ψ and
noting that

ψ′(ζ) =
2 i

(1 − ζ)2
F ′

(1 + ζ

1 − ζ
i
)

,

we obtain

(1 − |ζ|2) 2

|1 − ζ|2
∣

∣

∣
F ′

(1 + ζ

1 − ζ
i
)
∣

∣

∣
+

∣

∣

∣
F

(1 + ζ

1 − ζ
i
)
∣

∣

∣

2

≤ 1 (|ζ| < 1) .

Setting

z :=
1 + ζ

1 − ζ
i, so that ζ =

z − i

z + i
,

we see that
(

1 −
∣

∣

∣

z − i

z + i

∣

∣

∣

2) 2
∣

∣

2 i
z+i

∣

∣

2 |F ′(z)| + |F (z)|2 ≤ 1 (ℑz > 0) ,

that is,

1

2
(|z + i|2 − |z − i|2) |F ′(z)| + |F (z)|2 ≤ 1 (ℑz > 0) .

Now note that

|z + i|2 − |z − i|2 = (z + i)(z − i) − (z − i)(z + i) = 2 i (z − z) = 4ℑz .

Hence (24) holds.

Note that F (z) = 0 for z = z0 if and only if

ψ(ζ) = F
(1 + ζ

1 − ζ
i
)

= 0 for ζ = ζ0 =
z0 − i

z0 + i

and then (1 − |ζ0|2)|ψ′(ζ0)| = 1 if and only if

F
(1 + ζ

1 − ζ
i
)

= ψ(ζ) = eiα ζ − ζ0

ζ0ζ − 1
.
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Hence, if F (z0) = 0 and y0 := ℑz0, then 2 y0 |F ′(z0)| = 1 if and only if

F (z) = eiα
z−i
z+i −

z0−i
z0+i

z0+i
z0−i · z−i

z+i − 1
= eiα z0 − i

z0 + i
· (z − i)(z0 + i) − (z + i)(z0 − i)

(z − i)(z0 + i) − (z + i)(z0 − i)

= eiα z0 − i

z0 + i
· z − z0
z − z0

= eiβ z − z0
z − z0

, where β := arg
(

eiα z0 − i

z0 + i

)

.

�

The next lemma plays a crucial role in the proof of Theorem 4.

Lemma 2. Let u(x) := x2 41−x+(1−x)2 4x. Then u(x) ≤ 1 for 0 ≤ x ≤ 1.

Proof. Note that u(x) = u(1 − x), and hence, it is enough to prove that
u(x) ≤ 1 for 0 ≤ x ≤ 1/4 and for 1/2 ≤ x ≤ 3/4.

In order to prove the desired inequality for 0 ≤ x ≤ 1/4 we observe that
u(0) = 1 and u(1/4) < 1. We then show that, for 0 < x < 1/4, the graph of
u(x) lies below the line segment joining the points (0, 1) and (1/4, u(1/4)) in
R

2. In fact, we prove that u′′(x) ≥ 0 for 0 ≤ x ≤ 1/4, which means that the
function u(x) is convex on the interval [0, 1/4]. For the sake of brevity, we set

w = ln 4 = 1.38629 · · ·

Straightforward calculation gives

u′′(x) = (8 − 16w x+ 4w2 x2) 4−x + [2 − 4w + w2 + (4w − 2w2)x+ w2 x2] 4x .

Since

√
2u′′

(1

4

)

= 8 − 4w +
1

4
w2 + 2

[

2 − 4w + w2 +
1

2
(2w − w2) +

1

16
w2

]

= 12 − 10w +
11

8
w2 ≈ 12 − 13.86294361 + 2.642491577 > 0 ,

it suffices to show that u′′′(x) ≤ 0 for 0 ≤ x ≤ 1/4. On calculating u′′′(x) we
see that

4x u′′′(x) = −24w + 24w2x− 4w3 x2

+ [6w − 6w2 + w3 + (6w2 − 2w3)x+ w3x2]42x .

Now, note that 6w−6w2+w3 < 0 and that 42x increases with x. Consequently,

(6w − 6w2 + w3)42x ≤ 6w − 6w2 + w3 (x ≥ 0)

and so

4xu′′′(x)

w
≤ −18−6w+w2+(24w x−4w2x2)+[(6w−2w2)x+w2x2]42x =: v(x) .
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Since 24w x− 4w2 x2 is an increasing function of x for x < 3/w, the same can
be said about v(x). Hence, in order to prove that u′′′(x) < 0 for 0 ≤ x ≤ 1/4,
it is sufficient to check that v(1/4) < 0. This is indeed so. In fact

v
(1

4

)

= −18 − 6w + w2 + 6w − 1

4
w2 + 2

[1

2
(3w − w2) +

1

16
w2

]

= −18 + 3w − 1

8
w2 ≈ −18 + 4.158883083 − 0.240226507 < 0 .

This completes the proof of the fact that u(x) ≤ 1 for 0 ≤ x ≤ 1/4.

Now, we turn to the proof of the inequality “u(x) ≤ 1” for 1/2 ≤ x ≤ 3/4.
Since u(1/2) = 1, it is sufficient to prove that u(x) is a decreasing function of
x for 1/2 ≤ x ≤ 3/4. We shall show that

φ(t) := 2u
(1

2
+ t

)

= (1 + 2t)2 4−t + (1 − 2t)2 4t

is a decreasing function of t for 0 ≤ t ≤ 1/4. It is easily checked that

4t φ′(t) = 4 − w + (8 − 4w)t− 4w t2 − [4 − w − (8 − 4w)t− 4w t2] 42t .

Since 4 − w − (8 − 4w) t− 4w t2 is positive for 0 < t ≤ 1/4 and

42t = e2 t w = 1 +

∞
∑

k=1

1

k!
(2 t w)k > 1 + 2w t+ 2w2 t2 (t > 0) ,

we find that if 0 < t ≤ 1/4, then

4t φ′(t) < 2(8 − 4w)t+ [4 − w − (8 − 4w)t− 4w t2] [1 − (1 + 2w t+ 2w2t2)]

= 2(8 − 4w)t+ 2w t(1 + w t)[−4 + w + (8 − 4w)t+ 4w t2]

= 2t q(t) ,

where

q(t) = w2 − 8w + 8 + w(w2 − 8w + 8)t+ 4w2(3 − w)t2 + 4w3t3 .

Since w2−8w+8 < 0, the cubic polynomial q(t) has sign pattern {−1,−1, 1, 1}
of its coefficients, and by Descartes’ rule of signs, q(t) has a unique positive
root, say θ. Since

q
(1

4

)

= 8 − 6w − 1

4
w2 +

1

16
w3 = 2(4 − 3w) +

1

16
w2(w − 4) < 0,

it follows that θ > 1/4, and consequently q(t) < 0 for t ∈ (0, 1/4]. Hence, φ′(t)
is negative for 0 < t ≤ 1/4, and so φ(t) is a decreasing function of t on the
interval (0, 1/4]. �
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3. Proofs of Theorems 1–4 and of Corollaries 1–2

Proof of Theorem 1. As already explained, inequality (6) may be obtained
by applying Theorem A, with c = τ and M = 2τ , to the function Λ(z), where
Λ(z) := f ′(z) + iτf(z). The example f(z) := eiαeiτz, α ∈ R, shows that the
upper bound for |f ′(z) + iτf(z)|, given in (6), is attained at every point of the
lower half-plane.

For (8), it is enough to prove that |f ′(z)+iτf(z)| < min{2τ eτy, (2y)−1 eτy}
at any point of the open upper half-plane. From (7) we already know that
|f ′(z) + iτf(z)| < 2τ eτy for y > 0. So, we only need to show that

|f ′(z0) + iτf(z0)| <
1

2 y0
eτy0 (y0 := ℑz0 > 0) . (26)

For this, we note that F (z) := eiτz f(z) is an entire function of exponential type
such that |F (x)| ≤ 1 for all real x and hF (π/2) ≤ 0. Hence, by Theorem A,
|F (z)| ≤ 1 in the upper half-plane and Lemma 2 applies. It is clear from (24)
that 2 y0 |F ′(z0)| < 1 if F (z0) 6= 0 and also if F (z0) = 0 unless F (z) is of

the form eiβ (z − z0)/(z − z0) for some β ∈ R, as stipulated in (25). However,
F (z) cannot be of this form, since it is an entire function and so cannot have
any poles. Hence (26) holds. �

As regards the bound given in (8), the following example shows that, except
for a constant factor, its dependence on y is the right one, for large values of y.

Example 1. For any η > 1/τ , let

f1(z) := e−i(τz−z/η) sin(z/η)

z
. (27)

Then f1 is an entire function of exponential type τ such that

max
x∈R

|f1(x)| = |f1(0)| =
1

η

and

f ′1(z) + iτf1(z) =
( i

ηz
sin

z

η
+

1

ηz
cos

z

η
− 1

z2
sin

z

η
) e−i(τz−z/η) .

In particular, we have

f ′1(iη) + iτ f1(iη) =
1

eη2
(2 sin i − i cos i) eτη =

i

2η2

(

1 − 3

e2

)

eτη (28)

and so

|f ′1(iη) + iτ f1(iη)| =
(

1 − 3

e2

) 1

2η
eτη max

x∈R

|f1(x)|
(

η >
1

τ

)

.
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Hence, in the class of functions f satisfying the conditions of Theorem 1,
the upper bound (2y)−1 eτy for |f ′(z) + if(z)| given in (8) cannot be replaced
by anything smaller than

(

1 − 3 e−2
)

(2y)−1 eτy, at least for y > 1/τ .

Proof of Theorem 2. Let f satisfies the conditions of Theorem 2 and, as
in (5), let Λ(z) := f ′(z) + iτf(z). Then Λ is an entire function of exponential
type τ and by (4), |Λ(x)| ≤ τ for all real x. Hence, Theorem A with c = τ ,
M = τ applies to Λ (z) := Λ (z) and gives (9).

Inequality (10) says that if f satisfies the conditions of Theorem 2, then
at any point z of the open upper half-plane, we have |Λ(z)| < min

{

τ eτy,

(2y)−1 eτy
}

. So, in view of (26), we only need to show that |Λ(z)| < τ eτy

for y > 0. As observed above, Λ is an entire function of exponential type τ
such that |Λ(x)| ≤ τ for all real x. Furthermore, Λ(z) cannot be of the form
τ eiγ e−iτz since otherwise f(z) would be of the form (τ eiγ z+d) e−iτz for some
constant d and |f(x)| would not be bounded on the real axis. Now, apply
Theorem A to Λ in order to obtain the desired estimate. �

Example 2. With f1 as in (27), let f2(z) := f1(z). Then

f(z) :=
1

2
{f1(z) + f2(z)}

is an entire function of exponential type τ which is real on the real axis and
maxx∈R |f(x)| = |f(0)| = 1/η. Since

f ′2(z) + iτf2(z) = ei(τz−z/η)
{(

2τ − 1

η

) i

z
sin

z

η
+

1

ηz
cos

z

η
− 1

z2
sin

z

η

}

,

we have

f ′2(iη) + iτ f2(iη) = e e−τη
{(

2τ − 1

η

)1

η
sin i +

( 1

iη2
cos i +

1

η2
sin i

)}

= i
τ

η
e−τη (e2 − 1)

(

1 − 1

2τη
· e2 − 1

e2 + 1

)

.

Taking this and (28) into account, we see that

f ′(iη) + iτf(iη)

i
=
f ′1(iη) + iτf1(iη) + f ′2(iη) + iτf2(iη)

2i

=
1

2η2

(1

2
− 3

2e2

)

eτη +
τ

2η
e−τη (e2 − 1)

(

1 − 1

2τη
· e2 − 1

e2 + 1

)

>
1

2η2

(1

2
− 3

2e2

)

eτη for η >
1

2τ

and so

|f ′(iη) + iτ f(iη)| >
(1

2
− 3

2e2

) 1

2η
eτη max

x∈R

|f(x)| for η >
1

2τ
.
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Hence, in the class of functions f satisfying the conditions of Theorem 2, the
upper bound (2y)−1 eτy for |f ′(z) + if(z)| given in (9) cannot be replaced by
anything smaller than ((1 − 3 e−2)/2)(2y)−1 eτy, at least for y > 1/(2τ).

Proof of Theorem 3. By the Paley-Wiener representation (11), there exists
a function ϕ ∈ L2(−τ, τ) such that f(z) =

∫ τ

−τ
eizt ϕ(t) dt. Then

f ′(z) + iτf(z) =

∫ τ

−τ

i (t+ τ) eizt ϕ(t) dt (29)

and by Parseval’s formula (12), we obtain
∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|2 dx = 2π

∫ τ

−τ

(t+ τ)2 e−2yt |ϕ(t)|2 dt

= 2π e2yτ

∫ τ

−τ

(t+ τ)2 e−2y(t+τ) |ϕ(t)|2 dt

= 2π e2yτ

∫ 2τ

0

s2 e−2ys |ϕ(s− τ)|2 ds .

We claim that if −∞ < y ≤ 1/(2τ), then s e−ys is a non-decreasing function
of s on (0, 2τ ]. This is obvious if y ≤ 0. So, let 0 < y ≤ 1/(2τ). Then 2τ ≤ 1/y
and it suffices to note that

d

ds
(s e−ys) = e−ys(1 − ys) ≥ 0

(

s ≤ 1

y

)

.

Hence, if −∞ < y ≤ 1/(2τ) then s2 e−2ys ≤ 4τ2 e−4yτ for 0 ≤ s ≤ 2τ and so
∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|2 dx ≤ 4τ2e−2yτ 2π

∫ 2τ

0

|ϕ(s− τ)|2 ds

= 4τ2e−2yτ 2π

∫ τ

−τ

|ϕ(t)|2 dt

= 4τ2 e−2yτ

∫ ∞

−∞

|f(x)|2 dx ,

which proves (13) for y ∈ (−∞, 1/(2τ)).

For any given y > 1/(2τ), say y = η, the function s e−ys attains its
maximum for s = 1/η ∈ (0, 2τ), that is s2 e−2ys ≤ (e2η2)−1 for 0 ≤ s ≤ 2τ and
so, in this case, we have

∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|2 dx ≤ 2πe2yτ 1

e2η2

∫ 2τ

0

|ϕ(s− τ)|2 ds

=
1

e2η2
e2yτ 2π

∫ τ

−τ

|ϕ(t)|2 dt

=
1

e2η2
e2yτ

∫ ∞

−∞

|f(x)|2 dx ,

which proves (13) for y > 1/(2τ). �
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The following example shows that 4τ2 e−2τy, which is given in (13) as an
upper bound for

∫ ∞

−∞
|f ′(x+ iy) + iτf(x+ iy)|2 dx

∫ ∞

−∞
|f(x)|2 dx

in the case where y ≤ 1/(2τ), is sharp. For y > 1/(2τ), we need another
example, namely Example 4, which is presented after Example 3.

Example 3. For any ε ∈ (0, 2τ), let

f(z) :=

∫ τ

τ−ε

eizt dt = ei(τ− ε

2
)z sin(εz/2)

z/2
.

Then
∫ ∞

−∞
|f(x)|2 dx = 2π

∫ τ

τ−ε
dt = 2πε. Since f ′(z) + iτf(z) =

∫ τ

τ−ε
i (t +

τ) eizt dt, we have

∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|2 dx=2π

∫ τ

τ−ε

(t+ τ)2 e−2yt dt=(ξ + τ)2 e−2yξ2πε

for some ξ ∈ [τ − ε, τ ], by the mean value theorem on integration. Thus

∫ ∞

−∞
|f ′(x+ iy) + iτf(x+ iy)|2 dx

∫ ∞

−∞
|f(x)|2 dx

= (ξ + τ)2 e−2yξ → 4τ2 e−2τy as ε→ 0 .

Example 4. Let y=η>1/(2τ) so that 0<1/η<2τ and −τ <(1/η)−τ <τ .
Now, let

f(z) :=

∫ (1/η)−τ+ε

(1/η)−τ−ε

eizt dt , where ε < min{1/η, 2τ − 1/η} .

Then

f ′(z) + iτf(z) =

∫ (1/η)−τ+ε

(1/η)−τ−ε

i (t+ τ) eizt dt .

By Parseval’s formula,

∫ ∞

−∞

|f(x)|2 dx = 2π

∫ (1/η)−τ+ε

(1/η)−τ−ε

dt = 4πε

and

∫ ∞

−∞

|f ′(x+ iη) + iτf(x+ iη)|2 dx = 2π

∫ (1/η)−τ+ε

(1/η)−τ−ε

(t+ τ)2 e−2ηt dt

= 2π e2τη

∫ (1/η)+ε

(1/η)−ε

s2 e−2ηs ds

= e2τη ξ2 e−2ηξ 4πε
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for some ξ ∈ [(1/η) − ε, (1/η) + ε]. Hence,
∫ ∞

−∞
|f ′(x+ iη) + iτf(x+ iη)|2 dx

∫ ∞

−∞
|f(x)|2 dx

= ξ2 e−2ηξ e2τη → 1

e2η2
e2τη as ε→ 0 .

Proof of Theorem 4. We again start with the Paley-Wiener representation
(11) of f(z) and note that

f(z) =

∫ τ

−τ

e−izt ϕ(t) dt =

∫ τ

−τ

eizt ϕ(−t) dt .

Since f(x) is real for real x, we have f(z) ≡ f(z), that is
∫ τ

−τ

eizt
(

ϕ(t) − ϕ(−t)
)

dt = 0 .

Consequently, φ(t) is equal to φ(−t), almost everywhere in (−τ, τ). In particular,
we have

∫ τ

−τ

(τ + t)2 e−2yt |ϕ(t)|2 dt =

∫ τ

−τ

(τ − t)2 e2yt |ϕ(t)|2 dt

=

∫ τ

−τ

(τ + t)2 e−2yt + (τ − t)2 e2yt

2
|ϕ(t)|2 dt .

Applying Parseval’s formula to (29) and using this identity, we obtain
∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|2 dx

= 2π

∫ τ

−τ

(τ + t)2 e−2yt + (τ − t)2 e2yt

2
|ϕ(t)|2 dt

= 2π

∫ 2τ

0

s2 e−2y(s−τ) + (2τ − s)2 e2y(s−τ)

2
|ϕ(s− τ)|2 ds

= 2τ2 e−2τy · 2π
∫ 2τ

0

U
(

y,
s

2τ

)

|ϕ(s− τ)|2 ds , (30)

where U(y, ·) is the function defined in (14).
Consequently, for any real y, we have
∫ ∞

−∞

|f ′(x+ iy)+ iτf(x+ iy)|2 dx

≤ 2 τ2 e−2yτ · max
0≤s≤2τ

U
(

y,
s

2τ

)

· 2π
∫ 2τ

0

|ϕ(s− τ)|2 ds

= 2 τ2 e−2yτ · max
0≤ξ≤1

U(y, ξ) · 2π
∫ τ

−τ

|ϕ(t)|2 dt

and so (15) holds. �
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The following example shows that inequality (15) gives the sharp upper
bound for

∫ ∞

−∞
|f ′(x+ iy) + iτf(x+ iy)|2 dx

∫ ∞

−∞
|f(x)|2 dx

for any real y if f belongs to the Paley-Wiener space Pτ and is real on the real
axis.

Example 5. For any given y, say y = η, there exists ξη ∈ [0, 1] (not
necessarily unique) such that

m(η) := max
0≤ξ≤1

U(η, ξ) = U(η, ξη) = U(η, 1 − ξη) .

First let 0 ≤ ξη < 1/2, so that sη := 2 τξη ∈ [0, τ). Now, for any positive
ε < τ − sη, let

fε(z) :=

∫ sη−τ+ε

sη−τ

eizt dt+

∫ τ−sη

τ−sη−ε

eizt dt .

Then
∫ ∞

−∞
|fε(x)|2 dx = 4πε and, from (30), we have

∫ ∞

−∞

|f ′ε(x+ iη) + iτfε(x+ iη)|2 dx

= 2τ2 e−2ητ 2π
{

∫ sη+ε

sη

+

∫ 2τ−sη

2τ−sη−ε

}

U
(

η,
s

2τ

)

ds .

Since U(η, s/(2τ)) → m(η) as s→ sη or as s→ 2τ − sη, we see that

∫ ∞

−∞
|f ′ε(x+ iη) + iτfε(x+ iη)|2 dx

∫ ∞

−∞
|fε(x)|2 dx

→ 2τ2e−2ητm(η) as ε→ 0 .

In the case where ξη = 1/2 so that sη = τ , we may consider the function

f(z) :=

∫ ε

−ε

eizt dt = 2
sin εz

z
, ε ∈ (0, τ)

to draw the same conclusion.

Proof of Corollary 1. It is clear from (14) that U(y, 0) = U(y, 1) = 1 for
all real y and that U(y, ξ) is an increasing function of y for any ξ ∈ (0, 1). In
particular,

U(y, ξ) ≤ U
( ln 2

2τ
, ξ

) (

−∞ < y ≤ ln 2

2τ

)

.

Since

U
( ln 2

2τ
, ξ

)

= ξ2 4(1−ξ) + (1 − ξ)2 4ξ ,
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it follows from Lemma 2 that max0≤ξ≤1 U(y, ξ) = 1 for all y ≤ (ln 2)/(2τ).
Hence, (15) can be replaced by (15′) for such values of y. �

The next example shows that inequality (15′) does not hold for any y larger
than (ln 2)/(2τ).

Example 6. Let y > (ln 2)/(2τ) and for any ε ∈ (0, τ), let

f(z) :=

∫ ε

−ε

eizt dt = 2
sin εz

z
.

Then
∫ ∞

−∞
|f(x)|2 dx = 4πε and

∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|2 dx = 2π

∫ ε

−ε

(τ + t)2 e−yt dt

so that
∫ ∞

−∞
|f ′(x+ iy) + iτf(x+ iy)|2 dx

∫ ∞

−∞
|f(x)|2 dx

→ τ2 as ε→ 0 ,

which proves our assertion, since τ2 > 2 τ2 e−2τy for any y > (ln 2)/(2τ).

Proof of Corollary 2. First, let us prove (16) for y = 1/τ . In view of (15),
this amounts to showing that max0≤ξ≤1 U(1/τ, ξ) = e2/2. Clearly,

U
(1

τ
, ξ

)

= ξ2 e4(1−ξ) + (1 − ξ)2 e4ξ .

A simple calculation shows that

d

dξ

{

ξ2 e4(1−ξ) + (1 − ξ)2 e4ξ
}

= 2(1 − 2ξ)
{

ξe4(1−ξ) + (1 − ξ)e4ξ
}

.

Since ξe4(1−ξ)+(1−ξ)e4ξ > 0 for 0 ≤ ξ ≤ 1, the function ξ2 e4(1−ξ)+(1−ξ)2 e4ξ

increases from 1 to e2/2 as ξ increases from 0 to 1/2 and then decreases to 1
as ξ increases to 1. Thus, we have

max
0≤ξ≤1

U
(1

τ
, ξ

)

= U
(1

τ
,
1

2

)

=
1

2
e2 . (31)

Let Pτ,R := {f ∈ Pτ : f(x) ∈ R if x ∈ R}. For any function f ∈ Pτ,R, let

If (y) :=

∫ ∞

−∞

|f ′(x+ iy) + iτf(x+ iy)|2 dx (−∞ < y <∞) .

Then, for any f ∈ Pτ,R such that
∫ ∞

−∞
|f(x)|2 dx = 1, inequality (15) in

conjunction with (31), implies that

If

(1

τ

)

≤ τ2 . (32)
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As a special case of (15′), we also have

If

( ln 2

2τ

)

≤ τ2 , (33)

under the same restrictions on f . Inequalities (32) and (33) say that inequality
(16) holds for y = 1/τ and for y = (ln 2)/(2τ). So, in order to prove (16) for
the intermediate values of y it is sufficient to show that If is a convex function
of y. However, this is trivial. Indeed, by the Paley-Wiener representation, there
exists a function ϕ belonging to L2(−τ, τ) such that f(z) =

∫ τ

−τ
eizt ϕ(t) dt,

where ϕ cannot be zero almost everywhere on [−τ, τ ] since
∫ ∞

−∞
|f(x)|2 dx = 1.

Furthermore,

If (y) = 2π

∫ τ

−τ

(t+ τ)2 e−2yt |ϕ(t)|2 dt ,

so that

I ′′f (y) =
d2If
dy2

= 2π

∫ τ

−τ

4 t2 (t+ τ)2 e−2yt |ϕ(t)|2 dt > 0 .

�

Remark. Since (15) is sharp and

max
0≤ξ≤1

U(y, ξ) ≥ U
(

y,
1

2

)

=
1

2
e2τy ,

it follows that

max
0≤ξ≤1

U(y, ξ) =
1

2
e2τy

( ln 2

2τ
≤ y ≤ 1

τ

)

.
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