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In 1994, IBM began to reengineer its global supply chain. It
wanted to achieve quick responsiveness to customers with
minimal inventory. To support this effort, we developed an
extended-enterprise supply-chain analysis tool, the Asset Man-
agement Tool (AMT). AMT integrates graphical process mod-
eling, analytical performance optimization, simulation,
activity-based costing, and enterprise database connectivity
into a system that allows quantitative analysis of extended
supply chains. IBM has used AMT to study such issues as in-
ventory budgets, turnover objectives, customer-service targets,
and new-product introductions. We have implemented it at a
number of IBM business units and their channel partners.
AMT benefits include over $750 million in material costs and
price-protection expenses saved in 1998.

As the world’s largest company pro-
viding computer hardware, soft-

ware, and services, IBM makes a wide
variety of products, including semicon-
ductors, processors, hard disks, personal
computers, printers, workstations, and
mainframes. Its manufacturing sites are

linked with tens of thousands of suppliers
and distribution channels all over the
world. A single product line may involve
thousands of part numbers with multilevel
bills of materials, highly varied lead times
and costs, and dozens to hundreds of
manufacturing and distribution sites
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linked by different transportation modes.
Facing the challenges of increasing compe-
tition, rapid technology advance, and con-
tinued price deflation, the company
launched an internal reengineering effort
in 1993 to streamline business processes in
order to improve the flow of material and
information. The reengineering effort fo-
cused on improving customer satisfaction
and market competitiveness by increasing
the speed, reliability, and efficiency with
which IBM delivers products to the
marketplace.

In 1994, IBM launched an asset-
management reengineering initiative as
part of the overall reengineering effort.
The objectives were to define the supply-
chain structure, to set strategic inventory
and customer-service targets, to optimize
inventory allocation and placement, and to
reduce inventory while meeting customer-
service targets across the enterprise. The
company formed a cross-functional team
with representatives from manufacturing,
research, finance, marketing, services, and
technology. The team identified five areas
that needed modeling support for decision
making: (1) design of methods for reduc-
ing inventory within each business unit;
(2) development of alternatives for achiev-
ing inventory objectives for senior-
management consideration; (3) develop-
ment and implementation of a consistent
process for managing inventory and
customer-service targets, including tool
deployment, within each business unit; (4)
complete evaluation of such assets as ser-
vice parts, production materials, and fin-
ished goods in the global supply network;
and (5) evaluation of cross-brand product
and unit synergy to improve the manage-

ment of inventory and risk.
We developed the Asset Management

Tool (AMT), a strategic decision-support
tool, specifically to address these issues.
The integration of AMT with the other
asset-management reengineering initia-
tives has resulted in the successful imple-
mentation of extended-enterprise supply-
chain management within IBM.
The Asset Management Tool

An extended-enterprise supply chain is
a network of interconnected facilities
through which an enterprise procures,
produces, distributes, and delivers prod-
ucts and services to its customers. As pro-
curement, distribution, and sales have be-
come increasingly global, the supply

A company with an extended
supply chain performs well
only when it collaborates with
its suppliers and resellers.

chains of large companies have become
deeply intertwined and interdependent.
Today’s extended-enterprise supply chains
are in fact networks of many supply
chains representing the interests of many
companies, from supplier’s suppliers to
customer’s customers. Because of this in-
terdependency, a company with an ex-
tended supply chain performs well only
when it collaborates and cooperates ac-
tively with its suppliers and resellers.

In high-technology industries, manage-
ment of the extended-enterprise supply
chain becomes very important. At its best,
it keeps operating costs low and profits
high. But a poorly managed supply chain
can reverse that relationship, eroding prof-
its, compromising innovation, and ham-
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pering business growth. Early in our ef-
forts, we realized that there were two
fundamental keys to overhauling IBM’s
supply chain. First, we had to reduce and
manage uncertainty to promote more ac-
curate forecasts. Second, we had to im-
prove supply-chain flexibility to facilitate
quick adaptation to changes in the market-
place. From the outset, we focused on the
intrinsic interdependency of an extended-
enterprise supply chain. We knew our sys-
tem would perform as desired only if it re-
flected the policies and processes used by
our suppliers and channels, integrating
their value chains with our own. This per-
spective helped to shape our vision: an in-
tegrated modeling and analysis tool for
extended-enterprise supply chains. It
would be a tool with new methodologies
to handle the uncertainties inherent in de-
mand, lead time, supplier reliability, and
other factors. It would be scalable, so that
it could handle the vast amounts of data
describing product structure, supply-chain
processes, and component stock informa-
tion that typify the industry. Finally, the
new tool would be equally effective at
modeling basic types of supply-chain poli-
cies and their interactions, because differ-
ent companies may use different policies.

We designed AMT to address all of
these issues. It is a modeling and analysis
system for strategic and tactical supply-
chain planning that emerged from various
earlier internal IBM reengineering studies
[Bagchi et al. 1998; Buckley 1996; Buckley
and Smith 1997; Feigin et al. 1996]. It sup-
ports advanced modeling, simulation, and
optimization capabilities for quantitative
analysis of multiechelon inventory sys-
tems, along with such features as enter-

prise database connectivity and internet-
based communication. AMT is built on six
functional modules: a data-modeling mod-
ule, a graphical user interface, an experi-
ment manager, an optimization engine, a
simulation engine, and a report generator.

The data-modeling module provides a
relational data interface, including product
structures, lead times, costs, demand fore-
cast and the associated variability informa-
tion. It has built-in explosion of bills of
materials and data-reduction capabilities,
and automatic checks for data integrity. It
provides access to IBM’s global and local
operational databases through data
bridges.

The graphical user interface (GUI) com-
bines supply-chain modeling with dialog-
based entry of supply-chain data. It allows
users to build supply networks by drag-
ging and dropping model components,
such as manufacturing nodes, distribution
centers, and transportation nodes, onto the
work space.

The experiment manager facilitates the
organization and management of data sets
associated with supply-chain experiments.
It allows users to view and interactively
modify parameters and policies. In addi-
tion, it provides automated access to out-
put data generated during experiments
and supports a variety of file-management
operations.

The optimization engine performs
AMT’s main function, quantifying the
trade-off between customer-service targets
and the inventory in the supply network.
This module can be accessed from the GUI
pull-down menu or called by the simula-
tion engine.

The simulation engine simulates the
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performance of the supply chain under
various parameters, policies, and network
configurations, including the number and
location of suppliers, manufacturers, and
distribution centers; inventory and manu-
facturing policies, such as base-stock con-
trol, days of supply, build-to-stock, build-
to-order, and continuous or periodic
replenishment policies. The simulation en-
gine contains an animation module that
helps users to visualize the operation of
the supply chain or vary parameters and
policies while monitoring the simulation
output reports.

The report generator offers a compre-
hensive view of the performance of the
supply chain under study, including aver-
age cycle times, customer-service levels,
shipments, fill rates, and inventory. It also
generates financial results, including reve-
nues, inventory capital, raw-material costs,
transportation costs, and activity-based
costs, such as material handling and
manufacturing.
The Optimization Engine

The central function of the optimization
engine is to analyze the trade-off between
customer-service and inventory invest-
ment in an extended-enterprise supply
chain. The objective is to determine the
safety stock for each product at each loca-
tion in the supply chain to minimize the
investment in total inventory. We view the
supply chain as a multiechelon network in
which we model each stocking location as
a queuing system. In addition to the usual
queuing modeling, we incorporated into
the model an inventory-control policy: the
base-stock control, with the base-stock
levels being decision variables. To numeri-
cally evaluate such a network, we devel-

oped an approach based on decomposi-
tion. The key idea is to analyze each
stocking location in the network individu-
ally and to capture the interactions among
different stocking locations through their
so-called actual lead times.

We modeled each stocking location as a
queue with batch Poisson arrivals and infi-
nite servers with service times following
general distributions, denoted as MX/G/�

in queueing notation. To do this, we had
to specify the arrival and the service pro-
cesses. We obtained the arrival process at
each location by applying the standard
MRP demand explosion technique to the
production structure. The batch Poisson

AMT embodies a creative
coupling of optimization,
performance evaluation, and
simulation.

arrival process has three main parameters:
the arrival rate, and the mean and the var-
iance of the batch size. It thus accommo-
dates many forms of demand data; for in-
stance, demand in a certain period can be
characterized by its minimum, maximum,
and most likely value. The service time is
the actual lead time at each stocking loca-
tion. The actual lead time at a stocking lo-
cation can be derived from its nominal
lead time (for example, the manufacturing
or transportation time) along with the fill
rate of its suppliers. In particular, when a
supplier has a stock-out, we have to add
the resulting delay to the actual lead time.
This delay is the time the supplier takes to
produce the next unit to supply the order.
In our model, we derive the additional de-
lay from Markov-chain analysis.
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With the arrival and service processes in
place, we can analyze the queue and de-
rive performance measures, such as inven-
tory, back-orders, fill rates, and customer-
service levels. The key quantity in the
analysis of a stocking location, i, is the
number of jobs in the MX/G/� queue, de-
noted Ni, which can be derived from stan-
dard queueing results [Liu, Kashyap, and
Templeton 1990]. To alleviate the compu-
tational burden in large-scale applications,
we approximated Ni by a normal distribu-
tion. This way, we need to derive only the
mean and the variance of Ni, both of
which depend on the actual lead time,
which is the service time in the queuing
model. Figure 1 shows a snapshot of the
dynamics at a stocking location.

The objective of the optimization model
is to minimize the total expected inventory
capital in the supply network. This total is
a summation over all stocking locations,
each of which carries two types of inven-

tory: finished goods (on-hand) inventory,
and work-in-process (on-order) inventory.
The constraints of the optimization model
are the required customer-service targets.
They are represented as the probability,
say 95 or 99 percent, that customer orders
are filled by a given due date. Our formu-
lation allows users to specify customer-
service targets separately for each demand
stream. We first derive the fill rates for
each end product to meet the required
customer-service target. These fill rates re-
late to the actual lead times of all up-
stream stocking locations, via the bills-of-
materials structure of the network, and to
the actual lead times. The model thus cap-
tures the interdependence of different
stocking locations, in particular the effect
of base-stock levels and fill rates on
customer-service. Related models in
supply-chain and distribution networks
include those of Lee and Billington [1993],
Arntzen et al. [1995], Camm et al. [1997],

Figure 1: In this snapshot of the system dynamics at a stocking location, the base-stock level is
nine, and when there are four units in stock, the other five units have been supplied to earlier
orders, which translates into the five jobs in process.
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Kruger [1997], Graves, Kletter, and Hetzel
[1998], and Andersson, Axsaeter, and
Marklund [1998].

To allow fast execution of the optimiza-
tion, we derived analytical gradient esti-
mates in closed form and implemented a
gradient search algorithm to generate opti-
mal solutions. Technical details of this
work are presented by Ettl et al. [1998]
and in the Appendix. In addition to the
gradient search, we developed a heuristic
optimization procedure based on product
clustering. To validate the solution ap-
proach, we compared it against exhaustive
searches for test problems of moderate
size. For large-scale, industry-size applica-
tions, the model has been extensively
tested at several IBM business units.
The Simulation Engine

The simulation engine allows users to
simulate various supply-chain policies and
in particular to verify and fine-tune the
performance of the solutions generated by
the optimization engine. We built the
simulation engine upon SimProcess
[Swegles 1997], a general-purpose
business-process simulator that was devel-
oped jointly by IBM Research and CACI
Products Company. The simulation engine
preserves the capabilities of SimProcess
while adding a supply-chain modeling
functionality. Specifically, it provides
modeling functions for the following
supply-chain processes:
—The customer process represents outside
customers that issue orders to the supply
chain, based on the modeled customer de-
mand. It can also model information about
the desired customer-service target and
priority for the customer.
—The manufacturing process models as-

sembly processes, buffer policies, and re-
plenishment policies. It can also be used to
model suppliers.
—The distribution process models distri-
bution centers and can also be used to
model retail stores.
—The transportation process models
transportation time, vehicle loading, and
transportation costs.
—The forecasting process represents prod-
uct forecasts, including promotional and
stochastic demand, for future periods.
—The inventory-planning process models
periodic setting of inventory target levels.
Underlying this process is the AMT opti-
mization engine that computes recom-
mended inventory levels at the various
stocking locations in a supply chain based
on desired customer-service target.

The simulation engine allows the user to
vary a set of input parameters while moni-
toring output reports to obtain the best set
of output values. All input and output pa-
rameters reside in the AMT modeling da-
tabase. Users provide input parameters for
the simulation in the form of random vari-
ables with stochastic distributions; these
include manufacturing lead times, trans-
portation times, material-handling delay
times, demand forecasts, product quantity
required in a bill of material, and supplier
reliability. The stochastic distribution func-
tions supported include beta, Erlang, ex-
ponential, gamma, normal, lognormal,
Poisson, triangular, uniform, Weibull, and
user-defined distributions.

We designed the simulation engine to
enable scenario-based analyses in which
supply-chain parameters, such as the
number and location of suppliers, manu-
facturers, and distribution centers, inven-
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tory levels, and manufacturing, replenish-
ment, and transportation policies
(build-to-plan, build-to-order, assemble-to-
order, continuous replenishment, periodic
replenishment, full truckload, less-than-
truckload, and so forth) are varied across
simulation runs. For each simulation run,
the user can specify a planning horizon,
the number of replicating scenarios (sam-
ple runs), and a warm-up period during
which statistics are not retained. The
length of the planning horizon depends on
the particular application in question and
the availability of historical demand fore-
casts. We typically choose a horizon that is
between six and 12 months.

The simulation-run outcome is in the
form of measurement reports that can be
generated for turnaround times, customer-
service, fill rates, stock-out rates, ship-
ments, revenue, safety stock, and work-in-
process. To analyze financial impacts,
users can employ the following items, all
of which are monitored during the simula-
tion: cost of raw material; revenue from
goods sold; activity-based costs, such as
material handling and manufacturing;
inventory-holding costs; transportation
costs; penalties for incorrectly filled or late
orders delivered to customers; credits for
incorrectly filled or late deliveries from
suppliers; cost of goods returned by cus-
tomers; and credits for goods returned to
suppliers.
System Integration and Technical
Innovations

We integrated the six functional mod-
ules of AMT in a system architecture that
is flexible enough to accommodate users’
varying computational needs. The archi-
tecture is based on a client-server pro-

gramming model in which one can con-
duct experiments using the resources of a
computer network (Figure 2). The AMT
client side provides a set of functions for
viewing the graphical user interface and
dialog-based data entry. The AMT server
side, which typically resides on a powerful
workstation or midrange computer, pro-
vides the full modeling and analysis func-
tionality. For users with access to low-
powered computers, such as laptops, we
developed an architecture in which the
AMT client side is implemented as a
platform-independent Java application or
applet; web-enabled clients allow users to
access AMT through a web browser.

To manage supply-chain operations,
AMT requires data about the different
stages and processes that products go
through. This data is accessible through a
relational modeling database that is con-
nected to the server through a relational
interface. The database stores the informa-
tion associated with the various modeling
scenarios, including the supply-chain
structure, product structure, manufactur-
ing data, and demand forecasts. The prod-
uct structures are derived from a top-
down bills-of-materials explosion that is
processed for each end product. We ex-
tracted all product data from corporate
databases and from local site data sources.

To facilitate data extraction, we devel-
oped a number of database connectivity
modules that provide automated database
access, extract production data, and feed
them into the modeling database. All con-
nectivity modules have built-in bills-of-
materials explosion functionality. To de-
tect inconsistencies in data recording
caused by missing or incomplete informa-
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Figure 2: AMT is implemented using a client-server architecture in which the modeling func-
tionality is separated from the graphical user interface. The modeling engines reside on a
server computer (eServer). The graphical user interfaces are piped to client computers that are
implemented as either Java applications (eManager) or Java applets (eClient). The AMT model-
ing database can be accessed through a relational database interface. It contains such supply
chain data as bills of materials, demand forecasts, lead times, costs, inventory policies, and
customer-service requirements. Local and corporate data bridges provide automated access to
enterprise data sources.

tion pertaining to the bills of materials, we
added database consistency checks that
generate missing data reports and reduce
the data set to a consistent level that can
be downloaded to the modeling database.
The data-collection process allows the user
to supply missing data in relational tables
that can be merged with the output of the
explosion. To keep the complexity of the
bills-of-materials explosion manageable,
we implemented data-reduction routines
through which one can eliminate noncriti-
cal components automatically, based on
the item’s value class or annual require-

ments cost.
AMT’s graphical user interface allows

modelers to build supply networks for a
variety of supply chains by dragging and
dropping generic supply-chain compo-
nents on the workspace (Figure 3). Sophis-
ticated algorithms are encapsulated in the
components. For instance, clicking the
“PSG manufacturing” node will bring up
screens for the user to specify parameters
and policies, such as delay time, manufac-
turing lead times, bills of materials, and
such manufacturing policies as build to or-
der or build to plan. AMT also supports
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Figure 3: AMT provides a graphical user interface that allows one to interactively construct
supply chain scenarios. In this example of an extended-enterprise supply chain, business part-
ners (PSG Business Partners) send orders to a distribution center (PSG Distribution). The dis-
tribution center processes the orders and sends products to a transportation node that ships the
products to the business partners. The distribution center needs to replenish its stock from time
to time, so that it sends replenishment orders to the manufacturing site (PSG Manufacturing)
that assembles finished products. The manufacturing site in turn replenishes its parts supply
by sending orders to its suppliers (PSG Suppliers). An inventory-planning node (PSG Inven-
tory Planning) representing the AMT optimization engine computes optimal inventory levels
for the distribution center based on forecasts of customer demand.

hierarchical process modeling. The user
can drill down to include other layers of
the supply chain, adding scalability to the
modeling approach. The customer node
captures demand, forecast, and customer-
service requirements. We built in anima-
tion to help users visualize the supply-
chain activities of orders, goods, and
trucks moving between nodes. As the
simulation is running, users can view re-
ports, such as service or inventory reports,

to see the current status of the simulation.
In addition to these real-time reports,
AMT also offers the financial and perfor-
mance reports that we discussed earlier.

An important feature of AMT is the
complementary functionality of the opti-
mization and simulation engines. With the
optimization engine, the user can perform
fast yet very deep what-if analyses, which
are beyond the capability of any standard
simulation tool. With the simulation en-
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gine, the user can invoke the inventory
module to perform periodic recalculations
of optimal inventory levels while simulat-
ing dynamic supply-chain processes and
policies. The user can run simulations on
optimized solutions, observing how differ-
ent supply-chain policies at different loca-
tions affect the supply chain’s perfor-
mance. Simulation results can also be used
to adjust parameters of the simulation or
optimization runs. An automated interface
between the simulation engine and the op-
timization engine allows users to invoke
optimization periodically during a simula-
tion run, for example to recalculate target
inventory levels according to the latest
forecast of demand. Users can also use the
optimization engine to periodically gener-
ate build plans in a mixed push-pull
manufacturing environment, taking into
account service targets and system
uncertainty.

In summary, AMT embodies a creative
coupling of optimization, performance
evaluation, and simulation, integrated
with data connectivity and an Internet-
enabled modeling framework. This makes
it a powerful and versatile tool for captur-
ing the stochastic and dynamic environ-
ment in large-scale industrial supply
chains. We model extended-enterprise
supply chains as networks of inventory
queues, using a decomposition scheme
and queuing analysis to capture the per-
formance of each stocking location. We
developed multiechelon, constrained
inventory-optimization algorithms that
use conjugate gradient and heuristic
searches for efficient large-scale applica-
tions. We developed a supply-chain simu-
lation library consisting of an extensive set

of supply-chain processes and policies for
modeling various supply-chain environ-
ments with little programming effort. It of-
fers performance measures, financial re-
ports, and activity-based costing down to
the level of individual stock-keeping units.
It also gives the user a way to validate and
fine-tune supply-chain parameters based
on analytical results.
Extended-Enterprise Supply Chain
Management at IBM Personal Systems
Group

The IBM Personal Systems Group (PSG)
is responsible for the development, manu-
facture, sale, and service of personal com-
puters (for example, commercial desktops,
consumer desktops, mobile products,
workstations, PC servers, network PCs,
and related peripherals). PSG employs
over 18,500 workers worldwide. Sales and
marketing groups are located in major
metropolitan areas, with manufacturing
plants located in the United States, Latin
America, Europe, and Asia. In 1998, PSG
sold approximately 7.7 million computers
under such brand names as IBM PC, Ap-
tiva, ThinkPad, IntelliStation, Netfinity,
and Network Station.

Increased competition from such PC
manufacturers as Dell and Gateway,
which use a direct, build-to-order business
model, prompted PSG in 1997 to reevalu-
ate its business practices and its relation-
ships with its supply-chain partners. The
goal was to design and implement a hy-
brid business model, one that incorporated
the best features of the direct model (build
to order, custom configuration, and inven-
tory minimization) and the best features of
the indirect model (final configuration,
high customer service, and support), sell-
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ing products through multiple channels.
PSG formed a cross-functional team in

April 1997 with the task of quantifying the
relationship between customer service and
inventory throughout the extended supply
chain under the existing business model
and under various proposed channel-
assembly alternatives. We used production
data from a subset of PSG’s commercial
desktop products to develop a baseline
supply-chain model in AMT. The model
was triggered by end-user demand, re-
seller ordering behavior, IBM manufactur-
ing and inventory policies, supplier per-
formance, and lead-time variability. We
collected actual end-user sales data for 22
reseller locations over five months. Resell-
ers’ ordering behavior was influenced by
many factors, such as gaming strategies,
marketing incentives, confidence in sup-
plier reliability, and stocking for large cus-
tomer purchases. Modeling each individ-
ual activity would have been too complex.
Our model captured the aggregate order-
ing for each PSG reseller by substituting
alternative ordering policies, representing
current levels of sales activity in the chan-
nel. For example, if a particular reseller
held an average of 60 days of inventory,
the model established a target base-stock
level representing 60 days of channel in-
ventory for this reseller. To see what
would happen if resellers changed their
ordering policies, we changed the levels of
channel inventory in the AMT model and
ran different what-if scenarios. For each
ordering policy, we assumed that a re-
seller would stock a product at a given
level of days of supply.

During the normal course of business,
PSG forecasts its manufacturing volumes

over a rolling 13-week horizon. The cur-
rent week’s forecast becomes the build
plan, which then pushes products built at
PSG’s manufacturing sites to the distribu-
tion warehouse where they are held until
the products are eventually ordered, or
pulled, by a reseller. This type of replen-
ishment policy captured the logic of PSG’s
hybrid push-pull manufacturing and or-
dering system in which PSG built prod-
ucts to a forecast and held them as fin-
ished goods in the warehouse until it
received orders from its resellers. This sys-
tem is not a true pull system because

PSG’s channel look-back
expenses dropped by more
than $100 million.

product availability influences reseller or-
dering. Likewise, the system is not a true
push system because the backlog of resell-
ers’ orders influences the schedules at PSG
manufacturing sites. To effectively capture
variability caused by component short-
ages, capacity constraints, and require-
ments for minimum lot sizes, we analyzed
the range of the 13-week forecasts.

PSG set a service target for customer de-
liveries of three days, 95 percent of the
time, which translated directly into the
customer-service constraint required by
the AMT optimization engine. Combining
the simulation engine with the optimiza-
tion engine, the model recalculated the
base-stock levels every week, according to
the latest available forecast of demand so
that customer orders could be filled within
three days 95 percent of the time. This re-
plenishment policy formed the basis for
PSG’s supplier orders for components and
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subassemblies and for its subsequent
manufacturing activity. In Phase 1 of the
project, we used a reduced data set to con-
struct a simplified prototype model of
PSG’s supply chain to test assumptions, to
investigate alternative modeling algo-
rithms, and to better understand possible
limitations of the AMT application.

In Phase 2 of the project, we developed
more detailed modeling scenarios to vary
channel inventory and to incorporate a
channel-assembly policy at the resellers.
PSG delivers to its resellers two types of
products, (1) standard machine-type mod-
els (MTMs), which are fully configured
and tested computers, and (2) so-called
open-bay machines, which are nonfunc-
tional, basic computers without such pre-
configured components as memory, hard
files, and CD ROMs. These open bays al-
low resellers to assemble machines accord-
ing to specific customer requirements. We
found that some resellers converted open
bays into standard MTMs as needed and
then sold them to their customers. We re-
fer to this as an example of flexibility be-
cause resellers can use their current open-
bay inventory to fill orders for standard
MTMs, instead of stocking open bays ex-
clusively to fill orders for nonstandard
MTMs. Other resellers stockpiled open-
bay inventory, and if they needed stan-
dard MTMs to fill an order, they would
reorder from PSG instead of configuring
an open bay already in stock (an example
of inflexibility). Both methods affect inven-
tory and customer service. Because reseller
flexibility could not be defined accurately,
we designed different sets of simulation
experiments with the intent to bound, or
frame, the true impact of channel assem-

bly within the two extreme cases of 100
percent reseller flexibility and 100 percent
reseller inflexibility.

We validated the accuracy of the AMT
models by comparing the outputs of the
simulation runs to historical PSG data. We
adjusted our modeling assumptions and
parameters as necessary and ran multiple
simulations using different parameters
and policies. The key results of the study
can be summarized as follows:
—Implementing channel assembly based
on PSG’s existing product structure, low
volume environment, and present supply-
chain policy reduces inventory very little
(inflexible reseller channel behavior).
—Allowing resellers to configure any
MTM from their stock of components
could improve customer service by two
percent and simultaneously reduce inven-
tories by 12 percent (flexible reseller chan-
nel behavior).
—Consolidating the demand at 22 config-
uration sites into three large hubs could
improve customer service by six percent
and reduce inventories by five percent.
—Based on the existing push-pull supply-
chain policy, PSG can reduce channel in-
ventory by 50 percent without affecting its
customer-service level. The overall supply-
chain inventory levels were far in excess
of the optimum needed to maintain PSG’s
service target.

This and subsequent projects brought
together four functional groups—market-
ing and sales, manufacturing, distribution,
and development—to seek a company-
wide consensus on PSG’s strategic direc-
tion and subsequent actions. Our studies
contributed directly to PSG’s advanced
fulfillment initiative (AFI), an effort to in-
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crease flexibility in the reseller channel by
improving parts commonality in PSG’s
product structure [Narisetti 1998]. Also,
PSG management endorsed the reduction
of the number of configuration sites, as a
result of changing channel price-protection
terms and conditions. The specific terms
and conditions were tied to the output of
the AMT model, and they were imple-
mented in November 1997 after a series of
related enhancements to the logistics
process.

PSG has based many of its decisions on
how to prioritize project deployment and
manage channel inventory on the results
of subsequent AMT analyses. While the
analysis that drove PSG’s initial business
transformation was conducted in 1997, the
1998 business benefits were substantial.

The more accurate a reseller’s
forecasts, the higher the level
of service.

PSG reduced its overall inventory by over
50 percent from year-end 1997 to year-end
1998. As a direct consequence of this in-
ventory reduction, PSG’s channel look-
back expenses dropped by more than $100
million from 1997 levels. Look-back ex-
penses account for payments to distribu-
tors and business partners that compen-
sate for price actions on the inventory they
are holding. In addition, by selling prod-
ucts four to six weeks closer to when the
components are procured, PSG saved an
additional five to seven percent on prod-
uct cost. This equates to more than $650
million of annual savings.

In the months following the original as-
sessment, we conducted further supply-

chain studies, including analyses that (1)
incorporated the supply chains of business
partners; (2) modeled additional geogra-
phies; (3) assessed the impact on inventory
and customer service of delaying final as-
sembly to the reseller’s distribution facili-
ties; and (4) estimated the impact on in-
ventory of reducing manufacturing cycle
times. These studies have helped PSG’s
business partners make more informed de-
cisions on supply-chain policy. In particu-
lar, they have led IBM and its major busi-
ness partners to establish a colocation
policy. In colocation, a business partner lo-
cates its distribution space inside of IBM,
eliminating the need for costly handling
and transportation among different sites.
Finally, because we found that forecast ac-
curacy greatly affected inventory and cus-
tomer service, PSG used the AMT to de-
termine the level of service it would
promise to its business partners, based on
their ability to provide accurate forecasts.
The more accurate a reseller’s forecasts,
the higher the level of service PSG would
provide to that reseller. This policy is un-
precedented in the industry and has been
favorably received by PSG’s business part-
ners. Overall, PSG believes that the AMT
has been an invaluable asset in developing
and implementing world-class supply-
chain-management policies.
Other AMT Applications Across IBM

AMT has also been applied and de-
ployed in other IBM manufacturing divi-
sions, including the printing systems divi-
sion (PSC), the midrange computer
division (AS/400), the office workstation
division (RS/6000), the storage systems di-
vision (SSD), the mainframe computer di-
vision (S/390), and PSG’s European mar-
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ket. A number of PSG’s business partners
have used AMT, including Pinacor, GE
Capital, and Best Buy. IBM’s Industry So-
lution Unit uses the tool externally for
consulting engagements. Following are
brief descriptions of three recent AMT
engagements:

The IBM Printing Systems Company
(PSC) is a leading supplier of printer solu-
tions for business enterprises. The product
line includes printers for office printing to
high-volume production printing. The
company employs approximately 4,550
people, with total gross revenue for 1998
of $1.95 billion. In 1996, PSC conducted an
intensive testing process on the AMT over
a five-month period. In its assessment re-
port, the testing team concluded that AMT
produces accurate results, provides pro-
ductivity improvements over existing

Financial savings amount to
more than $750 million at PSG
in 1998.

supply-chain-management and inventory
tools, and improves PSC’s precision in val-
idating and creating inventory budgets
and turnover objectives. PSC then used
AMT to study the effects of forecast accu-
racy, product structure, the introduction of
a new distribution center, and different
business scenarios on the performance of
the supply network for different product
families. In one of the cases alone, it re-
ported inventory savings of $1.6 million,
which represented 30 percent of the total
inventory holding cost.

IBM’s AS/400 division manufactures
midrange business computers and servers,
providing more than 150 models and up-

grades with up to 1,000 features. Assem-
bling these systems requires several thou-
sand unique part numbers, approximately
1,000 of them used at the highest level of
assembly just prior to building a complete
system. Providing customers with the flex-
ibility to customize the equipment they or-
der by selecting features creates manufac-
turing complexity and efficiency
challenges. The division used AMT to ana-
lyze and quantify the impact on inventory
and on-time delivery of feature reduction,
feature substitution, parts commonality,
and delayed customization. The analysis
showed that eliminating low-volume parts
would improve inventory turnover by 15
percent and that substituting and postpon-
ing their final assembly would improve in-
ventory turnover by approximately 30 per-
cent. The AS/400 division has reduced its
feature count by approximately 30 percent
since 1998 with steady growth in total
revenue.

In 1995, IBM established a quick-
response service program to provide rapid
delivery for customers buying selected
mid-range computer memory, storage,
and features. In September 1998, IBM in-
stituted the quick-response program as a
front end to provide real e-commerce for
our large business partners. IBM used
AMT to analyze the trade-off between ser-
vice and inventory in choosing an opti-
mum performance point. It later used it to
assess the impact of the quick-response
program on allocating inventory between
manufacturing and distribution centers.
The results helped IBM to maximize busi-
ness efficiency and contributed to dou-
bling the growth of quick-response reve-
nue in 1998.
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Conclusions
The AMT effort uses advanced OR tech-

niques and combines technical innovations
with practical and strategic implementa-
tions to achieve significant business im-
pacts. IBM has used AMT to address a
wide range of business issues, including
inventory management, supply-chain con-
figuration, product structure, and replen-
ishment policies. AMT has been imple-
mented in a number of IBM business units
and their business partners. Financial sav-
ings through the AMT implementations
amount to more than $750 million at PSG
in 1998 alone. Furthermore, AMT has
helped IBM’s business partners to meet
their customers’ requirements with much
lower inventory and has led to a co-
location policy with many business part-
ners. It has become the foundation for a
number of supply-chain-reengineering ini-
tiatives. Several IBM business partners
view the AMT analyses as key milestones
in their collaboration with IBM in optimiz-
ing the extended-enterprise supply chain.
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APPENDIX
Optimization of Multi-Echelon Supply
Networks with Base-Stock Control

Here we provide a brief overview of the
key points of the mathematical model in
the optimization engine. Ettl, Feigin, Lin
and Yao [1998] give the full details, in-
cluding topics that we do not touch upon
here, such as the treatment of nonstation-
ary demands, the related rolling-horizon
implementation, the derivation of the gra-
dients, and many preprocessing and post-
processing steps.

We specify the configuration of the sup-
ply network using the bills-of-materials
structure of the products. Each site in the
network is either a plant or a distribution
center. Associated with each site and each
product processed at the site is a multi-
level bill of material. Each site has storage
areas, which we refer to as stores, to hold
both components that appear on the bills
of materials and finished products, which
correspond to input stores and output
stores. The subscripts i and j index the
stores, and S denotes the set of all stores
in the network. We assume a distributed
inventory-control mechanism whereby
each store follows a base-stock control pol-
icy for managing inventory. The policy
works as follows: When the inventory po-
sition (that is, on-hand plus on-order mi-
nus backorder) at store i falls below some
specified base-stock level, Ri, a site places
a replenishment order. In our model, Ri is
a decision variable.

For each store i, there is a nominal lead
time, Li, with a given distribution. The
nominal lead time corresponds to the pro-
duction time or transshipment time at the
site where the store resides, assuming
there is no delay (due to stock-out) in any
upstream output stores. The actual lead
time, L̃i, in contrast, takes into account
possible additional delays due to stock-
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out. Whereas Li’s are given data, L̃i’s are
derived performance measures.

To analyze the performance of each
store i, we use an inventory-queue model,
for example, Buzacott and Shanthikumar’s
[1993]. Specifically, we combine the base-
stock control policy with an MX/G/�
queue model, where arrivals follow a Pois-
son process with rate ki, and each arrival
brings in a batch of Xi units, or orders. The
batch Poisson arrival process is a good
trade-off between generality and tractabil-
ity. In particular, it offers at least three pa-
rameters to model the demand data: the
arrival rate and the first two moments of
the batch size (whereas a simple Poisson
arrival process has only one parameter).

To derive the performance measures at
each store i, we need to first generate the
input process to the MX/G/� queue. To
do this, we take the demand stream (fore-
cast or real) associated with each class,
translate it into the demand process at
each store by going through the bills-of-
materials structure level by level, and shift
the time index by the lead times at each
level. This process is quite similar to the
explosion and offsetting steps in standard
MRP analysis. A second piece of data
needed for the MX/G/� queue is the ser-
vice time, which we model as the actual
lead time.

Let Ni be the total number of jobs in the
queue MX/G/� in equilibrium. Following
standard queueing results [Liu, Kashyap,
and Templeton 1990], we can derive the
mean and the variance of Ni, denoted as li

and . We then approximate Ni with a2ri

normal distribution:

N � l � rZ, (1)i i i

where Z denotes the standard normal var-
iate. Accordingly, we write the base-stock
level as follows:

R � l � k r , (2)i i i i

where ki is the so-called safety factor. As Ri

and ki relate to each other via the above
relation, either can serve as the decision
variable. Let Ii be the level of on-hand in-
ventory, and Bi the number of back-orders
at store i. These relate to Ni and Ri as
follows:

�I � [R � N ]i i i

�and B � [N � R ] , (3)i i i

where [x]� � max(x,0). We can then de-
rive the expectations:

E[I ] � rH(k ), and E[B ] � rG(k ) (4)i i i i i i

where
�

H(k ) � (k � z)�(z)dz andi i�
ki

�

G(k ) � (z � k )�(z)dz, (5)i i�
ki

and �(z) � exp(�z2/2)/ is the density2p�
function of Z. Furthermore, writing U(x)
� �(z)dz, the distribution function of Z,x�0

and � 1 � U(x), we can derive theŪ(x)
stock-out probability pi and the fill rate fi
at store i as follows:

¯p � U(k ), andi i

¯f � 1 � r�(k )/l � U(k ). (6)i i i i i

All of the above performance measures
involve the actual lead time at store i,
which can be expressed as follows:

L̃ � L � max(s ), (7)i i j
j�S�i

where S�i denotes the set of stores that
supply the components needed to build
the units in store i, and sj denotes the ad-
ditional delay at store j � S�i. As sj is
quite intractable in general, with queueing
analysis, we have derived the following
approximation:

E[B ]j˜s � L r where r : � . (8)j j j j p (R � 1)j j

Intuitively, E[Bj]/pj is the average number
of back-orders at location j conditioned
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upon a stock-out there, and each of these
back-orders requires an average time of
L̃j/(Rj � 1) to fill, that is, during the stock-
out, on the average, there are (Rj � 1) out-
standing orders in process.

Customer demands are supplied from a
set of end stores, S0, stores at the bound-
ary of the network. Consider a particular
customer class, and suppose its demand is
supplied by one of the end stores, i � S0.
Let Wi denote the waiting time to receive
an order. The required customer-service
target is

P[W � b ] � � , (9)i i i

where bi and �i are given data. When the
demand is supplied from on-hand inven-
tory, the delay is simply the transportation
time Ti, time to deliver the finished prod-
ucts to customers, which is given; other-
wise, there is an additional delay of sj.
Hence,

P[W � b ] � f P[T � b ]i i i i i

� (1 � f )P[T � s � b ].i i i i

For the above to be at least �i, we need to
set fi, the fill rate, to the following level:

� � P[T � s � b ]i i i if � . (10)i P[T � b ] � P[T � s � b ]i i i i i

The quantity si involved in the right-
hand side of the above equation can be ex-
pressed as si � L̃i ri, following (8). Since ri

involves Bi and Ri, both of which are func-
tions of ki, and so is fi, we need to solve a
fixed-point problem defined by the equa-
tion in (8) to get fi (or ki). In the iterations
involved in the optimization procedure,
however, this fixed-point problem can be
avoided by simply using the ri value ob-
tained from the previous iteration. Once
we derive fi and ki, the base-stock level (2)
and the stock-out probability (6) then
follow.

The objective of our optimization model
is to minimize the total expected inventory
capital throughout the supply network

while satisfying customer-service require-
ments. Each store has two types of inven-
tory: on-hand inventory and work-in-
process (WIP) inventory. (The WIP
includes the orders in transition, that is,
orders being transported from one store to
another.) From the above discussion, the
expected on-hand inventory at store i is
E[Ii] � riH(ki), and the expected WIP is
E[Ni] � li. Therefore, the objective func-
tion takes the following form:

C(k) � [c�l � c rH(k )], (11)� i i i i i
i�S

where c�i and ci denote the inventory capi-
tal per unit of the on-hand and WIP in-
ventory, respectively, with ci assumed
given, and c�i derived from the ci’s along
with the BOM. We want to minimize C(k),
subject to meeting the fill-rate require-
ments in (10), for all the end stores: i � S0

� S. This is a constrained nonlinear opti-
mization problem. We derive the partial
derivatives �/�kj C(k), all in explicit analyt-
ical forms based on the relations derived
above (and others). We use these in a
conjugate-gradient search routine, for ex-
ample that of Press et al. [1994]. As the
surface of the objective function is quite
rugged, to avoid local optima, we also im-
plemented several heuristic search proce-
dures. For instance, evaluate a set of ran-
domly generated initial points and pick
the best one (in terms of the objective
value) to start the gradient search.
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Bob Moffat, general manager for manu-

facturing, procurement, and fulfillment at
IBM Personal Systems Group, said during
the presentation of the paper at the Edel-
man competition: “We reduced our chan-
nel inventory from over three months to
approximately one month. As a direct con-
sequence of this inventory reduction, our
division has reduced 1998 price protection
expenses by over $100M from the previ-
ous year. Price protection expenses are
what we reimburse business partners
whenever we take a price action on prod-
ucts they are holding. We had reduced our
end-to-end inventory from four and a half
months to less than two months by the
end of 1998. By closing the gap between
component procurement and product sale
by four to six weeks, there is a savings on
product cost of at least five percent. This
equates to more than $650 million of an-
nual savings. AMT has improved our rela-
tionships with business partners, making
them more efficient, more productive, and
ultimately more powerful in the market-
place. I believe this will lead to a funda-
mental change in our business culture, a
unification of basic value among suppliers,
manufacturers, and resellers.”

Jean-Pierre Briant, IBM vice president
for integrated supply chain, further ex-
plained: “The AMT tool has found appli-
cation in almost every supply chain within
IBM. It helps us understand our extended
supply chain—from our suppliers’ sup-
pliers to our customers’ customers. We
have deployed the AMT tool to assist ex-
ternal companies in managing their sup-
ply chains, with very effective results.”

Jim Manton, president and COO of
Pinacor, said: “The results that the [AMT]
team delivered on the supply chain analy-
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sis helped Pinacor identify opportunities
for optimizing the product flow between
our companies. . . . I am pleased to see that
both IBM and Pinacor are focusing on the
recommendations to make the necessary
improvements. . .”.

Mac McNeill, senior vice president of
global operations for GE Capital IT Solu-
tions, who sponsored a four-month project
using the AMT to model GE Capital’s
personal-computer supply chain com-
mented: “The modeling allowed us to de-
velop a base case using actual end-user
customer sales and then to quickly model
and optimize many alternatives based on
various levels of GE forecast accuracy,
IBM fill rates, transit times, in-bound and
out-bound delays, and commonality of
parts. The optimization results will allow
us to develop action plans to balance im-
proved levels of serviceability with lower
levels of inventory.”
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The semiconductor firm Xilinx uses two different postpone-
ment strategies: product postponement and process postpone-
ment. In product postponement, the products are designed so
that the product’s specific functionality is not set until after the
customer receives it. Xilinx designed its products to be pro-
grammable, allowing customers to fully configure the function
of the integrated circuit using software. In process postpone-
ment, a generic part is created in the initial stages of the manu-
facturing process. In the later stages, this generic part is cus-
tomized to create the finished product. Xilinx manufactures a
small number of generic parts and holds them in inventory.
The use of these generic parts allows Xilinx to hold less inven-
tory in those finished products that it builds to stock. And for
some finished products, Xilinx can perform the customization
steps quickly enough to allow it to build to order.

High technology industries, such as
semiconductors and computers, are

characterized by short product life cycles
and proliferating product variety. Faced
with such challenges, companies in these
industries have found that delaying the

point of product differentiation can be an
effective technique to cut supply-chain
costs and improve customer service. This
postponement technique is a powerful
way to enable cost-effective mass customi-
zation [Feitzinger and Lee 1997]. To use
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postponement effectively, companies must
carefully design their products and pro-
cesses. Through careful design of the
product and the process, many electronics
and computer companies have been able
to delay the point of product differentia-
tion, either by standardizing some compo-
nents or processes or by moving the cus-
tomization steps to downstream sites, such
as distribution centers or retail channels.
Lee [1993, 1996]; Lee, Billington, and
Carter [1993]; Lee, Feitzinger, and
Billington [1997]; and Lee and Sasser
[1995] give examples.

Postponement concepts have also been
applied in other industries, such as the au-
tomobile industry [Whitney 1995] where
product modularity enables delayed cus-
tomization of auto parts. Indeed, Ulrich
[1995] showed that a high degree of prod-
uct modularity coupled with component-
process flexibility could render postpone-
ment possible and effective. Lee,
Padmanabhan, and Whang [1997] also
said that both product and process modu-
larity support postponement. Modular de-
signs for products or modular processes (a
manufacturing process that can be broken
down into subprocesses that can be per-
formed concurrently or in different se-
quential order) are techniques that enable
postponement.

The semiconductor industry has been
plagued by a proliferation of product vari-
ety because of the overlapping product life
cycles—companies introduce new or en-
hanced versions of products before exist-
ing products reach the ends of their life
cycles. In the programmable-logic segment
of the industry, new customers will use
the enhanced versions in their products,

but some existing customers may delay
adopting the new versions despite their
improved performance and price. Periods
of appreciable demand for a version of a
product may range from six months to
two years, with products sometimes hav-
ing an extended period of very low end-
of-life demand. Thus, semiconductor
companies must offer many products si-
multaneously. The product-variety prob-
lem is compounded by unpredictable de-
mands and long manufacturing lead
times.

Semiconductor firms face unpredictable
demand, in large part, because of their up-
stream position in the supply chain. An
integrated circuit (IC) made by a semicon-
ductor firm is a component of other subas-
semblies or final products. Thus, it must
pass through other companies, such as
contract manufacturers, distributors, and
resellers, before the final product reaches
the end consumer. Lee, Padmanabhan,
and Whang [1997] describe the “bullwhip
effect” in which demand fluctuations in-
crease as you travel upstream in the sup-
ply chain. Since semiconductor firms are
located far upstream in the supply chain,
they often face such large fluctuations.

Manufacturing cycle times in the semi-
conductor industry are still very long de-
spite advances in the process technology.
The manufacturing process, consisting of
wafer fabrication, packaging, and testing,
takes about three months. With such
long manufacturing lead times, the semi-
conductor companies must hold large
inventories of finished goods or their
customers—computer assemblers, telecom-
munication manufacturers, or other elec-
tronics manufacturers—must hold large



XILINX

July–August 2000 67

inventories to hedge against demand
uncertainties.

Product variety, long production lead
times, and demand unpredictability nega-
tively affect the manufacturing efficiency
and performance of both semiconductor
companies and their customers. These
characteristics also affect the customer’s
product-development processes. For ex-
ample, one part of a telecommunications-
equipment manufacturer’s product-
development process might be the custom

Semiconductor companies
offer many products
simultaneously.

design of application-specific integrated
circuits (ASICs). The design process often
includes creating a number of prototypes
before settling on a final working design.
Because of the long production times,
there is often a significant delay between
designing and receiving prototypes. Since
time to market is a key factor in the suc-
cess of high-tech products, this delay may
be very costly for the manufacturer. To
compress the cycle, such manufacturers
may request many prototypes towards the
beginning of the design process, resulting
in additional design and development
costs.

Product variety, long lead times, and
demand unpredictability are all unavoid-
able and problematic characteristics of the
semiconductor industry. However, some
companies are finding new ways to cope
with them. Xilinx, Inc., uses innovative de-
sign principles of postponement to avoid
excessive inventory while providing great
service to its customers. It uses both prod-

uct and process postponement exten-
sively.

In product postponement, the firm de-
signs the product so that it can delay its
customization, often by using standard-
ized components. Xilinx relies on a more
extreme form of product postponement.
Instead of the firm performing the final
configuration during manufacture or even
distribution, it designs the ICs so that its
customers perform the final configuration
using software. Consequently, Xilinx
greatly shortens the product-development
cycles of its customers, as the customers
do not have to specify the full features
and functionalities of the ICs before
production.

Using proprietary design technologies,
Xilinx creates many types of ICs, differen-
tiated by such general features as speed,
number of logic gates, package type, pin
count, and grade. Although the customers
perform the final configuration of the
logic, they must order products with the
appropriate general features. For example,
a customer with a large and complex de-
sign requiring high speed must select a
physical device type with a large number
of logic gates and a high speed. Later the
customer can configure the logic of the de-
vice using software, creating an enormous
number of possible designs. Product post-
ponement is very suitable for programma-
ble devices because a near-infinite number
of designs can be created from a few thou-
sand physical-product permutations.

In process postponement, the firm de-
signs the manufacturing and distribution
processes so that it can delay product dif-
ferentiation, often by moving the push-
pull boundary or decoupling point toward
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the final customer. A push-pull boundary
is the point in the manufacturing-and-
distribution process at which production
control changes from push to pull. Early
in the process, prior to the push-pull
boundary, the firm builds to forecast.
Later in the process, after the push-pull
boundary, it builds to order. Often, pro-
cess designs allow manufacturers to
change their push-pull boundaries. A
highly celebrated example of process post-
ponement is the case of Benetton, which
used to make sweaters by first dyeing the
yarns and then knitting them into finished
garments of different colors. Its push-pull
boundary used to be at finished sweat-
ers—all production was built to forecast.
Benetton resequenced its production pro-
cess so that it first knits undyed garments,
and then dyes them (and thereby custom-
izes them to the different color versions)
on demand. Hence, its new push-pull
boundary is between knitting and dyeing
[Dapiran 1992].

To improve its manufacturing process,
Xilinx focused on creating a new push-
pull boundary, working with its suppliers.
Rather than going through all the steps to
create an IC in its finished form from a
raw silicon wafer, Xilinx divides the pro-
cess in two stages. In the first step, its
wafer-fabrication supply partners manu-
facture unfinished products, called dies,
and hold inventory of this material. This
inventory point is the push-pull boundary.
Based on actual orders from the custom-
ers, another set of supply partners pull
dies from inventory and customize them
into finished ICs.
The Xilinx Supply Chain

Digital semiconductor devices can be

broadly grouped into three categories:
memory, microprocessors, and logic.
While the general-purpose microproces-
sors can execute almost any logical or
mathematical operation, logic devices pro-
vide specific functionality at lower cost
and greater speed. However, the tradi-
tional method of defining the functions of

Xilinx was one of the first to
use a virtual business model.

a logic device is to configure it during the
fabrication process. Recently, with the in-
troduction of programmable logic devices,
it has become possible to customize a ge-
neric but more expensive logic device us-
ing software after the logic device has
been completely manufactured and
packaged.

Founded in 1984, Xilinx developed the
field-programmable gate array (FPGA), a
programmable logic device, and it has be-
come one of the two largest suppliers of
programmable logic solutions in the
world. The company’s revenues in 1997
were $611 million and the gross margin
was around 62 percent. Xilinx was one of
the first semiconductor companies to use a
virtual business model: it subcontracts out
logistics, sales, distribution, and most
manufacturing to long-term partners. Xil-
inx’s only manufacturing facilities are its
California and Ireland facilities that just
perform some final testing. It meets about
74 percent of its total demand through dis-
tributors, whose expertise has evolved be-
yond traditional warehousing and inven-
tory management to include engineering
functions, such as helping customers de-
sign Xilinx parts into their systems. Xilinx
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keeps certain core functions in-house, such
as technology research, circuit design,
marketing, manufacturing engineering,
customer service, demand management,
and supply-chain management. This vir-
tual business model provides Xilinx with a
high degree of flexibility at low cost. Its
partners benefit because Xilinx uses stan-
dard manufacturing and business pro-
cesses and aggressively drives process im-
provements through technical innovation
and re-engineering. Although the virtual
model has strategic risks (the core compe-
tencies becoming commodity-like) and op-
erational risks (unexpected lack of avail-
able capacity at suppliers), it has proven
highly successful in the industry [Lineback
1997].

Today, most of Xilinx’s competitors
have access to the same fabrication process
technology through their own wafer-
fabrication partners. The technology and
manufacturing gap between members of
the industry is closing. Consequently, Xil-
inx sees management of the demand-and-
supply chain as providing it with a com-
petitive advantage in the market. In 1996,
Xilinx executive management initiated a

major initiative to overhaul the company’s
practices and processes for managing sup-
ply and demand.

In the Xilinx supply chain, the flow of
materials begins with the fabrication pro-
cess (front end), where raw silicon wafers
are started and manufactured using hun-
dreds of complex steps that typically take
two months (Figure 1). Anywhere from 20
to 500 integrated circuits come from each
fabricated wafer. In the last process steps
of the front end, the wafers are sorted and
tested for basic electrical characteristics.
Although precise information is not avail-
able until the final test after assembly, this
step provides some useful indications of
the proportion of good integrated circuits
on the wafer and the speed mix that they
are likely to yield. After sorting and pre-
liminary testing, wafers are stored in in-
ventory—the die-bank. Planning wafer
starts to ensure proper die-bank inventory
is a major challenge, requiring such infor-
mation as demand forecasts, projected
yields, and work in process to determine
the volume and mix of wafers needed to
meet the demand and inventory tar-
gets.

Figure 1: In the Xilinx supply chain, supply partners perform the wafer fabrication and assem-
bly, while Xilinx manages production levels and the inventory levels in die bank and finished
goods. After production, a distributor buys the integrated circuits and supplies them to original
equipment manufacturers that incorporate the integrated circuit into their products. Consumers
purchase the products through retailers. Triangles represent inventory stocking locations, and
squares represent manufacturing processes.
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The next link in the supply chain is the
back end, a term that refers to both the as-
sembly and test processes. In the back-
end, wafers are first cut into dies, or indi-
vidual “raw” integrated circuits. There are
approximately 100 different types of dies.
To be usable, the integrated circuits must
be placed in a package, a plastic casing
with electric lead pins, that allows them to
be later mounted in a circuit board. There
are usually about 10 to 20 package types
from which a customer can select for a
given die. The dies are wire bonded to
form a permanent electrical contact with
the package. The packaged dies are then
tested electrically to determine if they
meet stringent design and quality require-
ments and to determine their speed. There
are usually about five to 10 different possi-
ble speed grades. The packaged devices
that pass the quality tests are then stored
in finished-goods inventory. With lead
times of three weeks for assembly and
test, planning of back-end starts is diffi-
cult, requiring information on both the
backlog of orders and demand forecasts.
One complexity involves the issue of de-
vice speed. Although Xilinx understands
the expected fraction of dies that will yield
to each speed level, the actual fraction for
any given die is different. Thus, planning
using the expected fraction of dies at each
speed level will often result in a mismatch
of supply and demand. To meet the de-
mand, Xilinx will start more material in
the back end and pick wafers intelligently
using measurements collected in the
fabrication-and-sort step.

Most Xilinx customers are serviced
through distributors who maintain inven-
tories of Xilinx finished-goods parts. The

advantages distributors provide to Xilinx
are that they have cost-effective means for
handling large numbers of small to
medium-size customer orders and they of-
fer such value-added services as inventory
consolidation, inventory management, and
procurement-program support. The cost of
Xilinx is that they add an extra link to the
supply chain, causing a potential distor-
tion in demand information. The lack of
end-demand visibility can be partially off-
set when distributors provide Xilinx with
systematic data regarding point of sale
(POS), bookings, backlog, and inventory.
Most Xilinx customers are original equip-
ment manufacturers (OEMs) that put one
or more Xilinx parts on a circuit board and
then assemble a large system using the
board and other components. The OEMs
then sell these systems to other customers
using various marketing and distribution
channels. The Xilinx supply chain is fur-
ther complicated by the practice of many
OEMs of subcontracting the board assem-
blies to specialized vendors.

On-time delivery is emphasized at Xil-
inx. As a result, Xilinx has often resolved
the trade-off between inventory and on-
time delivery by adding inventory. One of
the key goals of the supply-chain-
management initiative is to achieve the
same levels of customer service with lower
inventory costs throughout the supply
chain.
Product Postponement: The
Programmable Logic Devices

Before recent developments in program-
mable logic, logic devices were primarily
ASICs in which the logic was built in dur-
ing wafer fabrication. Typically, the OEM
customer would design an ASIC as part of
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a larger design of the system board on
which the ASIC would be mounted. The
OEM customer submitted a design for the
ASIC to a semiconductor manufacturer,
who fabricated a prototype of the device
according to design specifications. The
characteristics of ASICs were fully deter-
mined during fabrication, and hence the
OEM customer receiving an ASIC could
use it only for the intended design. Yet,
because of changes in the system specifica-
tions or design flaws, design iterations
were very common in such product-
development projects in the high-
technology industries (Figure 2). Any
change in the design of an ASIC required
both modifying the semiconductor-
fabrication process and manufacturing ad-
ditional prototype ASICs using the modi-
fied process. A change in the fabrication
process could cost hundreds of thousands
of dollars and manufacturing prototype
ASICs could take over three months. As a
result, design iterations in systems using
ASICs were very time consuming
[Trimberger 1994].

With programmable logic devices, the
OEM customer receives a “generic” de-
vice. These devices are not completely ge-
neric—each type has features that cannot

be customized. Thus, once a customer
chooses a generic die type, the customer
can customize within a certain range of
parameters. The features that create these
hard design limits include die packaging,
speed grade, maximum number of logic
gates, voltage, power, maximum die input
and output, and software programming
methodology:
—The customer chooses from a set of pos-
sible package types and lead-pin counts.
Different packages have different thermal
and protective properties and have differ-
ent maximum electrical input and output
characteristics.
—The customer chooses from a set of
speed grades, each of which produces a
different clock rate. Higher speeds may be
required for some applications.
—The customer chooses from a set of pos-
sible device sizes, specified by the number
of logic gates. The number of logic gates
determines the size and complexity of the
logic design that can be implemented.
—The customer selects from a variety of
voltages used to power the device (usually
2.5 V, 3.3 V, or 5V).
—Each generic device type has different
power constraints.
—Each generic device has different maxi-

Figure 2: When building a system using an ASIC, the manufacturer incorporates the logic when
the integrated circuit is manufactured. Thus, the designer must wait for a new integrated circuit
to be manufactured to make design changes.
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mum input and output electrical charac-
teristics, for example, the maximum level
of current that the device can put out.
—The customer may select a device that
uses a familiar programming
methodology.

Although the customer must decide on
some characteristics in advance, the essen-
tial characteristic of the final device, the
logic function of the device, is not defined
in physical processing. Instead, the OEM
customer programs, in minutes or hours,
the programmable logic device using soft-
ware running on a personal computer. The
user downloads the information into the
generic die and thus completes a fully cus-
tomized logic device. With such a pro-
grammable logic device, the process for
designing an end system is now dramati-
cally different (Figure 3). Each design iter-
ation takes less time as does the overall
design and development process.

Besides shortening the design-process
time, product postponement can improve
the operational efficiency of the supply
chain by reducing the procurement lead
times. ASIC suppliers often operate under
a build-to-order system, not maintaining

finished-goods inventory (but they may
have some in-process inventory). As a re-
sult, the procurement lead times for OEM
customers are sometimes two to three
months long. Since accurate forecasting of
demand at the specific ASIC device level
over such a long horizon is difficult, OEM
customers using ASICs often keep large
inventories of the ASICs. Programmable
logic suppliers can afford to keep inven-
tory in finished-goods form or in the die
bank because programmable logic devices
are more generic with more predictable
demand. Thus, lead times for procuring
programmable logic devices are in days or
weeks so OEM customers who use them
need less inventory.

In-system programming (ISP) allows
even greater product postponement. With
this capability, customers can easily pro-
gram or reprogram the logic even after the
device is installed in the system (Figure 4).
For example, electronic systems such as
multi-use set-top boxes, wireless-telephone
cellular base stations, communications sat-
ellites, and network-management systems,
can now be fixed, modified, or upgraded
after they have been installed.

Figure 3: When building a system with a programmable logic device, the customer incorporates
the logic using software after the integrated circuit is manufactured. Thus, design changes can
be made quickly using software. In contrast to Figure 2, the steps “manufacture logic IC” and
“design system” are reversed.
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Figure 4: In a system built with a programmable logic device with in-system programming
capability, the logic can be incorporated after the system is set up with the customer.

Process Postponement: The Die Bank as
the Push-Pull Boundary

The use of product postponement al-
lows Xilinx’s customers to create a near-
infinite number of different products (dif-
ferent logic designs) from a few thousand
types of physical products (Xilinx finished
goods). However, since demand for each
finished good is usually very uncertain
and manufacturing takes around three
months, achieving excellent service with
reasonable overall inventory levels was a
challenge with this many different fin-
ished goods. Since many of the finished
goods use the same type of die, Xilinx rec-
ognized an opportunity to implement pro-
cess postponement to simultaneously re-
duce inventory and increase service
responsiveness.

Its revised process using postponement
works as follows. Instead of using the pro-
jected demands for individual finished
goods to determine production at the front
end, Xilinx aggregates the demands for
finished goods into die demands and uses
the projected die demands to determine
the front-end production starts. After com-

pleting the front-end stage, it decides how
to customize the dies into different fin-
ished goods in the back-end stage. It thus
postpones product differentiation, moving
it from the beginning to the end of the
front-end stage. It still bases customization
in the back-end stage on demand forecast
(push), with inventory being held in
finished-goods form. Thus, the push-pull
boundary remains at the end of the pro-
cess. Since the point of product differentia-
tion moves forward but the push-pull
boundary is still at the end of the process,
we refer to this approach as partial post-
ponement. Eppen and Schrage [1981] ini-
tially proposed this approach in a multi-
level distribution setting; it is equally
applicable to this manufacturing setting.

Although partial postponement pro-
vides benefits, moving the push-pull
boundary to an earlier point in the process
can increase them. In full die-bank push-
pull postponement, the generic dies are
held in inventory (the die bank) immedi-
ately after the front-end stage, and this die
bank becomes the new push-pull bound-
ary. No inventory is held in finished-
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goods form; instead, the dies are custom-
ized according to customer orders.

We compared die-bank push-pull post-
ponement and the no-postponement ap-
proach by analyzing the inventory and
service trade-off for each approach using
data from a family of finished goods de-
rived from the one die type. We assumed
independent and normally distributed de-
mands and a weekly periodic review base-
stock policy. For the no-postponement ap-
proach, we modeled the system as
independent inventory nodes, each repre-
senting a finished goods part. We calcu-
lated the minimum inventory required to
meet a service constraint (maximum ex-
pected back orders) for each node and
summed the inventory across nodes. For a
given level of safety stock, we estimated
the expected back orders for each node us-
ing the demand uncertainty and the plan-
ning lead time [Nahmias 1993]. For the
die-bank push-pull postponement ap-
proach, we modeled the system as a single
inventory node at the die bank. We esti-
mated expected back orders at this node
using the demand uncertainty of the ag-
gregated die demand. We showed that the
die-bank push-pull strategy offers signifi-
cant improvements (Figure 5).

Although this die-bank push-pull post-
ponement strategy offers performance im-
provements, it is not acceptable for cus-
tomers that require fast deliveries. Thus, if
the back-end lead time is two weeks and
the customer needs delivery in one, Xilinx
could not meet the customer’s require-
ment. Xilinx wanted to move from a par-
tial postponement approach to the die-
bank push-pull approach and still satisfy
such customer requirements. Thus, it has

adopted a hybrid approach. Xilinx has
been reducing back-end lead times, and
the times for the majority of products are
now shorter than customers usually re-
quire. It builds these products for the die
bank according to customer orders (the
die-bank push-pull strategy). It builds fin-
ished goods with longer back-end lead
times and shorter delivery time to forecast
(the partial-postponement strategy).

To determine the distribution of inven-
tory between finished goods and die bank,
we used the same number of finished
goods as in the previous analysis. We as-
sumed each finished-goods part had one
of two back-end lead times: a time equal
to the customer-response time and one
longer than the customer-response time
(set at the average for the parts with lead
times greater than the customer-response
time). We increased the percent of parts
with the short lead time from 0 to 100 per-
cent to generate the results. To avoid con-
cerns about the order in which we selected

Figure 5: The graph shows the expected num-
ber of back orders as a function of the total
inventory for two approaches: the no-
postponement approach and the die-bank
push-pull approach. For the same level of in-
ventory investment, the expected number of
back orders is much lower under the die-bank
push-pull approach.
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Figure 6: The figure illustrates the inventory
distribution between die bank (white) and
finished goods (black) when adopting a hy-
brid strategy. The horizontal axis is the pro-
portion of finished goods that have back-end
lead times within the customer-response-time
window. As this proportion grows, more of
the products can be built to order. Thus, the
total inventory decreases significantly and the
mix of inventory becomes more heavily
weighted to die bank. Results are shown for a
constant service level (as measured by ex-
pected back orders).

finished goods for back-end lead time re-
duction, we assumed equal demands for
all finished goods. So that we could use
Eppen and Schrage’s [1981] model to ana-
lyze the partial postponement approach,
we assumed all parts had the same coeffi-
cient of variation.

For parts with the short back-end lead
time, we used the die-bank push-pull ap-
proach and determined the minimum die-
bank inventory to maintain the desired
level of service. For the parts with the
longer back-end lead time, we used the
partial-postponement approach. For these
parts, we determined the inventory levels
required for the given service level using
Eppen and Schrage’s results [1981]. Their
results are for just such a partial-
postponement structure (under a different
name), and they allow us to calculate the
effective demand uncertainty as a function
of the individual finished-goods uncer-
tainty levels and the front-end and back-
end lead times. Using these results, we
calculate the total safety stock in finished
goods for a maximum level of expected
backorders.

When few parts have short lead times,
we must manage most parts using the
partial-postponement approach, keeping
most inventory in finished goods. As the
number of products with short back-end
lead times increases, we can build more
parts from the die bank to meet customer
orders, decreasing inventory in finished
goods and increasing that at the die bank.
The decrease in finished-goods inventory
is much more rapid than the increase in
die-bank inventory. Thus, moving towards
the pure die-bank push-pull approach re-
duces inventory and dramatically reduces

cost since the cost of finished goods is 40
percent more that the die cost.

Table 1 summarizes the four process-
postponement approaches. The primary
driver of the benefits of process postpone-
ment is the risk pooling or statistical pool-
ing that occurs when aggregating de-
mands for many finished goods into
demand for fewer dies. The aggregate de-
mand is less uncertain, and thus the firm
can hold less inventory to provide the
same level of service. The risk-pooling ef-
fect is large when the number of finished
goods for each die type is large and the
correlation between finished-goods de-
mands is small. A large correlation be-
tween two finished goods means that if
demand is larger than expected for one
finished good, it will likely also be larger
than expected for the second finished
good. Fortunately, at Xilinx, there are a
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Strategy
Postponement of
product decision

Inventory at
die bank

Inventory at
finished goods

No postponement �

Partial postponement � �

Die bank push-pull � �

Hybrid � � �

Table 1: For each of four approaches to managing Xilinx’s process, the table indicates whether
or not postponement is used and where inventory is held—in the intermediate and generic
form at die bank or in the final form at finished goods. Xilinx adopted the hybrid model, allow-
ing it to reduce inventories and maintain a high level of customer service.

large number of finished goods for each
die (50 to 150) and the average correlation
between the finished goods was found to
be only 0.018.

Using postponement and holding most
inventory at die bank has a number of ad-
ditional benefits. Inventory held at the die
bank is less costly than that at finished
goods. About 30 to 50 percent of each
product’s total value is added in the back-
end stage. Inventory held at the die bank
also has a lower risk of obsolescence.
Many finished goods have just a few cus-
tomers. If demand drops unexpectedly,
Xilinx may be left with inventory of these
goods that it cannot sell to anyone else.
Die inventory, however, has not yet been
customized, and its flexibility greatly re-
duces the risk of obsolescence. Obsoles-
cence costs in the industry are often about
five percent of gross inventory per year,
nearly all for finished goods. Postpone-
ment makes inventory management easier.
In practice, inventory cannot be managed
solely by a model-based system. Its deci-
sions must be adjusted for issues beyond
the model’s scope. With process postpone-
ment, management can focus on managing
the inventory of the 100 dies rather than
trying to make decisions for 10,000 fin-
ished goods.

Implementing Process Postponement
Implementing process postponement of-

ten requires redesigning current products
while trying to keep the changes transpar-
ent to the customer. Fortunately this can
be done fairly easily in high-technology
manufacturing because of the short life of
products. To redesign a product to enable
process postponement, a manufacturer can
simply wait the short time until the next
product-generation release when many
customers will convert their designs to
take advantage of speed and price
benefits.

Xilinx designs products to allow for the
use of process postponement, keeping the
degree of customization low through the
front-end stage. For a few general product
categories, the die options (for example,
many options for logic cell count) are nu-
merous but packaging options are few.
Thus, process postponement provides
minimal advantage, and little can be done
from a design perspective because some
features (such as logic cell count) can be
created only during the front-end stage.

Xilinx has pursued three process-related
initiatives to make process postponement
more effective—inventory modeling,
supply-mix prediction, and back-end
cycle-time reduction. It uses inventory
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modeling to determine the appropriate
push-pull boundaries for finished goods
and to determine inventory levels at vari-
ous stocking locations. For parts in
finished-goods stock, it is optimal to keep
inventory in the die bank for quick replen-
ishment instead of using pure partial post-
ponement. Xilinx uses inventory models to
improve the hybrid strategy and to deter-
mine the optimal level of inventory to
hold in the die bank to replenish finished
goods and to fill orders for build-to-order
parts. It currently uses a multi-echelon
model developed jointly with IBM [Ettl et
al. forthcoming; Brown et al. 1999].

In the supply-mix-prediction initiative,
Xilinx uses statistical models to predict the
speed mix of the die-bank inventory. Cus-
tomer orders specify the desired speed. To

Xilinx reduced its inventory
levels without harming
overall customer service.

customize dies from the die bank to meet
customer orders or to replenish finished-
goods stock, Xilinx must know how many
dies are in each speed yield in the die-
bank inventory. Xilinx can easily predict
the average fraction of die per wafer that
will be of each speed. However, due to
slight perturbation in the wafer-fabrication
process, the actual fraction for each indi-
vidual wafer will be different. The objec-
tive of the supply-mix initiative is to pre-
dict this fraction. Although the true speed
of a device is not known until it completes
the assembly and test stages, Xilinx can
get initial data using a test on die-bank in-
ventory called wafer sort. Using this data,
Xilinx applies regression and other statisti-

cal methods to estimate speed yield distri-
butions quite accurately [Ehteshami and
Petrakian 1998]. This knowledge enables a
planner to choose wafers from the die-
bank inventory that closely match the or-
der requirements, thus reducing the
wasted dies and improving response
times.

The third initiative to improve process
postponement is a continuing process to
reduce back-end lead times. Xilinx has
worked with its manufacturing partners to
reduce the wafer-fabrication time from
three to one-and-a-half months. For Xilinx
to make the die bank the push-pull
boundary, the back-end lead time must be
short. With a shorter back-end lead time,
Xilinx can satisfy a larger proportion of
customer orders using the die bank as the
push-pull boundary instead of finished
goods. Much of the back-end lead time is
administrative time. Thus, Xilinx has been
able to streamline the process and reduce
the lead time through information technol-
ogy and closer supplier (for assembly and
testing) involvement. Internal planning
and order fulfillment systems have been
made more responsive and electronic data
interchange or Extranet web-based tools
have been used to expedite the exchange
and processing of information between
Xilinx and its worldwide vendors.
Conclusion

Xilinx has created tremendous values
through product and process postpone-
ment. In the case of product postpone-
ment, it has found the value of ISP and
IRL to be tremendous. For example,
Hewlett-Packard Company used a Xilinx
field-programmable gate array, a powerful
variety of programmable logic devices,
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when it designed the LaserJet Companion,
reducing its design cycle by an estimated
six to 12 months [Rao 1997]. For the elec-
tronics industry, Reinertsen [1983] esti-
mated that a six-month delay in the devel-
opment time of a product reduces the
profits generated over the product’s life
cycle by a third.

Firms are only beginning to realize the
potential of product postponement. Rao
[1997] describes how IBM designed asyn-
chronous transfer mode (ATM) network-
ing switches when the industry had not
yet fully developed standards and proto-
cols. Using programmable logic devices
with ISP capabilities, it was able to deliver
systems to its customers that could easily
be upgraded to the latest standards with
no hardware changes. With more recent
technological advances, firms can even
provide these upgrades through the Inter-
net for systems that are online. Villasenor
and Mangione-Smith [1997] describe how
FPGAs are changing the field of comput-
ing, possibly resulting in major technologi-
cal breakthroughs. They envision comput-
ing devices that adapt their hardware
almost continuously in response to chang-
ing input. They also predict that configur-
able computing is likely to play a growing
role in the development of high-
performance computing systems, resulting
in faster and more versatile machines than
are possible with either microprocessors or
ASICs. With such technology, firms can
postpone the definition of a product with-
out limit, an ultimate form of product
postponement.

Process postponement has also signifi-
cantly improved financial performance at
Xilinx. Although Xilinx has not kept per-

formance metrics since it first introduced
process postponement, its refinement of
the process-postponement hybrid from the
third quarter of 1996 to the third quarter
of 1997 helped it to reduce corporate in-
ventory from 113 dollar days to 87 dollar
days (dollar days is the net inventory di-
vided by the cost of goods sold for the
quarter times 90 days per quarter). This
translates directly into cost savings and
improvements in the company’s return on
assets. At the same time, customer service,
measured by the percentage of times that

Gaining acceptance of the
models took time and effort.

customer orders are filled on time, has re-
mained the same. This is particularly im-
pressive because during that period, Xilinx
released an unusually large number of
new products. Despite the proliferation of
product variety and the increase in service
back orders associated with technical
problems with the new products, Xilinx
reduced its inventory levels without harm-
ing overall customer service. During this
time period, the inventory levels at the
key competitors increased to well over 140
dollar days.

Currently, Xilinx is working closely with
its partners to further reduce lead times at
both the front-end and back-end stages.
Clearly, reducing front-end lead times will
result in even less safety stock needed in
the die bank; while reducing the back-end
lead times will enable Xilinx to satisfy
more customer orders by using the die
bank as the push-pull boundary.

Implementing postponement at Xilinx
requires tremendous organizational sup-
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port. The change from stocking primarily
in finished goods to stocking primarily in
die bank initially created some nervous-
ness among the sales and logistics person-
nel who dealt with customers’ orders. Al-
though the company realized that it
needed to use scientific inventory models
to manage inventory levels effectively,
gaining acceptance of the actual models
took time and effort. We ran extensive
computer simulations to demonstrate the
effectiveness of the model and conducted
intensive training and education programs
with various functions within the com-
pany to create confidence in the model
and acceptance of this new approach. The
results showed that all these efforts were
worthwhile, and postponement is now a
key part of Xilinx’s overall supply-chain
strategy.
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This paper considers serial production-transportation systems. In recent years, researchers
have developed a fairly simple functional equation that characterizes optimal system

behavior, under the assumption of constant leadtimes. We show that the equation covers a
variety of stochastic-leadtime systems as well. Still, many basic managerial issues remain ob-
scure: When should stock be held at upstream stages? Which system attributes drive overall
performance, and how? To address these questions, we develop and analyze several heuristic
methods, inspired by observation of common practice and numerical experiments. One of
these heuristics yields a bound on the optimal average cost. We also study a set of numerical
examples, to gain insight into the nature of the optimal solution and to evaluate the heuristics.
(Inventory/Production; Multistage; Solutions and Heuristics)

1. Introduction
Consider a serial production-transportation system.

• There are several stages, or stocking points, ar-
ranged in series. The first stage receives supplies from
an external source. Demand occurs only at the last
stage. Demands that cannot be filled immediately are
backlogged.

• There is one product, or more precisely, one per
stage.

• To move units to a stage from its predecessor, the
goods must pass through a supply system, representing
production or transportation activities. The cost for a
shipment to each stage is linear in the shipment
quantity.

• There is an inventory-holding cost at each stage
and a backorder-penalty cost at the last stage. The ho-
rizon is infinite, all data are stationary, and the objec-
tive is to minimize total average cost. Information and
control are centralized.

We focus on a basic system, where time is continu-
ous, demand is a Poisson process, and each stage’s

supply system generates a constant leadtime. How-
ever, virtually all the results remain valid for a
discrete-time system with i.i.d. demands, for
compound-Poisson demand in continuous time, and
for more complex supply systems with stochastic lead-
times. Also, since an assembly system can be reduced
to an equivalent series system (Rosling 1989), the re-
sults apply there too.

Clark and Scarf (1960) initiated the analysis of this
system, assuming discrete time with a finite horizon
and nonstationary data. They showed that the optimal
policy has a simple, structured form (an echelon base-
stock policy) and developed a tractable scheme to com-
pute it. Federgruen and Zipkin (1984) adapted the re-
sults to the stationary, infinite-horizon setting and
pointed out that the algorithm becomes simpler there.
Rosling (1989) and Langenhoff and Zijm (1990) pro-
vided streamlined statements of the results. Chen and
Zheng (1994) further streamlined the results and ex-
tended them to continuous time. The outcome is a
fairly simple functional equation, Equation (5) in §2,
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that characterizes the optimal policy. See Federgruen
(1993) for a review of this literature.

There is another, very different stream of research
on multistage systems, one that emphasizes policy
evaluation. It assumes a particular policy type, usually
a base-stock policy, and estimates key performance
measures, especially average inventories and backor-
ders. Those measures are used to construct an opti-
mization model, whose solution yields the best such
policy. The supply systems can be fairly complex, in-
deed some generate stochastic leadtimes. In most cases
the performance estimates are approximations. The
system structure too can be more complex; in addition
to series systems, the approach applies to distribution
and assembly systems. This literature begins with the
METRIC model of Sherbrooke (1968). Recent contri-
butions include Graves (1985), Sherbrooke (1986), and
Svoronos and Zipkin (1991). Reviews can be found in
Nahmias (1981) and Axsäter (1993). We explain in §3
that, despite these differences, the solution to Equation
(5) also yields the best base-stock policy for such a sys-
tem, up to the approximation.

Still, many basic managerial issues concerning such
systems remain obscure: When should stock be held at
upstream stages? Which system attributes drive over-
all performance, and how? To address these questions,
we study several heuristic methods (§4), inspired by
observation of common practice and numerical exper-
iments, including one that yields a bound on the op-
timal average cost. Sensitivity analysis of this result
reveals interesting features of system behavior. We
also study a set of numerical examples (§5), both to
gain insight into the nature of the optimal solution and
to evaluate the heuristics.

Section 6 presents our conclusions. A key finding is
that system performance is fairly insensitive to stock
positioning, provided the overall system inventory is
near optimal. In particular, certain heuristic policies
which concentrate stock at a few locations perform
quite well.

We also discuss a broader system design problem, as
in Gross et al. (1981). Here, the stages are potential stor-
age locations, but none have yet been built. The design
problem is to select a subset among them and then to
determine a control policy for the resulting network.
There is a cost to open each facility, and such costs

appear in either the objective function or a constraint.
There may be several products sharing the same fa-
cilities. This is a hard problem, but several of our heu-
ristics apply to it as well.

2. Base-Stock Policy Evaluation and
Optimization

This section reviews the basic facts concerning policy
evaluation and optimization.

2.1. Stages
For now, assume Poisson demand and constant lead-
times. Denote

J 4 number of stages
j 4 stage index, j 4 1, . . . , J
k 4 demand rate
L 4 supply leadtime to stage jj

L 4 total system leadtime 4 R L .j j

The numbering of stages follows the flow of goods;
stage 1 is the first, and stage J is the last, where demand
occurs. The external source, which supplies stage 1, has
ample stock; it responds immediately to orders.

2.2. Base-Stock Policies
In a single-stage system, a base-stock policy aims to keep
the inventory position constant. The target inventory
position is a policy variable, the base-stock level, de-
noted s. When the inventory position falls below s, the
policy orders enough to raise the inventory position to
s; otherwise, it does not order. Thus, once the inventory
position hits s, orders precisely equal demands.

In a multi-stage system, there are two classes of base-
stock policy, local and echelon. Although they seem
quite different, the two classes are equivalent (Axsäter
and Rosling 1993).

A local base-stock policy is a decentralized control
scheme, where each stage monitors its own local in-
ventory position and places orders with its predeces-
sor. Each stage j follows a standard, single-stage base-
stock policy with parameter

s8 4 local base-stock level for stage j,j

a nonnegative integer. The overall policy is character-
ized by the vector .Js8 4 (s8)j j41

An echelon base-stock policy is a centralized control
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scheme. It monitors each stage’s echelon inventory (the
stage’s own stock and everything downstream), and
determines external orders and inter-stage shipments
according to a base-stock policy. The policy parame-
ters are

s 4 echelon base-stock level for stage j,j

also a nonnegative integer. Let . As shownJs 4 (s )j j41

by Chen and Zheng, given stationary parameters, such
a policy is optimal in either a periodic-review or a
continuous-review setting.

Given a local base-stock policy s8, an equivalent ech-
elon base-stock policy has parameters .s 4 ( s8j i$j i

Conversely, starting with an echelon base-stock policy
s, one can construct an equivalent local policy, setting

and , where1 1 1 1s 4 min {s } s8 4 s 1 s s 4j i#j i j j j`1 J`1

. (Also, the echelon base-stock policy is1 1 J0 s 4 (s )j j41

equivalent to s.)

2.3. Cost
Denote

E[•] 4 expectation
`[x] 4 max{0, x}

D(t) 4 cumulative demand in the interval (0, t].
V[•] 4 variance

1[x] 4 max{0, 1x}

The following are state random variables in
equilibrium:

I8 4 local on-hand inventory at stage jj

B8 4 local backorders at stage jj

B 4 customer backorders 4 B8J

IT 4 inventory in transit to stage j (units in j’sj

supply system)
I 4 echelon inventory at stage j 4 I8 ` Rj j i.j

(IT ` I8)i i

IN 4 echelon net inventory at stage j 4 I 1 B.j j

Also, let

Dj 4

leadtime demand for stage j, a generic random variable
having the distribution of D(Lj). The Dj are
independent.

The cost factors are

b 4 backorder penalty-cost rate
4 local inventory holding-cost rate at stage jh8j

hj 4 echelon inventory holding-cost rate at stage j 4

1h8 h8 ,j j11

where .h8 4 00

The usual accounting scheme for in-transit invento-
ries charges on ITj`1 as well as . We exclude suchh8 I8j j

costs, in order to facilitate comparison among policies
and systems. Thus, the total average cost, expressed in
local terms, is

JC(s8) 4 E[R h8I8 ` bB]. (1)j41 j j

The equivalent expression in echelon terms is
JC(s) 4 E[R h IN ` (b ` h8)B]j41 j j J

J1 E[R h8D ]. (2)j41 j j`1

(Here, DJ`1 4 0. The second term is necessary, because
the first includes the usual in-transit holding cost, and
E[ITj] 4 E[Dj].)

2.4. Local Policy Evaluation
For any policy s8, the equilibrium local backorder vari-
ables satisfy the following recursion:

B8 4 00 (3)
`B8 4 [B8 ` D 1 s8] .j j11 j j

And,

I8 4 s8 1 (B8 ` D ) ` B8. (4)j j j11 j j

(See, e.g., Graves 1985.) From these, we can compute
E[B] and E[ ] and thus the average cost [Equation (1)].I8j

2.5. Echelon Policy Optimization
We now present a method to determine an optimal
echelon base-stock policy, denoted s*. This is the Clark-
Scarf algorithm, essentially as stated by Chen and
Zheng:

Set . For j 4 J,J 1 1, . . . , 1,1C (x) 4 (b ` h8)[x]J`1 J

given Cj`1, compute

Ĉ (x) 4 h x ` C (x)j j j`1

ˆC (y) 4 E[C (y 1 D )]j j j

s* 4 argmin {C (y)}j j

C (x) 4 C (min{s*, x}). (5)j j j

At termination, set .JC* 4 C (s*) 1 E[( h8D ]1 1 j41 j j`1

This is the optimal cost.
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A similar calculation can be used to evaluate any
policy s. Just omit the optimization step, and use sj in
place of in the last step. One can show that thiss*j
method is equivalent to Equations (2) through (4). Con-
versely, one can show directly that Equation (5) opti-
mizes over policies evaluated by Equations (2) through
(4). This point underlies the extensions of §3. (To our
knowledge, these observations are new here.)

Recursion (5) deserves to be called the fundamental
equation of supply-chain theory. It captures the basic dy-
namics and economics of serial systems. It omits much,
but any more comprehensive theory must build on it.
We know little about its solution, however. The re-
mainder of the paper begins to investigate it.

2.6. Decreasing Holding Costs
Examination of Equation (5) reveals that, for j , J, if
hj`1 # 0, then , which implies . In thiss* 4 ` s8* 4 0j`1 j

case, we can eliminate stage j, replacing Lj`1 by Lj`1

` Lj and hj`1 by hj`1 ` hj. (Rosling observes this.)
Continue to eliminate stages in this way, until all the
remaining hj . 0. Thus, a stage holds stock only when it
is cheaper to hold it there than anywhere downstream. This
makes sense intuitively; downstream inventory pro-
vides more direct, effective protection against cus-
tomer backorders than upstream inventory. The only
possible advantage of upstream inventory is lower
inventory-holding cost.

3. Other Demand and Supply
Processes

The same methods can be used to evaluate and opti-
mize, exactly or approximately, under a variety of
other model assumptions.

3.1. Compound-Poisson Demand
Suppose that demand is a compound-Poisson process,
and each increment of demand can be filled separately.
All the results above remain valid. Here, each Dj has a
compound-Poisson distribution, but that is the only
difference.

3.2. Exogenous, Sequential Supply Systems
Consider a system like that of Svoronos and Zipkin
(1991), specialized to a series structure: Each stage’s
supply system is stochastic. Stage j’s system generates

a virtual leadtime Lj(t); a shipment to j initiated at time
t arrives at t ` Lj(t). The system processes orders se-
quentially, so shipments arrive in the same sequence as
the corresponding orders; that is, t ` Lj(t) is nonde-
creasing in t. Each supply system is exogenous, i.e., its
internal state and Lj(t) are stochastic processes, but
they are unaffected by shipments. Each system is er-
godic, i.e., Lj(t) approaches a steady-state random vari-
able Lj, regardless of initial conditions. Finally, these
systems, and hence the Lj(t) and Lj, are independent
over j.

Svoronos and Zipkin show that Equations (3)
through (4) evaluates a base-stock policy. Here, Dj has
the distribution of D(Lj), the demand over the (sto-
chastic) virtual leadtime Lj, so E[Dj] 4 kE[Lj] and V[Dj]
4 kE[Lj] ` k2V[Lj]. These Dj are again independent.
Consequently, as explained in §2.5, Equation (5) finds
the best base-stock policy.

3.3. Independent Leadtimes
Return to the Poisson-demand case. Suppose that each
stage’s leadtimes are i.i.d. random variables; in effect,
each supply system consists of multiple identical pro-
cessors in parallel. Let Lj be the generic leadtime ran-
dom variable for stage j. In this context, Equations (3)
through (4) remain valid with ITj in place of Dj.

It is difficult to characterize the ITj, in general. There
is one case where it is easy, namely, when s 4 s8 4 0.
There, the system is equivalent to a tandem network
of queues with Poisson input, where each node j has
an infinite number of servers with service times Lj. So,
ITj has the Poisson distribution with mean kE[Lj], and
the ITj are independent. (See, e.g., Kelly 1979.). For gen-
eral s8 $ 0 we can use this same distribution to approx-
imate the ITj. This is, in fact, the key approximation
underlying the METRIC procedure (see Sherbrooke
1968, 1986 and Graves 1985), specialized to series sys-
tems. It is quite accurate.

With this approximation, using Dj to stand for the
approximate ITj, Equations (3) through (4) evaluate a
local policy. Therefore, Equation (5) computes the best
base-stock policy, up to the approximation.

3.4. Limited-Capacity Supply Systems
Now, suppose each supply system consists of a single
processor and its queue. The processing times at stage
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j are i.i.d., distributed exponentially with rate lj. As-
sume k , l [ minj {lj}. Recursion (3), with ITj in place
of Dj, applies here too. Again, it is difficult to charac-
terize the ITj in general, but easy in the case s8 4 0.
Here, ITj has the geometric distribution with parame-
ter qj 4 k/lj, and the ITj are independent (Kelly). This
works well as an approximation for the general case,
as shown by Buzacott et al. (1992), Lee and Zipkin
(1992), and Zipkin (1995). So, Equation (5) again finds
the (approximately) best base-stock policy.

4. Bounds and Heuristics

4.1. The Restriction-Decomposition
Approximation

This section presents a fairly simple way to determine
a useful heuristic policy and an upper bound on the
optimal cost. The approach involves restriction of the
policy space and decomposition of the resulting model
into single-stage submodels. Accordingly, we call it the
restriction-decomposition or RD approximation. This
approach, or something like it, is widely used in prac-
tice. It is striking that this simple idea actually bounds
the original system.

Let J` be any subset of stages that includes J. We
construct an approximation for any choice of J` and
then select the best J`. Index these stages in order by
j(m), m 4 1, . . . , M. So, j(M) 4 J. Also, denote j(0) 4

0. Let

D 4 D ` D ` . . . ` D , 0 # i , j # J,(i,j] i11 i`2 j
mD 4 D , m 4 1, . . . , M.(j(m11),j(m)]

First, restrict 4 0, j Ó J`, so that only stages in J`s8j
are allowed to hold stock. Using Equation (3), one can
readily show that

m `B8 4 [B8 ` D 1 s8 ] , m 4 1, . . . , M.j(m) j(m11) j(m)

The next steps effectively decompose the system at
stages J`. It is easy to show that

m `B8 # B8 ` [D 1 s8 ] , m 4 1, . . . , Mj(m) j(m11) j(m)

M m `B 4 B8 # [D 1 s8 ]j(M) o j(m)m41

m `I8 # [s8 1 D ] , m 4 1, , . . . , M.j(m) j(m)

Consequently,

M m ` m `C(s8) # E[h8 [s8 1 D ] ` b[D 1 s8 ] ].o j(m) j(m) j(m)m41

Equivalently, let

` 1Ĉ8(x) 4 h8[x] ` b[x]j j

ˆC (y) 4 E[C8(y 1 D )], i , j.(i,j] j (i,j]

Then,
MC(s8) # C (s8 ).o (j(m11),j(m)] j(mm41

Each term in this sum is the cost of a single-stage
system. It charges the full penalty cost b to local bac-
korders at each stage j(m), while ignoring the effects of
those backorders on downstream stages. In this sense
it splits the system into separate subsystems.

Now, let s(i,j] minimize C(i,j](y), and denote the min-
imal cost by . Then,C*(i,j]

MC* # C* .o (j(m11),j(m)]m41

This relation holds for any J`. To find the best such
bound over all possible J`, consider the following net-
work: The nodes are {0,1, . . . ,J}, the arcs are (i,j), i , j,
and the arc lengths are . The best bound, then, isC*(i,j]
the length of the shortest path from 0 to J. This problem
has precisely the same structure as the dynamic eco-
nomic lot-size problem of Wagner and Whitin (1958),
and can be solved using the same algorithm.

From the best J` one can construct a plausible heu-
ristic policy: Set 4 0, j Ó J`, and for j 4 j(m) [ J`,s8j
set 4 s(j(m11),j(m)]. The actual cost of this policy is nos8j
more than the upper bound. (Alternatively, use Equa-
tion (5) to find the optimal policy for the system re-
stricted to J`. We have not tested this more refined
approach.)

The RD approximation extends directly to the de-
sign problem: If there is a fixed cost kj to build stage j,
just add kj to each . Also, if several products shareC*(i,j]
the network, compute the for each product, andC*(i,j]
then sum them over the products. The algorithm above
then provides a heuristic solution and an upper bound.

We remark that the complexity of the RD heuristic
appears to be O(J2), compared to O(J) for the optimiz-
ing algorithm Equation (5). Indeed, we have observed
that, for very large J, the heuristic can take longer than
Equation (5). For smaller, plausibly-sized systems,
however, the heuristic is usually much faster. And, it
is a tractable method for the design problem.
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Here is a further useful approximation: Scarf (1958)
and Gallego and Moon (1993) show that

1/2 `C* # (bh8) r [ C ,(i,j] j (i,j] (i,j]

where r(i,j] is the standard deviation of D(i,j]. Using the
in the calculations above yields a distribution-free`C(i,j]

bound, one that depends only on two moments of
leadtimes and demands, not their actual distributions.
Call this the maximal RD approximation. The same anal-
ysis yields a heuristic solution of the form 4`s(i,j]

E[D(i,j]] ` r(i,j], where is a safety factor dependingz8 z8j j

on b and , whose cost is no more than the upperh8j
bound. (This approach is much faster than the original
RD heuristic, since is easier to compute than .)`C C*(i,j] (i,j]

This simple form facilitates sensitivity analysis: Ob-
serve that, in the Poisson-demand, constant-leadtime
case, each depends on k through a factor . Thus,`C k!(i,j]

the shortest path is independent of k, and the cost
bound is proportional to . That is, the heuristic’s choicek!
of stocking points is independent of the demand volume, and
the true optimal cost is bounded above by a function pro-
portional to . A similar analysis of suggests that`k s! (i,j]

the overall safety stock is proportional to . The samek!
is true for stochastic, independent leadtimes (§3.3). For
exogenous, sequential leadtimes (§3.2), however, r(i,j]

4 (kE[L(i,j]] ` k2V[L(i,j]])1/2, so the optimal cost is
bounded by a linear function of k, as is the safety stock.

Likewise, the shortest path is independent of b, and
the cost bound is proportional to .b!

The leadtime Lk affects r(i,j] for all (i,j] with i , k #

j. It has the biggest impact on the r(i,j] for short intervals
(i,j] around k. Thus, for small k, Lk has a major impact
only on terms with small j and hence low . Con-`C h8(i,j] j

versely, Lk for large k affects terms with large . Thish8j
suggests that downstream leadtimes have a greater impact
on system performance than upstream ones.

The familiar normal approximation yields an ap-
proximation to of the same form as , namely,`C* C(i,j] (i,j]

a factor depending on the cost parameters, times r(i,j].
It also yields a solution of the same form as . Call`s(i,j]

this the normal RD approximation. So, the observations
above about k and the Lk remain valid. The cost factors,
however, grow more slowly in b than .b!

Some additional bounds for two-stage systems can
be found in Gallego and Zipkin (1994).

4.2. The Zero-Safety-Stock Heuristic
This approach (the ZS heuristic, for short) sets 4s8j
E[Dj], j , J, and then optimizes over . More precisely,s8J
to cover the case of non-integral E[Dj], the heuristic sets

, j , J. Then, using Equations8 4 ( E[D ] 1 s8j i#j i j11

(3), it computes the distribution of . Finally, itB8J11

chooses to minimize the stage-J holding and penaltys8J
costs, a single-stage problem. (This method was in-
spired by some preliminary numerical results, in
which the optimal was near E[Dj], j , J.) Evidently,s8j
this is an O(J) calculation, and it is very fast in practice.

4.3. The Two-Stage Heuristic
This approach (the TS heuristic) restricts inventory to
two stages, the last one J and some single j , J. Given
j , J, it finds the optimal policy for the resulting two-
stage system. It then selects the best such policy over j
, J. (This method too was based on empirical obser-
vations, namely, that restricting the number of loca-
tions sometimes has little cost impact.)

This technique requires solving J 1 1 two-stage
problems, nearly as much work as the full optimiza-
tion algorithm Equation (5). The purpose of the heu-
ristic is not speed. Rather, it is a tool to investigate
stock-positioning issues: Where is stock most useful?
And, how costly is the restriction to two stages? This
approach also extends easily to the design problem; in
that context it is a plausible heuristic for systems with
large fixed facility costs.

5. Numerical Results
This section presents some numerical examples, to pro-
vide insight into the behavior of the optimal policy and
the performance of the heuristics.

5.1. Specification

5.1.1. System Structure and Parameters. We as-
sume Poisson demand and constant leadtimes. With-
out loss of generality, we fix the time scale so that the
total leadtime is L 4 1, and the monetary unit so that
the last stage’s holding cost is 4 1. The stages areh8J
spaced symmetrically, so each stage j’s leadtime is Lj

4 1/J. We consider four numbers of stages, J 4 1, 4,
16, 64; two demand rates, k 4 16, 64; and two penalty
costs, b 4 9, 39 (corresponding to fill rates of 90%,
97.5%).
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Figure 2 Optimal Policy: Linear Holding Costs

Figure 1 Holding Cost Forms

5.1.2. Holding Cost Forms. We consider several
forms of holding costs , depicted in Figure 1. Theh8j
simplest form has constant holding costs, where all h8j
4 1. Here, there is no cost added from source to cus-
tomer. This is a rather unrealistic scenario, but it is a
useful starting point to help understand other forms.
The linear holding-cost form has 4 j/J, or hj 4 1/J.h8j
Here, cost is incurred at a constant rate as the product
moves from source to customer. This is quite realistic.
Affine holding costs, where 4 a ` (1 1 a)j/J forh8j
some a [ (0,1), are even more realistic. Here, the ma-
terial at the source has some positive cost, and the sys-
tem then adds cost at a constant rate. This form is a
combination of the constant and linear forms. In Figure
1 and the calculations below, a 4 0.75.

The last two forms represent deviations from linear-
ity. The kink form is piecewise linear with two pieces.
The system incurs cost at a constant rate for a while,
but at some point shifts to a different rate, which re-
mains constant from then on. Here, the kink occurs
halfway through the process, at stage J/2. So, for some
a [ (11,1), hj 4 (1 1 a)/J, j # J/2, and hj 4 (1 ` a)/
J, j . J/2. Again, we set a 4 0.75. Finally, in the jump
form, cost is incurred at a constant rate, except for one
stage with a large cost. Here, the jump occurs just after
stage J/2. So, hj 4 a ` (1 1 a)/J, j 4 J/2 ` 1, and hj

4 (1 1 a)/J otherwise, for some a [ (0,1). We can
view this as linear cost before J/2 and affine cost after.
Here again, a 4 0.75.

5.2. Optimal Policy

5.2.1. Constant Holding Costs. The optimal policy
in this case is simple: For j , J, 4 0; only the lasts8*j

stage carries inventory. Stage J, in effect, becomes a
single-stage system with leadtime L. The optimal pol-
icy is the same for all J. This is also the optimal policy
for J 4 1 under any other holding-cost form.

5.2.2. Linear Holding Costs. Figure 2 shows the
optimal policy s* for J 4 64 and two values each of k

and b. Several observations are worth noting: The
curves are smooth and nearly linear; the optimal policy
does not lump inventory in a few stages, but rather
spreads it quite evenly. The departures from linearity
are interesting too: The curves are concave. Thus, the
policy focuses safety stock at stages nearest the
customer.

5.2.3. Affine Holding Costs. Figure 3 shows the
optimal policy. For j . 1, the curves follow the same
pattern as in Figure 2. (Indeed, the curves for b 4 9
here are identical to those for linear costs and b 4 39,
because these two cases have identical ratios hj/(b `

), j . 1.) However, the curves break down sharply ath8j
j 4 1 (because h1 is large). Therefore, the equivalent
policy s1 is flat for small j, and so the policy holds no
inventory at early stages. This solution is intermediate
between those for constant and linear costs. As a in-
creases and the costs move upwards, stocks shift to-
ward the customer. The total system stock decreases
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Figure 6 Optimal Policy: Effects of J

Figure 5 Optimal Policy: Jump Holding Costs

Figure 4 Optimal Policy: Kink Holding Costs

Figure 3 Optimal Policy: Affine Holding Costs

slightly. But, perhaps surprisingly, stocks near the cus-
tomer actually increase.

5.2.4. Kink Holding Costs. Figure 4 displays s*.
Downstream from the kink (before Algorithm (5) en-
counters it), the curves exhibit the same pattern as in
the linear case. Upstream from the kink, the policy
again follows the linear pattern, almost as if the kink
were the last stage. The net result is substantial stock
at and just before the kink, where holding costs are low
relative to later stages.

5.2.5. Jump Holding Costs. Figure 5 displays s*.
From the jump on, the policy behaves much as in the

affine case: smooth, concave decrease beyond the
jump, but a sharp break downwards at the jump. Up-
stream from the jump, the policy again follows the pat-
tern of the linear case. Thus, there is substantial stock
just before the jump and none just after it.

5.3. Sensitivity Analysis

5.3.1. Number of Stages. Figure 6 compares the s*
for different Js, each with linear holding costs, k 4 64,
and b 4 39. The curves follow the same patterns as
before, as closely as the restricted numbers of stages
allow. Indeed, the actual echelon stock at a stocking
point is nearly identical to the J 4 64 case. Closer in-
spection shows that the total system stock is slightly
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Figure 8 Optimal Cost: Kink Holding Costs

Figure 7 Optimal Cost: Linear Holding Costs

higher for larger J. Likewise, the optimal cost decreases
in J, but quite slowly, as shown in Figure 7.

Similar results hold for affine holding costs. Indeed,
the optimal cost is even less sensitive to J. For kink
holding costs (Figure 8), the optimal cost is signifi-
cantly lower at J 4 4 than at J 4 1, due to the avail-
ability of the low-cost stocking point at the kink. Larger
Js yield relatively minor improvements. The jump
form displays a similar pattern. Thus, for these two
forms, it is important to position stock at the kink (or
jump). Otherwise, the cost is quite insensitive to J.

These results suggest that the system cost is relatively

insensitive to stock positioning, provided the overall
stock level is about right, and obvious low-cost stock-
ing points are exploited. We shall see further evidence
for this below.

5.3.2. Demand Rate. In Figures 7 and 8 the opti-
mal cost for k 4 64 is about twice that for k 4 16 in
every case. This is consistent with the notion that the
optimal cost is nearly proportional to , as suggestedk!
in §4.1. We have also plotted, but omit here, the cu-
mulative safety stocks . The curves for( s8* 1 kj/Ji#j j

k 4 64 are about twice those for k 4 16. So, the safety
stocks too are nearly proportional to k.!

5.3.3. Backorder Cost. The figures above indicate
that the base-stock levels and optimal cost are increas-
ing in b. The policy, however, is not very sensitive to
b. The cost, though rather more sensitive, grows con-
siderably slower than , as suggested by the normalb!
RD approximation.

5.3.4. Leadtimes. Figures 7 and 8 provide some
evidence for the notion that downstream leadtimes are
more important than upstream ones. Starting with lin-
ear holding costs, contract the downstream leadtimes
and expand the upstream ones, keeping L and the h8j
fixed. The result looks much like the kink form with a

{ (0,1). And, the kink form has lower optimal cost for
J . 1.

5.4. Performance of Bounds and Heuristics

5.4.1. The RD Approximation. Figure 9 shows the
policies chosen by the RD heuristic in one case (J 4 64,
k 4 64, b 4 39) for all four holding-cost forms. (The
same policy is chosen for the kink and jump forms.)
These policies are quite different from the correspond-
ing optimal ones; they concentrate stock in just a few
stages. For the linear form, the policy places a small
inventory near the source (9 units at stage 3) and a
large one (77) at the last stage. For the affine form, the
policy is even more extreme, placing all its stock (80)
at the end. For the kink and jump forms, the policy
places substantial inventory (46) at stage 32, just before
the cost increase, a little near the source (9 at stage 2),
and the rest (44) at the end. Also, the total system
stocks are slightly larger than optimal. The results for
other J, k, and b are similar.
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Figure 9 RD Heuristic’s Policies Table 1 Heuristics’ Percentage Costs over Optimal

Form RD ZS TS

Linear 10–20% 2–8% 4–11%
Affine 1–3% 3–14% 0–2%
Kink 9–22% 11–25% 5–17%
Jump 5–7% 11–15% 1–3%

Even so, the RD heuristic and the cost bound per-
form fairly well. Table 1 shows the percentage errors
for all three heuristics. For example, for the linear form,
the RD policy’s cost exceeds the optimal by 10%–20%.
(The errors tend to increase slowly in J, k, and b.) These
errors are far smaller than the cost differences between
systems. The cost bound is usually just a bit more than
the actual heuristic policy’s cost.

Thus, the RD approximation provides crude but ro-
bust estimates of system performance. It is certainly
accurate enough for rough-cut design studies. This
fact, coupled with the gross differences between the
RD and optimal policies, is further evidence of the in-
sensitivity of performance to stock positioning.

5.4.2. The ZS Heuristic. The ZS heuristic, by def-
inition, sets to the average leadtime demand up tos8j
the last stage. It sets larger than the optimal policys8j
does, to compensate for the lower stocks at earlier
stages. It generates the same policy for all four cost
forms. It works very well for linear holding costs,
rather less well for affine costs, and not so well for the
kink and jump forms.

5.4.3. The TS Heuristic. For J 4 64, for linear
costs, the TS heuristic places stock just past the middle
of the system, in addition to stage J. Specifically, for k

4 64 and b 4 39, it chooses j 4 36. For affine costs,
the heuristic places stock further downstream, at j 4

48. (The locations are just slightly different for the
other k and b.) For the kink and jump forms, it selects
j 4 32, just before the cost increase, in all cases. The
results are similar for smaller J. As Table 1 indicates,
this method performs quite well; it is the best among
the three heuristics. This is yet more evidence of the
insensitivity of performance to stock positioning.

6. Conclusions
We have seen that the optimal policy depends on the
growth of holding costs between source and customer.
For constant costs, the policy puts all stock at the last
stage. For linear costs, the policy distributes stock quite
evenly, though favoring downstream sites. In other
cases the policy can be understood as a systematic
combination and variation of these patterns.

On the other hand, although it is important to opti-
mize the system-wide inventory and to exploit espe-
cially low holding costs, system performance is oth-
erwise fairly insensitive to stock positioning. One can
deviate substantially from the optimal policy for a
rather small cost penalty, as in the restriction to smaller
J and the heuristics. In particular, the RD and TS heu-
ristics work fairly well; they capture the gross behavior
of the optimal policy, though differing substantially in
detail. Consequently, they are reasonable heuristics for
the design problem.

The sensitivity of the system to its parameters is
similar in many ways to the familiar single-stage sys-
tem. For instance, with constant leadtimes, the optimal
cost and safety stocks increase as the square root of the
demand rate. Multistage systems have certain addi-
tional characteristics, however. For example, down-
stream leadtimes have greater impacts on performance
than upstream ones.

We have presented these results to several groups of
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managers in different industries. Their reactions are
worth reporting. They showed considerable interest in
the forms of the figures as diagnostic devices. For ex-
ample, they wanted to plot their own holding costs in
the style of Figure 1, to see where cost accrues quickly
and where slowly. (This type of diagram is called a
time-cost profile by Fooks (1993) and Schraner (1994).
Observe that the in-transit holding cost is essentially
the area under each curve.) Likewise, a plot of actual
inventories in the manner of Figures 2 through 5 is a
convenient way to see just where stock is concentrated.

Many managers at first resisted the notion that stock
should be concentrated close to customers. After all,
the downstream sites are the most expensive ones. But,
following discussion of the sites’ different degrees of
stockout protection, as in §2.6, most agreed that the
optimal policy was at least plausible. Several noted
that their own firms’ stock-positioning policies were
quite different, and planned to investigate the alter-
native suggested by the model. Similarly, many had
embraced the idea of reducing total leadtime, and were
dubious that downstream leadtimes could be more im-
portant than upstream ones. Once the logic was ex-
plained, however, they accepted it.

Finally, none of the managers found it hard to be-
lieve that the heuristics perform well. Indeed, they pre-
ferred solutions that concentrate stock in only a few
locations, and they appreciated the simplicity of the
heuristics. Their experience suggested that all real sys-
tems incur some fixed costs, as in the design problem.

Several questions remain: Are there better heuris-
tics? Do the results extend to more complex systems,
such as distribution systems and systems with fixed
order costs? These are subjects of ongoing research.1
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The Quantity Flexibility (QF) contract is a method for coordinating materials and infor-
mation flows in supply chains operating under rolling-horizon planning. It stipulates a

maximum percentage revision each element of the period-by-period replenishment schedule
is allowed per planning iteration. The supplier is obligated to cover any requests that remain
within the upside limits. The bounds on reductions are a form of minimum purchase com-
mitment which discourages the customer from overstating its needs. While QF contracts are
being implemented in industrial practice, the academic literature has thus far had little guid-
ance to offer a firm interested in structuring its supply relationships in this way. This paper
seeks to address this need, by developing rigorous conclusions about the behavioral conse-
quences of QF contracts, and hence about the implications for the performance and design of
supply chains with linkages possessing this structure. Issues explored include the impact of
system flexibility on inventory characteristics and the patterns by which forecast and order
variability propagate along the supply chain. The ultimate goal is to provide insights as to
where to position flexibility for the greatest benefit, and how much to pay for it.
(Supply Chain Management; Supply Contracts; Quantity Flexibility; Forecast Revision; Materials
Planning; Bullwhip Effect)

1. Introduction
Many modern supply chains operate under decentral-
ized control for a variety of reasons. For example, out-
sourcing of various aspects of production is currently
a popular business model in many industries (cf.
Farlow et al. 1995, Iyer and Bergen 1997), which au-
tomatically distributes decision-making authority.
Even for highly vertically integrated firms, today’s
characteristically global business environments often
result in multiple sites worldwide working together to
deliver product, while reporting to different organi-
zational functions or units within the corporation. Op-
erational control of these sites may be intentionally
decentralized for informational or incentive consider-
ations. However, decentralization is not without risks.
For expository purposes, we describe some of these in

the context of the single-product, serial supply chain
depicted in Figure 1. Each node represents an inde-
pendently managed organization, and each pair of
consecutive nodes is a distinct supplier-buyer
relationship.
To reconcile manufacturing/procurement time-lags

with a need for timely response, agents within such
supply chains often commit resources to production
quantities based on forecasted, rather than realized de-
mand. A period-by-period replenishment schedule
(e.g., six months’ worth of monthly volume estimates)
is a common format by which many firms communi-
cate information about future purchases to their sup-
ply partners. Rolling horizon updating is a standard
operational means of incorporating new information
as it accrues over time. For example, each period the
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Figure 1 Decentralized Supply Chain

retailer creates a forecast of the uncertain and poten-
tially non-stationary market demand e.g., [100, 120,
110, . . .] where the 100 denotes the current period’s de-
mand, 120 is an estimate of the next period’s demand,
and so on. Based on this, the retailer provides to the
manufacturer a schedule of desired replenishments,
e.g., [50, 150, 90, . . .], where the numbers may differ
from the market forecast due to whatever inventory
policy the retailer may use, and any stock carried over
from the previous period. The manufacturer treats this
schedule as its own “demand forecast” and in turn cre-
ates a replenishment schedule for the parts supplier to
fill, and so on. This information flow is represented by
the dotted lines in Figure 1. We assume that each party
knows only the schedule provided by its immediate
customer, and is only concerned with its own cost
performance.
Such estimates are intended to assist an upstream

supplier’s capacity and materials planning. However,
buyers commonly view them as a courtesy only, and
indeed craft the supply contracts to preserve this po-
sition. To some buyers this presents an opportunity to
inflate these figures as a form of insurance, only to later
disavow any undesired product (cf. Lee et al. 1997). A
careful supplier must then deflate the numbers to
avoid over-capacity and inventory. This game of mu-
tual deception may be individually rational given the

circumstances, but increases the uncertainties and
costs in the system (cf. Magee and Boodman 1967,
Lovejoy 1998).
Various remedies to this well-known inefficiency

have been attempted, a number of which are noted in
§2. One approach that has become popular in many
industries is the Quantity Flexibility (QF) contract,
which attaches a degree of commitment to the forecasts
by installing constraints on the buyer’s ability to revise
them over time. The extent of revision flexibility is de-
fined in percentages that vary as a function of the num-
ber of periods away from delivery. This is made con-
crete in Figure 2.
Since individual nodes share common structure and

wemay wish to consider chains of considerable length,
we use common variable names for node attributes
wherever possible, and associate them with specific
parties via superscripts (P,M, and R in the example in
Figure 2).
At each time period, indexed by t, the period-by-

period stochastic market demand is described by {l(t)}
� [l0(t), l1(t), l2(t), . . .], where

l (t) � actual market demand occurring in0

period t (1)

l (t) � estimate of period (t � j) demand,j

for each j � 1.
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Figure 2 Decentralized Supply Chain with QF Contracts

The statistical structure of this process is known to the
retailer, who incorporates it into supply planning. The
retailer in turn provides the manufacturer with a re-
plenishment schedule vector {r(t)}R � [r0(t), r1(t),
r2(t), . . .]R, where

r (t) � actual purchase made in period t (2)0

r (t) � estimate of purchase to be made inj

period (t � j), for each j � 1.

This becomes the upstream supplier’s release schedule
vector, denoted { f(t)}M � [ f0(t), f1(t), f2(t), . . .]M, where

f (t) � quantity sold in period t (3)0

f (t) � estimate of quantity to be sold inj

period (t � j), for each j � 1.

Thus far we have simply formalized the information
flow described in Figure 1. Next, we consider the QF
contract between each pair of nodes. The
manufacturer-retailer QF contract is parametrized by
(�, x), where � � [�1, �2, . . .] and x � [x1, x2, . . .].
This places bounds on how the retailer may revise
{r(t)}R going forward in time. Specifically, for each t
and j � 1:

[1 � x ]r (t) � r (t � 1) � [1 � � ]r (t). (4)j j j�1 j j

That is, the estimate for future period (t � j) cannot
be revised upward by a fraction of more than �j or
downward by more than xj. Contingent on this, the
contract stipulates that the retailer’s eventual orders
will all be filled with certainty.1

1It is natural to expect that any reasonable flexibility agreement
should be such that the interval bounding a given future period’s
purchase becomes progressively smaller as that period approaches.
Although not readily apparent from Equation (4), the QF arrange-
ment has this feature. For instance, according to Equation (4), in
planning for period (t � 2) the retailer’s period t estimate r2(t) con-
strains the period (t � 1) estimate by

[1 � x ]r (t) � r (t � 1) � [1 � � ]r (t).2 2 1 2 2

In turn, by another application of Equation (4), r1(t � 1) is known
to constrain the eventual purchase r0(t � 2) by

[1 � x ]r (t � 1) � r (t � 2) � [1 � � ]r (t � 1).1 1 0 1 1

Together these define from the period t perspective the window
within which the eventual purchase must fall:

[1 � x ][1 � x ]r (t) � r (t � 2) � [1 � � ][1 � � ]r (t).1 2 2 0 1 2 2

Hence, the window bounding the actual purchase evolves from [(1
� x1)(1 � x2)r2(t), (1 � �1)(1 � �2)r2(t)] to [(1 � x1)r1(t � 1), (1 �

�1)r1(t � 1)]. Assuming Equation (4) is observed, the latter window
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Because { f(t)}M � {r(t)}R, Equation (4) means the
manufacturer can be sure that revisions to estimates of
its “demand” will obey

[1 � x ] f (t) � f (t � 1) � [1 � � ] f (t) (5)j j j�1 j j

and is contractually obligated to support the resulting
sequence of purchases. The manufacturer in turn
passes a replenishment schedule, denoted {r(t)}M, to its
own supplier. This will obey constraints analogous to
Equation (4) above, except with flexibility parameters

Thus the parts supplier knows that revisions to(�̃, x̃).
{ f(t)}P will stay within the bounds, and in turn(�̃, x̃)
passes upstream the replenishment schedule {r(t)}P

(staying within the bounds), and so on. This ex-(�̂, x̂)
ercise is repeated each period, with all estimates up-
dated in rolling-horizon fashion.
QF contracts are intended to provide a benefit to

each party. The supplier formally guarantees the buyer
a specific safety cushion in excess of estimated require-
ments. In return, the buyer agrees to limit its order
reductions, essentially a form of minimum purchase
agreement. In this way the buyer accepts some of the
downside demand risk which, were forecasts com-
pletely divorced of commitment, would be left to the
supplier. Mutual agreement on the significance of fore-
casts improves the planning capabilities of both par-
ties. Any favoritism expressed by this arrangement can
be mitigated in setting the flexibility limits, as we will
demonstrate.
The emergence of QF contracts as a response to cer-

tain supply chain inefficiencies is described in Lee et
al. (1997). Sun Microsystems uses QF contracts in its
purchase of monitors, keyboards, and various other

(one period prior to purchase) is contained entirely in the former
(two periods prior). More generally, requiring Equation (4) at every
revision generates a sequence of nested intervals that ultimately con-
verge to the actual purchase. This will become clear when, in §3, we
formalize this “cumulative” perspective on the flexibility terms of
the contract, taking an alternative view of the per-period incremental
flexibilities in Equation (4). Both representations have been observed
in industry. The incremental form would be preferred by a buyer,
since this constrains the successive updating of its replenishment
schedules. The cumulative form would be used by a supplier, since
this renders future capacity needs more transparent. But as these
forms are mathematically equivalent, our results apply equally well
to each.

workstation components (cf. Farlow et al. 1995).
Nippon Otis, a manufacturer of elevator equipment,
implicitly maintains such contracts with Tsuchiya, its
supplier of parts and switches (cf. Lovejoy 1998). So-
lectron, a leading contract manufacturer for many elec-
tronics firms, has recently installed such agreements
with both its customers and its rawmaterials suppliers
(Ng 1997), implying that benefits may accrue to either
end of such a contract. QF-type contracts have also
been used by Toyota Motor Corporation (Lovejoy
1998), IBM (Connors et al. 1995), Hewlett Packard, and
Compaq (Faust 1996). A similar structure, called a
“Take-or-Pay” provision, is often embedded in long-
term supply contracts for natural resources (cf. Masten
and Crocker 1985, Mondschein 1993, National Energy
Board 1993). In addition to being used to govern re-
lations between separate companies, QF structures
have also appeared at the interface between the manu-
facturing and marketing/sales functions (taking the
role of supplier and buyer, respectively) within single
firms (cf. Magee and Boodman 1967).
While QF contracts are being implemented in in-

dustrial practice, the academic literature has thus far
had little guidance to offer a firm interested in struc-
turing its supply relationships in this way. This paper
seeks to address this need, by pursuing the following
objectives: (a) to provide a formal framework for the
analysis of such contracts, with explicit consideration
of the non-stationarity in demand that drives the desire
for flexibility; (b) to propose behavioral models, i.e.,
forecasting and ordering policies, for buyers who are
subject to such constraints in their procurement plan-
ning, and for suppliers who promise such flexibility to
their customers; and (c) to link these behaviors to local
and systemwide performance (e.g., inventory levels
and order variability), and therefore guide the nego-
tiation of contracts. In the following discussion, our
intent is not necessarily to advocate the QF contract,
but to provide conclusions about the implications of
its usage.
Section 2 positions this paper in the literature. Sec-

tions 3 and 4 introduce the modeling primitives. We
will analyze complex systems such as the one in Figure
2 by decomposing the supply chain into modules of
simpler structure. All interior nodes, meaning those
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which have QF contracts on both their input and out-
put sides, can be represented by one node type. Here
we will derive a reasonable inventory policy that rec-
onciles the constraints and the commitments implied
by the input and output flexibility profiles. Another
node type represents the node at the market interface,
which has a QF contract on its input side only, but has
statistical knowledge about demand on its output side.
Here we will suggest an ordering policy that takes into
account the market demand dynamics, the relative
costs of holding and shortage, and the input-side flex-
ibility parameters. The decision problems of each node
type are formidable due to the large number of deci-
sion variables and the statistical complexity of cus-
tomer ordering, so we will utilize heuristic policies.
This enables us to explore in §5 the performance prop-
erties of supply chains controlled with QF contracts.
We investigate the implications of flexibility character-
istics for both inventory and service, as well as how
order variability propagates along the supply chain.
Once these relationships are established, the issue of
contract design, i.e., the choice of flexibility parame-
ters, may be pursued. In particular, §6 examines the
value of flexibility in the supply chain. We conclude in
§7 with discussion of these results and implementation
issues. For clarity of exposition, all proofs are deferred
to Appendix 1.

2. Literature Review
It is not generally the case that a supply chain com-
posed of independent agents acting in their own best
interests will achieve systemwide efficiency, often due
to some incongruence between the incentives faced lo-
cally and the global optimization problem. In our
single-product setting in which the only uncertainty is
in the market demand and the only decision is product
quantity, this is because overstock and understock
risks are visited differently upon the individual
parties.
One response is to reconsider the nature of the sup-

ply contracts along the chain. (See Tsay et al. (1999) for
a recent review.) The general goal is to install rules for
materials accountability and/or pricing that will guide
autonomous entities towards the globally desirable
outcome (cf. Whang 1995, Lariviere 1999). This type of

approach recurs in a broad range of settings, for ex-
ample the economic literature on “vertical restraints”
(cf. Mathewson and Winter 1984, Tirole 1988, Katz
1989), the marketing literature of “channel coordina-
tion” (e.g., Jeuland and Shugan 1983, Moorthy 1987),
and agency theory (cf. Bergen et al. 1992, Van Ackere
1993). Recent examples in the multi-echelon inventory
literature include Lee and Whang (1997), Chen (1997),
and Iyer and Bergen (1997). When recourse in light of
information changes is admitted, results are limited to
single-period settings. Contractual structures that have
been shown to replicate the efficiency of centralized
control in that context include buyback/return ar-
rangements (cf. Pasternack 1985, Donohue 1996,
Kandel 1996, Ha 1997, Emmons and Gilbert 1998) and
the QF contract (cf. Tsay 1996). In all the above works,
information about market demand is common to all
parties.
Some flexible supply contracts with risk-sharing in-

tent have been studied in more realistic settings.
Bassok and Anupindi (1995) consider forecasting and
purchasing behavior when the buyer initially forecasts
month-by-month demand over an entire year and then
may revise each month’s purchase once within speci-
fied percentage bounds. Bassok and Anupindi (1997a)
analyze a contract which specifies that cumulative pur-
chases over a multi-period horizon exceed a previ-
ously (and exogenously) specified quantity, a form of
minimum-purchase agreement. Bassok and Anupindi
(1997b) study a rolling-horizon flexibility contract
similar to our QF structure, focusing on the retailer’s
ordering behavior when facing an independent and
stationary market demand process. Eppen and Iyer
(1997) analyze “backup agreements” in which the
buyer is allowed a certain backup quantity in excess of
its initial forecast at no premium, but pays a penalty
for any of these units not purchased. These models do
not attempt to demonstrate efficiency of the contract,
instead focusing on the operational implications of the
specified prices and constraints for the buyer. No con-
sideration is made for how the supplier might best
support its obligations, as the upstream decision prob-
lem is rendered difficult by the statistical complexity
of the demand that is transmitted through. Moreover,
the information structure is kept simplified, with the
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forecast for a given period’s demand updated at most
once, if at all.
What little is known about ongoing relationships

with information updating is limited to a single node
setting with very stylized demand models. For exam-
ple, Azoury (1985), Miller (1986) and Lovejoy (1990,
1992) consider demand whose structure is known ex-
cept for a single uncertain parameter that is updated
each period in a very specific way (e.g., Bayesian up-
dating, or exponentially smoothed mean). Base stock
policies with moving targets turn out to be optimal or
near-optimal. While these are quite powerful results,
they apply only when delivery is immediate. When
lead times are non-zero, a properly made current-
period decision would need to account for the behav-
ior of demand over several subsequent periods. Even
with these relatively straightforward demand models,
the statistics required for the policy calculations be-
come computationally formidable. This is the case
even absent supply side flexibility.
Industrially, rolling horizon planning is the most

common approach to non-stationary problems with
positive lead times, a prominent application beingMa-
terial Requirements Planning (MRP). As in our setting,
MRP seeks a supply schedule that attends to a period-
by-period schedule of materials needs. Baker (1993)
provides a recent review of lot-sizing studies, for both
single and multiple level models. Numerical simula-
tion is the predominant means of evaluating algorithm
performance, largely due to the complexity of the
setting.
Our primary interest is in the way these studies

model demand and how demand information is in-
corporated into the planning process. In general, the
installed policies rarely explicitly account for the tem-
poral dynamics of the underlying demand. The accu-
racy of the forecasts may be specified as a forecast error
that gets incorporated into safety stock factors for each
period (cf. Miller 1979, Guererro et al. 1986). However,
there is no consideration for how each forecast might
change from one period to the next. Typically, either
deterministic end demand is assumed (in which case
forecast updating is not an issue) or the forecast is fro-
zen over the planning horizon. Either way, the re-
sponse is reactive. Finding that the “stochastic, se-
quential, and multi-dimensional nature” of this class

of problem defies an optimization-based approach,
Heath and Jackson (1994) suggests that this approxi-
mates “reasonable” decision-making. We share this
view in our pursuit of insights for industrial
application.
One limitation of the MRP framework and other

conventional models is the notion of a fixed, or what
we call “rigid”, lead time. In many real systems, the
lead times that are loaded into the materials planning
model are exaggerated to hedge against uncertainties
in the supply process (e.g., queuing or raw materials
shortages) (cf. Karmarkar 1989). The QF contract for-
malizes the reality that a single lead time alone is an
inadequate representation of many supply relation-
ships, as evinced by the ability of buyers to negotiate
quantity changes even within quoted lead times.
This paper seeks insights for a setting including all

of the above features: resources which require advance
commitments, non-stationary demand about which in-
formation evolves over time, and the possibility of re-
vising the commitments within bounds in reaction to
information changes. Because this work evolved from
collaboration with an industrial partner competing in
a volatile industry, we have avoided as much as pos-
sible any dependence on specific statistical assump-
tions about market demand. In this context, optimal
policies are unknown, so we seek behavioral models
that mimic rational but potentially suboptimal policy-
makers. We also consider the perspectives of both par-
ties to each contract. In addition to specifying the
buyer’s behavior, we recommend how a supplier
might economically deliver the promised flexibility,
and characterize how the costs of both parties vary
with the contract parameters.

3. Analysis of an Interior Node
We first specify the structure and behavior of a flex
node,which we use to represent an agent which has QF
contracts with both its supplier and customer (e.g., the
manufacturer or the parts supplier in Figure 2). In §4
we will introduce the semi-flex node to handle the case
when the customer-side interface is unstructured. We
will model multi-stage supply chains by linking these
modular units.
At each period t, the node receives { f(t)}� [ f0(t), f1(t),
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f2(t), . . .] as defined in Equation (3), the release schedule
delineating the downstream node’s needs. The node
will in turn provide its upstream supplier with a re-
plenishment schedule {r(t)} � [r0(t), r1(t), r2(t), . . .] as de-
fined in Equation (2). Note that one node’s release
schedule is simultaneously the downstream node’s re-
plenishment schedule. I(t) is the node’s period t ending
stock, calculated as I(t) � I(t � 1) � r0(t) � f0(t). All
quantities are measured in end-item equivalents.
The input and output QF parameters are denoted as

(�in, xin) and (�out, xout) respectively, superscripted to
signify the node’s point of reference. Restating Equa-
tions (4) and (5) with this notation gives the following
ground rules for schedule revisions, termed Incremen-
tal Revision (IR) constraints:

out out[1 � x ] f (t) � f (t � 1) � [1 � � ] f (t),j j j�1 j j

for all t, each j � 1 (6)
in in[1 � x ] r (t) � r (t � 1) � [1 � � ] r (t),j j j�1 j j (7)

for all t, each j � 1.

Naturally, we assume � 0 and 0 �in out in out� , � x , xj j j j

� 1. Since these IR constraints are assumed to hold in
all future iterations, the current period’s fj(t) suggests
bounds on f0(t � j), the actual customer purchase in
period (t � j). Specifically, Equation (6) implies

out out[1 � X ] f (t) � f (t � j) � [1 � A ] f (t),j j 0 j j

for all t, each j � 1, where (8)
j

out out•1 � X � (1 � x ) andj � q
q�1

j
out out•1 � A � (1 � � ). (9)j � q

q�1

Similarly, on the replenishment side, Equation (7)
implies

in in[1 � X ] r (t) � r (t � j) � [1 � A ] r (t),j j 0 j j

for all t, each j � 1, where (10)
j

in in•1 � X � (1 � x ) andj � q
q�1

j
in in•1 � A � (1 � � ). (11)j � q

q�1

Equations (8) and (10) are termed Cumulative Flexibility
(CF) constraints. Clearly and arein in out outA , X , A Xj j j j

non-negative and increasing in j, indicating that
greater cumulative flexibility is available for periods
further out, which is helpful since longer-term projec-
tions are generally less informative. As noted in §1, the
IR and CF systems of constraints are mathematically
equivalent, so that QF contracts may be stated either
way. Each perspective has certain advantages, and
throughout this paper we will use whatever form is
more convenient for the given context.

Replenishment Planning at a Flex Node
The flex node decision problem is to construct the {r(t)}
to be passed upstream, given the {f(t)} faced and the
local inventory level. The only policies we deem “ad-
missible” are those that uphold the release-side con-
tract without violating the replenishment-side con-
tract. That is, an admissible policy is one for which,
given any arbitrary sequence of {f(t)} whose updates
obey Equation (6), (a) updates to {r(t)} obey (7), and (b)
coverage is provided (i.e., I(t � 1) � r0(t) � f0(t) for all
t).
The stochastic optimization problem to be solved at

period t, called program (F), is:
H

min E[G(I(t � j))|{f(t)}]{r(t)},(r (t�1), . . ,r (t�H)) �0 0
j�0

subject to (12)

I(t � j) � I(t � j � 1) � r (t � j) � f (t � j)0 0

for j � 0, . . , H (13)

I(t � j) � 0 for j � 0, . . , H (14)

in(1 � x )r (t � 1) � r (t)j�1 j�1 j

in� (1 � � )r (t � 1) for j � 0, . . H � 1j�1 j�1

(15)

in in(1 � X )r (t) � r (t � j) � (1 � A )r (t)j j 0 j j

for j � 0, . . , H. (16)

G() is some convex cost function (minimized at zero)
that is charged against future ending stock levels, so
the objective is to minimize expected total cost over H
periods for some fixed H. This problem is stochastic
because, as suggested by balance Equation (13), G(I(t
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� j)) depends on the random variables ( f0(t � 1), . . . ,
f0(t � j)) conditional on { f(t)}. The decision variables
are {r(t)} (the current replenishment schedule, which is
all that must be formally stated to the supplier) and,
for internal planning purposes, (r0(t � 1), . . . , r0(t �

H)) (the sequence of intended future purchases, which
still enjoys some opportunity for revision).2 Equation
(14) enforces the coverage commitment, Equation (15)
states what {r(t)} is allowed given {r(t � 1)} and the
input side IR constraint3 and Equation (16) then com-
putes the CF bounds on the node’s future purchases
based on the {r(t)} chosen.
Exact solution to (F) is difficult for two primary rea-

sons. First, dimensionality of the decision space is very
large, with each decision variable subject to con-
straints. In particular, Equation (16) acts like a capacity
constraint, which precludes closed-form solution in a
stochastic setting (cf. Federgruen and Zipkin 1986,
Tayur 1992). Here, the added wrinkle is that future
capacity limits can not only vary by period, but are
actually decision variables that can be dynamically ad-
justed. Second, and more problematically, the statisti-
cal properties of the random variables ( f0(t � 1), f0(t
� 2). . .) are in general very complex, since not only
are they ultimately derived from a non-stationary and
multivariate market demand/forecast process, they
are filtered through the inventory policies of one or
more intermediaries (see Figure 2) and all intervening
QF constraints. Hence, while the expectation in the ob-
jective function may be well-defined in theory, in prac-
tice it is intractable, rendering the search for an optimal
policy problematic. However, we can identify an open-
loop feedback control (OLFC) policy (cf. Bertsekas
1976) that has some satisfying mathematical and in-
tuitive properties. In an OLFC policy, at each period a
sequence of actions is computed looking forward and
assuming perfect information, and the first action is in-
voked. The information is then updated the following
period and another forward-looking sequence of ac-
tions is computed, and so forth. In this way, a complex

2{r(t � 1)}, {r(t � 2)}, etc. need not be specified at this point since
any influence they may have are reflected implicitly through Equa-
tion (16). Values consistent with any feasible solution can be inferred
if desired.
3{r(t � 1)} is data resulting from the period (t � 1) planning iteration.

stochastic dynamic program is approximated by a se-
ries of deterministic models. Such policies are com-
monplace in problems with complex or incompletely
specified process dynamics. The conventional wisdom
is that OLFC is a fairly satisfactory mode of control for
many problems. This, in fact, is the approach taken by
industry practitioners in their adoption of the MRP
paradigm.
To construct an OLFC policy for the control of a flex

node, we suppress explicit consideration of future up-
dates to { f(t)}. Instead, the contractual coverage obli-
gation suggests fixed targets to which the flex node can
position. In particular, this node must fill any orders
provided that the customer’s revisions do not exceed
the defined bounds.4 The resulting deterministic prob-
lem, which we denote program (F-OLFC) is:

h

min G(I(t � j)) subject to{r(t)},(r (t�1), . . ,r (t�h)) �0 0
j�0

I(t � j) � I(t � j � 1) � r (t � j)0

out� (1 � A )f (t) for j � 0, . . , h (17)j j

I(t � j) � 0 for j � 0, . . , h (18)
in(1 � x )r (t � 1) � r (t) �j�1 j�1 j

in(1 � � )r (t � 1) for j � 0, . . h � 1 (19)j�1 j�1

in in(1 � X )r (t) � r (t � j) � (1 � A )r (t)j j 0 j j

for j � 0, . . , h. (20)

f0(t � j) has been replaced with (1 � ) fj(t) foroutAj

reasons discussed above. This program also considers
a potentially shorter time window, of length h � H, as
a practical consideration. Naturally, this assumes that
all flexibility parameters are well-defined for an h-pe-
riod outlook.

Proposition 1. The following {r(t)} is optimal for pro-
gram (F-OLFC), and is admissible:

in•r (t) � max[T (t), (1 � x )r (t � 1)]j j j�1 j�1

for j � 0, . . , h, where (21)

4This is not the same as guaranteeing to meet all customer demand,
since the allowable order is groomed in advance by the flexibility
constraints, i.e., it is a truncated version of what the customer might
desire otherwise.
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out(1 � A ) f (t) � l (t)j j j•• T (t) � (22)j in1 � Aj

I(t � 1) for j � 0
in•• l (t) � [l (t) � (1 � X )r (t) (23)j j�1 j�1 j�1� out �� (1 � A )f (t)] for j � 1.j�1 j�1

This is named the Minimum Commitment (MC) policy
as the present decisions minimize commitment to fu-
ture costs subject to supporting service obligations.
(r0(t � 1), . . . , r0(t � h)) is not stated explicitly since
only {r(t)} needs to be provided to the supplier (see
Appendix 1 for the complete optimal solution). lj(t) is
the period t projection of inventory assured to be avail-
able at period (t � j), anticipating the future actions of
the OLFC-optimal decision rule. From here on, we as-
sume that flex nodes use the MC policy. The next sec-
tion investigates the relationships among flexibility, in-
ventory, and information subject to this behavioral
assumption.

The Effect of Flexibility Disparities Across a Flex
Node
This section makes rigorous the notion that inventory
results from a disparity between input and output flex-
ibility. The intuition is as follows. The goal is for sup-
ply to track customer orders as closely as possible. Be-
cause of forecast updating, those orders are moving
targets and the output flexibility defines the range of
potential movement. Meanwhile, the input flexibility
represents the node’s tracking ability. A node with dif-
ficulty in matching upside movement compensates by
increasing its general positioning. Inventory accrues
when the node is unable to pare down its replenish-
ments as quickly as the customer is allowed to reduce
its own requirements.
Proposition 2 demonstrates that a flex node which

possesses more flexibility (in CF form) in its supply
process than it offers its customer can meet all obli-
gations with zero inventory.

Proposition 2. If (a) updates to { f(t)} obey IR con-
straints, (b) the MC policy is used, (c) I(0) � 0, and (d)
(Ain,Xin)� (Aout,Xout), then I(t)� 0 for all t. In the special
case that (Ain, Xin) � (Aout, Xout), then rj(t) � fj(t) for all
j � 0, t � 1.

Note that (�in, xin) � (�out, xout) is sufficient, but not

necessary, to guarantee that (Ain, Xin) � (Aout, Xout).
The result holds under the latter, less restrictive
condition.
This proposition provides insight into one aspect of

flexibility contracting. Once the input profile matches
the output profile, additional supply side flexibility is
wasted and represents an irrational configuration.
(Formally, this would be the case if, in addition to con-
dition (d), or for at least one j.)out in out inA � A X � Xj j j j

Such a node “absorbs” flexibility with no benefit to the
system, and would be able to provide better service
(more flexibility) at no cost to itself (no increase in in-
ventory) by passing its excess flexibility downstream
until (Ain, Xin) � (Aout, Xout). This will result in a per-
fect non-distortive conduit of information and mate-
rials. Orders are filled exactly, no inventory accumu-
lates, and every schedule received is transmitted
straight upstream unaltered (a pure lot-for-lot policy).
In all other scenarios, the node serves as an “amplifier”
of flexibility, offeringmore to the customer than it itself
receives. Such nodes must carry inventory to meet
their contracted goals. The specific inventory require-
ment will be driven not only by the flexibility profiles,
but also the nature of the {f(t)} process facing the node.
Analytical results predicting inventory from the in-

stalled flexibilities are currently limited. While this
question will be addressed for the general setting via
numerical simulation in §5, to obtain insight into how
inventory builds we consider here the simplest con-
ceivable sequence of {f(t)}: deterministic and stable re-
lease schedules, i.e., fj(t) � for all j � 0, where theˆ ˆf fj j

are constants which satisfy Equation (6) ([ ]out ˆ1 � x fj j

� � [1� ] for j � 1). These “stable forecasts”outˆ ˆf � fj�1 j j

are perfect in that the actual release is exactly everyf̂0
time period. Naturally, if this were known in advance,
the output flexibility could be eliminated since the cus-
tomer has no real need for revision capability. How-
ever, to investigate the inventory impact of non-zero
flexibilities we consider how the MC policy will per-
form if applied to this predictable process. Inventory
will still arise due to the need to cover the possibility
of increases.
An equilibrium for a flex node facing stable forecasts

consists of an inventory level and replenishment
schedule that, once in place as the state variables, per-
sist for all subsequent periods. Proposition 3 provides
explicit characterization of the equilibrium behavior.
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Proposition 3. An equilibrium for a flex node facing

stable forecasts is {r̂, Î} where:ˆ{ f }

f̂0 for 0 � j � j*in1 � Xjr̂ � (24)j 1� max {z } for j* � j � hk�j kin1 � Xj

j*
outˆ ˆ ˆand I � [(1 � A )f � f ]� k k 0

k�1

in inA � Xj* j*ˆ� f where (25)0 � in �1 � Xj*

out ˆ(1 � A )fj j in•z � [1 � X ] andj j� in �1 � Aj

ˆ ˆmax {j: z � f } if ∃ j s.t. z � fj 0 j 0•j* � �0 otherwise.

The above expressions may be interpreted in the fol-
lowing way. As it is increasing in the output flexibility
and decreasing in the input flexibility, zj reports the
relative inadequacy of the input side flexibility over a
j-period-away outlook. Based on the zjs, j* defines the
flexibility shortfall horizon, the shortest horizon length
within which input flexibility constraints bind. Beyond
j*, the zks are “small,” which may be interpreted as a
surplus of input flexibility. Indeed, for these indices,
Equation (24) indicates that maximal replenishment
flexibility is not exercised. j* plays a key role in the
computation shown in Equation (25), which accumu-
lates period-by-period the amount by which the cov-
erage target exceeds the actual demand over the flex-
ibility shortfall horizon (the last term is a boundary
effect adjustment). Inventory results from a non-zero
j*, i.e., the existence of a window within which flexi-
bility is lacking, an insight that extends beyond the
“stable forecasts” setting. Comparative statics for the
inventory level are cataloged in Proposition 4.

Proposition 4. Under the conditions of Proposition 3,
the following properties apply: (a) Release Schedule: (i)

� 0, (ii) � 0 for j � 1 (the inequality isˆ ˆ ˆ ˆDI/Df DI/Df0 j

strict for j � j*); (b) Upside Output Flexibility: outˆDI/DAj

� 0 for j � 1 (the inequality is strict for j � j*); (c) Downside
Output Flexibility: � 0 for all j; (d) Upside InputoutˆDI/DXj

Flexibility: � 0 for j � j*, � 0 otherwise;in inˆ ˆDI/DA DI/DAj j

(e) Downside Input Flexibility: � 0 for j � j*,inˆDI/DXj

� 0 otherwise.inˆDI/DXj

Proposition 4 may be interpreted as follows. First,
the inventory level is determined by the size of the
actual release relative to the upside coverage targets.
In (a.i), increasing suggests that the demand out-f̂0
comematerializes higher relative to forecast, which de-
creases inventory. Increasing the forward-looking
components of the release schedule as in (a.ii) neces-
sitates inflation of corresponding replenishments,
hence potentially more inventory. Comparing (b) to
(a.ii) suggests that and have similar effects,outf̂ Aj j

which follows since only the product (1� playsout ˆA )fj j

into the MC logic. As appears nowhere in Prop-outXj

osition 3, , which may seem counterin-outˆDI/DX � 0j

tuitive. However, (c) assumes that remains con-ˆ{ f }
stant. In reality, a rational downstream customer
should increase its {r̂} (which becomes this flex node’s

in response to an increase in its downside inputˆ{ f })
flexibility (this flex node’s Xout). Hence the net effect
would actually be more consistent with that described
in (a), a network phenomenon not captured in this
single-node analysis. Items (d) and (e) show that im-
provements in input flexibility reduce inventory, but
only on the boundary of the flexibility shortfall hori-
zon. Adding within the horizon does not help, since
the constraint that defines the boundary continues to
bind. Beyond the boundary additional flexibility only
contributes to an existing surplus. Of course, with
more realistic release schedule dynamics, j* will move
about, so that increasing any component of the input
flexibility would likely be beneficial. This and all other
insights reported above have been corroborated by nu-
merous simulation experiments.

4. The Market Interface
A QF contract delineates conditions under which all
orders will be filled. However, at the market interface
this may be an inappropriate representation of the sup-
ply relationship. For example, consider a retailer that
serves the external market, which is not a single entity
with which a contract of this sort may bewritten. There
is no rationale for limiting a customer’s entitlement to
product, nor is there a customer-provided forecast to
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which to tie a minimum purchase requirement. We
represent this situation with a “semi-flex node”.
Like a flex node, the semi-flex node has replenish-

ment governed by a QF contract. However, there is no
such structure on the release side. {l(t)} � [l0(t), l1(t),
l2(t), . . .] represents information at period t regarding
the period-by-period demand, as defined in Equation
(1). The construction of {l(t)} is exogenous to the node
but will certainly impact performance. As with the flex
node, the decision is {r(t)}, with updates governed by
the IR constraints in Equation (7). Ending inventory is
updated by I(t) � I(t � 1) � r0(t) � l0(t), which as-
sumes complete backordering.
The optimization problem faced by a semi-flex node

is analogous to program (F) faced by a flex node, ex-
cept that the expectation in the objective function
Equation (12) would be conditional on {l(t)} rather
than {f(t)}, and l0(t � j) should appear in Equation (13)
in place of f0(t � j). The same issues that complicate
the solution of (F) and motivate an OLFC approach
(dimensionality and statistical complexity) also apply
here. Hence, following the logic applied at the flex
node, we formulate program (S-OLFC) as the open-
loop version of the semi-flex node’s decision problem:

h

min E[G(I(t � j))|{l(t)}]{r(t)},(r (t�1), . . ,r (t�h)) �0 0
j�0

subject to

I(t � j) � I(t � j � 1) � r (t � j) � l (t � j)0 0

for j � 0, . . , h
(26)

in in(1 � x )r (t � 1) � r (t) � (1 � � )r (t � 1)j�1 j�1 j j�1 j�1

for j � 0, . , h � 1
(27)

in in(1 � X )r (t) � r (t � j) � (1 � A )r (t)j j 0 j j

for j � 0, . . , h.
(28)

Whereas for the flex node the release-side contractual
obligation induced a deterministic schedule of future
releases on which to focus, here there is no such com-

mitment, reflected in the lack of an analog to Equation
(18). Hence, in contrast to (F-OLFC), this open-loop ob-
jective function still involves an expectation, which
will be based on the distribution of (l0(t � 1), . . , l0(t
� h)) conditional on {l(t)}. The open-loop approach is
to suppress consideration of how {l(t)} might be up-
dated over time.
Even with IID market demand and a G() of simple

structure, (S-OLFC) is difficult to solve analytically due
to the dimensionality and the constraint structure. In-
stead, we have considered a number of computation-
ally attractive, heuristic approaches based on relaxa-
tions of (S-OLFC), and performed a series of numerical
simulation tests, assuming a specific market demand
process. In particular, since flexibility is most mean-
ingful when tracking a non-stationary process, for all
studies in this paper we have used an Exponentially
Weighted Moving Average (EWMA) process (cf. Box et
al 1994). In an EWMA process, period t demand is l0(t)
� � 1) � nt. nt � N(0, r2) is an IID normal fore-l̄ (t1
casting noise with known variance, and � 1) is thel̄ (t1
mean of period t’s demand, which follows exponential
smoothing dynamics: � (1 � d) • � 1) � d •l̄ (t) l̄ (t1 1

l0(t). 0 � d � 1, with d � 0 corresponding to IID de-
mand and larger values of d indicating more volatile
demand environments. The demand and forecast pro-
cess then has two parameters of volatility, d and r, and
tests were conducted for numerous parameter combi-
nations. Based on the discussion and simulation anal-
ysis detailed in Appendix 2, we propose the following
heuristic.

The “Sequential Fractile” (SF) policy constructs {r(t)} as

follows. Define (t) � l0(t) and E[G(Sj•S* S*(t) � argmin0 j Sj

� Dj(t))|{l(t)}], where Dj(t) l0(t � j) is the cu-j•� �q�0

mulative demand for periods t through (t � j). Letting y �

[a, b] denote the point in the interval [a, b] closest to y, for
j � 0, . . , h, select:

r (t � j)0r (t) � �j in in(2 � A � X )/2j j

in[(1 � x )r (t � 1),j�1 j�1

in(1 � � )r (t � 1)], where (29)j�1 j�1
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Figure 3 Supply Chain for System Performance Analysis

j�1

r (t � j) � S*(t) � I(t � 1) � r (t � q)0 j � 0� �
q�0

in� [(1 � X )r (t � 1),j�1 j�1

in(1 � A )r (t � 1)].j�1 j�1

It is straightforward to verify that in a conventional
scenario of a fixed lead-time with no flexibility, this
reduces to the classical policy of maintaining stock on-
hand plus on-order at a critical fractile of cumulative
demand over the lead-time. In fact, the SF policy may
be viewed as a generalization of multi-period news-
vendor logic, known to be optimal with IID demand,
to rolling horizon planning in the presence of flexibil-
ity. Replenishment policies based on IID logic but ap-
plied to real (almost certainly not IID) demand pro-
cesses have been demonstrated both in research and
practice to be very effective, if not optimal (cf. Lovejoy
1990, 1992). We make no claim that the SF policy is
optimal in more general settings, only that it includes
logic approximating the behavior of a reasonable prac-
titioner and has intuitive appeal. Bassok andAnupindi
(1997b) propose alternative OLFC semi-flex node pol-
icies under slightly different assumptions, which allow
for the development of certain performance bounds.
The computationally intensive nature of their policies
underscores the need for simplifying heuristics.

5. Performance Properties of QF
Supply Chains

We are now prepared to explore the performance
properties of multi-level supply chains controlledwith
QF contracts, which can be modeled by linking to-
gether the individual node building blocks presented
in §2 and §3. Below we characterize the following met-
rics: (i) system-wide inventory patterns, (ii) variability

of orders placed at each node, and (iii) service pro-
vided at the market interface. In particular, the com-
parative statics of each of these with respect to themar-
ket demand volatility and system flexibility
characteristics will be provided.

Modeling Supply Chains
Inventory points whose replenishments and releases
are both controlled by QF contracts are represented by
flex nodes (cf. §2). Only the single node furthest down-
stream in the chain may deviate from this structure,
and semi-flex structure (cf. §3) accommodates its dis-
tinctive features.
The link between two nodes is described by the flex-

ibility profile of the QF contract and, if desired, a logis-
tical delay (LD). The LD allows the representation of
delay that is truly unavoidable (e.g., for ocean transit).
As in MRP explosion calculus, a buyer node’s replen-
ishment schedule becomes its supplier’s release fore-
cast, differing by the intervening LD time offset:

(t) → (t) for j � LD. A non-zero LD alsosupplier buyerf rj�LD j

leads the parties to perceive the QF contract differ-
ently. Along with the time offset, i.e. ( out� ,j�LD

↔ ( )buyer, the immutability of ordersout supplier in inx ) � , xj�LD j j

within the incoming logistical pipeline is represented
by ( )buyer � ( )buyer � 0 for j � LD. Hence, a logis-in in� xj j

tical delay may be regarded as an extreme form of
inflexibility.

Supply Chain Performance
For the following experiments we consider the serial
chain depicted in Figure 3. Nodes 1–3 are flex nodes
and node 0 is a semi-flex node. Logistical delays are as
labeled.
Figure 4 presents the assumed system flexibility

characteristics, stated in CF form since the computa-
tional algorithms were easier to implement this way.
Conversion back to IR form is easy, via Equations (9)
and (11). Parameter values were chosen to provide
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Figure 4 Base-Case System Flexibilities

j 1 2 3 4 5 6 7 8 9 10
Node 1 out outA and Xj j 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

in inA and Xj j 0.00 0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32
Node 2 out outA and Xj j 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32

in inA and Xj j 0.00 0.00 0.03 0.06 0.10 0.13 0.16 0.19
Node 3 out outA and Xj j 0.03 0.06 0.10 0.13 0.16 0.19

in inA and Xj j 0.00 0.00 0.03 0.05 0.08 0.10

Figure 5 Summary of Experiments and Observations

Observations and Conclusions
System Parameter Under
Consideration

Inventory Variability of Orders Node 0 Cost & Service Level

1. Demand forecast error. r is
increased incrementally.

increases at every node (Fig. 6) over all r considered, upstream
variability � market demand
variability (Fig. 10)

both cost and fill rate worsen with
r (Fig. 14)

2. Parameter governing movement
of mean demand. d is increased
incrementally.

increases at every node (Fig. 7) for low d, upstream variability �

market demand variability; as d

increases, bullwhip effect eventually
occurs (Fig. 11)

both cost and fill rate worsen with
d (Fig. 15)

3. Flexibility between flex nodes.
Components of (Aout, Xout)Node2 are
increased incrementally. {d, r} �

{0.3, 20}

decreases at Node 1, increases at
Node 2; impact on Node 3 is minor
(Fig. 8)

upstream variability is fairly robust to
small perturbations of internal
flexibility parameters (Fig. 12)

NOT APPLICABLE

4. Flexibility between flex node and
semi-flex node. Components of (Aout,
Dout)Node1 are increased incrementally.
{d, r} � {0.3, 20}

decreases at Node 0, increases at
Nodes 1 and 2; impact on Node 3
is minor (Fig. 9)

order variability is apparently fairly
robust to small perturbations of
internal flexibility parameters (Fig. 13)

more supply-side flexibility
improves both cost and fill rate
(Fig. 16)

flexibility amplification (cf. Proposition 2) at each flex
node, with upside-downside symmetry in each profile.
This network configuration will be referred to as the
Base-Case. We again use the EWMA demand and fore-
cast process detailed in Appendix 2, with � 100l̄ (0)1

and (co, cu) � (30, 150).
In a series of simulation experiments, we consider

the relationship between key parameters and perfor-
mance outcomes. The parameters studied are: (1) r, the
demand forecast error, (2) d, the parameter governing
movement of the mean demand, (3) the flexibility pro-
file between two flex nodes (Nodes 1 and 2), and (4)
the flexibility profile between a flex node and a semi-
flex node (Nodes 1 and 0, respectively). The outcomes
reported for each node are: (1) average inventory, and
(2) variability of orders (i.e., StdDev(r0())). The investi-
gation of variability is motivated by concern for the

“bullwhip” effect, an empirically common phenome-
non in which the variability of replenishment orders
placed by a node exceeds the variability of customer
orders encountered. That is, order variability exceeds
market demand variability, and increases on moving
upstream. Lee et al. (1997) reports that the QF contract
has appeared in industry as a counter-measure to the
bullwhip effect.
For stated combinations of the system parameters

we report the performance metrics over 100 separate
500-period simulation runs. The four experiments and
observations are summarized in Figure 5, and illus-
trated in Figures 6–16.
Note that increasing the flexibility between flex

nodes (Experiment 3 in Figure 5) has no bearing on
Node 0 performance. This is because Node 0 continues
to receive the same flexibility from Node 1, regardless
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Figure 8 Inventory vs. (Aout, Xout)Node 2Figure 7 Inventory vs. d, with r � 20

Figure 6 Inventory vs. r, with d � 0

of what happens further upstream. Of course, we
would expect that in a real supply chain an increase in
upstream flexibility should potentially benefit even
downstream parties further removed. This would oc-
cur if, for instance, Node 1 were to be willing to pass
to Node 0 some of the inventory savings enabled by
the improved flexibility provided by Node 2. This
could be in some combination of increased flexibility
and lower unit cost. Such behaviors are not considered
within the scope of these experiments.
Figures 6 and 7 validate our intuitions regarding de-

mand variability and inventory. Figure 8 is consistent
with the intuitions developed in Proposition 4. Node

1 is receiving improved service (higher input flexibil-
ity), therefore can meet its commitments with less in-
ventory. Node 2 is in turn promising a higher level of
service, and carries more inventory as a result. From
this we note that all else equal, increasing the param-
eters of the QF contract reduces the customer’s costs at
the expense of the supplier. This conflict of preferences
provides the tension in the contract negotiation pro-
cess. Even though Node 3’s flexibility status is unal-
tered, its inventory situation does change. The effects
are carried upstream via changes in the dynamics of
the information vector. Each flexibility profile trans-
forms the information flow, so changes in any profile
will have ramifications for all nodes upstream no mat-
ter how far removed. As with Figure 8, Figure 9 shows
that increasing the flexibility between two nodes (this
time a flex node and a semi-flex node) shifts inventory
upstream. Slight upward pressure is also expressed at
Node 2, which apparently gets damped out before
reaching Node 3. At this point it is still unclear where
inventory, and by implication flexibility, should best
be positioned from a system-optimizing perspective.
This design question requires additional structure de-
scribing the relative economic implications of holding
inventory at the various locations, which we do not
pursue in this paper. A methodology for addressing
this issue is provided in Tsay (1995).
The next several figures investigate the prevalence

of the bullwhip effect in QF environments. In Figure
10, which has IID market demand, no bullwhip occurs.
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Figure 12 System Variability vs. (Aout, Xout)Node 2, with {d, r} � {0.3,
20}

Figure 11 System Variability vs. d, with r � 20

Figure 10 System Variability vs. r, with d � 0

Figure 9 Inventory vs. (Aout, Xout)Node 1

This was not unexpected since the phenomenon is usu-
ally associated with non-stationary demand. However,
dampening of variability is achieved. When demand is
non-stationary (Figure 11), increasing volatility in the
market demand and forecasts eventually overwhelms
the variability-diffusing capability of the installed flex-
ibility. However, a true bullwhip, which would cor-
respond to an upward-sloping curve, is not always
present. Figures 10 and 11 confirm that at each node
StdDev(r0()) increases with either demand variability
parameter. Figures 12 and 13 suggest that the patterns
of variability are fairly robust to small perturbations of
flexibility parameters.

We conclude that the presence of flexibility can
dampen the transmission of order variability up the
chain. This is because an entire replenishment schedule
can move in response to changes in the demand en-
vironment. For example, suppose demand forecasts
are revised upwards in a given period, which would
lead a node to generally increase the elements of its
replenishment schedule. If the demand forecasts are
revised back down in the next period, the node has the
opportunity to undo some of the previous increases in
the replenishment schedule. The ability to dynamically
adjust the estimates is what enables a node to recover
from some of the overreacting that becomes a bullwhip
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Figure 16 Node O Performance vs. (Ain, Xin)Node 0, with {d, r} � {0.3,
20}

Figure 15 Node O Performance vs. d, r � 20

Figure 14 Node O Performance vs. r, d � 0

Figure 13 System Variability vs. (Aout, Xout)Node 1, with {d, r} � {0.3,
20}

effect in rigid lead-time settings. As market demand
becomes more volatile, the dampening capabilities of
the installed flexibilities are eventually overwhelmed,
and a bullwhip-type of effect may then be expressed.
As the semi-flex node (Node 0) has distinct structure

due to its interface with the external market, additional
performance metrics are appropriate. Figures 14
through 16 report this node’s average holding and bac-
korder cost per period and service performance (de-
fined as a fill rate) for the relevant experiments. As we
would expect, increasing market demand uncertainty
and forecast volatility (Figures 14 and 15) cause both

the cost and fill rate to worsen, and increased input
flexibility (Figure 16) enables an improvement in both.
Natural performance benchmarks are apparent only

for the semi-flex node. These include a single-location
model with immediate replenishment (extreme flexi-
bility) and one with a fixed lead time of H � 0 (zero
flexibility), which are well understood in IID demand
settings (this approach is taken in Bassok and
Anupindi 1997b). However, what remains lacking is
some basis for evaluating the absolute magnitudes of
the performance outcomes observed at individual flex
nodes and across the system. Are there ways to control
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Figure 17 Tandem Supply Chain for Contract Evaluation

the same supply chain which will result in lower in-
ventory levels across the board? Would these methods
increase or decrease the order variability? Models of
behavior and performance under alternative control
schemes are necessary. To the best of our knowledge,
these remain open research areas.

6. Contract Design
Thus far we have provided primitives for modeling
supply chains controlled by QF contracts and charac-
terized system performance for fixed flexibility param-
eters. We now consider these as decision variables,
since this will be a manager’s ultimate interest.5 Our
goal is to provide the “willingness-to-pay” for incre-
ments of flexibility, which a materials manager can
then compare against the menu of flexibility vs. unit
procurement cost combinations offered by a vendor or
pool of vendors, as well as other cost considerations
not included in this analysis.
To illustrate ourmethodologywe use the simple tan-

dem chain depicted in Figure 17, in which a single flex
node (Node 1) feeds into a semi-flex node (Node 0)
located at the market interface. Given a contract be-
tween Node 0 and Node 1 of (A, X), we wish to place
a value on Node 1’s supply-side flexibility, denoted as

(Ã, Both contracts have h � 4. While we use aX̃).
multi-level system for greater realism in the dynamics
of the materials and information flows, the results and
intuitions that follow are not materially different from
those obtained for a single node model.

5In general, the planning horizon H should also be open to negoti-
ation, and the method we present could easily handle this simply by
increasing the dimensionality of the experiment design (i.e., repeat-
ing the process for alternative values of H).

The general methodology is straightforward, in that
we incrementally increase and record the correspond-
ing reductions in Node 1’s inventory cost given a hold-
ing cost per period of 15, using the method of §4 to
compute average inventory levels in each case. Rather
than varying (Ã, along its eight degrees of freedomX̃)
independently, here we limit consideration to a spe-
cific parametric form: Ã � � {0.04s, 0.08s, 0.12s,X̃

0.16s} with s � 0, . . , 5. Using � 100 and r � 20,l̄ (0)1

this procedure was repeated for d values of {0.3, 0.5,
0.7}. The cost outcomes are reported in Figure 18 as
Node 1’s average inventory cost per unit of demand,
which is appropriate for comparison against unit pro-
curement cost.
The left figure reports how inventory costs varywith

the external contract, while on the right is the same
data in terms of savings relative to the zero-flexibility
case (s � 0). This describes the buyer’s “willingness to
pay” (WTP) for positive increments of flexibility rela-
tive to a rigid supply lead time. The cost curves indi-
cate that for any external contract the costs are increas-
ing with the market’s d. Each cost curve is decreasing
in s, as would be expected. As s becomes arbitrarily
large the cost approaches zero since demand can be
tracked perfectly with infinite flexibility. The WTP
curves suggest, for example, that in a market with d �

0.7 the materials manager of Node 1 should to be will-
ing to pay the external vendor an additional $7.60/unit
to go from a no-flexibility contract (s � 0) to an s � 5
supply contract. The curves shift upwardwith d, which
we expect since flexibility, the ability to track a moving
target, should increase in value with the extent of
movement to be tracked. More generally, flexibility
cannot be valued without an environmental context.
For example, the WTP curve will be uniformly zero in
a world of completely deterministic demand as long
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Figure 18 Node 1 Inventory Cost, Willingness-to-Pay (WTP) (per unit) vs. Supply Flexibility

as the internal contracts are specified properly. In each
demand environment there appears to be a point of
diminishing returns beyond which additional flexibil-
ity becomes practically worthless, suggesting that
there is already sufficient flexibility on hand to suitably
respond to the degree of schedule volatility encoun-
tered. A buyer always prefers more flexibility, but
should be happy to settle for less if the price is right.

7. Concluding Remarks
This paper proposes a framework for performance
analysis and design of QF supply chains. We have pro-
vided local policies that, in addition to suggesting a
rational way to make use of flexible supply, dictate
what actions must be taken to support flexibility prom-
ised to a customer. While these are not necessarily op-
timal in the traditional sense, we feel they provide a

reasonable compromise in light of their computational
properties and the complexity of the general problem.
We have developed the notion of inventory as a con-

sequence of disparities in flexibility. In particular, in-
ventory is the cost incurred in overcoming the inflex-
ibility of a supplier so as to meet a customer’s desire
for flexible response, which we call flexibility amplifi-
cation. All else equal, increasing a node’s input flexi-
bility reduces its costs. And all else equal, promising
more output flexibility comes at the expense of greater
inventory costs. We therefore recommend that inven-
tory management should be viewed as the manage-
ment of process flexibilities.
The modular design of our local nodal models en-

ables multi-echelon analysis, which has been lacking
in the literature of flexible supply contracts. Our ex-
periences have revealed that the distribution of the in-
ventory burden across QF supply chains is determined
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by the system flexibility characteristics and the volatil-
ity in the market demand and forecast process. We
have found in addition that QF contracts can dampen
the transmission of order variability throughout the
chain, thus potentially retarding thewell-known “bull-
whip effect”.
We provide a methodology for computing a mate-

rials manager’s “willingness-to-pay” for flexibility
from an external vendor, which has certain properties.
These include the notions that flexibility increases in
value as the market environment becomes more vola-
tile, and that flexibility observes a principle of dimin-
ishing returns. The buyer always prefers more flexi-
bility, but should be careful to make the appropriate
cost-benefit assessment in negotiating the contract.
As firms have experimented with QF contracts, cer-

tain implementation issues have come to light. The QF
contract represents a radical change in procurement
practice for some firms, and change rarely comeswith-
out organizational resistance.
Materials buyers may present one source of oppo-

sition. Some are accustomed to manipulating orders
without perceived consequence, and are reluctant to
surrender this position. For others it is the formality of
the flexibility limits, rather than the particular latitudes
specified, that inspires discontent. Some of these indi-
viduals thrive on the thrill and challenge of the dy-
namic bargaining process, and have confidence in their
ability to extract greater concessions in an ad-hoc sys-
tem than any supplier would actually commit to for-
mally. A large part of this problem is in the difficulty
of understanding just how much flexibility is actually
needed and how much is available in the relationship.
More fundamentally, it can be problematic for a ma-
terials organization to recalibrate its intuitions and
business practices around specifying flexibilities in-
stead of inventories. The intent of this paper has been
to inform these issues.
Depending on what behavior is being replaced, it is

unclear whether the move to a QF arrangement will
drive procurement prices down or up. Even if these
increase, this may still be the best solution in terms of
total costs. Yet this can be obstructed by a conflict of
interest within the buyer organization. TheQF contract
is precisely about trading off procurement price for in-
ventory cost, yet in many firms different groups are

held accountable for each of these. In Sun Microsys-
tems, for example, the Supplier Management organi-
zation is responsible for the unit price, while the Ma-
terials organization owns the inventory (cf. Farlow et
al. 1995). Will the group concerned with procurement
price pay for the supply flexibility that will help the
factory operate with less inventory?
A similar conflict can occur within the supplier or-

ganization. The supplier benefits from themore honest
forecasts that the buyer may provide due to the QF
contract, but in exchange may need to lower its selling
price and carry additional inventory to meet its prom-
ise of coverage. Resistance may result if inventory and
price (which now affects revenue) are concerns of dif-
ferent groups.
These, and other cultural and organizational consid-

erations, will join efficiency and valuation issues in de-
termining the popularity of QF contracts over time.6

Appendix 1. Proofs of Propositions

PROOF OF PROPOSITION 1.
We solve (F-OLFC) in several steps, outlined as follows. First, we
momentarily relax the upper bounds in Constraints (19) and (20) to
avoid potential infeasibility. The relaxed solution is not unique in
{r(t)}, so we pick the option that has the lowest values component-
wise. Finally, we show that if updates to {f(t)} satisfy the required IR
constraints, our solution to the relaxed program automatically sat-
isfies the upper bounds of Equations (19) and (20), and hence is
admissible as well as being optimal for (F-OLFC). We now proceed
in this fashion.
(F-OLFC) is potentially infeasible since the upper bounds in Equa-

tions (19) and (20), which act like capacity constraints, may preclude
coverage. The problem is that in converting to a deterministic prob-
lem, the information indicating that updates to {f(t)} are also
bounded is lost. So for the moment we relax these upper bounds, in
which case Equations (19) and (20) can be combined into (1 �

, and the optimal (r0(t � 1), . . , r0(t �inX )r (t � 1) � r (t � j)j�1 j�1 0

h)) can be stated as:

6The authors would like to thank a number of individuals. Timothy
Eckert and Richard Goldstein of Sun Microsystems engaged us in
many meaningful conversations in the model design stage. Profes-
sors J. Michael Harrison, Warren Hausman, Martin Lariviere, Hau
Lee, James Patell, Evan Porteus, Seungjin Whang and RobertWilson
have provided many insightful comments. Seminar participants at
Duke University, Santa Clara University, Stanford University, the
University of Michigan, and Washington University (St. Louis) have
greatly assisted in the refining of our ideas. Last, but not least, we
are grateful to the referees and editors for thoughtful and timely
review. Any errors remain the responsibility of the authors.
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out ¯•r*(t � j) � max{(1 � A ) f (t) � l (t),0 j j j

in(1 � X )r (t � 1)} for j � 0, . . , h (30)j�1 j�1

¯ ¯ ¯• •where l (t) � I(t � 1) and l (t) � l (t) � r*(t0 j j�1 0

out� j � 1) � (1 � A )f (t). (31)j�1 j�1

The formal proof is a straightforward application of Kuhn-Tucker
conditions (cf. Rockafellar 1972). See Tsay (1995) for details. In fact,
this solution is readily apparent from the problem’s economic struc-
ture. (F-OLFC) without the upside constraints is essentially anMRP-
style lot-sizing problem with minimum lot sizes. With no fixed cost
per lot and a holding cost for any material taken earlier than abso-
lutely necessary, a lot-for-lot policy (modified for minimum lot size
requirements) will be appropriate. The sequential algorithm stated
in Equations (30) and (31) does precisely this, with the construct

extrapolating the beginning inventory for period (t � j).l̄ (t)j

While above we have computed the desired future replenish-
ments, denoted by ( (t � 1), . . , (t � h)), the present decision isr* r*0 0

{r(t)}, which is not uniquely determined by (F-OLFC). Because an
rj(t) (in conjunction with the input flexibility parameters) simply
stakes out a region within which (t � j) may lie, there will bemanyr*0
{r(t)} that can enable the above ( (t � 1), . . , (t � h)). Since {r(t)}r* r*0 0

defines the lower IR bounds in subsequent periods, aminimal choice
of each rj(t) reduces the risk of unnecessary future inventory. (20)
requires (t � j) � (1 � )rj(t) (one of the two constraints weinr* A0 j

relaxed earlier), so choosing an rj(t) � (t � j)/(1 � ) is neces-inr* A0 j

sary. To guarantee this without violating (19), we select:

in•r (t) � max[r*(t � j)/(1 � A ),j 0 j

in(1 � x )r (t � 1)] for j � 0, . . , h (32)j�1 j�1

The policy that results from applying this rule every period may
be stated in a more compact and analytically convenient form that
gives {r(t)} as a direct function of { f(t)}, bypassing the intermediate
calculation of in (30) and (31). Detailed(r*(t � 1), . . , r*(t � h))0 0

proof of this equivalence is omitted, however the general idea is as
follows. Direct substitution of (30) and (31) into (32) is followed by
a straightforward but tedious inductive argument that (as de-l̄ (t)j

fined in (31)) and lj(t) (as defined in (23)) are equivalent for all jwhen
(32) is applied at every t.
To show admissibility, we first prove Lemma 1, which states a

property of lj(t).

Lemma 1.
In rolling from period (t � 1) to period t, if: (a) I(t � 1) � 0; (b) { f (t)}
obeys the upside of the output IR constraints; and (c) the {r(t)} generated
by the MC policy obeys the downside of the input IR constraints, then lj(t)
� lj�1(t � 1) for all j � 0.

Proof of Lemma 1. This property follows from induction on j.
Details are omitted due to space limitations. Instead we offer the
following intuition. From the period (t � 1) perspective, lj�1(t � 1)
is the most conservative (i.e., lowest) estimate for the period (t � j)

inventory. That is, it assumes maximal demand and minimal re-
plenishment in all intervening periods. One period’s demand and
schedule revision outcome is resolved with each horizon roll, and
cannot result in inventory any lower than in the extreme scenario.
Admissibility requires that if all updates to { f(t)} obey their IR

constraints, then for all t, I(t) � 0 and replenishment side IR con-
straints are observed. Proof is by induction on t. At period (t � 1),

(21) implies rj�1(t � 1) � Tj�1(t � 1) [(1 � fj�1(t � 1) �out•� A )j�1

lj�1(t � 1)]/(1 � for all j � 0, which may be rewritten as (1inA )j�1

� rj�1(t � 1) � [(1 � (1 � fj�1(t � 1) � lj�1(t � 1)]/in out out� ) A ) � )j�1 j j�1

(1 � (see (9) and (11)). Since fj(t) � (1 � ) fj�1(t � 1) (IRin outA ) �j j�1

constraint) and lj(t) � lj�1(t � 1) (Lemma 1), this suggests (1 �

)rj�1(t � 1) � [(1 � fj(t) � lj(t)]/(1 � Tj(t). Thus,in out in •� A ) A ) �j�1 j j

rj(t) max[Tj(t), (1 � � 1)] � (1 � , soin in•� x )r (t � )r (t � 1)j�1 j�1 j�1 j�1

the upper bound in (19) is obeyed. Furthermore, rj(t) � Tj(t) for all j

� 0 by construction. At j � 0, this is r0(t) � T0(t) f0(t) � I(t � 1),•�

or equivalently, 0� I(t � 1)� r0(t)� f0(t) I(t). Thus, admissibility•�

conditions are satisfied at every t. �

Proof of Proposition 2. The MC policy can be stated as follows:

1 in•r (t) � max [(1 � X )T (t � (k � j))]j k�j k kin1 � Xj

for j � 0, with T () from (22) (33)k

The equivalence of this more analytically convenient form can be
verified by induction on j.
We next establish that inventory is non-increasing with time. Us-

ing (33) at j � 0:

1•r (t) � max0 k�0in1 � X0

outf (t � k)(1 � A ) � l (t � k)k k kin(1 � X )k� �in1 � Ak

out in1 � A 1 � Xk kout� max f (t � k) (1 � X ) � f (t)k�0 k k 0� � �� ��in out1 � A 1 � Xk k

The former inequality holds because lk() is non-negative and inX �0

. The latter is due to the output CF constraint and [(1 � �out0 A )/(1k

(1 � � � 1, which follows from condition (d).in in outA ) X )/(1 X )]k k k

Thus I(t) I(t � 1) � r0(t) � f0(t) � I(t � 1). Furthermore, I(t)•�

remains non-negative by the admissibility of the MC policy. So if
the inventory is initialized at zero, it will remain there.
The results for the specific case of (Ain, Xin) � (Aout, Xout) follow

from induction on j. We have shown that I(t) � I(t � 1) � 0 for all

t � 1. As I(t) I(t � 1) � r0(t) � f0(t) for all t � 1, this implies r0(t)•�

� f0(t). Also, l0(t) I(t � 1) � 0 for all t � 1.•�

Next, suppose that lj�1(t) � 0 and rj�1(t) � fj�1(t) for some j �

1. Then

in out �•l (t) � [l (t) � (1 � X )r (t) � (1 � A )f (t)]j j�1 j�1 j�1 j�1 j�1

in out �� [� (X � A )r (t)] � 0j�1 j�1 j�1
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We also know that lj(t) � lj�q(t � q) � 0 for all q � 0, where the first
inequality is due to Lemma 1 and the second reflects the non-
negativity of these entities. Consequently, lj�q(t � q) � 0 for all q �

0. Or, with the change of variable k � j � q, lk(t � (k � j)) � 0 for
all k � j. Then, beginning with (33), we have

1
r (t) � maxj k�jin1 � Xj

out(1 � A )f (t � (k � j)) � l (t � (k � j))k k kin(1 � X )k� �in1 � Ak

1 out� max [(1 � X )f (t � (k � j))]k�j k kout1 � Xj

out(1 � X )f (t)j j
� � f (t)jout1 � Xj

The second equality is due to (33) and the assumption that inA �k

and for all k. By the lower output IR constraint, fk(tout in outA X � Xk k k

� (k � j))� (1� ) fk�1(t � (k � 1� j)) for all k, or equivalently,outxk�1

(1 � ) fk(t � (k � j)) � (1 � ) fk�1(t � (k � 1 � j)). Thisout outX Xk k�1

delivers the third equality as the maximization must then occur at k
� j. �

Proof of Proposition 3. The proof, as detailed in Tsay (1995),
entails a single, purely mechanical iteration through the MC policy,
and is omitted due to space limitations. �

Proof of Proposition 4. The explicit functional forms of the dif-
ferences are computed in a tedious but straightforwardmanner from
the results of Proposition 3. �

Appendix 2. Analysis of Semi-Flex Node Policy
Our approach to obtaining a reasonable and computationally effi-
cient policy for the semi-flex node will be as follows. The solution
to (S-OLFC) with (27) and (28) relaxed is relatively straightforward
to obtain. We will then consider several alternative heuristic ap-
proaches for reconciling this with (27) and (28), and select one for
use in network performance analysis based on numerical simulation
studies.
Noting that I(t � j) � I(t � 1) � � q) �j j� r (t � l (t �q�0 0 q�0 0

and defining Sj (I(t � 1) � r0(t � q)) and Dj(t)j j• •q) � � � �q�0 q�0

l0(t � j), the objective in (S-OLFC) can be restated as
E[G(Sj � Dj(t))|{l(t)}]. If (27) and (28) are re-hmin �{r(t)},(S , . . ,S ) j�00 h

laxed, then clearly � l0(t) and �* •S*(t) S (t) � argmin E[G(Sj0 S jj

Dj(t))|{l(t)}] for j � 1 will be optimal since the summation in the
objective can be decomposed. The corresponding optimal (t � j)r*0
would then be obtained as � � I(t � 1) and � j) �r*(t) S*(t) r*(t0 0 0

� for j � 1. However, in general the attainment of thisS*(t) S* (t)j j�1

solution will be obstructed by some of the constraints. We therefore
seek a feasible point that is “close” to this ideal in some sense. Our
candidate heuristics each have two steps: (Step 1) projecting

into a feasible (r0(t � 1), . . , r0(t � h)), and (Step 2)(S*(t), . . , S*(t))0 h

constructing {r(t)} to declare to the supplier based on this (r0(t �

1), . . , r0(t � h)). Below are two proposed alternatives for each step.

Step 1: (Option a) Component-wise projection. By the above argu-
ment, the ideal would be to achieve r0(t) � � I(t � 1) and r0(tS*(t)0

� j) � � for j � 1. However, (27) and (28) togetherS*(t) S* (t)j j�1

require that (1 � � 1) � r0(t � j) � (1 � �in inX )r (t A )r (tj�1 j�1 j�1 j�1

1) for all j. So one approach is to get as close as possible term-wise,
subject to this constraint, i.e.,

in(S*(t) � I(t � 1)) � [(1 � X )r (t � 1),0 1 1
in(1 � A )r (t � 1)] for j � 01 1r (t � j) �0 in(S*(t) � S* (t)) � [(1 � X )r (t � 1),j j�1 j�1 j�1� in(1 � A )r (t � 1)] for j � 1j�1 j�1

(Option b) Lexicographic projection. Here the projection is per-
formed sequentially, with the index j target taking into account what
has been installed for all preceding terms. So, for all j,

j�1

r (t � j) � S*(t) � I(t � 1) � r (t � q)0 j � 0� � ��
q�0

in in� [(1 � X )r (t � 1), (1 � A )r (t � 1)]j�1 j�1 j�1 j�1

The rationale for this approach is that the consequences of decision
variables for near-term replenishments exceed those for periods fur-
ther off. Also, the latitude for change is less broad for periods closer
in. So it makes sense to first position r0(t) as close to its ideal value
as possible, then compensate for discrepancies in that match when
r0(t � 1) is selected, and so on.

Step 2: (Option a) Minimum commitment. This is the same approach

as at the flex node: max[r0(t � j)/(1 � (1 �in in•r (t) � A ), x )r (tj j j�1 j�1

� 1)] for j � 0, . . , h. The (r0(t � 1), . . , r0(t � h)) chosen at Step 1
takes into account the relative impacts of overage and underage.
Here we install the (component-wise) minimum allowable {r(t)} that
renders those targets attainable.

(Option b): Centering. The selection of rj(t) induces [(1 � (1inX )r (t),j j

� as the feasible range for r0(t � j). This option positionsinA )r (t)]j j

that interval so that the target r0(t � j) sits as close to the midpoint

(rj(t)[(1 � � (1 � as is allowed by (27): rj(t) r0(t �in in •X ) A )]/2) �j j

j)/[(2 � � � [(1 � � 1), (1 � (t �in in in inA X )/2] x )r (t � )rj j j�1 j�1 j�1 j�1

1)]. Whereas minimum commitment logic was used at the flex node
because maximum potential customer requests are already incor-
porated into the targets, at a semi-flex node the updates to {l(t)} are
unconstrained. There is uncertainty as to the direction and extent
that the desired r0(t � j) will move going forward in time, so this
method tries to keep the latest target at the middle of the window
to leave room to track it in either direction.
The above alternatives suggest the following four distinct heuris-

tics, labeled SF1–SF4:

Step 2: (r0(t), . . , r0(t � h))
→ {r(t)}

Min.
commitment Centering

Step 1: Component-wise SF1 SF2
→(S*(t), . . , S*(t))0 h

(r0(t), . . , r0(t � h))
Lexicographic SF3 SF4
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We compare these methods via numerical simulation, using the
EWMA process defined in §3. For this process, an unbiased and
minimum mean-squared-error estimate of period (t � k) demand is
provided by setting lk(t) � E[l0(t � � for k � 1 (thek)|l̄ (t)] l̄ (t)1 1

last equality is true since l0(t � k) � � d � , cf.k�1l̄ (t) � n n1 m�1 t�m t�k

Box et al 1994). Cumulative demand is Dj(t) � l0(t) � �j • l̄ (t)1

(dn � , a normal variate with moments E[Dj(t)] � l0(t)j�1� 1)nn�0 t�j�n

� and Var[Dj(t)] � jr2[d2(j � 1)(2j � 1)/6 � d(j � 1) � 1].j • l̄ (t)1

(Calculation of the latter uses identities n2 � k(k � 1)(2k � 1)/k�n�1

6 and n � k(k � 1)/2.)k�n�1

We assume G(x) � co[x]� � cu[x]�, where co and cu are respec-
tively the linear holding and backorder costs, in which case the

are easily obtained. Specifically, and, by newsven-S*(t) S*(t) � l (t)j 0 0

dor logic (cf. Heyman and Sobel 1984), �1S*(t) � F (c /(c � c ))j D (t) u o uj

where () is the distribution of Dj(t). For the EWMA process, theFD (t)j

above analysis suggests that S*(t) � l (t) � j • l̄ (t) � (j j •	j 0 1

where j � U�1(cu/(co �2r) d (j � 1)(2j � 1)/6 � d(j � 1) � 1	
cu)) and U() is the standard normal distribution function.
We compare the heuristics over scenarios distinguished by values

used for d, r, and (Ain, Xin): d � {0.3, 0.7}, r � {10, 20}, and (Ain, Xin)
� {SY, UD, DD} as described below. Profile SY has Ain � Xin �

{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}, symmetrical in
upside and downside flexibility. UD is upside dominant, withAin �

{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} and Xin � {0.00,
0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45}.DD is downside dom-
inant, with Ain � {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45} and Xin � {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}.
Cost parameters (co, cu) � (30, 150) are used. The performance of
each heuristic is evaluated by the average cost over 100 sample
paths, each path representing 500 periods. � 100 in all cases.l̄ (0)1

The outcomes of the 12 scenarios support the following conclu-
sions, with numerical details omitted due to space limitations (see
Tsay 1995). SF3 and SF4 are each uniformly superior to both SF1 and
SF2 by far, with results that are statistically significant with p-values
no greater than 1 � 10�17 in all cases (and typically even lower). So
Lexicographic projection dominates Component-wise projection for
Step 1 regardless of the option taken at Step 2, presumably for its
handling of the interrelationships between periods. There is no dom-
inant approach at Step 2, with relative performance varyingwith the
flexibility structure. We thus select SF3 as the semi-flex node oper-
ating policy, acknowledging the existence of alternatives that are
equally easy to implement and give superior performance in some
settings.

References
Azoury, K. S. 1985. Bayes solution to dynamic inventory models un-

der unknown demand distribution. Management Sci. 31 1150–
1160.

Baker, K. R. 1993. Requirements Planning. S. C. Graves, A. H. G.
Rinnooy Kan, P. H. Zipkin, eds. Handbooks in Operations Re-
search and Management Science, Vol. 4 (Logistics of Production and
Inventory). Elsevier Science Publishing Company B.V., Amster-
dam, The Netherlands.

Bassok, Y., R. Anupindi. 1995. Analysis of supply contracts with

forecasts and flexibility. Working Paper, Northwestern
University.

——, ——. 1997a. Analysis of supply contracts with total minimum
commitment. IIE Trans. 29 373–381.

——, ——. 1997b. Analysis of supply contracts with commitments
and flexibility. Working Paper, Northwestern University.

Bergen, M., S. Dutta, O. C. Walker. 1992. Agency relationships in
marketing: A review of the implications and applications of
agency and related theories. J. Marketing 56 3 1–24.

Bertsekas, D. P. 1976. Dynamic Programming and Stochastic Control.
Academic Press, New York.

Box, G. E. P., G. M. Jenkins, G. C. Reinsel. 1994. Time Series Analysis:
Forecasting and Control. Prentice Hall, Englewood Cliffs, NJ.

Chen, F. 1997. Decentralized supply chains subject to information
delays. Working paper, Graduate School of Business, Columbia
University.

Connors, D., C. An, S. Buckley, G. Feigin, A. Levas, N. Nayak, R.
Petrakian, R. Srinivasan. 1995. Dynamic modeling for re-engi-
neering supply chains. Research report, IBMResearchDivision,
T. J. Watson Research Center, Yorktown Heights, NY.

Donohue, K. L. 1996. Supply contracts for fashion goods:Optimizing
channel profits. Working paper, Department of OPIM, The
Wharton School, University of Pennsylvania.

Emmons, H., S. M. Gilbert. 1998. Note: The role of returns policies
in pricing and inventory decisions for catalogue goods. Man-
agement Sci. 44 2 276–283.

Eppen, G. D., A. V. Iyer. 1997. Backup agreements in fashion buying:
The value of upstream flexibility.Management Sci. 43 1469–1484.

Farlow, D., G. Schmidt, A. A. Tsay. 1995. Supplier management at
Sun Microsystems. Case Study, Graduate School of Business,
Stanford University, Stanford, CA.

Faust, M. 1996. Personal communication from a product manager at
one of Compaq’s suppliers of memory chips.

Federgruen, A., P. Zipkin. 1986. An inventory model with limited
production capacity and uncertain demands—I: The average-
cost criterion/II: The discounted-cost criterion.Math. Oper. Res.
11 193–215.

Guererro, H. H., K. R. Baker, M. H. Southard. 1986. The dynamics of
hedging the master schedule. Internat. J. Production Res. 24
1475–1483.

Ha, A. Y. 1997. Supply contract for a short-life-cycle product with
demand uncertainty and asymmetric cost information. Work-
ing paper, Yale School of Management.

Heath, D. C., P. L. Jackson. 1994. Modeling the evolution of demand
forecasts with application to safety stock analysis in produc-
tion/distribution systems. IIE Trans. 26 17–30.

Heyman, D., M. Sobel. 1984. Stochastic Models in Oper. Res., Volume
II (Stochastic Optimization)McGraw Hill, New York.

Iyer, A., M. E. Bergen. 1997. Quick response in manufacturer-retailer
channels. Management Sci. 43 4 559–570.

Jeuland, A. P., S. M. Shugan. 1983. Managing channel profits. Mar-
keting Sci. 2 239–272.

Kandel, E. 1996. The right to return. J. Law and Economics 39 329–356.
Karmarkar, U. S. 1989. Getting control of just-in-time. Harvard Busi-

ness Review September–October 122–131.



TSAY AND LOVEJOY
Quantity Flexibility Contracts

Manufacturing & Service Operations Management
Vol. 1, No. 2, 1999, pp. 89–111 111

Katz, M. L. 1989. Vertical contractual relations. R. Schmalensee, R. D.
Willig, eds. Handbook of Industrial Organization: Volume I. Elsev-
ier Science Publishers B.V., New York.

Lariviere, M. A. 1999. Supply chain contracting and coordination
with stochastic demand. S. Tayur, R. Ganeshan, M. Magazine,
eds. Quantitative Methods for Supply Chain Management. Kluwer
Academic Publishers, Norwell, MA.

Lee, H. L., P. Padmanabhan, S. Whang. 1997. The bullwhip effect in
supply chains. Sloan Management Rev. 38 3 93–102.

——, S. Whang. 1997. Decentralized multi-echelon inventory control
systems: Incentives and information. Working Paper, Stanford
University, Stanford, CA.

Lovejoy,W. S. 1990. Myopic policies for some inventorymodelswith
uncertain demand distributions.Management Sci. 36 724–738.

——. 1992. Stopped myopic policies in some inventory models with
generalized demand processes.Management Sci. 38 688–707.

——. 1998. Integrated Operations, Southwestern College Publishing,
Cincinnati, Ohio, Forthcoming.

Magee, J. F., D. M. Boodman. 1967. Production Planning and Inventory
Control.McGraw-Hill Book Company, New York.

Masten, S. E., K. J. Crocker. 1985. Efficient adaptation in long-term
contracts: Take-or-pay provisions for natural gas.American Eco-
nomic Rev. 75 1083–1093.

Mathewson, G. F., R. A. Winter. 1984. An economic theory of vertical
restraints. Rand J. Economics 15 1 27–38.

Miller, B. L. 1986. Scarf’s state reduction method, flexibility, and a
dependent demand inventory model. Oper. Res. 36 83–90.

Miller, J. G. 1979. Hedging the master schedule. L. P. Ritzman et al.,
eds. Disaggregation Problems in Manufacturing and Service Orga-
nizations.Martinus Nifhoff, Boston, MA.

Mondschein, M. 1993. Negotiating product supply agreements. Na-
tional Petroleum News. 85 45.

Moorthy, K. S. 1987. Managing channel profits: Comment.Marketing
Sci. 6 4 375–379.

Nahmias, S. 1997. Production and Operations Analysis. Irwin, Home-
wood, IL.

National Energy Board. 1993. Natural gas market assessment: Long-
term Canadian natural gas contracts. Gas Energy Review 21 8–
11.

Ng, S. 1997. Supply chain management at Solectron. Presentation.
Industrial Symposium on Supply Chain Management. Stanford
University, June.

Pasternack, B. A. 1985. Optimal pricing and returns policies for per-
ishable commodities.Marketing Sci. 4 166–176.

Rockafellar, R. T. 1970. Convex Analysis. Princeton University Press,
Princeton, NJ.

Tayur, S. 1992. Computing the optimal policy for capacitated inven-
tory models. Comm. Statist. Stoch. Models 9 585–598.

Tirole, J. 1988. The Theory of Industrial Organization. The MIT Press,
Cambridge, MA.

Tsay, A. A. 1995. Supply Chain Control with Quantity Flexibility. Ph.D.
Dissertation, Graduate School of Business, Stanford University,
Stanford, CA.

——. 1996. The quantity flexibility contract and supplier-customer
incentives. Working Paper, Leavey School of Business, Santa
Clara University.

——, S. Nahmias, N. Agrawal. 1999. Modeling supply chain con-
tracts: A review. S. Tayur, R. Ganeshan, M. Magazine, eds.
Quantitative Methods for Supply Chain Management. Kluwer Ac-
ademic Publishers, Norwell, MA.

Van Ackere, A. 1993. The principal/agent paradigm: Its relevance
to various functional fields. Eur. J. Oper. Res. 70 83–103.

Whang, S. 1995. Coordination in operations: A taxonomy. J. Oper.
Management, 12 413–422.

Accepted by Paul Zipkin; received January 26, 1998. This paper has been with the authors 45 days for 2 revisions. The average review cycle time was 32.3
days.



1523-4614/00/0201/0068$05.00
1526-5498 electronic ISSN

Manufacturing & Service Operations Management �2000 INFORMS
Vol. 2, No. 1, Winter 2000, pp. 68–83 68

Optimizing Strategic Safety Stock Placement
in Supply Chains

Stephen C. Graves • Sean P. Willems
Leaders for Manufacturing Program and A. P. Sloan School of Management, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139-4307, sgraves@mit.edu
College of Business Administration, University of Cincinnati, Cincinnati, Ohio 45221-0130

Manufacturing managers face increasing pressure to reduce inventories across the supply
chain. However, in complex supply chains, it is not always obviouswhere to hold safety

stock to minimize inventory costs and provide a high level of service to the final customer. In
this paper we develop a framework for modeling strategic safety stock in a supply chain that
is subject to demand or forecast uncertainty. Key assumptions are that we can model the
supply chain as a network, that each stage in the supply chain operates with a periodic-review
base-stock policy, that demand is bounded, and that there is a guaranteed service time between
every stage and its customers. We develop an optimization algorithm for the placement of
strategic safety stock for supply chains that can be modeled as spanning trees. Our assump-
tions allow us to capture the stochastic nature of the problem and formulate it as a determin-
istic optimization. As a partial validation of the model, we describe its successful application
by product flow teams at Eastman Kodak. We discuss how these flow teams have used the
model to reduce finished goods inventory, target cycle time reduction efforts, and determine
component inventories. We conclude with a list of needs to enhance the utility of the model.
(Base-Stock Policy; Dynamic Programming Application;Multi-echelon Inventory System;Multi-Stage
Supply-Chain Application; Safety Stock Optimization)

1. Introduction
Manufacturing firms are subject to pressure to do ev-
erything faster, cheaper, and better. Firms are expected
to continue to improve customer service by increasing
on-time deliveries and reducing delivery lead-times.
At the same time, they must provide this service more
cheaply and utilize fewer assets. Increasingly, firms
need to do this for a global marketplace.
This pressure to improve forces companies to look

at their operations from a supply-chain perspective
and to seek improvements from better coordination
and communication across the supply chain. A supply-
chain perspective is essential to avoid some of the local
suboptimization that occurs when each step in a pro-
cess operates independently with its own metrics and

rewards. Using a supply chain as a focusing mecha-
nism challenges an organization to examine cross-
functional solutions to address some of the barriers
that inhibit improvements.
The primary intent of this research is to develop a

tactical tool to help cross-functional teams in their ef-
forts to model and improve a supply chain. We pro-
vide a framework for modeling a supply chain and
develop an approach, within the framework, to opti-
mize the inventory in a supply chain. More specifi-
cally, we provide an optimization algorithm for find-
ing the optimal placement of safety stock in a supply
chain, modeled as a spanning tree and subject to un-
certain demand. Key assumptions for the optimization
are that each stage of the supply chain operates with a
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periodic-review, base-stock policy, that each stage
quotes a guaranteed service time to its customers, and
that demand is bounded.
We refer to this effort as the placement of “strategic”

safety stock. As will be seen, the optimization model
leads to the determination of where to place decou-
pling inventories that protect one part of the supply
chain from another. In particular, a decoupling safety
stock is an inventory large enough to permit the down-
stream portion of the supply chain to operate indepen-
dently from the upstream, provided that the upstream
portion replenishes the external demand. In this sense,
the determination of where to place these decoupling
points in a supply chain is a major design decision and
is “strategic” in nature. Furthermore, this terminology
is consistent with that used in industry.
In order to have an opportunity to test the research

and validate its utility for industry, we have built a
commercial-quality software application to implement
the model described in this paper. The software can be
downloaded from our website, http://web.mit.edu/
lfmrg3/www/.
In the remainder of this section we briefly discuss

related literature. In §2, we present our framework for
modeling a supply chain by stating and discussing the
key assumptions. We introduce the model for a single
stage in §3; this serves as the building block for the
multi-stage model described in §4. In §5 we develop
the optimization algorithm for safety stock placement
in a supply chain modeled as a spanning tree. We pres-
ent an overview of our application experience with the
model in §6, and conclude in §7 with thoughts on how
to improve the tool.

Related Literature.
There is an extensive literature on inventory models
for multi-stage or multi-echelon systems with uncer-
tain demand; much of this literature is applicable to
supply chains as now defined. We refer the reader to
the survey articles by Axsäter (1993), Federgruen
(1993), Inderfurth (1994), van Houtum et al. (1996), and
Diks et al. (1996). Within this vast literature, we men-
tion two sets of papers that are most related to our
work.
First, we note the work by Simpson (1958) who de-

termined optimal safety stocks for a supply chainmod-
eled as a serial network. Our work is based on similar

assumptions about the demand process and about the
internal control policies for the supply chain. Ourwork
is also closely related to that of Inderfurth (1991, 1993),
Inderfurth and Minner (1998), and Minner (1997), who
also build off Simpson’s framework for optimizing
safety stocks in a supply chain. We extend the work of
Simpson and of Inderfurth and Minner by treating a
more general network, namely spanning trees.We also
provide a different, and we believe richer, interpreta-
tion of the framework and its applicability to practice.
We provide new results in the appendix on the form
of the optimal policies when we relax a constraint on
the internal control policy for the supply chain.
Second, our work is closely related in intent to Lee

and Billington (1993), Glasserman and Tayur (1995),
and Ettl et al. (2000). Each of these papers examines the
determination of the optimal base-stock levels in a sup-
ply chain, and tries to do so in a way that is applicable
to practice. Glasserman and Tayur (1995) show how to
use simulation and infinitesimal perturbation analysis
to find the optimal base-stock levels for capacitated
multi-stage systems. Both Lee and Billington (1993)
and Ettl et al. (2000) develop performance evaluation
models of a multi-stage inventory system, where the
key challenge is how to approximate the replenish-
ment lead-times within the supply chain. They then
formulate and solve a nonlinear optimization problem
that minimizes the supply chain’s inventory costs sub-
ject to user-specified requirements on the customer ser-
vice level. Our work is similar in that we also assume
base-stock policies and focus on minimizing the inven-
tory requirements in a supply chain. The resulting
models and algorithms are much different, though,
due to different assumptions about the demand pro-
cess and different constraints on service levels within
the supply chain.

2. Assumptions

Multi-Stage Network.
We model a supply chain as a network where nodes
are stages in the supply chain and arcs denote that an
upstream stage supplies a downstream stage. A stage
represents a major processing function in the supply
chain. A stage might represent the procurement of a
raw material, or the production of a component, or the
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manufacture of a subassembly, or the assembly and
test of a finished good, or the transportation of a fin-
ished product from a central distribution center to a
regional warehouse. Each stage is a potential location
for holding a safety-stock inventory of the item pro-
cessed at the stage.
We associate with each arc a scalar �ij to indicate

how many units of the upstream component i are re-
quired per downstream unit j. If a stage is connected
to several upstream stages, then its production activity
is an assembly requiring inputs from each of the up-
stream stages. A stage that is connected to multiple
downstream stages is either a distribution node or a
production activity that produces a common compo-
nent for multiple internal customers.

Production Lead-Times.
For each stage, we assume a known deterministic pro-
duction lead-time; call it Ti. When a stage reorders, the
production lead-time, is the time from when all of the
inputs are available until production is completed and
available to serve demand. The production lead-time
includes the waiting and processing time at the stage,
plus any transportation time to put the item into in-
ventory. For instance, suppose stage k requires inputs
from stage i and j; then for a production request made
at time t, stage k completes the production at time t �

Tk, provided that there are adequate supplies of i and
j at time t.
We assume that the production lead-time is not im-

pacted by the size of the order; hence, in effect, we
assume that there are no capacity constraints that limit
production at a stage.

Periodic-Review Base-Stock Replenishment Policy.
We assume that all stages operate with a periodic-
review base-stock replenishment policy with a com-
mon review period. For each period, each stage ob-
serves demand either from an external customer or
from its downstream stages, and places orders on its
suppliers to replenish the observed demand. There is
no time delay in ordering; hence, in each period the
ordering policy passes the external customer demand
back up the supply chain so that all stages see the cus-
tomer demand.

Demand Process.
Without loss of generality, we assume that external de-
mand occurs only at nodes that have no successors,

which we term demand nodes or stages. For each de-
mand node j, we assume that the end-item demand
comes from a stationary process for which the average
demand per period is lj.
An internal stage has only internal customers or suc-

cessors; its demand at time t is the sum of the orders
placed by its immediate successors. Since each stage
orders according to a base-stock policy, the demand at
internal stage i is:

d (t) � � d (t)i � ij j
(i,j)�A

where dj(t) denotes the realized demand at stage j in
period t and A is the arc set for the network represen-
tation of the supply chain. For every arc (i, j)� A, stage
j orders an amount �ij dj(t) from upstream stage i in
time period t. The average demand rate for stage i is:

l � � l .i � ij j
(i,j)�A

We assume that demand at each stage j is bounded
by the function Dj(s), for s � 1, 2, 3, . . . Mj, where Mj

is the maximum replenishment time for the stage.1

That is, for any period t and for s � 1, 2, 3, . . . Mj, we
have

D (s) � d (t � s � 1) � d (t � s � 2) � • • • � d (t).j j j j

We defineDj(0)� 0 and assume thatDj(s) is increasing
and concave on s � 1, 2, 3, . . . Mj.

Discussion of Assumption of Bounded Demand.
The assumption of bounded demand is contrary to
most of the literature on stochastic-demand inventory
models, and as such, is controversial. We need to dis-
cuss this assumption in the context of the intent of the
research, namely to provide tactical guidance for
where to position safety stock in a supply chain.
We presume that it is possible to establish a mean-

ingful upper bound on demand over varying horizons
for each end item. By meaningful, we mean in the con-
text of setting safety stocks: the safety stock is set to
cover all demand realizations that fall within the upper
bounds. If demand exceeds the upper bounds, then the
safety stock, by design, is not adequate. In such ex-
traordinary cases, a manager resorts to other tactics to

1The maximum replenishment time for node j is defined asMj � Tj

� max {Mi | i:(i,j) � A}.
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handle the excess demand. A manager might use ex-
pediting, subcontracting, premium freight transporta-
tion, and/or overtime to accommodate the windfall of
demand. In specifying the demand bounds, a manager
indicates explicitly a preference for how demand vari-
ation should be handled—what range is covered by
safety stock andwhat range is handled by other actions
or responses.
As an example, consider a typical assumptionwhere

demand for end item j is normally distributed each
period and i.i.d., with mean l and standard deviation
r. Then, for the purposes of positioning safety stock, a
manager might specify the demand bounds at the de-
mand node by:

D (s) � sl � kr s (1)�j

where k reflects the percentage of time that the safety
stock covers the demand variation. The choice of k in-
dicates how frequently the manager is willing to resort
to other tactics to cover demand variability.
In some contexts there may be natural bounds on

the end-item demand. For instance, suppose the end
item is a component or subassembly for a manufac-
turing process whose production is limited by capacity
constraints or by a frozen master schedule. An exam-
ple is a supply chain that supplies components to an
automobile assembly line or an OEM subassembly to
a system integrator. In these cases, bounded demand
for the component corresponds to the maximum con-
sumption by the manufacturing process over various
time horizons.
For each internal stage we assume that we can also

establish meaningful demand bounds. If stage i has a
single successor, say stage j, then Di(s) � �ij Dj(s) for
all relevant s. For stages with more than one successor,
we require some judgment for deciding how to com-
bine the demand bounds for the downstream stages to
obtain a relevant demand bound for the upstream
stage for the purposes of positioning the safety stock.
One possibility is just to sum the downstream demand
bounds; however, this approach assumes that there is
no risk pooling from combining the demand of mul-
tiple end items. An alternative approach is to assume
that there will be some relative reduction in variability
as we combine demand streams, i.e., some risk pool-
ing. For instance, we might infer the demand bounds
for internal stages by means of an expression like

pD (s) � sl � p {� (D (s)� � sl )} (2)i i � ij j j�(i,j)�A

where p � 1 is a given constant. Larger values of p
correspond to more risk pooling. Setting p � 1 models
the case of no risk pooling. If we were to model the
end-item demand bounds by Equation (1), then setting
p � 2 equates to combining standard deviations of in-
dependent demand streams.
We do not attempt to model what happens when

actual demand exceeds the bounds. When this hap-
pens, we assume that the supply chain responds with
an equally extraordinary measure, as noted above. We
regard this as beyond the scope of the model, given
the stated intention to provide tactical decision sup-
port. See Kimball (1988), Simpson (1958), and Graves
(1988) for further discussion of this assumption.
Finally we note that there are no assumptions made

about the demand distribution.

Guaranteed Service Times.
We assume that each demand node j promises a guar-
anteed service time Sj by which the stage j will satisfy
customer demand. That is, the customer demand at
time t, dj(t), must be filled by time t � Sj. Furthermore,
we assume that stage j provides 100% service for the
specified service time: stage j delivers exactly dj(t) to
the customer at time t � Sj.
Similarly, an internal stage i quotes and guarantees

a service time Sij for each downstream stage j, (i, j) �

A. Given a base-stock policy, stage j places an order
equal to �ij dj(t) on stage i at time t; then stage i delivers
exactly this amount to stage j at time t � Sij.
For the initial development, we assume that stage i

quotes the same service time to all of its downstream
customers; that is, Sij � Si for each downstream stage
j, (i, j) � A. Graves and Willems (1998) describe how
to extend the model to permit customer-specific ser-
vice times. In brief, if there is more than one down-
stream customer, we can insert zero-cost, zero-
production lead-time dummy nodes between a stage
and its customers to enable the stage to quote different
service times to each of its customers. The stage quotes
the same service time to the dummy nodes and each
dummy node is free to quote any valid service time to
its customer stage.
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The service times for both the end items and the in-
ternal stages are decision variables for the optimization
model, as will be seen in §4. However, as a model in-
put, we may impose bounds on the service times for
each stage. In particular, we assume that for each end
item we are given a maximum service time, presum-
ably set by the marketplace.

Discussion of Assumption of Guaranteed Service
Times.
We assume that there are no violations of the guar-
anteed service times; each stage provides perfect or
100% service to its customers. As such, we do not ex-
plicitly model a tradeoff between possible shortage
costs and the costs for holding inventory. Rather, we
pose the problem as being how to place safety stocks
across the supply chain to provide 100% service for the
assumed bounded demand with the least inventory
holding cost.
In defense of this assumption, it is often very diffi-

cult in practice to assess shortage costs for an external
customer. Similarly, when we have asked managers
for their desired service level, more often than not the
response is that there should be no stock-outs for ex-
ternal customers. We have found that managers seem
more comfortable with the notion of 100% service for
some range of demand; they accept the fact that if de-
mand exceeds this range, they will have shortages un-
less they can somehow expand the response capability
of their supply chain. The assumptions for the model
presented herein are consistent with this perspective.
For an internal customer, guaranteed service times

need not be optimal in terms of least inventory costs.
Indeed we show in the Appendix how to relax this
assumption for a serial network, and report the cost
impact of this assumption for a set of 36 test problems:
the safety stock holding cost is 26% higher on average,
while the total inventory cost is 4% higher on average.
However, guaranteed service times are very practical
in contexts where there is a need to coordinate replen-
ishments. For instance, any assembly or subassembly
stage requires the concurrent availability of multiple
components, not all of which might be explicitly in-
cluded in the model. When we assume guaranteed ser-
vice times, we make the challenge of coordinating the
availability of these components much easier.

3. Single-Stage Model
In this section we present the single-stage model (see
Kimball 1988 or Simpson 1958) that serves as the build-
ing block for modeling a multi-stage supply chain.

Inventory Model
We assume the inventory system starts at time 0 with
initial inventory Ij(0). Given our assumptions, we can
express the finished inventory at stage j at the end of
period t as

I (t) � B � d (t � SI � T , t � S ) (3)j j j j j j

where Bj � Ij(0) � 0 denotes the base stock, dj(a, b)
denotes the demand at stage j over the time interval
(a, b], and SIj is the inbound service time for stage j.
Since we assume a discrete-time demand process, we
understand dj(a, b) to be

d (a, b) � d (a � 1) � d (a � 2) � • • •� d (b)j j j j

for a � b, where dj(t) � 0 for t � 0. When a � b, we
define dj(a, b) � 0.
The inbound service time SIj is the time for stage j

to get supplies from its immediate suppliers and to
commence production. In period t, stage j places an
order equal to �ij dj(t) on each upstream stage i for
which �ij � 0. Stage j cannot start production to re-
plenish dj(t) until all inputs have been received; thus
we have SIj � max {Si| i:(i, j) � A}.
We permit SIj � max {Si | i:(i, j) � A} to allow for

the possibility that the replenishment time for the in-
ventory at stage j is less than its service time Sj; that is,
the case when

max {S |i:(i, j) � A} � T � S .i j j

In this case we would delay the orders to the suppliers
by Sj � max {Si| i:(i, j) � A} � Tj periods, so that the
supplies arrive exactly when needed. To account for
this case, we set the inbound service time so that the
effective replenishment time for the inventory at stage
j, namely SIj � Tj, equals the service time Sj, i.e., SIj �
Tj � Sj. Thus, we define the inbound service time as

SI � max{S � T , max {S |i:(i, j) � A}}.j j j i

If the inbound service time is such that SIj � Si for
some (i, j) � A, then by convention stage j delays or-
ders from stage i by SIj � Si periods to avoid unnec-
essary inventory.
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Now, to explain Equation (3), we observe that in pe-
riod t stage j completes the replenishment of the de-
mand observed in period t � SIj � Tj. By the end of
period t, the cumulative replenishment to the inven-
tory at stage j equals dj(0, t � SIj � Tj). In period t,
stage j fills the demand observed in time period t � Sj
from its inventory. By the end of period t the cumu-
lative shipment from the inventory at stage j equals
dj(0, t � Sj). The difference between the cumulative
replenishment and the cumulative shipment is the in-
ventory shortfall, dj(t � SIj � Tj, t � Sj). The on-hand
inventory at stage j is the initial inventory or base stock
minus the inventory shortfall, as given by Equation (3).

Determination of Base Stock.
In order for stage j to provide 100% service to its cus-
tomers, we require that Ij(t) � 0; from (3) we see that
this requirement equates to

B � d (t � SI � T , t � S ).j j j j j

Since demand is bounded, we can satisfy the above
requirement with the least inventory by setting the
base stock as follows:

B � D (s) where s � SI � T � S . (4)j j j j j

Any smaller value does not assure that Ij(t) � 0, and
thus cannot guarantee 100% service.
In words, the base stock equals the maximum pos-

sible demand over the net replenishment time for the
stage. The net replenishment time for stage j is the re-
plenishment time (SIj � Tj) minus its service time (Sj).
At any time t, stage j has filled its customers’ demand
through time t � Sj, but has only been replenished for
demand through time t � SIj � Tj. The base stockmust
cover this time interval of exposure, namely the net
replenishment time.

Safety Stock Model.
We use Equations (3) and (4) to find the expected in-
ventory level E[Ij]:

E[I ] � B � E[d (t � SI � T , t � S )]j j j j j j

� D (SI � T � S ) � (SI � T � S )l . (5)j j j j j j j j

The expected inventory represents the safety stock
held at stage j, and depends on the net replenishment
time and the demand bound. As an example, suppose

the demand bound is given by Equation (1); then the
safety stock is E[Ij] � kr .SI � T � S� j j j

Pipeline Inventory.
In addition to the safety stock, wemaywant to account
for the in-process or pipeline stock at the stage. Follow-
ing the development for Equation (3), we observe that
the work-in-process inventory at time t is given by

W (t) � d (t � SI � T , t � SI ).j j j j j

That is, the work-in-process corresponds to Tj periods
of demand. The expected work-in-process depends
only on the lead-time at stage j and is not a function
of the service times:

E[W ] � T l .j j j

Hence, in posing an optimization problem in the next
section, we ignore the pipeline inventory and only
model the safety stock. This is not to say that the work-
in-process is not a significant part of the inventory in
a supply chain. But for the purposes of this work, we
assume that the lead-time of a stage, as well as the
demand rate, are input parameters and thus the pipe-
line stock is predetermined. Nevertheless, in any ap-
plication, we account for both the safety stock and the
pipeline stock as both will contribute to the total sup-
ply chain inventory.

4. Multi-Stage Model
To model the multi-stage system, we use Equation (5)
for every stage, but where the inbound service time is
a function of the outbound service times for the up-
stream stages; to wit, the model for stage j is

E[I ] � D (SI � T � S ) � (SI � T � S )l , (6)j j j j j j j j j

SI � T � S � 0, (7)j j j

SI � S � 0 for all (i, j) � A. (8)j i

Equation (6) expresses the expected safety stock as a
function of the net replenishment time. Equation (7)
assures that the net replenishment time is nonnegative.
Equation (8) constrains the inbound service time to
equal or exceed the service times for the upstream
stages.
We assume that the production lead-times, the

means and bounds of the demand processes, and the
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maximum service times for the demand nodes are
known input parameters. This suggests the following
optimization problem P for finding the optimal service
times:

N

P min h {D (SI � T � S )�(SI � T � S )l }� j j j j j j j j j
j�1

s. t. S � SI � T for j � 1, 2, . . . , N,j j j

SI � S � 0 for all (i, j) � A,j i

S � s for all demand nodes j,j j

S , SI � 0 and integer for j � 1, 2, . . . , N,j j

where hj denotes the per-unit holding cost for inven-
tory at stage j, and sj is the maximum service time for
demand node j. The objective of problem P is to min-
imize the holding cost for the safety stock in the supply
chain. The constraints assure that the net replenish-
ment times are nonnegative, the inbound service time
equals the maximum supplier service time, and the
end-item stages satisfy their service guarantee. The de-
cision variables are the service times.
Problem P is a nonlinear optimization problem. The

objective function is a concave function, provided that
the demand bound Dj( ) is a concave function for each
stage j. The feasible region is convex but not necessarily
bounded; however, one can show that the optimal ser-
vice times need not exceed the sum of the production
lead-times, provided thatDj( ) is a nondecreasing func-
tion for each stage j. Thus, problem P is the minimi-
zation of a concave function over a closed, bounded
convex set. An optimum for such problems is at an
extreme point of the feasible region, e.g., Luenberger
1973.
Simpson (1958) considered a serial-line supply

chain, where he assumed that the guaranteed service
time for the external customer is zero. Simpson
showed that there is an optimal extreme point solution
for P for which Si � 0 or Si � Si�1 � Ti, where stage
i � 1 supplies stage i. Thus, there is an “all or nothing”
optimal solution; a stage either has no safety stock (Si
� Si�1 � Ti) or has sufficient safety stock (Si � 0) to
de-couple it from its downstream stage. Gallego and
Zipkin (1999) provide supporting evidence that “all or
nothing” policies can be near optimal in serial systems

under more traditional assumptions where demand is
not bounded.
Graves (1988) observed that the serial-line problem

can be solved as a shortest path problem. In a series of
papers. Inderfurth (1991, 1993), Inderfurth andMinner
(1998), and Minner (1997) show how to solve problem
P by dynamic programming when the supply chain is
an assembly network or a distribution network.
Graves and Willems (1996) developed similar results
for assembly and distribution networks. In the next
section we present a dynamic programming algorithm
for the more general case of a spanning tree.

5. Algorithm for Spanning Tree
We describe in this section how to solve P by dynamic
programming when the underlying network for the
supply chain is a spanning tree, like in the Figure 1.
We solve P by decomposing the problem into N

stages whereN is the number of nodes in the spanning
tree and there is one stage for each node. For a span-
ning tree, there is not a readily-apparent ordering of
the nodes by which the algorithm would proceed. In-
deed, we label the nodes in a spanning tree (and thus
sequence the algorithm) so that there will be a single
state variable for the dynamic programming recursion.
However, the state variable for the dynamic program
will be either the inbound service time at a stage or its
outbound service time, where the determination de-
pends on the topology of the network.
We first present the algorithm for labeling the nodes.

Next we present the functional equations for the dy-
namic programming recursions, and then state the
algorithm.

Labeling the Nodes.
The algorithm for labeling or re-numbering the nodes
is as follows:
1. Start with all nodes in the unlabeled set, U.
2. Set k :� 1.
3. Find a node i � U such that node i is adjacent to

at most one other node inU. That is, the degree of node
i is 0 or 1 in the subgraph with node set U and arc set
A defined on U.
4. Remove node i from set U and insert into the la-

beled set L; label node i with index k.
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Figure 2 Renumbered Spanning Tree

Figure 1 Spanning Tree

5. Stop if U is empty: otherwise set k :� k � 1 and
repeat steps 3– 4.
For a spanning tree, there is always an unlabeled node
in step 3 that is adjacent to at most one other unlabeled
node. As a consequence, the algorithm will eventually
label all of the nodes inN iterations. Indeed, each node
labeled in the first N � 1 steps is adjacent to exactly
one other node in set U. Thus, the nodes with labels 1,
2, . . . , N � 1 have one adjacent node with a higher
label, denoted by p(k) for k � 1, 2, . . . , N � 1. Node
N has no adjacent nodes with larger labels.
As an illustration, we renumber the nodes in Figure

1 to produce Figure 2. Note that the labeling is not
unique as there may be multiple choices for node i in
step 3.
For each node k we define Nk to be the subset of

nodes {1, 2, . . . , k} that are connected to k on the sub-
graph with node set {1, 2, . . . , k}. We will use Nk to
explain the dynamic programming recursion. We can
determine Nk by the following equation:

N � {k} � � N � � N .k i j
i�k,(i,k)�A j�k,(k,j)�A

For instance, in Figure 2, Nk is {3} for k � 3, {1, 2, 3, 9}
for k � 9, {1, 2, 3, 4, 5, 9, 11} for k � 11, and {6, 7, 8,
10, 12} for k � 12. We can compute Nk as part of the
labeling algorithm.

Functional Equations.
The dynamic program evaluates a functional equation
for each node in the spanning tree, where we have re-
numbered the nodes as described above. There are two
forms for the functional equation. First, the function
fk(S) is the minimum holding cost for safety stock in a
subnetwork with node set Nk, where we assume that
the outbound service time for stage k is S. Second, the
function gk(SI) is the minimum holding cost for safety
stock in a subnetwork with node set Nk, where we as-
sume that the inbound service time for stage k is SI.
At node k (or stage k) for 1 � k � N � 1, the algo-

rithm determines either fk(S) or gk(SI), depending upon
the location of the node with higher label that is adja-
cent to k. If p(k) is downstream [upstream] of node k,
then we evaluate fk(S) [gk(SI)]. For nodeN, we can eval-
uate either functional equation.
To develop the functional equations, we first define

the minimum inventory holding cost for the subnet-
work with node set Nk as a function of both the in-
bound service time and the outbound service time at
node k:

c (S, SI) � h {D (SI � T � S) � (SI � T � S)l }k k k k k k

� f (SI) � g (S).� i � j
(i,k)�A (k,j)�A
i�k j�k

The first term is the holding cost for the safety stock at
node k as a function of S and SI.
The second term corresponds to the nodes inNk that

are upstream of k. For each node i that supplies node
k, we include the minimum inventory holding costs for
the subnetwork with node set Ni, as a function of SI.
The inbound service time to node k, SI, is an upper
bound for the outbound service time for node i. We
can show that fi( ), the inventory holding costs for the
subnetwork with node set Ni, is nonincreasing in the
service time at node i. Hence, we equate the outbound
service time at i to the inbound service time at k with-
out loss of generality.
The third term corresponds to the nodes in Nk that

are downstream of k. For each node j, j � Nk and (k, j)
� A, we include the minimum inventory holding costs
for the subnetwork with node set Nj, as a function of
S. The outbound service time for node k, S, is a lower
bound for the inbound service time for node j. We can
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show that gj( ), the inventory holding costs for the sub-
network with node set Nj, is nondecreasing in the in-
bound service time to node j; and thus we equate the
inbound service time at j to the outbound service time
at k without loss of generality.
We solve the following optimization by enumera-

tion to find the functional equation fk(S):

f (S) � min{c (S, SI)}k k
SI

s. t. max (0, S � T ) � SI � M � T , and SI integer,k k k

where Mk is the maximum replenishment time for
node k. The lower bound on SI comes from P, while
the definition of Mk gives the upper bound.
The functional equation for gk(SI) is very similar in

structure:

g (SI) � min{c (S, SI)}k k
S

s. t. 0 � S � SI � T , and S integer.k

If node k is a demand node, then we also constrain S
by its maximum service time, i.e., S � sk. The mini-
mization can be done by enumeration.

Dynamic Program.
The dynamic programming algorithm is now as
follows:
1. For k :� 1 to N � 1
2. If p(k) is downstream of k, evaluate fk(S) for S

� 0, 1, . . ., Mk.
3. If p(k) is upstream of k, evaluate gk(SI) for SI �

0, 1, . . ., Mk � Tk.
4. For k :� N evaluate gk(SI) for SI � 0, 1, . . . , Mk

� Tk.
5. Minimize gN(SI) for SI � 0, 1, . . . , MN � TN to

obtain the optimal objective function value.
This procedure finds the optimal objective function
value; we can find an optimal set of service times by
the standard backtracking procedure for a dynamic
program.
To summarize, at each stage of the dynamic pro-

gram, we find the minimum inventory holding costs
for the subnetwork with node set Nk, as a function of
a state variable. The state variable depends on the di-
rection of the arc that connects the subnetwork Nk to

the rest of the network. When the connecting arc orig-
inates in Nk, then the state variable is the outbound
service time (step 2); otherwise, the state variable is the
inbound service time (step 3). We number the nodes
so that we have previously determined the functions
required to evaluate either fk(S) or gk(SI). At stage N
(step 4), we determine the inventory costs for the entire
network as a function of the inbound service time to
node N. At step 5, we optimize over the inbound ser-
vice time to find the optimal inventory cost.
The computational complexity of the algorithm is of

order NM2 where M is the maximum service time,
which is bounded by the sum of the production lead-
times . We have implemented the algorithm forN T� jj�1

a PC in the C�� programming language. The run
times for real problems with 25 to 30 nodes are effec-
tively instantaneous on a Pentium PC with a 100 meg-
ahertz Intel processor.

6. Application
This section presents an application of the model at the
Eastman Kodak Company. Starting in 1995, Kodak has
applied the model to more than eleven finished prod-
ucts across two of its assembly sites within its equip-
ment division. We first present the model’s application
to the internal supply chain for a high-end digital cam-
era,2 and then summarize Kodak’s financial results, as
of 1997 year-end.

Product Background.
The key subassemblies for the digital camera are a tra-
ditional 35 mm camera, an imager, and a circuit-board
assembly. The 35mm camera is procured from an out-
side vendor. The imager (a charge-coupled device) and
the circuit-board assembly are produced internally.
The 35mm camera supplies the lens, shutter, and focus
functions for the digital camera. The imager captures
and digitizes the picture, and the circuit-board assem-
bly processes and stores the image. To produce the dig-
ital camera, the back of the 35mm camera is removed
and replaced with a housing containing the imager

2The data presented in this section has been altered to protect pro-
prietary information. However, the resulting qualitative relation-
ships and insights drawn from this example are the same as they
would be from using the actual data.
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Figure 3 Implemented Safety Stock Policy for Digital Camera. All
Stages Have a Circle That Denotes the Processing Activity
at the Stage. A Triangle Denotes That the Stage Holds a
Safety Stock of Its Finished Goods

and circuit board. The camera is then tested to make
sure that there are no defects in the imager. Once the
camera passes the quality tests, the product is shipped
to the distribution center. From the distribution center,
the camera is shipped to the final customers, which for
our purposes are high-end photography shops and
computer superstores.
In Figure 3, we provide a high-level depiction of this

supply chain. In addition to the three key subassem-
blies, we include the remaining parts in order to ac-
curately represent the product’s cost structure; since
there are nearly 100 additional parts in a camera, mod-
eling them in any level of detail would greatly expand
the size of the model. Hence, we group these parts into
two aggregate stages of the supply chain, where one
stage represents all of the parts with long procurement
lead-times (greater than 60 days) and the other stage
represents the short lead-time parts (less than 60 days).
We also aggregate certain operations. As seen in Fig-

ure 3, we combine the build operation for a camera
with the test operation and the packing operation. The
imager stage and circuit board stage are also aggre-
gates as each represents the flow through a separate

department. The circuit-board stage entails circuit
board assembly and test. The imager stage consists of
a semiconductor operation to produce wafers, fol-
lowed by packaging and testing of the semiconductors,
followed by an assembly operation.

Implementation Approach.
The product’s supply chain crosses several functional
boundaries within Kodak. Functional areas like circuit-
board assembly and imager assembly are separate de-
partments and act as suppliers to an assembly group
that performs final assembly and test. Distribution is a
separate organization and owns the product once it
leaves the final assembly area. To improve coordina-
tion across the departments, the equipment division at
Kodak has set up product flow teams with the general
charge to optimize their supply chains.
The product flow team for the digital camera relied

on the model to identify opportunities for better co-
ordination and improved asset utilization. The team
implemented the model in phases. The implementa-
tion strategy was to start simple and get experience
with the model; once there was some evidence of the
utility of the model, the team extended the application
in increments to capture more and more of the supply
chain.

Phase One.
The initial goal was to optimize the safety stock levels
for the stages that were under the direct control of the
final assembly area. The decision to start with the final
assembly area was based on the product’s high mate-
rial cost and its relatively simple supply chain struc-
ture, as described above. The (disguised) costs and
production lead-times are:

Table 1 Phase One Digital Camera Information

Stage Name Production Lead-Time Cost Added

Camera 60 750
Imager 60 950
Circuit Board 40 650
Other Parts LT � 60 days 60 150
Other Parts LT � 60 days 150 200
Build/Test/Pack 6 250
Transfer to DC 2 50
Ship to Customer 3 0
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Figure 4 Digital Camera Supply Chain

The demand bound was estimated by Equation (1)
where l � 11, r � 7 and k � 1.645. From looking at
historical demand and future demand estimates, Ko-
dak felt that this function realistically captured the
range of demand for which they wanted to use safety
stock.
This demand characterization excluded large one-

time orders from the government and some large cor-
porations. These orders are typically for 200 – 300 units
with delivery scheduled less than a month from when
the order is placed. However, since there is advance
warning about these orders and they are independent
of the other demand for the product, we developed a
separate anticipatory stock policy to deal with large,
infrequent orders.
Marketing determined that the maximum service

time to the final customer is five days.
Finally, the assembly group imposed the constraint

that a safety stock of imagers must be held on-site at
final assembly. Therefore, we set the service time for
the imager stage to be zero; the effect of this constraint
increased the total safety stock cost by 8.7%.
In the optimal solution, the subassembly stages, the

aggregate parts stages, and the build/test/package
stages hold safety stocks and quote zero service times.
The ship-to-distribution and ship-to-customer stages
each quote their maximum feasible service times, two
and five days, respectively. The annual holding cost
for the safety stock is $78,000. Thus, the optimal solu-
tion holds an inventory of components, subassemblies,
and completed cameras at the manufacturing site, but
holds no inventory in the distribution center. In effect,
the distribution center would act only as an order pro-
cessing and transshipment center. This is feasible since
it is possible to get the product from the assembly area
through the distribution center and to the final cus-
tomer within the maximum service time of five days.
The product flow team decided to explore some

near-optimal solutions because they felt that there
were some additional organizational constraints not
captured in the model; in particular, distribution
would want to hold safety stock on-site. To ameliorate
the situation, the team suggested that both manufac-
turing and distribution hold safety stock and quote
zero service times. However, the model showed that
the cost for the safety stock would increase to $89,000.

The team also investigated a policy in which the dis-
tribution center would hold safety stock but the manu-
facturing site would not. The safety stock cost for this
policy was $81,000, which was deemed to be accept-
able as it was quite close to the unconstrained opti-
mum and satisfied distribution’s desire to hold inven-
tory. This policy, as shown in Figure 3, was
implemented at the end of phase one of the
application.

Phase Two.
After the initial phase, the product flow team ex-
panded the model to incorporate the internal supply
chain for the imager. The resulting supply chain is
shown in Figure 4.
Prior to this study, safety stocks of (in-process) im-

agers had been held at each stage of the supply chain.
By application of the model, the team decided to re-
move safety stocks from two stages in the supply chain
for the imagers, as shown in the figure. This required
some increase in the downstream safety stocks of fin-
ished imagers, but overall the supply chain’s safety
stock of imagers (measured in terms of finished ima-
gers) was more than halved.
Now that the model has been successfully piloted

with an internal supplier, the product flow team is in
the process of extending the model to incorporate
other key internal and external suppliers.

Financial Results.
Table 2 contains the financial summary for two assem-
bly sites that use the model. Site A has applied the
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Table 2 Financial Summary for Assembly Sites A and B

Assembly Site A Y/E 95 Y/E 96 Y/E 97

Worldwide FGI $6.7m $3.3m $3.6m
Raw Material & WIP $5.7m $5.6m $2.9m
Delivery Performance 80% 94% 97%
Manufacturing Operation MTS RTO RTO

Assembly Site B
Worldwide FGI $4.0m $4.0m $3.2m
Raw Material & WIP $4.5m $1.6m $2.5m
Delivery Performance Unavailable 78% 94%
Manufacturing Operation MTS RTO RTO

model to each of its eight products and Site B has ap-
plied the model to each of its three product families.
The sales volume has remained relatively constant
over the three years.
At the start of 1996, the sites moved from a make-

to-schedule (MTS) to a replenish-to-order (RTO) sys-
tem. The modeling effort began at the end of 1995 and
was used to help guide the transition to replenish-to-
order. The increase in worldwide finished goods in-
ventory for 1997 is due to a marketing promotion that
was underway in Europe. By our estimate, this pro-
motion increased the finished goods inventory by as
much as $0.5 million. In the first year of the project,
the emphasis was on reducing the areas directly under
the control of final assembly. Over the following year,
the effort was on reducing the raw material costs and
WIP in the manufacturing supply chain. The total
value of the inventory for these products has been re-
duced by over one third over the two years.
Kodak’s product flow teams have also used the

model for a variety of purposes other than setting
safety stocks. Some products have tens of components
with long procurement lead-times. The model has
helped to prioritize the suppliers with whom to work
to reduce these lead-times. The teams have used the
model to determine the cost effectiveness of lead-time
reduction efforts in manufacturing. One can compare
the investment required to reduce a lead-time versus
the cost savings from the reductions in pipeline and
safety stock cost. Finally, manufacturing and market-
ing personnel have used the model to help quantify
the cost of quoting a specific maximum service time to

the final customer. With the model, the supply-chain
team can accurately estimate the costs of a one-day,
one-week, or two-week guaranteed service time to the
customer, and weigh the costs of the policy against the
marketing benefits of the policy.
Another benefit of the model is that it provides a

common, objective framework with which a cross-
functional supply-chain team can work. In particular,
we note that it provides a standard terminology and
set of assumptions for these teams to use as they work
together to improve or optimize a supply chain. As
such the model has been a very effective communica-
tion vehicle or platform.

7. Conclusion
In this paper we introduce and develop a model for
positioning safety stock in a supply chain. We model
the supply chain as a network, where the nodes of the
network are the stages of a supply chain. We assume
that each stage uses a base-stock policy to control its
inventory. We also assume that each stage quotes a
service time to its customers, both internal and exter-
nal, and that each stage provides 100% service for these
quoted service times. Finally we assume that external
customer demand is bounded.
We show how to evaluate the inventory require-

ments at each stage as a function of the service times.
For supply chains that can be modeled as spanning
trees, we develop an optimization algorithm for find-
ing the service times that minimize the holding cost for
the safety stock in the supply chain.
As a form of validation, we describe an application

of the model at Kodak to an internal supply chain for
a digital camera. This application helped Kodak to re-
position its inventories in this supply chain to reduce
its inventory and increase its service performance. In
particular, Kodak realized the benefit from creating a
few strategic locations to hold safety stocks rather than
spreading the safety stock across the entire supply
chain. We have also applied the model to a number of
other related products at Kodak and at two other com-
panies (Black 1998, Coughlin 1998, Felch 1997, Wala
1999).
As with any research, we end with a number of un-

resolved issues and new questions. We discuss these
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in the relative order of importance, based on our ex-
perience in applying the research to date.

Stochastic Lead-Times. We assume that associated
with each stage is a known, deterministic lead-time. In
practice, this is often not true; for instance, component
procurement times are often highly uncertain. It will
be of value to capture this in the model. We know how
to extend the model in an approximate way for stages
that procure rawmaterials or components from an out-
side vendor. In effect, for such a stage we just need to
approximate its inventory requirements as a function
of the outbound service time quoted by the stage and
the stochastic procurement time. But it is less clear how
to extend the model, either exactly or approximately,
to permit stochastic lead-times at stages whose func-
tion is not procurement.

Non-Stationary Demand. We assume that the
end-item demand processes are stationary. Yet virtu-
ally all of the products with which we have worked
have short lifetimes over which demand is never really
stationary. In practice, one runs the model under vari-
ous (stationary) scenarios to see how sensitive the
safety stock is to the demand characterization
(Coughlin 1998). Fortunately, we have found empiri-
cally that where the model locates safety stock in the
supply chain is fairly insensitive to the demand. The
size of the safety stock, though, does depend directly
on the demand characterization. We currently are con-
ducting research to understand these observations bet-
ter, to extend the model to treat non-stationary
demand.

Different Review Periods. We assume that each
stage operates with a base-stock policy with a common
review period. In many supply chains different stages
will operate with different reorder frequencies. That is,
whereas one stage may place replenishment orders on
a daily basis, another stage may do this weekly. In
other cases, a stage may operate with a continuous-
review policy so that the time between orders varies.
We can extend the model to evaluate nested periodic-
review base-stock polices in whichwhenever one stage
reorders, all stages downstream also reorder. That is,
the review period for an upstream stage is an integer
multiple of the review period of its immediate custom-
ers. However, we have not yet built the software to

implement this extension, as it is a major programming
task and it may only be a partial fix to the issue.

Capacity Constraints. In the model we ignore ca-
pacity constraints. For certain stages in a supply chain,
the consideration of a capacity limit may be necessary
in order to get a credible model for determining safety
stock requirements. At this time, we do not have a
good idea of how to add this to the model.

General Networks. In this paper, we have devel-
oped and implemented an optimization algorithm for
supply chains that can be modeled as spanning trees.
We describe in Graves and Willems (1998) how to ex-
tend this algorithm to general networks. However, we
have not done a systematic study of this extension be-
yond some exploratory work. More research is needed
to test and refine these ideas as well as uncover better
approaches.3

Appendix
In this appendix we examine the assumption that each internal stage
quotes a guaranteed service time to its customers. To get some in-
sight, we consider a serial system for which we can determine the
optimal policy when we relax the assumption of guaranteed service
times for internal customers. We then compare the inventory hold-
ing costs for the optimal policies with and without this assumption
for a small set of test problems.

Consider a serial supply chain with N stages where stage 1 is the
demand node and stage i supplies stage i � 1 for i � 2, . .. , N. The
same assumptions hold as in the original model, except that we do
not require guaranteed service times to internal customers. There
are no restrictions on the service level that stage i provides to its
customer, stage i � 1 for i � 2, . . . , N; rather, these internal service
levels depend on the base stocks, which are chosen to minimize the
inventory holding costs for the entire supply chain. We do assume
that stage 1 provides a 100% service level to the external customer,
and, without loss of generality, we assume that the service time
quoted to the external customer is zero.

For ease of presentation, we assume that �i,i�1 � 1 for i � 2, . . . ,
N. We let d(t) denote the end-item demand in period t; d(a, b]; denote
the end-item demand over the time interval (a, b]; and D(s) denote
the maximum possible end-item demand over a time interval of s
periods.

3This research has been supported in part by the Eastman Kodak
Company; by the MIT Leaders for Manufacturing Program, a part-
nership between MIT and major U.S. manufacturing firms; and by
the MIT Integrated Supply Chain Management consortium. The au-
thors acknowledge and thank Dr. John Ruark who contributed sig-
nificantly to this research effort; John played a lead role in devel-
oping the software application for implementing the results of this
research. We also wish to thank the editors and referees for their
very helpful and constructive feedback on earlier versions of the
paper.
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For each stage i, we define Qi(t) to be the shortfall or backlog at
time t, namely the amount that has been ordered by the stage’s cus-
tomer but not yet delivered. We assume at t � 0, Ii(t) � Bi � 0 and
Qi(t) � 0 for all stages.

We can show for i � 1, 2, . . . , N that the on-hand inventory and
backlog at time t are:

�I (t) � [B � d(t � T , t) � Q (t � T )] ,i i i i�1 i

�Q (t) � [d(t � T , t) � Q (t � T ) � B ] , (A1)i i i�1 i i

where [x]� � max(0, x), and QN�1(t) � 0 by definition. Equation
(A1) requires that each stage has a deterministic lead-time and that
each stage follows a base-stock policy in which, for each period, each
stage observes end-item demand and places a replenishment order
for this amount. The essence of the argument is to observe that the
net inventory on hand at a stage equals the stage’s base stock minus
the inventory on order. For stage i, the inventory on order at time t
is the backlog as of time t � Ti, plus all of the demand over the
interval (t � Ti, t].

From Equation (A1) we can show by induction that for i �

1,2, . . . , N,

Q (t) � max[0, d(t � T , t) � B , d(t � T � T , t)i i i i i�1

� B � B , . . . , d(t � T � T � • • •�T , t)i i�1 i i�1 N

� B � B � • • •�B ]. (A2)i i�1 N

In order for the supply chain to provide 100% service to the external
customer, we must never have a backlog at stage 1; thus, we must
select base stocks so that Q1(t) � 0 for all t. From Equation (A2) we
see that Q1(t) � 0 is assured if the base stocks satisfy the following
constraints:

B � B � • • •�B � D(T � T � • • •�T )1 2 i 1 2 i

for i � 1, 2, . . . , N. (A3)

Thus, if the base stocks satisfy Equation (A3), there will never be a
shortfall at stage 1 and end-item demand will be satisfied with 100%
service. As we assume that the demand bounds can be realized, then
the constraint set (A3) provides not just sufficient but also necessary
conditions for assuring 100% service for end-item demand.

In order to select the base stocks to minimize the inventory hold-
ing costs for the supply chain, we must develop an expression for
the inventory holding costs; we note from Equation (A1) that the net
inventory on hand at stage i is given by:

I (t) � Q (t) � B � d(t � T , t) � Q (t � T ). (A4)i i i i i�1 i

From Equation (A4) we can write the inventory holding costs for the
supply chain as:

N N

h E[I (t)] � h {B � lT � E[Q (t)] � E[Q (t � T )]} (A5)� i i � i i i i i�1 i
i�1 i�1

where l is the expected demand rate, and E[ ] denotes expectation.
We now pose an optimization problem to select the base stocks;

namely, we minimize Equation (A5) subject to Equation (A3) and

nonnegativity constraints on the base stocks. After dropping con-
stant terms in Equation (A5) and noting that Q1(t) � 0 for any fea-
sible solution, we write the optimization as

N N

min h B � e E[Q ]� i i � i�1 i
i�1 i�2

P* s.t.

B � B � • • •� B � D(T � T � • • •� T )1 2 i 1 2 i

for i � 1, 2, . . . , N,

B � 0 for i � 1, 2, . . . , N,i

where ei � hi � hi�1 is the echelon holding cost. We note from
Equation (A2) that E[Qi] is a nonlinear function of Bi, . . . , BN for i �

1, 2, . . . , N.
Our main result is that there is an optimal solution to P* in which

all the constraints in Equation (A3) are binding. More formally we
state the following:

Result. If the echelon holding costs are nonnegative and if D( )
is a nondecreasing function, then an optimal solution to P* is given
by

B � D(T ),1 1

B � D(T � • • •� T ) � D(T � • • •� T )i 1 i 1 i�1

for i � 2, . . . , N. (A6)

Proof. We note that the solution given by Equation (A6) is non-
negative and satisfies the constraints in Equation (A3) as equalities;
thus it is a feasible solution to P*. To prove that this is also an optimal
solution, we will argue that there must be an optimal solution in
which the constraints in Equation (A3) are binding.

Suppose we have a solution , . . . , such that Equation (A3)B* B*1 N

holds as a strict inequality for one or more constraints. Suppose the
kth constraint is the first constraint that is not binding and that k �

N; we will treat the case when k � N later. Thus, we assume

B* � B* � • • •� B* � D(T � T � • • •� T )1 2 i 1 2 i

for i � 1, 2, . . . , k � 1 and

B* � B* � • • •� B* � D(T � T � • • •� T ).1 2 k 1 2 k

We now define a new solution , . . . , in which the first k con-B** B**1 N

straints are satisfied as equalities, and show that its objective value
is no worse than that for , . . . , :B* B*1 N

B** � B* for i � 1, . . . , N and i � k, k � 1,i i

B** � B* � Dk k

B** � B* � D,k�1 k�1

where

k k�1

D � B* � D T � D T .k � i � i� � � �
i�1 i�1
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We first observe that D � 0 due to the supposition that the solution
, . . . , satisfies the kth constraint in Equation (A3) as a strictB* B*1 N

inequality. Thus, we have . We also see that sinceB** � 0 B** � 0k�1 k

D( ) is nondecreasing. Hence the new solution , . . . , is non-B** B**1 N

negative. By construction, the new solution satisfies the kth con-
straint as an equality, and there are no changes in the remaining
constraints. Thus, the new solution , . . . , is a feasible solution.B** B**1 N

To express the objective function for the new solution, we decom-
pose it into two parts. The first part of the objective function is

N N N

h B** � (�h � h )D � h B* � �e D � h B*. (A7)� i i k k�1 � i i k � i i
i�1 i�1 i�1

For the second part of the objective function, let E[Qi]* and E[Qi]**
denote the expected backlog at stage i for the first and second so-
lution. Then we find from Equation (A2) that

E[Q ]** � E[Q ]* for i � k � 1,i i

E[Q ]* � E[Q ]** � E[Q ]* � D for i � k � 1, andi i i

E[Q ]* � E[Q ]** � E[Q ]* � D.k�1 k�1 k�1

Thus, for nonnegative echelon holding costs, we can bound the sec-
ond part of the objective function as follows:

N N

� e E[Q ]** � � e E[Q ]* � e D. (A8)� i�1 i � i�1 i k
i�2 i�2

By combining Equations (A7) and (A8), we see that the objective
function for the second solution is no greater than the objective for
the first. Thus, we have found a new solution in which the first k
constraints in Equation (A3) are binding and whose objective value
is no worse than that for the first solution. This argument can be
continued in this fashion to construct a solution in which the first N
� 1 constraints in Equation (A3) are binding and whose objective
value is no worse than that for the solution , . . . , . The argumentB* B*1 N

for the case when k � N is similar in structure but easier; we just
have to reduce the base stock for stage N until the Nth constraint is
binding, which can be donewith no penalty to the objective function.

Hence, there is a feasible solution that satisfies all the constraints
in Equation (A3) as equalities and that has an objective value no
higher than that for the solution , . . . , . Furthermore, this newB* B*1 N

solution must be given by Equation (A6), as it is easy to see that it
is the unique binding solution to Equation (A3). Finally we conclude
that Equation (A6) must be an optimal solution, as its objective value
equals or is less than that for any interior solution , . . . , . ThisB* B*1 N

completes the proof.
We note that the optimal base-stock policy does not depend at all

on the holding costs. All we need to know is that the holding costs
do not decrease as we move down the supply chain, closer to the
customer. We also note that this result generalizes to assembly sys-
tems by means of the transformation given by Rosling (1989);
namely, we can transform an assembly system into an equivalent
serial system, and the result applies.

We use this result to compare the performance of the base stock
policies with and without the assumption of guaranteed service

times for internal customers. The test problems were all for a 3-stage
serial system; the problems differed according to their demand pro-
cess, their production lead-times, and their holding costs.

For the demand process, we start with a Poisson demand distri-
bution with mean k and with a specified percentile � to truncate the
demand. For each time window of length s, we set the demand
bound D(s) as the smallest integer such that the cumulative proba-
bility for the Poisson random variable with mean ks exceeds �. We
then normalize the demand distribution over the truncated range.
We consider four possible demand processes: k � 10, � � 0.90; k �

10, � � 0.98; k � 50, � � 0.90; k � 50, � � 0.98.
We permit three settings for the production lead-times and three

settings for the holding costs, as follows:

(T , T , T ) � (4, 4, 4); (1, 3, 8); (8, 3, 1).1 2 3

(h , h , h ) � (1, 0.5, 0.2); (1, 0.66, 0.33); (1, 0.8, 0.5).1 2 3

By evaluating all combinations we have a total of 36 test prob-
lems. For each test problem we determine the optimal policy for the
model with guaranteed internal service times and the optimal policy
(given by the result above) for the model without this requirement.
For each instance, we evaluate the base stocks, the safety-stock hold-
ing cost and the total inventory holding cost. The safety stock hold-
ing cost is given by the objective function of P for the model with
guaranteed internal service times and by Equation (A5) for the
model without this requirement. The total inventory holding cost is
the sum of the safety-stock holding cost plus the pipeline-stock hold-
ing cost. The expected pipeline stock at stage i is lTi; we assume that
the holding cost for the pipeline stock at stage i is (hi � hi�1)/2.

For the 36 test problems we find that the safety-stock holding cost
for the model with guaranteed internal service times is on average
26% higher than that for the model without this requirement; the
range is between 7% and 43%. The size of the gap is insensitive to
the choice of demand process. However, the gap becomes larger as
the production lead-time at stage 1 increases and as the echelon hold-
ing cost at stage 1 increases.

The impact on the total inventory holding cost is less dramatic.
The difference in holding costs is 4% on average, with a range from
less than 1% to 14%. The gap increases as the holding cost of the
pipeline stock decreases, namely as the production lead-time at stage
1 decreases and as the demand rate decreases.

From the limited computational study we see that there can be a
significant increase in safety stock due to the assumption of guar-
anteed internal service times. Relative to the total inventory, this
increase does not look as large. Nevertheless, there is a cost in terms
of higher inventories from the requirement of guaranteed internal
service times. This cost needs to be considered in light of the practical
benefits, as discussed in the body of the paper, from imposing this
requirement. Based on our observations from industrial projects, this
requirement, and the resulting increase in safety stock, has not been
an issue as the assumption of guaranteed internal service times is
already ingrained in practice.
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This paper develops a new model for studying requirements planning in multistage production-inventory systems. We first charac-
terize how most industrial planning systems work, and we then develop a mathematical model to capture some of the key dynamics
in the planning process. Our approach is to use a model for a single production stage as a building block for modeling a network of
stages. We show how to analyze the single-stage model to determine the production smoothness and stability for a production stage
and the inventory requirements. We also show how to optimize the tradeoff between production capacity and inventory for a single
stage. We then can model the multistage supply chain using the single stage as a building block. We illustrate the multistage model
with an industrial application, and we conclude with some thoughts on a research agenda.

Most discrete parts manufacturing firms plan their
production with MRP (materials requirements

planning) systems, or at least, with logic based on the un-
derlying assumptions of MRP. A typical planning system
starts with a multiperiod forecast of demand for each fin-
ished good or end item. The planning system then devel-
ops a production plan (or master schedule) for each end
item to meet the demand forecast. These production plans
for the end items, after offsetting for lead times, then act
as the requirement forecasts for the components needed to
produce the end items. The requirements forecast for each
component gets translated into production plans for the
component, similar to how the production plan for the end
items was created. The planning system continues in this
way, developing requirement forecasts and production
plans for each level of the bill of materials.

Implicit in this planning process are assumptions about
the production and demand process. The production plan
is developed assuming that the forecast is accurate and will
not change. Within the production process, requirements
are generated assuming that there are deterministic pro-
duction lead times and deterministic yields. Needless to
say, these assumptions of a benevolent world do not match
reality. Inevitably, the forecast changes, and uncertainties
in the production process arise that result in deviations
from the plan. To respond to these changes, most planning
systems will completely revise their plan after some time
period, say a week or a month. Again, the planning process
starts with the (new) forecast and repeats the steps neces-

sary to regenerate a plan for each level in the products’
bills of materials.

The intent of this paper is to present a model that cap-
tures the basic flavor of this planning process, and does so
in such a way that it can be used to look at various
tradeoffs within the production and planning systems. In
particular, we model the forecasts for the planning system
as a stochastic process. In this way, we try to represent a
dynamic input to the planning system, namely, how fore-
casts change and evolve over time. The forecast process is
a key input for the model. Another key is how the fore-
casts get converted into production plans or master sched-
ules. We model this process as a linear system, with which
we can represent the logic for MRP systems and from
which we get significant analytical tractability. Finally, the
model is structured so that it can describe multistage
production-inventory systems.

We are not aware of very much work that is directly
related to the dynamic modeling of requirements planning.
Baker (1993) provides a nice survey and critique of the
literature relevant to the general topic of requirements
planning. However, most of the work deals with specific
issues like lot sizing or determination of buffer levels. Kar-
markar (1993) discusses tactical issues of lot sizing, order
release, and lead times in the context of dynamic planning
systems. But neither of these papers reports on work that
attempts to model a dynamic forecast process. One excep-
tion is Graves et al. (1986), in which we modeled a two-
stage production-inventory system with a dynamic forecast

Subject classifications: Inventory/production: multi-item, multi-stage supply chain with uncertain demand and dynamic forecast revisions; application to film production;
dynamic requirements planning and supply chain optimization.

Area of review: MANUFACTURING OPERATIONS.
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process. In contrast with the present paper, Graves et al.
(1986) focused on issues of how to disaggregate an aggre-
gate plan in the two-stage context. Although this paper
does not consider the disaggregation issue, it does provide
a more powerful model that is applicable to general multi-
stage systems.

Another exception is Heath and Jackson (1994), who
considered the same dynamic forecast process as this pa-
per as part of a simulation model that was used to analyze
safety stock levels in a multiproduct production/distribu-
tion system.

The model for converting the forecast into a production
plan is related to earlier work by the first coauthor, in that
it uses linear systems for a production-inventory context.
(See Graves 1986, 1988a, 1988b, 1988c, and Fine and
Graves 1989.)

Lastly, we note Lee and Billington (1993), who develop
a model for supply chain optimization and describe its
application at Hewlett Packard. Our work complements
their work but differs as we try to model the process of
requirements planning.

In the next section we develop the model for a single
production-inventory stage. As part of the development,
we present our model for the forecast process, and we
develop the analyses to generate three performance mea-
sures for the stage: production smoothness, production
stability, and inventory requirements. In the second section
we examine an optimization for the tradeoff between pro-
duction capacity and inventory for a single stage. Although
the development is somewhat involved, the final results are
surprisingly simple and, we believe, of interest. This sec-
tion can be omitted by the reader without loss of continu-
ity. In the third section, we show how the model for the
single stage can serve as a building block in modeling a
general acyclic network of multiple stages. We report on
an application of the model to a supply-chain study in the
fourth section. The application demonstrates the value of a
system-wide perspective for optimizing the supply chain. In
the final section we briefly summarize the paper, and then
lay out a research agenda for further work.

1. SINGLE-STAGE MODEL

In this section we present the model for a single produc-
tion stage that produces one (aggregate) product and
serves demand from a finished good inventory. The single-
stage model serves as a building block for creating models
of multistage, multiitem systems. We first describe the
forecast process and state our assumptions about how the
forecast evolves over time. We then give a model for de-
termining the schedule for production outputs from the
production stage, and we show how to manipulate this
model to obtain three measures of interest: (1) the produc-
tion variance as a measure of production smoothing, (2)
the inventory variance as a measure of safety stock, and (3)
the stability of the production schedule as a measure for
the forecast process passed on to any upstream stages.

1.1. Forecast Process

We assume that there is a forecast horizon H such that in
each time period t we have forecasts for the requirements
for the next H periods. Let ft(t 1 i) be the forecast made
at time t for the requirements in period t 1 i, i 5 1, 2, . . .
H. We denote the demand observed in period t by ft(t),
the forecast made in period t for requirements in period t.
Beyond the forecast horizon, there is no specific informa-
tion about requirements. In effect, for i . H we assume
that ft(t 1 i) 5 m, where m equals the long-run average
demand rate.

We propose a stochastic model of this forecast process
and show that the forecasts are unbiased, the forecasts
improve as they are revised, and the forecast error over
the forecast horizon matches the inherent variability in the
demand process.

We assume that, each period, we generate a new set of
forecasts ft(t 1 i) that incorporates new information about
future demand. We define the updates of the forecasts
from period to period by the forecast revision, Dft(t 1 i):

Df t ~t 1 i! 5 f t ~t 1 i! 2 f t21 ~t 1 i! for i 5 0, 1, . . . H,

(1)

where ft21(t 1 H) 5 m by assumption.
Let Dft be the vector for the revisions to the forecast

process, where Dft(t 1 i) is the i 1 1st element, i 5 0, 1,
2, . . . H. We assume that Dft is an i.i.d. random vector with
E[Dft] 5 0 and Var[Dft] 5 ¥, the covariance matrix. Thus,
for a fixed index i, Dft(t 1 i) is an i.i.d. random variable
over time t with zero mean, and the forecast process is a
martingale. We note that if we can observe the forecast
process, then we can assess whether or not the forecasts
are unbiased (i.e., E[Dft] 5 0) with independent revisions
and we can estimate the covariance matrix ¥.

This model of the forecast process is the same as that of
Graves et al. (1986) and Heath and Jackson (1994). We
have validated this model as part of field studies at AT&T
and at Kodak. And this forecast model is descriptive of the
forecast process at nearly all of the discrete-part manufac-
turing contexts we have encountered.

The i-period forecast error is the difference between the
actual demand in period t and the forecast of this demand
made i periods earlier:

f t ~t! 2 f t2i ~t! 5 Df t ~t! 1 Df t21 ~t! 1 · · · 1 Df t2i11 ~t!.

We can now demonstrate the following properties for
this model of the forecast process:

1. The i-period forecast, ft2i(t), is an unbiased estimate of
demand in period t.

2. The variance of the i-period forecast error is no greater
than the variance of the (i 1 1)-period forecast error,
for i 5 1, 2, . . . H.

3. The trace of the covariance matrix ¥ equals the vari-
ance of the demand process.
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We see that the first property must be true by observing
that the expectation of the i-period forecast error is zero,
since E[Dft2s(t)] 5 0, for s 5 0, . . . i 2 1.

We now prove the second property. Since Dft2s(t) for
s 5 0, 1, . . . i 2 1 are independent random variables, the
variance of the i-period forecast error is given by:

Var @ f t ~t! 2 f t2i ~t!# 5 Var ~Df t ~t!! 1 Var ~Df t21 ~t!!

1 · · · 1 Var ~Df t2i11 ~t!!

5 s 0
2 1 s 1

2 1 · · · 1 s i
2,

where sj
2 5 Var(Dft2j(t)) is the j 1 1st element on the

diagonal of the covariance matrix ¥, for j 5 0, 1, . . . H.
Thus, since sj

2 Ä 0 for j 5 0, 1, . . . H, each forecast
revision improves the forecast, in that it reduces the vari-
ance of the forecast error.

For the third property, we observe from the above ex-
pression that the variance of the (H 1 1)-period forecast
error equals s0

2 1 s1
2 1 . . . 1 sH

2 , i.e., the trace of ¥. Since
by assumption ft2H21(t) 5 m, we have,

Var @ f t ~t! 2 f t2H21 ~t!# 5 Var @ f t ~t!# ,

which proves the third property.
Since the demand variance is an exogenous parameter,

this imposes a constraint on the forecast process: namely,
the variance of the forecast error over the forecast horizon
must equal the demand variance.

1.2. Schedule for Production Outputs

Given the forecast vector for period t, we need to convert
it into a schedule or plan for production. This is often
termed the master schedule. We focus on production out-
puts from the production stage. Later we will discuss how
to translate a plan for production outputs into production
starts. Production starts will be of interest, since they serve
as the requirements forecast for the next upstream produc-
tion stage.

Let Ft(t 1 i) equal the planned production outputs for
period t 1 i as of period t, where Ft(t) is the actual pro-
duction completed in period t. We assume that the pro-
duction plan extends out only for the next H periods, and
that beyond this horizon the plan is just to produce the
average demand, that is, Ft(t 1 i) 5 m for i . H.

Each period, after we obtain the new forecast, we up-
date or revise the plan for production outputs. We define
DFt(t 1 i) as the plan revision:

DF t ~t 1 i! 5 F t ~t 1 i! 2 F t21 ~t 1 i! .

From this definition and the fact that Ft(t 1 i) 5 m for i .
H, we see that:

F t ~t 1 i! 5 m 1 DF t1i2H ~t 1 i! 1 · · · 1 DF t ~t 1 i!

for i 5 0, 1, . . . H . (2)

Thus to model the production plan, we need to model
the plan revision DFt(t 1 i). To do this, we first define the
inventory process. For It being the inventory at time t, the
inventory balance equation is:

I t 5 I t21 1 F t ~t! 2 f t ~t!. (3)

The planned inventory at time t 1 i is the expected level of
inventory in a future period given the current forecast and
the current production plan as of time t:

I t ~t 1 i! 5 I t 1 F t ~t 1 1! 1 · · · 1 F t ~t 1 i!

2 f t ~t 1 1! 2 · · · 2 f t ~t 1 i!. (4)

We assume that for each time t, we set the production
plan Ft(t 1 i), i 5 0, 1, . . . H, so that the planned inven-
tory at the end of the planning horizon, It(t 1 H), is a
given constant. That is, we will set the production plan and
maintain it from period to period so that the end-of-
horizon inventory neither grows nor decreases, but re-
mains constant. We term the level to which the inventory
is targeted as the safety stock. In a later section we will
discuss how to set this level. For now, all we need to know
is that this level remains constant.

From (3) and (4), we obtain by equating It21(t 2 1 1 H)
and It(t 1 H) that:

DF t ~t! 1 DF t ~t 1 1! 1 · · · 1 DF t ~t 1 H!

5 Df t ~t! 1 Df t ~t 1 1! 1 · · · 1 Df t ~t 1 H!. (5)

That is, to assure that the end-of-horizon inventory re-
mains constant, we require that the cumulative revision to
the production plan should equal the cumulative forecast
revision in each period.

Each period we revise the production schedule to ensure
(5). To do this, we model the schedule update as a linear
system:

DF t ~t 1 i! 5 O
j50

H

w ij Df t ~t 1 j! for i 5 0, 1, . . . H, (6)

where wij denotes how the forecast revision affects the
schedule. In particular, wij is the proportion of the forecast
revision for period t 1 j that is added to the schedule of
production outputs for period t 1 i.

We expect that 0 ¶ wij ¶ 1. To ensure that (5) is true,
we require that for each j:

O
i50

H

w ij 5 1.

We refer to wij as a weight or proportion. We can inter-
pret these weights either as decision variables in a pre-
scriptive model or as parameters in a descriptive model.
On the one hand, we can view these weights as control or
smoothing parameters and use the model for prescription.
To smooth production we set the weights wij for a fixed j
to be as nearly constant as possible (e.g., wij 5 1/(H 1 1)
for i 5 0, 1, . . . H). To minimize inventory, we set the
weights so that the production plan tracks the forecast as
closely as possible (e.g., for fixed j, wij 5 1 for i 5 j and wij

5 0 otherwise). In this way, specification of the weights
permits one to balance the tradeoff between production
smoothing and inventory requirements, as will be seen.

On the other hand, we can view the weights as parame-
ters for a descriptive model of an existing planning system.
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In particular, we can use (6) to model how most imple-
mentations of MRP systems translate forecast revisions
into schedule revisions. For instance, in the simplest case
at time t the schedule is frozen for periods t 1 j, j 5 0, 1,
2 . . . k for some value of k , H, and is totally free to
change for periods t 1 j, j 5 k 1 1, . . . H. Then, any
revision to the forecast within the frozen zone results in a
schedule revision for the first period beyond the frozen
zone; i.e., for 0 ¶ j ¶ k, wij 5 0 for i Þ k 1 1 and wij 5 1
for i 5 k 1 1. Any revision to the forecast beyond the
frozen zone results in a one-for-one schedule revision in
the same period: for k 1 1 ¶ j ¶ H, wij 5 1 for i 5 j and
wij 5 0 otherwise. Occasionally there is an intermediate
zone (between the frozen and free zones) in which changes
to the schedule are permitted but are restricted in size,
e.g., no more than 10% increase or decrease in the sched-
uled amount. The model given by (6) cannot exactly cap-
ture this policy, but it can approximate its behavior by
using fractional weights.

In matrix notation, we can rewrite (6) as:

DF t 5 W Df t , (7)

where W 5 {wij} is an (H 1 1) 3 (H 1 1) matrix, and
DFt and Dft are column vectors with elements DFt(t 1 i)
and Dft(t 1 i), for i 5 0, 1, . . . H. From this, we observe
that DFt is an independent random vector, has zero mean,
and has a covariance matrix W¥W*. (We will see later that
this is an important observation for the extension to mul-
tiple stages: we will derive the forecast revision for up-
stream stages from DFt.)

We can express the production plan in matrix notation
by:

F t 5 B F t21 1 mU H11 1 DF t , (8)

where Ft(t 1 i) is the i 1 1st element of the vector Ft for
i 5 0, 1, . . . H; UH11 is a unit vector with ui 5 0 for i 5
1, . . . H and uH11 5 1; and B is a matrix with elements
bij 5 1 for j 5 i 1 1, and bij 5 0 else. Premultiplying a
column vector by B replaces the ith element in the vector
with the i 1 1st element and replaces the last element with
a zero.

From (7) and (8) and repeated substitution, we obtain:

F t 5 BF t21 1 mU H11 1 WDf t (9)

5 B H11F t2H21 1 m 1 O
i50

H
B iWDf t2i ,

where m is the vector with each element equal to m, and
the superscript i in Bi denotes the ith power of B. We can
simplify (9) by noting that premultiplying an (H 1 1) 3 1
vector by BH11 gives the null vector:

F t 5 m 1 O
i50

H
B iWDf t2i . (10)

1.3. Measures of Interest

There are three categories of measures for the single-stage
model: the smoothness of the production outputs, the

safety stock for the end-item inventory, and the stability of
the production plan.

The smoothness of the production outputs is of interest
because more variable (less smooth) production is ex-
pected to require more production resources or capacity.
Furthermore, we can influence the smoothness of produc-
tion via our inventory and control policies.

An output of the model is the variability of the inventory
process, which will dictate how much safety stock is needed
to ensure an acceptable service level. If the inventory pro-
cess is more variable, more safety stock will be needed.

The stability of the production output plan is of interest,
since the output plan determines the plan for production
starts, which determines the requirements forecast for up-
stream stages. We will, in effect, equate the stability of the
production plan to the accuracy of the forecast process for
the upstream stages. More stability means a more accurate
forecast process upstream. This measure is critical as we
try to understand the workings of a multistage system,
since the inventory requirements and the variability of the
production outputs for a stage will depend heavily on the
accuracy of the forecast process.

We first develop the measures for production smoothing
and for the stability of the production plan. We will need a
more extensive development to obtain the variability of the
inventory process in order to set the safety stock.

Production Smoothing. A common measure of production
smoothing is the variance of the production output,
Var[Ft(t)]. From (10) we see immediately that the random
vector Ft has mean m and has a covariance matrix given by:

Var ~F t ! 5 O
i50

H

B iW¥W*B* i. (11)

We can use the covariance matrix to obtain the first mea-
sure of the production smoothing, Var[Ft(t)]. Indeed, one
can show that:

Var @F t ~t!# 5 tr~W¥W*!, (12)

where tr(A) is the trace of matrix A.
A second measure of production smoothing is given by

Ft(t) 2 Ft21(t 2 1), the change in production outputs from
one period to the next. In matrix notation we see from (9)
that:

F t 2 F t21 5 mU H11 1 WDf t 2 @I 2 B#F t21 ,

where I is the identity matrix. Since Dft and Ft21 are inde-
pendent of each other, we find that the covariance matrix
for Ft 2 Ft21 is given by:

Var ~F t 2 F t21 ! 5 W¥W*

1O
i50

H

@I 2B#B iW¥W*B* i@I 2B#9 (13)

5 ~I 2 B! Var ~F t ! 1 Var ~F t !~I 2 B!9 .
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From this covariance matrix, we can determine the second
measure of production smoothing, namely Var [Ft(t) 2
Ft21(t 2 1)].

Production Stability. For the stability of the production
plan, we use DFt: the random vector for the one-period
revision to the production plan, which is the basis for the
revision to the forecast of requirements for upstream
stages. (The production starts, as described earlier, would
generate the actual forecast seen by the upstream stages;
but since the starts are usually just the production plan
offset by the lead time, we can use the revision to the
production plan for defining stability.) From (7) we obtain
its expectation and covariance matrix:

E~DF t ! 5 0
(14)

Var ~DF t ! 5 W¥W*.

We propose the covariance matrix W¥W* as a measure of
the stability of the production plan. A more stable produc-
tion plan will have a smaller covariance matrix, and will
yield more accurate forecasts for the upstream stages.
When analyzing the upstream stages, the dynamics of the
requirements depend upon this covariance matrix. In this
sense, for the upstream stages, the covariance matrix in
(14) is analogous to ¥ for the downstream stage, namely it
is the covariance matrix for the relevant requirements
forecast process.

One measure of the size of a covariance matrix is its
trace. We note that with this interpretation the tr(W¥W*)
signifies not only the stability of the production plan, but
also the variance of the requirements forecast for the up-
stream stages over the planning horizon. Furthermore, we
see that, according to the proposed measures (12) and
(14), smoothing production is essentially equivalent to sta-
bilizing the production plan and requirements forecast for
the upstream stages.

Inventory. We focus on the end-item inventory for the
single stage, namely the random variable It given in (3).
We assume that the requirements for the single stage are
to be met from the end-item inventory and that typical
service expectations apply, e.g., the inventory should stock
out in no more than 2% of the periods, or that the inven-
tory should provide a 97% fill rate. We will find the expec-
tation E(It) and variance Var(It), from which we can
determine the safety stock required to achieve a desired
service level, under suitable distributional assumptions.
For instance, if the forecast errors are normally distrib-
uted, then we will see that It has a normal distribution. For
a desired service level expressed as the stockout probabil-
ity, we need to set the safety stock level so that:

E~I t ! . ks~I t !, (15)

where k is such to ensure the service level, and s( ) de-
notes the standard deviation.

Recall that in (4) we defined It(t 1 i) to be the planned
inventory level in period t 1 i as of time t; that is, It(t 1 i)

is the expected inventory in period t 1 i, where the expec-
tation is as of period t. For notational convenience, It(t)
denotes the actual inventory in period t, i.e., It(t) is the
same as It. As stated in the earlier development of (5), we
assume that the end-of-horizon inventory It(t 1 H) is tar-
geted to equal some constant, which we call the safety
stock and denote by ss.

The inventory flow equation for the planned inventory
is:

I t ~t 1 i! 5 I t ~t! 1 F t ~t 1 1! 1 · · · 1 F t ~t 1 i!

2 f t ~t 1 1! 2 · · · 2 f t ~t 1 i!. (16)

Define DIt(t 1 i) 5 It(t 1 i) 2 It21(t 1 i). From (3) and
(16), we find that

DI t ~t 1 i! 5 DF t ~t! 1 · · · 1 DF t ~t 1 i!

2 Df t ~t! 2 · · · 2 Df t ~t 1 i!,

for i 5 0, 1, . . . H 2 1. By assumption, since we keep the
inventory constant at ss beyond the horizon, we have:

DI t ~t 1 H! 5 I t ~t 1 H! 2 I t21 ~t 1 H! 5 ss 2 ss 5 0.

In matrix notation, let It be an (H 1 1) 3 1 column
vector with It(t 1 i) as its i 1 1st element. Then

DI t 5 T@DF t 2 Df t #,

where T is a matrix with element tij 5 1 for i $ j and tij 5 0
else. We can now write the inventory random vector as

I t 5 T@DF t 2 Df t # 1 BI t21 1 ssU H11 , (17)

where we use the fact that It21(t 1 H) 5 ss. We can
simplify (17) by repeated substitution, by substitution of
(7), and by noting that premultiplication of an (H 1 1) 3
1 vector by BH11 gives the null vector:

I t 5 O
i50

H

B iT@W 2 I#Df t2i 1 ss , (18)

where ss denotes the column vector with each element
equal to ss. From (18) we see that the random vector It has
mean equal to ss, and has a covariance matrix given by:

Var ~I t ! 5 O
i50

H

B iT@W 2 I#¥@W 2 I#9T*B* i. (19)

We can use (19) to find Var[It(t)], which is necessary to
determine how to set the safety stock level ss. From (19),
we can show with some effort that

Var @I t ~t!# 5 tr~T@W 2 I#¥@W 2 I#9T*! 5 O
k50

H O
i50

k O
j50

k

q ij ,

(20)

where

Q 5 $q ij % 5 @W 2 I#¥@W 2 I#9 .

Now from (15) we set the safety stock by ss 5 k s[It(t)],
where s[It(t)] is obtained from (20) and k is such to pro-
vide the desired service level from the inventory.
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2. OPTIMAL WEIGHTS FOR SINGLE-STAGE
MODEL

For a single stage it is natural to wonder how to choose the
weights in (6) that determine how a forecast revision is
converted into a revision of the production plan. To gain
some insight into this question, we pose and solve an opti-
mization problem for choosing the weights for the simple
case of uncorrelated demand. The tradeoff between pro-
duction smoothing in the stage and the end-item inventory
requirements should govern the choice of weights. This
tradeoff is the basis for stating the optimization problem:

Min s@F t ~t!# ,

subject to:
s@I t ~t!# < K,

O
i50

H

w ij 5 1 ; j. (21)

The optimization problem minimizes production
smoothing, as given by the standard deviation of the pro-
duction output, subject to a constraint on the standard
deviation of the inventory and the requirement that the
weights sum to one. We interpret the objective as minimiz-
ing required production capacity. We view the nominal
capacity required at the stage as being the expected pro-
duction requirements, plus some number of standard devi-
ations. (See Graves 1988a for further discussion.) The
constraint on the standard deviation of the inventory is
effectively a constraint on the amount of safety stock re-
quired, where we assume that the safety stock is a multiple
of s[It(t)]. An alternative formulation would be to mini-
mize the standard deviation of the inventory, equivalently
minimize the safety stock, subject to a constraint on the
standard deviation of the production output.

There are no restrictions in the optimization on the
weights, other than the convexity constraint. We have not
imposed any nonnegativity constraints, nor any restrictions
on the weights due to a fixed production lead time. Rather,
we allow the weights to be totally free. In this sense, the
optimization will produce a lower bound for the case with
fixed lead times.

To develop some insights on the optimal weights, we
transform the original optimization problem (21) into an
equivalent form by restating it in terms of the variances of
the production and inventory variables:

Min Var @F t ~t!# , (21a)

subject to:

Var @I t ~t!# < K 2,

O
i50

H

w ij 5 1 ; j.

To analyze this equivalent problem, we consider the La-
grangian relaxation:

L~l! 5 Min Var @F t ~t!# 1 l Var @I t ~t!# 2 lK 2, (21b)

subject to:

O
i50

H

w ij 5 1 ; j.

By solving this problem over a range of positive values for
the Lagrange multiplier l, we can find the tradeoff surface
between production smoothing and inventory require-
ments for a single stage. We will also obtain some intuition
for the form of the optimal weighting function.

In the remainder of this section we will focus on solving
(21b). To solve (21a), and equivalently (21), we would
need to search over l until the solution to (21b) satisfies
the relaxed constraint.

We only consider the case when the covariance matrix
for the forecast revision process is diagonal. That is, the
forecast revisions are uncorrelated, and Var[Dft] 5 ¥ 5
{si

2}, where si
2 5 Var[Dft(t 1 i)] is the i 1 1st element on

the diagonal, i 5 0, . . . H.
For this case, we can simplify (12) and (20) to be:

Var @F t ~t!# 5 O
i50

H O
j50

H

~w ij s j !
2, (12*)

and

Var @I t ~t!# 5 O
i50

H O
j50

H

~b ij s j !
2, (20*)

where

b ij 5 w 1j 1 · · · 1 w ij for i , j, (22)
5 w 1j 1 · · · 1 w ij 2 1 for i > j.

By substituting (12*) and (20*) into (21b), we observe
that the minimization problem separates into H 1 1 sub-
problems, one for each period j:

L~l! 5 O
j50

H

L j ~l! 2 lK 2, (21c)

where

L j ~l! 5 Min O
i50

H

~w ij s j !
2 1 l O

i50

H

~b ij s j !
2, (23)

subject to:

O
i50

H

w ij 5 1.

We now characterize the solution to Lj(l) with a series of
propositions.

Proposition 1. The optimal weights in (23) are indepen-
dent of sj

2.

Proof. Each term in the objective function of Lj(l) in (23)
is proportional to sj

2, which can then be factored out. □

Thus, we can determine the optimal weights in the La-
grangian (21b) without knowing the covariance matrix for
the forecast revision. We only need to know that the co-
variance matrix is diagonal. However, to solve the original
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problem, (21) or (21a), does require knowledge of the
covariances to ensure satisfaction of the inventory
constraint.

The Kuhn-Tucker conditions for (23) consist of the con-
vexity constraint over the weights, plus the following set of
equations:

w ij 1 l O
k5i

H

~w 0j 1 . . . 1 w kj 2 u kj ! 5 g for i 5 0, . . . H ,

(24)

where ukj 5 1 if k $ j, ukj 5 0 if k , j, and g is the
(scaled) dual variable for the single convexity constraint in
(23). Since (23) is a convex program, the Kuhn-Tucker
conditions are both sufficient and necessary, and they iden-
tify a unique solution.

To find the solution, we equate (24) for i 2 1 and i to
obtain:

w ij 5 w i21, j 1 l~w 0j 1 · · · 1 w i21, j 2 u i21, j !

for i 5 1, . . . H. (25)

We can construct a solution to (24) by selecting a value for
w0j and repeatedly applying (25). To satisfy the convexity
constraint, we could search over values for w0j. Alterna-
tively, we describe in the next two propositions how to find
w0j analytically.

Proposition 2. For a given value of l, the solution to (25)
for wij is a linear function of w0j given by:

w ij 5 P i ~l!w 0j for i 5 0, 2 . . . j , (26a)

w ij 5 P i ~l!w 0j 2 R i2j ~l! for i 5 j 1 1, . . . H , (26b)

where Pi(l) is a polynomial in l of degree i, and Ri2j(l) is
a polynomial in l of degree i 2 j. In particular, we can
show by induction that for n 5 0, 1, . . . H,

P n ~l! 5 O
i50

n ~n 1 i!!

~2i!!~n 2 i!!
l i,

and that for n 5 1, 2, . . . H 2 j,

R n ~l! 5 O
i51

n ~n 1 i 2 1!!

~2i 2 1!!~n 2 i!!
l i.

Proposition 3. The optimal choice for w0j that solves (23)
is given by:

w 0j 5
1 1 ¥ i5j11

H R i2j ~l!

¥ i50
H P i ~l!

5
P H2j ~l!

¥ i50
H P i ~l!

, (27)

which simplifies to:

w 0j 5

¥ i50
H2j ~H 2 j 1 i!!

~2i!!~H 2 j 2 i!!
l i

¥ i50
H ~H 1 i 2 1!!

~2i 1 1!!~H 2 i!!
l i

.

Proof. From Proposition 2 we can rewrite the convexity
constraint as follows:

1 5 O
i50

H

w ij 5 O
i50

H

P i ~l!w 0j 2 O
i5j11

H

R i2j ~l!.

We can now use this to express w0j in terms of Pi(l) and
Ri(l), as given in the proposition. We simplify the expres-
sion for w0j by substituting the following for Ri(l):

O
i51

n

R i ~l! 5 O
i51

n ~n 1 i!!

~2i!!~n 2 i!!
l i 5 P n ~l! 2 1,

which is found by an induction argument. Similarly, we can
simplify (27) by noting that

O
i50

n

P i ~l! 5 O
i50

n ~n 1 i 1 1!!

~2i 1 1!!~n 2 i!!
l i. □

Having found the optimal choice of w0j, we obtain the
remaining weights by iteratively solving (25). We see im-
mediately from Proposition 3 that for positive l, w0j is
positive; we can similarly show that wHj is positive. From
these facts, we can obtain the following proposition by
examining the first differences for the optimal weights.

Proposition 4. The optimal weights wij are positive, in-
creasing, and strictly convex over the range i 5 0, 1, . . . j.
The optimal weights wij are positive, decreasing, and strictly
convex over the range i 5 j, j 1 1, . . . H.

Proposition 5. The matrix of optimal weights is symmetric
about the off-diagonal, i.e., wij 5 wH2j,H2i.

Proof. This can be shown by substitution of (27) into
(26). □

Proposition 6. The optimal weights are such that wij 5
wH2i,H2j.

Proof. Since the optimal weights satisfy the convexity con-
straint, we can substitute the convexity constraint into (25)
and rewrite, after some rearrangement, as:

w i21, j 5 w ij 1 l~w ij 1 · · · 1 w Hj 2 ~1 2 u i21, j !!

for i 5 1, . . . H. (28)

From (28), by a similar development as used to find (26),
we can express the weights as linear functions of wHj:

w ij 5 P H2i ~l!w Hj for i 5 j, . . . H , (29a)

w ij 5 P H2i ~l!w Hj 2 R j2i ~l! for i 5 0, 1, . . . j 2 1.

(29b)

In order for the weights to sum to one, we then find that:

w Hj 5
P j ~l!

¥ i50
H P i ~l!

. (30)

From (29) and (30), we establish the result. □

Proposition 7. The matrix of optimal weights is symmetric
about the diagonal; i.e., wij 5 wji.

Proof. This follows immediately from Propositions 5 and
6. □
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Figure 1 shows the form of the optimal weights for var-
ious values of j for l 5 1 and H 5 12. Table I lists the
actual values for the optimal weights. From the table we
observe that the matrix of optimal weights is symmetric
about both diagonals, as stated in the propositions above.
Furthermore, for a fixed index j, the weights increase geo-
metrically to a maximum at wjj, and then decay geometri-
cally over the rest of the column.

Figures 2 and 3 show the form of the optimal weights for
l 5 4 and l 5 0.25 at H 5 12. Intuitively, we would expect
that as l increases to `, wjj goes to 1 and wij goes to 0 for
i Þ j (no production smoothing), and as l decreases to 0,
wij goes to 1/(H 1 1) (maximum production smoothing).
At l 5 4 and l 5 0.25 we already begin to observe this
behavior.

Proposition 8. The optimal objective value for the La-
grangian function in (23) is given by Lj(l) 5 wjjsj

2 for j 5
0, 1, . . . H.

Our proof of Proposition 8 involves quite a bit of unat-
tractive and nonintuitive algebra. (See Kletter 1994 for the

details.) The basic structure of the proof is as follows: we
rewrite the right-hand side of (23) strictly in terms of w0j and
l for a given j by repeatedly applying (26) and factoring out
sj

2. We then show that this expression equals wjj, where wjj is
also expressed in terms of w0j and l. This is achieved by
replacing w0j with the expression given in (27), expressing all
terms as polynomials in l, and then manipulating the bino-
mial coefficients until they are shown to be equal.

The value of Proposition 8 is that it provides a relatively
quick way to evaluate the objective function of the Lagrang-
ians, namely (21b) and (23). Also, we show next how to get a
good approximation of wjj, which will then yield an analytic
expression for the objective function of the Lagrangian.

Suppose we define the first difference Dwij 5 wij 2
wi21, j; we can use (25) to express Dwij by:

Dw ij 5 Dw i21, j 1 lw i21, j

for i 5 1, 2, . . . H and i Þ j 1 1,

Dw j11, j 5 Dw jj 1 lw jj 2 l .

Figure 1. Optimal weights for l 5 1 and various j.

Table I
Optimal Weights for l 5 1, H 5 12

j
0 1 2 3 4 5 6 7 8 9 10 11 12

0 0.6180 0.2361 0.0902 0.0344 0.0132 0.0050 0.0019 0.0007 0.0003 1.1E-04 4.1E-05 1.6E-05 8.2E-06
1 0.2361 0.4721 0.1803 0.0689 0.0263 0.0101 0.0038 0.0015 0.0006 0.0002 8.2E-05 3.3E-05 1.6E-05
2 0.0902 0.1803 0.4508 0.1722 0.0658 0.0251 0.0096 0.0037 0.0014 0.0005 0.0002 8.2E-05 4.1E-05
3 0.0344 0.0689 0.1722 0.4477 0.1710 0.0653 0.0250 0.0095 0.0036 0.0014 0.0005 0.0002 1.1E-04
4 0.0132 0.0263 0.0658 0.1710 0.4473 0.1709 0.0653 0.0249 0.0095 0.0036 0.0014 0.0006 0.0003
5 0.0050 0.0101 0.0251 0.0653 0.1709 0.4472 0.1708 0.0653 0.0249 0.0095 0.0037 0.0015 0.0007

i 6 0.0019 0.0038 0.0096 0.0250 0.0653 0.1708 0.4472 0.1708 0.0653 0.0250 0.0096 0.0038 0.0019
7 0.0007 0.0015 0.0037 0.0095 0.0249 0.0653 0.1708 0.4472 0.1709 0.0653 0.0251 0.0101 0.0050
8 0.0003 0.0006 0.0014 0.0036 0.0095 0.0249 0.0653 0.1709 0.4473 0.1710 0.0658 0.0263 0.0132
9 1.1E-04 0.0002 0.0005 0.0014 0.0036 0.0095 0.0250 0.0653 0.1710 0.4477 0.1722 0.0689 0.0344

10 4.1E-05 8.2E-05 0.0002 0.0005 0.0014 0.0037 0.0096 0.0251 0.0658 0.1722 0.4508 0.1803 0.0902
11 1.6E-05 3.3E-05 8.2E-05 0.0002 0.0006 0.0015 0.0038 0.0101 0.0263 0.0689 0.1803 0.4721 0.2361
12 8.2E-06 1.6E-05 4.1E-05 1.1E-04 0.0003 0.0007 0.0019 0.0050 0.0132 0.0344 0.0902 0.2361 0.6180
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To get an approximate solution to these first difference
equations, suppose we look at a limiting case where we
allow both H and j to grow. In effect, we let the range be
i 5 . . . 22, 21, 0, 1, 2, . . . , except for i 5 j 1 1. Then in
the limit, the solution to these difference equations is:

w j1k, j 5 w j2k, j 5 a@~1 2 a!/~1 1 a!# k

for k 5 0, 1, 2,. . ., (31)

where a 5 =l/(l 1 4).
Furthermore, this solution satisfies the convexity con-

straint over the weights. From (31) we see that in the limit:

Y the optimal weights are symmetric about wjj;
Y the optimal weights decline geometrically on either side

of wjj;
Y the value of the maximum weight wjj is independent of

j; and
Y the maximum weight wjj is a simple monotonic function

of l, that approaches 1 as l increases.

We can see from Figure 1 and Table I that for l 5 1,
the optimal weights already begin to approach the limit at
H 5 12. In particular, we observe that, except at the end
points j 5 0 and j 5 H, wjj ' a 5 =l/(l 1 4) 5 =1/5 '
0.4472 and wj11, j 5 wj21, j 5 a[(1 2 a)/(1 1 a)] ' 0.1708.

The limit provides a simple approximation to the objec-
tive function of the Lagrangian relaxation. Using Proposi-
tion 8 and (31), we find that for large values of H we can
approximate (21b) by:

L~l! 5 Min Var @F t ~t!# 1 l Var @I t ~t!# 2 lK 2

< tr~¥! Îl/~l 1 4! 2 lK 2.

This simplification is helpful for finding the value of l that
maximizes the Lagrangian, and thus solves the original
optimization problem (21).

We end this section with an interesting and perhaps
useful result.

Figure 2. Optimal weights for l 5 4 and various j.

Figure 3. Optimal weights for l 5 0.25 and various j.
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Proposition 9. The optimal weight matrix is the inverse
of a tridiagonal matrix C, with c00 5 cHH 5 (l 1 1)/l, c01

5 c10 5 cH,H21 5 cH21,H 5 21/l, and with (ci,i21, cii,
ci,i11) given by (21/l, (l 1 2)/l, 21/l) for i 5 1, 2, . . .
H 2 1.

Proposition 9 can be proved by construction through a
series of careful matrix operations. (See Kletter 1994 for
details.) Our proof simply shows that inverting the matrix
C gives W, as specified in (29). This is accomplished by
first factoring C into LDL*, where L is bidiagonal, since C
is symmetric and tridiagonal, and then inverting to obtain
(LDL*)21 5 (L*)21 D21 L21. Since the diagonal matrix D
and the bidiagonal matrix L are both easily inverted, we
then compute the product and simplify to show that cij

21 5
wij for all i and j.

One significance of Proposition 9 is that it makes the
computation of the optimal weight matrix even easier.

3. EXTENSION TO MULTISTAGE SYSTEMS

In the previous sections we developed a single-stage model
of requirements planning. We now discuss how this single-
stage model can serve as a building block in modeling a
general acyclic network of multiple stages.

To begin, we state the assumptions and introduce some
additional notation that will be necessary for our discus-
sion.

Assumption 1. The production system is an acyclic net-
work with n distinct stages, m of which produce end-items,
where m , n. We index the stages so that if stage i is
downstream from stage j, then i , j. In addition, the end
item stages are numbered 1, 2, . . . m.

Assumption 2. The forecast processes at the end-item
stages are mutually independent.

Assumption 3. Each downstream stage is effectively de-
coupled from the upstream stages, i.e., there is always ade-
quate (raw material ) inventory for a stage to make its
production starts. This is an approximation that is likely to
be reasonable if each stage operates with an inventory pol-
icy in which stockouts are rare.

Assumption 4. Each stage operates according to the as-
sumptions for the single-stage model.

Namely, let fi, i 5 1, . . . n, be the forecast vector for
each stage i; for simplicity, we will omit the subscript t in
this section. Note that for i 5 1, . . . m, fi is an exogenous
random vector, whereas for i 5 m 1 1, . . . n, fi will be a
derived forecast. Let Fi, i 5 1, . . . n, be the output plan
for each stage i. Thus, by Assumption 4, there is a weight
matrix Wi, and DFi 5 Wi Dfi for each stage i.

To link the requirements of a downstream stage to an
upstream stage, we need to model the production starts or
releases into each stage. We assume that in each period
each stage i, i 5 1, 2, . . . n, must translate its planned

production outputs Fi into a plan of production starts, call
it Gi, over some planning horizon.

Assumption 5. At each stage, we model production starts
as a linear system of production outputs: Gi 5 AiFi for
some matrix Ai.

We can set Ai to model a variety of real-world consider-
ations as well as production policies. For instance, we
might use the matrix Ai to model production leadtimes,
where production starts are just the production outputs
offset by the leadtime, to model yield factors within the
production stage (e.g., need to start 1.2 units to get output
1.0), or to model the fact that production starts occur on a
different time scale (biweekly rather than weekly) from the
production outputs. We can also model a constant work-
in-process policy where production starts for the period
exactly equal production outputs. Indeed, in this way, for
general multistage systems we can use this general ap-
proach to compare push policies—where starts equal
planned output L periods from now—with pull policies,
where starts “replace” the outputs produced in the current
period.

Assumption 6. At each stage we know how many units of
input are required for one unit of output. Without loss of
generality, we assume that one unit of input is required for
one unit of output at each stage.

The single-stage model that we wish to use as a building
block takes as input a dynamic forecast process of the
requirements for the stage. We now show that, given the
assumptions above, the forecast process at each stage in
the multistage network satisfies the assumptions of the
single-stage model. In particular, we show the following
proposition:

Proposition 10. At each stage i, the forecast revision Dfi

can be expressed as a linear combination of Df1, . . . Dfm ;

Dfi 5 ¥j51
m Mij Df j for some matrices Mij. By Assumption 2,

this implies that Dfi is an i.i.d. random vector.

We will demonstrate this proposition by an induction
argument. The proposition is true by assumption for the
end-item stages 1, . . . m. Suppose this proposition is true
for stages i 5 1, . . . j 2 1; we will now show that it is true
for Df j. Let Sj be the index set of immediate successors to
stage j. The forecast process for outputs of an upstream
stage j . m is

f j 5 O
k[Sj

G k .

Accordingly, we can write

Df j 5 O
k[Sj

DG k .

We note by Assumption 6 that DGk 5 Ak DFk 5 Ak Wk Dfk,
and by the induction hypothesis that each Dfk is a linear
combination of Df1, . . . Dfm. Thus, we can see that each
DGk for k [ Sj is a linear combination of Df1, . . . Dfm, and
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hence so is Df j. This completes the induction argument,
showing that each Df j is an i.i.d. random vector. □

We have thus shown that at each stage we have pre-
served the essential requirement that the forecast revisions
are i.i.d. random vectors, and thus, that the assumptions
for the forecast process of the single-stage model are sat-
isfied at each stage in the multistage network. This is an
important result because it means that we can now model an
acyclic multistage system by just replicating the single-stage
model. In this sense, the single-stage model serves as a
building block.

4. CASE STUDY

In this section we describe an industrial application of the
Dynamic Requirements Planning (DRP) model from a
thesis internship performed by one coauthor (Hetzel) at
the Eastman Kodak Company. The internship was con-
ducted as part of MIT’s Leaders for Manufacturing Pro-
gram and ran from June 1992 to December 1992. (See
Hetzel 1993 for more details on the application.)

The general charge for the thesis was to investigate cycle
time reduction within the context of the film manufactur-
ing processes at Kodak. As part of the internship, Hetzel
joined an internal supply chain optimization team that was
investigating opportunities for better coordination over a
specific supply chain, including issues of cycle time and
inventory reduction. One open issue facing the team was
that of strategic inventory placement: how much inventory
was needed, and where should it be placed across a multi-
stage supply chain. Hetzel identified this as an opportunity
to apply the DRP model, and the team agreed that it was
an appropriate tool for their task of strategic inventory
placement. The only alternative considered was to develop
a simulation: since the DRP model was already available
from the authors in a software package, developing a sim-
ulation would have required extensive additional work.

The goal of the supply chain analysis was to determine
the optimal safety stock levels between each stage in the
film making supply chain. The underlying concept is that
looking at one stage of the supply chain in isolation is
inherently suboptimal. All the stages in the supply chain
are interconnected by information flows. In short, the in-
ventory and production policies that are best for one stage
may not be optimal for the supply chain as a whole.

In the case study, the team was able to address this
situation by using the DRP model to consider all stages in
the supply chain. Their recommendations challenged the
conventional targets and performance measures for indi-
vidual divisions (stages). For example, an upstream stage,
roll coating, faced a corporate-wide mandate to lower in-
ventories. However, by using the DRP model, the team
discovered that roll coating needed to increase inventories
to provide the desired service to the next stage. When roll
coating holds sufficient inventory to provide a high level of
service, downstream stages can hold less, resulting in a net
savings for the corporation. Overall, the analysis deter-

mined that inventories for the products of the case study
could be reduced by 20%. This example highlights the
importance of considering the entire supply chain when
setting inventory and production policies.

The rest of this section will describe the supply chain for
the case study, provide the results from the DRP model,
and comment on implementation issues.

4.1. Supply Chain for Case Study

In Figure 4 we give a simplified version of the process for
film making. Roll coating transforms raw chemicals into a
roll of film base. Sensitizing coats the film base with a
silver halide emulsion. Then finishing cuts and packages
the sensitized rolls into finished products. The structure of
this supply chain has three interesting characteristics. First,
the number of items grows dramatically from stage to
stage; one film base might result in 5 to 10 different sensi-
tized rolls, which might lead to a hundred or more finished
goods. Second, there is a rapid growth in the value of the
product due to added material (e.g., silver) and nature of
the processes. Third, there is a gradual decrease in the
leadtimes across the supply chain.

For the case study, the supply chain optimization team
focused on a single film base (called a support). That sin-
gle base becomes three different sensitized film codes be-
cause it can be coated with three different emulsions. The
three film codes can be finished (slit, chopped, and pack-
aged) into 24 different finished good items. Figure 5 illus-
trates the supply chain for the case study. This particular
product “tree” was chosen because it is high volume, it has
relatively few end items (24 total), and it represents a
“typical product” that the team felt would make a useful
pilot program.

It is important to note that the case study does establish
arbitrary bounds on the supply chain. The case study starts
with the creation of a film base in roll coating and excludes
the upstream raw material stages such as chemical, gelatin,
and polymer production. The case study ends with the
finishing process and arrival at the Central Distribution
Center, and ignores the rest of the distribution system.
Besides being bounded at both ends, the case study’s sup-
ply chain is also simplified. In reality, the sensitizing and
finishing stages have materials flowing into them such as
emulsion and packaging components. Even though these
materials require inventory management, they are as-
sumed to be available with 100% service, and were not
explicitly incorporated into the model.

Figure 4. Simplified version of film manufacturing supply
chain.
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4.2. Data Collection

Parameterizing the DRP model required an extensive data
collection effort. For each item in the chain, the team
gathered data on the item’s leadtime, unit cost, inventory
holding cost, manufacturing frequency, and desired service
level. For each end item, they needed the planning hori-
zon, the average demand level, and a time history of the
forecast process.

The leadtime and manufacturing frequency were mod-
eled through the weight matrix (W). Since the team did
not consider production smoothing, in the absence of lead-
time and production frequency considerations, the weight
matrix is simply the identity matrix. A leadtime of L peri-
ods is then captured by forcing the first L rows of W to be
zero. To represent a production frequency of once every
two weeks, W would then be modified so that every other
row was zero. It should be noted that this method of cap-
turing production frequency is only an approximation.

From the forecast histories, the team estimated the di-
agonal elements of the covariance matrix (¥) for the fore-
cast revision process Dft; the off-diagonal elements were
assumed to be zero. Associated with each “branch” linking

different stages they calculated a historical “goes into fac-
tor” to capture any yield loss or conversion factors. This
information was used to construct the matrix A, as de-
scribed in Section 3.

A side benefit of applying the DRP model was that the
data collection effort identified some potential issues along
the supply chain. For example, in the course of reviewing
the forecast data, the team discovered that the forecasts
varied in a systematic way that led to a reevaluation of the
forecasting process. In addition, collecting data enhanced
supply chain communication and allowed the team to re-
solve a discrepancy in the annual planned volumes be-
tween two of the stages.

4.3. Results

The team used the DRP model to develop a base case
recommendation on inventory placements. The 24 finished
items were grouped into nine product aggregates, where
the product aggregates shared common production pro-
cesses and had similar demand histories. Service levels
were set at 95% for each stage. The weight matrices were
not optimized and were set to reflect each stage’s leadtime
and manufacturing frequency. In order to reflect Kodak’s
current scheduling systems, there was no production
smoothing across weeks.

The DRP model showed the potential to lower inven-
tory across the case study product “tree” by 20%, as shown
in Figure 6. Note that, in general, inventories can be
pushed upstream where they are in a strategic position
because: (1) the inventory is common to the greatest num-
ber of finished end items desired by the customer, and (2)
the inventory is at its lowest value added and thus at its
lowest carrying cost. In fact, the inventory levels of roll
coating’s “Support 1” actually need to increase to provide
savings for the supply chain as a whole.

The definition of “inventory” as it is used in this results
section is important. The inventory changes and the com-
parisons in Figure 6 represent average inventories. Aver-
age inventory for each item includes the safety stock
calculated by the DRP model, plus the cycle stock due to
production batching, plus the pipeline stock from transport
needs.

Besides the required safety stocks, the DRP model also
provided information on the variance of the production
requirements at each stage of the supply chain. The supply
chain optimization team used this variance to determine
the “surge” production capability needed for any stage.
For instance, they might set the surge capability to be the
production level that would cover the production require-
ments 95% (1.645 standard deviations above the mean,
assuming normal forecast errors) of the time.

4.4. Validation

Before the DRP model recommendations could be imple-
mented, the team needed to develop confidence in the
results. Therefore, multiple scenarios were run to test the

Figure 5. Supply chain analysis case study.
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sensitivity to various parameters, including the service lev-
els, the leadtimes, and the size (variance) of the forecast
errors. (See Hetzel 1993 for details.)

The main barrier that the team had to overcome was
understanding how the DRP model works. This was ac-
complished by exercising the model for different scenarios,
especially conservative ones; by displaying all the input
data and its sources for validation; by keeping the model
(relatively) simple, e.g., assuming a diagonal covariance
matrix and limiting the size of the explosion; by comparing
the model results versus current inventory levels; and by
acknowledging the model’s shortcomings. Finally, a key
success factor was that the model was implemented on a
personal computer, provided a graphical interface for rep-
resenting and visualizing the supply chain, and provided an
almost instantaneous response. In addition to the analytic
model, a Monte Carlo simulation was used that simply
worked through the mechanics of the analytic model for a
randomly generated demand stream, reporting on perfor-
mance measures of interest. The simulation allowed as-
sessment of model assumptions, thereby validating the
analysis. For example, constraints were added to the simu-
lation that enforced production capacities and prohibited
production from beginning if no raw material was onhand.

No model is perfect, and no description of a model is
complete without a list of shortcomings. The supply chain
optimization team identified three weaknesses: (1) the
DRP model does not account for lead time variability, (2)

it assumes stationary average demand over time, and (3) it
cannot accommodate a large product explosion. Whereas
the first two are inherent assumptions for the model, the
latter concern was due to a limitation in the software that
could be easily overcome. However, we expect that in most
practical situations a team should probably not be working
at any greater level of detail than the case study, say, less
than 25 items. Keeping the model at an aggregate level
both reinforces the fundamental guiding principles and
also makes implementation simpler.

4.5. Implementation

Once all of the supply chain analysis requirements were
complete, the supply chain optimization team added local
intelligence about specific customers and manufacturing
issues for each item that could not be captured by the
model. After reaching an understanding about how all of
the model’s proposed changes would impact the supply
chain, the team decided to implement a pilot program,
with the intention of moving to the more aggressive “base
case” if there were no service problems.

The pilot program only involved the inventories of three
items. The plan raised the one roll coating item’s inventory
by 20%, and it lowered two sensitizing items’ inventories,
each by 60%. The plan was implemented in early 1993.
The savings were captured in the 1993 Annual Operating
Plan for the case study’s line of business. As of the end of
April 1993, not a single end-customer order had been

Figure 6. Results from the supply chain analysis—strategic inventory placement. Note: Excludes emulsion and chemicals
inventories. Excludes regional distribution center (RDC) inventories. Includes all WIP, cycle, and in-transit
stocks. Finished goods inventories are gross CDC averages. Service levels are at 95% for all stages. There is no
production smoothing.
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missed on the pilot product due to stockouts or inventory
shortages. The team then implemented the remaining rec-
ommendations over the course of 1993.

5. CONCLUSIONS

This paper presents a new model of the requirements
planning process. We first describe in detail how to model
a single production-inventory stage as a linear system, and
provide the analysis for determining performance mea-
sures on production smoothness, production stability, and
inventory requirements. We also show how to optimize the
tradeoff between production smoothness and inventory for
a single stage.

To model a multistage system, we can use the single-
stage model as a building block. The structure of the
single-stage model makes it very easy to link single-stage
models together to represent the multistage system. In
particular, each single-stage model takes as input a fore-
cast of demand requirements and converts this forecast
into a production plan. In the context of a network of
production stages, the production plan from a downstream
stage acts as the demand forecast for an upstream stage. In
this way, we can cascade the single-stage models to model
a multistage system.

We also report on an application of the model within
the context of a supply chain study. The DRP model was
used as a tool to help determine inventory placement
across a multistage supply chain. This illustration provides
some evidence of the value of taking a corporate-wide view
by optimizing the supply chain rather than suboptimizing
each of the pieces.

One outgrowth from the case study is a better under-
standing of industry needs, and where the DRP model is
weak. Based on this experience, as well as observations
from industry, we identify the following research topics.

● Nonstationary demand. A stationary demand process is
not an accurate model for the demand experienced by
many products. Common nonstationary effects include sea-
sonal effects, end-of-quarter or end-of-year effects (the
“hockey stick”), and short-product life cycles. Some of
these nonstationarities get masked when products are ag-
gregated into families or product groups. Nevertheless, an
important enhancement to the model would be to capture,
in some way, nonstationary demand processes.

● Service-Level Assumptions. In extending the single-
stage model to a multistage setting, we assume that there
will be sufficient inventory to decouple the stages. In effect,
we assume that the service levels will be set to assure a
high level of service, and in the model analysis, we ignore
the downstream consequences of an upstream stockout;
i.e., starvation of inputs. These assumptions raise two
questions. One is, what are the consequences of ignoring
the internal stockouts, and the second is, what should the
internal service levels be. Graves (1988a) provides some

justification for these assumptions in a related setting. And
simulation tests that we have done confirm that ignoring
the internal stockouts in the analysis, when service levels
are high, does not distort the results of the model. But the
issue remains as to how to set the service levels. The liter-
ature on multiechelon distribution systems (e.g., Jackson
1988, Schwarz 1989, Graves 1995) suggests that, from a
system perspective, it often may be better to have low
levels of internal service.

● Guidelines for Consolidating Stages. On a related note,
we conjecture that, in some instances, the best policy may
be to remove the inventory between an upstream and
downstream stage, and thus consolidate these stages for
planning purposes (Simpson 1958). Rather than have two
stages separated by an inventory buffer, we would have one
(combined) stage, albeit with a longer leadtime. Within a
multistage system, depending on the leadtimes and holding
costs, it may be optimal to consolidate some of the stages.
We expect it would be helpful to have guidelines for deter-
mining what stages are good candidates for consolidation.

● Multistage Optimization. The paper describes the opti-
mization of the tradeoff between capacity and inventory in
a single stage for a diagonal covariance matrix: It would be
interesting to explore how this development extends to
nondiagonal covariance matrices, as well as to a multistage
system. In particular, we would like to develop guidelines
for setting the weight matrix W for each stage. Further-
more, one could explore how to choose among alternative
production release policies, such as pull versus push, in a
multistage setting.

● Production Assumptions. The model has a highly-
simplified model of the production process. The model
sets the production outputs, and these outputs are trans-
lated into production starts (e.g., by a leadtime offset).
With this model, we can represent fixed lead times, yield
loss factors, batch setup frequencies, as well as uncertainty
that can be modeled as an additive factor. Nevertheless,
there are issues as to the validity or appropriateness of this
representation and the sensitivity of the model results to
these assumptions. It would certainly be useful to have a
richer model of the production process. For instance, it
would be useful to capture the nonlinear congestion effects
due to multiple items competing for a shared resource.
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As part of its growth strategy, Caterpillar Inc. is launching a new P2000 product line of “compact” construction equipment and
worktools. In anticipation of this, they asked the authors to construct and analyze potential P2000 supply chain configurations. Using
decomposition and results from network flow theory, inventory theory, and simulation theory, we were able to provide solutions to
this problem for different supply chain scenarios provided by Caterpillar. Novel features of our model include expedited deliveries,
partial backlogging of orders, and realized sales that are responsive to service. Caterpillar made their decision regarding the P2000
supply chain based on our recommendations.

1. INTRODUCTION

We describe an operations research application supporting
the design and deployment of a distribution logistics sys-
tem for a new product line at Caterpillar Inc. (Cat). After
decomposing the problem, we apply network flow tech-
niques, recent results from inventory theory, and simula-
tion based optimization (Infinitesimal Perturbation
Analysis or IPA; see Glasserman and Tayur 1995) to arrive
at a solution. In addition to such standard features as
multiple-echelons, capacity constraints, uncertain demand,
lead times, and multiple products, our problem also has
the following novel features:

1. Dealers in Caterpillar’s distribution network can or-
der from dual suppliers. There is a low cost regular alter-
native and a high-speed, expedited supplier. We determine
the optimal replenishment paths for each (dealer, product)
pair using a deterministic minimization of cost or time
over the supply network.

2. The magnitude of captured demand is sensitive to
service response time. In each time period (day, week), the
number of lost sales depends on the customer service pro-
vided. A certain percentage of new customers renege if not
immediately served, while a different percentage of waiting
customers are lost if forced to continue to wait.

To our knowledge, this is the first time a problem of this
scope and complexity has been solved in this manner. In
particular, the use of IPA to establish inventory levels in
an industrial problem of this magnitude appears to be
unprecedented.

In this paper, we describe the development of an opti-
mization engine for use in designing Caterpillar’s supply
chain. We also detail the collection of data for the engine,
provide the results of our optimization, and report on a
sensitivity analysis of our output. Specifically, after describ-
ing the problem environment in §2, we provide details of
the modeling and analysis in §§3 and 4, respectively. We
report our results in §5, after which we present some con-
cluding remarks in §6.

Throughout the paper, numerical data is disguised to
maintain confidentiality.

2. THE P2000 SUPPLY CHAIN

To exploit anticipated growth in the small construction
industry, Caterpillar Inc., the world’s leading producer of
construction and mining equipment, decided to introduce
a new “compact” product line, the P2000, starting in 1999.
This decision has been widely reported in the business and
industry news media, with articles appearing in publica-
tions such as The Financial Times (Feb. 12, 1998) and
Business Week (March 9, 1998).

One reason for the media’s interest is that the P2000 not
only represents a new product line, but also a new strategy
for Caterpillar’s construction equipment division. Caterpil-
lar’s traditional product line consists of large, low-volume,
high-margin, customized machines costing $500,000 or
more. Cat is a well-known leader in this market, with few
large competitors (such as Komatsu Ltd.). The P2000 fam-
ily encompasses smaller, medium- to high-volume, stan-
dardized products selling for as little as $20,000 per
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machine. Specifically, the P2000 product line consists of
several models of three different machines including a
Skid-Steer Loader (“SSL”), a Compact Wheel Loader
(“CWL”), and a Mini-Hydraulic Excavator (“MHE”), as
well as some 40 worktools (such as buckets, fork sets, and
grapples). Designed for use with one or more particular
machines such as a Skid-Steer Loader, worktools can be
sold as attachments to both competitor’s machines and
Caterpillar’s. Worktools thus provide a means to enter the
market independent of P2000 machine sales. This compact
product segment currently has many entrenched market
leaders including BobCat (trademark of the Melroe Com-
pany, a unit of Ingersoll-Rand Company), Deere & Com-
pany, and Case Corporation.

Both strategic and operational considerations motivated
a careful analysis of the P2000 supply chain before its
deployment. Cat feared that the P2000 family might not fit
well in their current large equipment supply chain. They
wanted to develop a network for the P2000 that could
maximize profits, capture market share, and provide flexi-
bility. They contacted the authors for assistance in deter-
mining a configuration which could fulfill these goals. We
examined two study years: an initial year, 2000, and, four
years later, in 2004. Although the product launch is in
1999, this first year is considered a “ramp-up,” making the
year 2000 demand more suitable for supply chain design
and analysis. The two study years differ in the volume of
forecast demand, price and cost parameters, and in routing
restrictions. Compared to the year 2000, the routing re-
strictions generally were relaxed in year 2004, because Cat-
erpillar expected to develop new processing capabilities.

The P2000 products are sourced, manufactured, and as-
sembled in approximately 20 locations throughout North
America and Europe. Sanford (North Carolina) and Leic-
ester (England) are key production centers for machines.
Worktools come into Caterpillar’s supply chain from
source-locations in the United Kingdom, the United States,
Mexico, Sweden, Germany, and Finland. Each worktool
has a single source of supply. In North America, P2000
products will be sold by a network of 190 Caterpillar deal-
ers serving 58 districts in the United States and Canada.

2.1. P2000 Strategy

Specific concerns motivated Caterpillar’s focus on their
P2000 supply chain. The international nature of the chain,
coupled with the weight of the equipment, created the
potential for large lead times and shipping costs. Caterpil-
lar previously had made the decision not to compete on
price. Rather, in keeping with their core philosophy, qual-
ity and service were areas in which Cat would differentiate
the P2000. Thus, long lead times were particularly worri-
some. The dealer surveys reinforced this concern, implying
that Caterpillar’s future products would be highly substi-
tutable with those of the competition—primarily Bobcat.

Therefore, Caterpillar believed it crucial that they cap-
ture customer demand for their P2000 products as soon as
the demand materialized. By not forcing potential custom-

ers to wait for delivery, Cat would establish a reputation
for product availability. This would not only generate de-
mand for the P2000, but also allow Cat to steal demand for
their competitors’ (substitutable) products. Cat wanted to
identify both a minimum cost channel for a product in the
supply chain and an additional channel for expedited de-
livery. The expedited channel, likely one with a higher
cost, would be used if dealer inventory levels dropped pre-
cipitously. This was the genesis of the dual supply modes
within the supply chain.

To address the objective of maximizing profit subject to
capturing a satisfactory portion of market demand, we
constructed our model so that poor service (product avail-
ability) led to lower sales. We felt that Cat would have
considered accepting a lower profit, higher inventory solu-
tion (for year 2000) to gain “market presence” for their
products. To this end, we were prepared to develop a trade-
off curve between year 2000 profit and market penetration.

2.2. The Worktool Problem

The nature of the P2000 line dictates that final manufac-
turing and testing of some worktools take place at specific
nodes of the supply chain. This constrains certain work-
tools to pass through selected processing facilities. Similarly,
the presence of international import/export facilities such as
bonded warehouses (which permit Caterpillar to forgo paying
duties while storing their products in transit) requires certain
items from overseas to pass through selected customs loca-
tions. With these factors in mind, Caterpillar determined that
they could use up to seven additional transshipment loca-
tions—intermediary nodes between the source and the
dealer—in North America, in addition to direct shipment
(DS) of worktools from sources to dealers.

The seven possible transshipment locations for work-
tools in the United States are grouped into two disjoint
sets: three Tool Facilities (TFs, which had not yet been
constructed) and four Parts Distribution Centers (PDCs,
which already were handling Caterpillar products). The
Tool Facilities potentially would be located in Sanford
(North Carolina), Laredo (Texas), and Indianapolis (Indi-
ana). The Parts Distribution Centers are located in Mor-
ton (Illinois), Miami (Florida), Denver (Colorado), and
York (Pennsylvania). In addition, other transshipment lo-
cations are included in the supply network. For instance,
there is a UK tool facility in Leicester, a UK PDC in
Desford, and a European tool facility in Belgium (with a
PDC in Grimbergen) that feed worktools made in Europe
to North America. However, we were not given the option
of excluding these nodes from the supply chain.

There were four primary options for the North Ameri-
can worktool supply chain:

1. Use of all TFs and PDCs;
2. Use of PDCs only;
3. Use of TFs only; and
4. Use of neither TFs or PDCs, thus allowing only direct

shipment (DS).
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Secondary options included using the PDCs with one or
two supporting TFs, or vice-versa. For example, one might
add the Sanford Tool Facility to the PDCs to perform
certain manufacturing or quality check operations within
the supply chain.

For each of these four primary scenarios, we were asked
to determine:

1. Supply path(s) from each worktool’s source to every
dealer region in Caterpillar’s network;

2. Inventory levels and ordering policies at all points
along these paths;

3. Revenues, costs, and profits, and their breakdown by
product, geographical regions, and nodes (these costs ex-
cluded the fixed cost of constructing the tool facilities); and

4. The expected percentage of demand captured.

Our analysis showed that the optimal supply chain con-
figuration comprised the PDCs and the Sanford TF. This
configuration yields an estimated profit several million dol-
lars higher than the TF-Only or DS-Only options, while
capturing virtually all of the potential P2000 demand.
These comparisons are particularly salient because politi-
cal considerations prompted Caterpillar to initially favor
the TF-Only and DS-Only scenarios over inclusion of the
PDCs.

2.3. The Machine Problem

The nodes in the distribution network for machines were
previously determined by Caterpillar. Thus, for this fixed
network, the machine problem requires finding inventory
levels that maximize profits while capturing no less than a
specified percentage of the customer demand. This is
equivalent to evaluating a single worktool scenario. There-
fore, we will concentrate on the worktool problem in this
paper, although we provide illustrations of some of the
results for machines in §5.

The extant network for machines included two manufac-
turing plants and five North American storage facilities.
The Sanford plant manufactured only SSL machines, and
the Leicester, UK plant was responsible for CWL and
MHE machines. The five storage facilities, used exclusively
for machines, were: (1) Houston (Texas), Savannah (Geor-
gia), and Harrisburg (Pennsylvania), which served the U.S.
market; and (2) the bonded warehouses at Portland (Ore-
gon) and Harrisburg, which served the rest of North
America (primarily Canada).

3. MODELING THE P2000 PROBLEM

Many papers have addressed aspects of material flow man-
agement, but few have considered modeling entire supply
chains. We approach Caterpillar’s problem in a spirit sim-
ilar to that of Lee and Billington (1993) and Feigin (1998).
Lee and Billington describe their experience with a decen-
tralized DeskJet printer supply chain at Hewlett Packard.
They point out some of the challenges in modeling supply
networks, and take advantage of various approximations to

model a single site in the network. Feigin (1998) also uses
approximations in his analysis of the trade-off between ser-
vice levels and inventory investment in large supply chains.
See Tayur et al. (1998) for a compilation of recent ad-
vances in supply chain management.

Finding optimal solutions to the individual components
of Caterpillar’s problem, such as the material routing or
inventory replenishment subsystem, is in itself extremely
difficult. The deterministic version of the routing problem,
a min-cost, multicommodity, network flow problem with
nonconvex costs, is the subject of a parallel work by Keski-
nocak et al. (1998). This problem is comparable, from a
complexity viewpoint, to the transportation routing prob-
lem for next day, second day, and deferred delivery of
packages considered by Barnhart and Schneur (1996). Sep-
arately, Scheller-Wolf and Tayur (1998) consider the de-
termination of optimal policies for the inventory problem
with expedited orders. They use IPA to find such optimal
levels within the class of order-up-to (or base-stock) poli-
cies. Because the P2000 supply chain problem includes
subproblems of these types, we believe its exact solution is
unobtainable using currently available methodologies.

To make Caterpillar’s problem tractable, while main-
taining the model’s validity, we reduced its scope in a vari-
ety of ways. This permitted us to arrive at a good solution
in a reasonable amount of time. We could then conduct a
sensitivity analysis on the robustness of the solution to
changes in model parameters.

3.1. Model Assumptions and Justification

Our primary assumptions are listed below.
Problem Decomposition: Figure 1 summarizes our prob-

lem modeling and solution procedure. We decompose the
problem into a network routing problem (§3.2) and a sto-
chastic inventory problem (§3.3). The routing problem ig-
nores safety stock levels throughout the network.
Consequently, it may overlook some inventory risk pooling
opportunities offered by overlapping routes for the same
worktool and different destinations. However, for Caterpil-
lar’s problem, the relative cost of inventory is small com-
pared to the transportation costs (see Figure 5).
Significantly, without this decomposition, Caterpillar’s
problem falls in the realm of stochastic nonlinear integer
programming (SNLIP; Horst and Tuy 1993, Birge and
Louveaux 1997). Efficient approaches for SNLIP problems
of this scale currently are not available.

Network Decomposition: Decomposing the network into
dealer nodes and transshipment nodes enables us to solve
the resulting subproblems as single-stage inventory sys-
tems. The accuracy of known approximations (Glasserman
1997, Tayur 1992), and the need to quickly evaluate multi-
ple products over different scenarios, motivated this deci-
sion. If required, we could have modeled the entire
network as one multiechelon inventory system using tech-
niques similar to those described in §3.3. Glasserman and
Tayur (1995) provide the theoretical base for such a mul-
tiechelon model.
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Dealer Aggregation: We solve the problem for one “typi-
cal” aggregate dealer within 21 regions in North America,
rather than by individually considering all 190 dealers. Cat-
erpillar accepted this because:

1. The dealers were roughly uniformly distributed
within each region.

2. The sourcing and transportation costs up to each re-
gion would likely dominate the variation in costs between
dealers within a region.

3. Any increase in cost resolution resulting from a more
detailed model probably would be voided by the compara-
tively less exact estimates of individual dealer demand and
logistics cost.

The use of the more detailed network structure would
pose no theoretical problems for our methodology, but it
would increase computational times.

Disaggregation of Sourcing: Caterpillar uses a unique
source for each worktool.

Decomposition by Products: As a “base model,” we de-
couple the distribution of different products or product
families throughout the network—worktools from each
other and from machines. We then solve the routing and
inventory problem for each machine and worktool inde-
pendently, aggregating the results. Caterpillar agreed to
this based on the fact that worktools and machines were to
initially use disparate distribution networks. This decou-
pling disregards the possible dependencies between de-
mands for particular products.

In our “refined model,” we consider situations in which
worktools and machines could share transportation. Work-
tools may use the flatbed transportation normally used for

the machines at rates, times, and capacities different from
the normal closed-van mode for worktools. Section 5.1.1
describes the results of this generalization in more detail.

Demand Modeling: We model demand in one of two
ways. If the estimated mean daily demand for a product is
less than one unit, we approximate it with a Bernoulli
random variable. Otherwise, daily demand is modeled us-
ing a truncated Normal. The data Caterpillar provided did
not suggest any specific demand distribution. We con-
ducted preliminary tests with alternative demand distribu-
tions, including the uniform and exponential. These did
not change the overall optimal network configuration. We
model the distribution of transship node demand with a
normal random variable, because this demand is an aggre-
gate over the dealers supplied by this transshipment node
according to lot-for-lot ordering policies. Caterpillar
agreed that our demand models were acceptable.

We treat demand for different products at different
dealer districts as uncorrelated and time stationary. This
was acceptable to Caterpillar. If they had desired (and
been able to provide data on correlation/seasonality), we
could have incorporated this in our simulation based opti-
mization model. See Kapuscinski and Tayur (1998).

Lost Sales: Based on information provided by Caterpil-
lar dealers, we use a two-parameter model for customer
impatience (see §3.3.1). We adopt this model because the
data indicates that customers fall into two categories: those
who leave immediately and those who are willing to wait a
fixed amount of time. Had the data indicated more seg-
mented behavior, additional parameters could have been
estimated and used.

Preliminary experimentation (borne out by our final re-
sults) indicated that the optimal percentage of lost sales is
small. This is a consequence of the fact that the inventory
cost rate for a worktool is significantly smaller than the
unit profit. This leads us to believe that alternative meth-
ods of modeling lost sales (e.g., stochastic parameters, dis-
crete parameters) would lead to qualitatively similar
results.

Continuity: For simulation purposes, inventory was ap-
proximated by a continuous variable. Due to the observed
unimodal nature of the model’s profits, this continuity as-
sumption was relaxed by searching the adjacent integral
values after arriving at an optimal inventory level.

In summary, this paper presents a general methodology
applied to a specific problem at Caterpillar. At the core of
this methodology are a network routing problem and sim-
ulation based recursions (Appendix A). This methodology
remains valid for many of the model enhancements men-
tioned above, such as a more detailed dealer network with
correlated demand among products and regions. We de-
veloped our specific model in an iterative fashion based on
periodic interaction with Caterpillar. As new data arrived
and new features were needed, we updated the model.
Our final result is a recommendation to Caterpillar regard-
ing the configuration of their supply chain. To the extent
possible, we investigated alternatives to our assumptions,

Figure 1. Flow chart outlining problem decomposition
and solution steps.
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consistently finding that they did not affect the final recom-
mendation. (For example, see the paragraph preceding
§5.1.1.)

Our technique’s greatest value lies in its ability to pro-
vide a good solution and perform what-if analyses while
incorporating uncertainty over a large and complex prob-
lem. The question of whether our specific model, or even
Caterpillar’s data, is an accurate representation of the
problem is a valid one. In the absence of comparable mod-
els and solution techniques we are unable to answer this
question conclusively. Caterpillar is satisfied with our ef-
forts; they are currently implementing a supply chain con-
figuration based upon our work.

3.2. The Product Routing Model

For each product and dealer combination, we model the
supply chain as a collection of nodes (sources, dealers, and
transshipment points) and edges (connecting the nodes).
Each edge has an appropriate lead time and cost compo-
nent: overseas shipment on freighters at container rates,
shipment within North America by closed vans or flatbed
trucks at either truckload (TL), or less-than-truckload
(LTL) rates and times. Trucking rates depend on the
source and destination, and the product’s weight and vol-
ume. Likewise, each node has times and costs associated
with it. Inventory costs accrue at varying rates for different
locations and products throughout the network, as do han-
dling times and costs. Certain nodes are precluded from
holding any inventory—we treat them as instantaneous
transshipment points.

To accomplish the dual objectives of the supply chain—
maximum profit and a high service level—up to two paths
are found for each product and dealer node within the
network. The first is the minimum cost or regular path. The
second has the smallest lead time from the dealer to the
next level up in the supply chain. This next level up is
linked to the source node by a min-cost path. Together,
these two links form the expedited path. When the last link
in the minimum-cost path also has the shortest delivery
lead time for direct shipment from any transshipment
point to the dealer, only this single dominating path is
used. The majority of shipments of a product are assumed
to flow along the regular path. Worktools would utilize the
expedited link in situations where unexpectedly large de-
mand had caused dealer inventory to drop below a speci-
fied level. The inventory optimization portion of the
algorithm determines this level.

3.3. The Inventory Model

After decomposing the model by products, we decompose
the inventory system for each product into two subsystems:
the dealers and the transshipment nodes. This decomposi-
tion implicitly assumes that service levels at transship
points will be high enough to avoid stock-out occurrences.
We describe experiments below, based on Glasserman and
Tayur (1995), used to test this assumption. They validated
this decomposition.

Our experiments compared the performance of a two-
stage system under our decomposition with a two-stage
system globally optimized using IPA. For a variety of cost,
service, and demand parameters, the approximation
tended to decrease inventory levels at the lower echelon.
This decrease in lower echelon inventory does not ad-
versely affect customer service in Caterpillar’s problem. In
fact, the selected inventory levels under the decomposition
attain a near 100-percent customer service level. Upper
echelon inventory levels could be higher or lower than
optimal under the decomposition, but these stock levels
always were very close under both systems, implying simi-
lar service levels to the lower echelon.

By virtue of this decomposition, we are able to model
the dealer subsystem and the transshipment subsystem as
decoupled single-stage inventory systems. Both systems
have cost functions, lead times, demand functions, and
service measures. We measure the dealers’ customer ser-
vice using captured demand (fraction of satisfied customer
orders). The metric for the transshipment nodes is the
probability of not stocking out when downstream nodes
place orders. For the Markovian demand model with one
replenishment path, or dual replenishment paths having
lead times differing by no more than one period (a day in
our case), an order-up-to policy is optimal. This latter re-
sult was first proved by Fukuda (1964). For supply chains
where this is not the case, order-up-to policies, though not
necessarily optimal, have the important advantage of being
simple to implement. Based on this fact, Caterpillar de-
cided that order-up-to policies would be appropriate for
the P2000.

3.3.1. Dealer Nodes. The dealer nodes face a complex
stochastic problem with dual replenishment paths. We use
IPA to find the optimal inventory parameters within the
class of order-up-to policies, as in Scheller-Wolf and Tayur
(1998). This IPA procedure yields either one or two pa-
rameters for each item and dealer location—two in the
case where the regular and expedited paths do not coin-
cide, and one otherwise. These parameters specify the
profit-maximizing levels at which Cat should maintain the
inventory position (IP). By definition, IP equals the inven-
tory on hand plus what is on order from the supplier, less
what is on backorder to customers. Hence, Cat can change
the IP value by changing the order quantity. When the
inventory position, IP, drops below the upper parameter, a
regular order is placed to increase IP to that level. If IP
drops below the lower parameter, an expedited order is
placed to bring the inventory position up to this lower level
quickly, and then a regular order is placed to bring it up to
the upper level. The rationale behind this procedure is
simple; only when unusually low inventory levels endanger
the satisfaction of customer demand is it worthwhile to pay
the extra cost to use the expedited channel.

We determine inventory levels that will maximize ex-
pected profit. We do this rather than minimizing total ex-
pected cost because our captured demand, and thus sales
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revenue, depends on the level of service provided. How-
ever, even with the objective of maximizing profit, it is
conceivable that the optimal inventory parameters could
permit an unacceptably large proportion of customers to
be lost. Therefore, consistent with Caterpillar’s strategy
(§2.1), we track the customer service level resulting from
our optimal parameters. If the fraction of customers lost is
unacceptable to Caterpillar’s management, we could incor-
porate additional penalty costs (beyond the lost revenue)
for failing to satisfy customer demands. Making these pen-
alty costs large forces the algorithm to find inventory levels
that guarantee arbitrarily high service levels, assuming that

the system has sufficient capacity at the source nodes/pro-
cessing facilities. (In our problem environment, there is a
limit on the maximum number of units of each product
that a transship node can supply to dealers in any period.)

To efficiently model the likelihood of customers reneg-
ing, we used two parameters to incorporate data provided
by Caterpillar’s dealer surveys. Our parameters were based
on an aggregation of dealer surveys such as the one shown
in Figure 2. The first parameter captured the probability
that a new customer would immediately leave should they
not find the product they want in stock. The second
parameter models the proportion of waiting customers,

Figure 2. Sample dealer survey and response.
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backordered in a previous period, who depart if their de-
mand is not satisfied in the current period. Caterpillar’s
dealer surveys implied that a large number of customers
would immediately leave if unsatisfied, while those who
choose to remain undergo a more gradual rate of attrition.

Because both new and old customers renege, the se-
quence in which waiting customers should be satisfied be-
comes important. Two sequencing approaches are
commonly used: First-Come-First-Served (FCFS) or Last-
Come-First-Served (LCFS). Our analysis may be used with
either service discipline. We decided to satisfy the more
impatient customers first. For Caterpillar’s problem, we
used Last-Come-First-Served (LCFS) because new cus-
tomers were more likely to renege than old customers. If
the model predicted that a significant number of new cus-
tomers would be served at the expense of those already
waiting, then this LCFS assumption would have to be dis-
cussed with Caterpillar management.

3.3.2. Transshipment Nodes. For the transshipment
nodes, we use aggregated demand data from the dealers
and the approximation methods developed in Glasserman
(1997) to compute base-stock levels, and to estimate re-
sulting costs. These methods take into account local de-
mand characteristics and production capacities to specify
an ordering parameter that ensures a prescribed service
level at each node. Once specified, this single base-stock
parameter determines the ordering behavior of the node.

3.4. Problem Data

At each dealer node (and for each product),

Dt 5 stochastic product demand in period t,
with mean mt, variance st

2, and cvt 5 st/mt.
Lm 5 delivery lead time via mode m for m 5 r,

e (regular, expedited).

cm 5 total unit purchase cost via mode m,
including transportation costs.

p 5 unit selling price.
h ; I 3 c 5 unit holding cost, where I 5 interest rate

and c 5 relevant purchase cost.

(Along each arc, a transportation mode m will be
selected (§4.1). The value of c used for computing
holding costs is the cm value corresponding to the
selected mode m.)

b0 5 fraction of unsatisfied new customer demand in a
period that is immediately lost.

b1 5 fraction of unsatisfied old customer demand in a
period that is lost.

At each transshipment node (PDC or TF), a target ser-
vice level, d, and a capacity limit, C, are specified, along
with holding cost rate, h, unit cost c, and lead time L. The
capacity limit, provided by Caterpillar, specifies the maxi-
mum number of units of each product that a node can
obtain from the supplier in any period.

In addition, as illustrated in Figure 3, for a typical work-
tool, we have the following:

Product Information: Product name, whether it is a
worktool or machine, unit source cost, dealer net selling
price, weight and volume, source node ID, and any restric-
tions on paths from source to dealer. For instance, a typi-
cal bucket might have a source cost of $400/unit, a selling
price of $500/unit, weight of 450 lbs/unit, with volume 32 3
66 3 25 cubic inches, be sourced from “CMSA” in Mexico,
and have the following restrictions (based on quality
checks, additional work requirements, and current capabil-
ities at different nodes): No direct shipment from CMSA
to dealers permitted in year 2000. In year 2000, CMSA will
ship all buckets either to a U.S. Tool Facility or to the
Morton PDC for processing before shipment to any other

Figure 3. Illustrative transportation data for a typical bucket worktool.
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location. In 2004, CMSA will be able to ship directly to any
location.

In general, tool facilities can ship worktools to each
other, to PDCs, and to dealers; but PDCs can only ship to
other PDCs, or directly to dealers. As compared with Figure
3, routing networks for worktools and machines sourced from
Europe tend to have more nodes and higher lead times.

Transportation Data: Feasible routes, TL, and LTL rates
and times (via containers, closed vans, and flatbeds, as
applicable), along with whether specified rates are charged
per unit, by weight or volume. A TL transportation cost
table for a typical bucket worktool is shown in Table 1.
The entries specify the dollar cost per truckload at closed
van rates over the subnetwork consisting of the source
node 1 tool facilities 1 PDCs 1 a typical dealer. LTL
transportation cost tables are similar, except that the en-
tries are specified in the units of $/CWT, that is, dollars per
“Cent WeighT” (100 lbs). When applicable, similar tables are
available for container rates and flatbed TL & LTL rates.

We compute transportation costs per unit of product
using TL & LTL rates and either the product’s cent weight
or volume, whichever is more restrictive. For example, if
the LTL rate for Laredo to a dealer is $13.5/CWT, then
the LTL transportation cost for a 400-pound worktool is
$13.5 3 400/100 5 $54/unit. Now suppose a maximum of
one-hundred worktools can be shipped in one truckload,
based on permissible weight or volume per TL. Then, if
the TL rate from Laredo to this dealer is $4,000/TL, the
TL transportation cost is $40/unit. If both LTL and TL
modes are available, we select the lower cost option, in this
case, TL. Note that availability of the TL option does not
necessitate shipment of each product in full truckloads.
Essentially, Cat permits the TL option between locations
where the total demand volume, summed over all prod-
ucts, is expected to be large enough that the sum total of
orders for different products almost always will use up the
entire capacity of a truck. (This is an assumption implicit
in the transportation data we were given.) Cat also pro-
vided tables with LTL and TL transportation time data for
each pair of nodes in the network. Note that, even if there
was only a single mode of transport for each link, there
would be multiple paths from source to dealer with differ-
ent (cost, time) attributes.

Node Information: Minimum order quantities, capacity
limits, processing costs and delays, inventory carrying
charges, desired service levels, and a list of which products
and destinations the node could serve. For example, for a

bucket worktool at the Sanford TF node, the minimum
order quantity is one; the production capacity is 800 units/
week; storage capacity is `; the processing cost is $50/unit
in 2000 (reduced, presumably due to learning and product/
process redesign, to $20/unit in 2004); the processing delay
is one day; inventory carrying charges are based on an
effective interest rate of I 5 10%; and the desired service
level (probability of not stocking out) is 95%. Sanford can
ship buckets to all other locations in the network.

Demand Data: Mean and variance of demand in 2000
and 2004, for each product at each dealer. We use this
data to specify a distribution for simulation of daily de-
mand. For example, estimated year 2000 demand for a
bucket worktool at one dealer is 550 units. This translates
to a daily demand of 1.757 (based on 313 working days per
year), which we model as a normal random variable with
mean m 5 1.757 and standard deviation s 5 0.5m 5 0.8786
(corresponding to coefficient of variation, cv, of 0.5). Our
solution approach is not restricted to a particular value of
cv; we use 0.5 as a representative value that was consid-
ered reasonable by Caterpillar. Note that, for normal de-
mand, a cv . 0.35 generates a significant amount of
negative demand, necessitating truncation. Hence, in this
case, we used equations from Johnson et al. (1994) to
suitably update the demand parameters fed into the trun-
cated normal generator. (In addition, we always confirmed,
empirically, that the mean of the generated truncated nor-
mal demand was equal to the input mean, m.) At a differ-
ent dealer, the forecast average annual demand is 78 units,
yielding a mean daily demand of m 5 0.249 , 1. We model
this demand using the Bernoulli distribution with probabil-
ity of nonzero demand in any day set at pd 5 0.249. Thus,
daily demand is either zero or one, with mean 0.249 and
standard deviation =pd(1 2 pd) 5 0.4326, resulting in a
suitably higher coefficient of variation of 1.736.

Customer Patience Parameters: b0 and b1, respectively,
the proportion of unsatisfied customers who renege imme-
diately and in each period thereafter. Dealer surveys (see
Figure 2) established these parameters. Typically, we use
b0 5 0.4 to 0.75 and b1 5 0.15; more service sensitive
regions such as the Northeastern U.S. have higher values
of b0. The dealer surveys implied worktools should have a
greater b0 than machines because Caterpillar’s worktools
were considered substitutable with those of their competi-
tors. Preliminary sensitivity analysis also was conducted on
different b values to confirm that small deviations from the
chosen b did not significantly affect system performance.

Table 1. Sample TL transportation cost data ($/TL).

Sanford Laredo Indianapolis Morton York Miami Denver Dealer

CMSA 1,500 500 2,500 2,000 ` ` ` `
Sanford 0 ` ` 1,000 600 1,400 2,200 1,000
Laredo ` 0 ` 2,100 3,000 2,500 1,800 4,000
Indianapolis ` ` 0 600 500 2,000 1,700 1,700
Morton ` ` ` 0 750 1,750 1,200 2,200
Other PDCs ` ` ` ` ` ` ` †

Note: †400 $/TL for York, PA and ` for other PDCs (excluding Morton).
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Furthermore, the IPA derivative estimates of performance
measures with respect to b also were computed during the
simulation to assess if these derivative values were unac-
ceptably large.

4. ANALYSIS AND IMPLEMENTATION

4.1. The Product Routing Model

For each product, we determine the lowest cost path from
the source to each dealer by solving a deterministic net-
work problem. Let Em be the set of arcs that permit use of
transport mode m, 6 be the unique source node for the
product, D denote the set of dealer nodes with mean daily
demand dj for j [ D, and T be the set of transship nodes.
Let xij

m be the flow from node i to node j using mode m,
and let cij

m denote the corresponding cost of a unit flow. In
our model, cij

m 5 aij
m 1 nj 1 IiLij

myi, where aij
m is the unit

transport cost from i to j by mode m with corresponding
lead time Lij

m, nj is the unit node processing cost at j, Ii is
the inventory carrying cost rate at node i, and yi is the
minimum total unit product cost from 6 to i. Then the
product routing problem can be formulated as:

min
xij

mÄ0
O

i, j,m
c ij

mx ij
m

s.t. O
m

O
j:~6, j![E m

x 6j
m 5 O

j[D
d j ,

O
~i, j![E m

x ij
m 2 O

~ j,k![E m

x jk
m 5 0 for all j [ T,

O
m

O
i:~i, j![E m

x ij
m 5 d j for all j [ D.

In the absence of arc capacity constraints, the optimal
extreme point solution to the above linear programming
problem has the following characteristics: (1) On each arc
(i, j), we use, at most, one of the modes, m* 5 argminm

cij
m, corresponding to the lowest cost mode with lead time

of Lij
m*. (2) There is, at most, one positive incoming flow

into each node, corresponding to the min cost path from 6
to the node. (3) The arcs with positive flows define a span-
ning tree rooted at 6, with leaves at each dealer in D; this
defines a unique path from 6 to each dealer. Based on
these observations, the formulation can be simplified by
replacing the xij

m flow variables on arc (i, j) with one xij

corresponding to the lowest cost mode. Further, without
loss of generality, each positive demand dj may be replaced
by 1, because the lowest cost path for flow into dealer j
will remain unchanged. Thus, once the arc costs cij are
specified (based on the lowest cost mode), the problem is
reduced to finding the lowest cost path in the network
from 6 to each dealer j [ D. This is facilitated by LP
duality.

Let E denote the union, over all modes m, of arcs in Em.
Then the dual of our product routing problem is:

max
yj Ä0

H O
j[D

y j Uy j < y i 1 c ij for all arcs ~i , j! [ E;

y 6 5 0J ,

where, as defined earlier, yj is the minimum total sourcing
and transportation plus pipeline inventory cost of moving
one worktool from the supplier 6 to node j. This dual may
be solved efficiently using Dijsktra’s shortest path algo-
rithm (refer to Lawler (1976) for relevant theory on net-
work optimization). The only difference between the
product routing dual and a standard shortest path problem
is that the arc lengths are not constant in our dual; the
pipeline inventory portion of cij depends on the value of
the decision variable yi. This does not pose any computa-
tional difficulties because, in our implementation of Dijsk-
tra’s algorithm, we process the nodes in a specific order
obtained using a topological sort (Aho et al. 1983) of the
underlying directed acyclic graph. That is, we renumber
the nodes of the supply chain so that, for every arc from i
to j, the index of i is smaller than the index of j. If nodes
are processed in increasing order of their index, the ab-
sence of directed cycles in our supply network allows us to
completely determine yi before cij is calculated, eliminating
any potential difficulties.

The model above sets each dealer’s regular supply node
equal to the immediate predecessor of the dealer in the
min-cost path from the source to the dealer. The lead time
for regular deliveries is the time for shipment from this
immediate predecessor node to the dealer, under the as-
sumption that the predecessor carries sufficient inventory
to provide a high level of service. For cases in which the
predecessor node is allowed to carry no inventory, the
delivery lead time observed by the dealer is increased
appropriately.

We determine inventory levels at transship points after
the ordering policies at all dealers are specified. Conse-
quently, the use of supply nodes by different dealers is
accounted for when transshipment inventory levels are set.

4.2. The Inventory Model

We use separate models, which are both stochastic, for
dealer nodes and transshipment nodes. This is motivated
by the difference in service level definitions at dealer nodes
(which face response-sensitive customer demand) and
transshipment nodes (where demand comes from captive
dealers). Thus, the dealer model must incorporate the pos-
sibility of lost demand, whereas the transshipment node
model just backlogs excess demand.

4.2.1. The Dealer Model. Data from the routing model
serves as input to the dealer inventory model, which max-
imizes the total expected profit, where profit equals reve-
nue minus regular and expedited sourcing costs minus on-
hand inventory carrying costs. The unit sourcing cost from
node i is yi plus additional transportation, pipeline inven-
tory, and node processing costs incurred between node i
and the dealer. The dealer’s regular supply node is deter-
mined by the product routing model. The transshipment
node, i, with the smallest lead time for direct material flow
to the dealer is the supply node for expedited deliveries.
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The variables and features of the inventory model in-
clude:

Y It21 5 inventory level at end of period t 2 1 5 on-
hand inventory 2 backlog.
Y Xt

m 5 order placed in period t , t, for delivery via
mode m, for m 5 r (regular), or m 5 e (expedited). We
store past orders for t 5 t 2 1, . . . , t 2 Lm. All orders
that have been placed but not yet delivered contribute to
the in-transit or pipeline inventory.
Y Pt21 5 ¥m5r,e ¥t5t2Lm

t21 Xt
m 5 total pipeline inventory

at end of period t 2 1.
Y IPt21 5 It21 1 Pt21 5 inventory position at end of

period t 2 1.
Y Rt 5 X t2Lr

r 1 X t2Le

e 5 receipts in period t.

The sequence of actions in period t is:

Step 1. Determine beginning inventory level, It21, and
pipeline inventories, X r, X e.

Step 2. Receive delivery of relevant pipeline inventory,
Rt.

Step 3. Observe demand Dt.

Step 4. Satisfy as much demand as possible from on-
hand inventory; a portion of unfilled demand is lost.

Step 5. Place new replenishment orders, Xt
e and Xt

r.

Step 6. Update profit.

We elaborate on Steps 4 and 5 below:

Step 4. Inventory allocation: We use inventory to satisfy
the most impatient demand first. For our data set, b0 . b1,
so we satisfy new demand before demand from previous
periods is satisfied (LCFS).
Lost demand in period t: Let x1 5 max(0, x) and x2 5
(2x)1. Then

+ t
0 5 b 0 ~D t 2 I t21

1 2 R t !
1 and

+ t
1 5 b 1 ~I t21

2 2 ~R t 2 D t !
1! 1, (1)

where +t
0 and +t

1 denote, respectively, the portion of un-
filled new demand and waiting customer orders in period t
that are lost. (If FCFS were used, +t

0 5 b0(Dt 2 (It21 1
Rt)

1)1 and +t
1 5 b1(It21

2 2 Rt)
1.) With +t 5 +t

0 1 +t
1,

the ending inventory level is

I t 5 I t21 1 R t 2 D t 1 + t . (2)

For example, if b0 5 0.6, b1 5 0.15, It21 5 220, Rt 5 40,
and Dt 5 50, then +t

0 5 0.6(50 1 0 2 40)1 5 6 and +t
1 5

0.15(20 2 0)1 5 3. Thus, as new demand exceeds receipts
by ten, six of these ten units will be lost in addition to three
of the backlogged 20 units of past demand. Total lost de-
mand is +t 5 9. On the other hand, if Rt 5 60 in the above
example, then +t

0 5 0 (no new demand is lost) and +t
1 5

1.5.

Step 5. Order-up-to policy for replenishment: Because cr ¶
ce and Lr Ä Le, it follows that zr Ä ze. Thus, the inventory
position after order placement will always be IPt 5 zr. If

the inventory position prior to ordering is IPt2 5 IPt21 2
Dt 1 +t, the expedited order quantity which orders-up-to
ze is

X t
e 5 ~ z e 2 IP t2 ! 1 5 ~ z e 2 z r 1 D t 2 + t !

1. (3)

Assuming zr Ä ze, the regular order quantity is

X t
r 5 min~ z r 2 z e , ~ z r 2 IP t2 !1! 5 ~D t 2 + t 2 X t

e!1.
(4)

Sales in period t is

S t 5 min~I t21
1 1 R t , D t 2 + t 1 I t21

2 !

5
x 15x1x 2

min~I t21 1 R t , D t 2 + t ! 1 I t21
2

5
~2!

min~I t , 0! 1 D t 2 + t 1 I t21
2

5 I t21
2 2 I t

2 1 D t 2 + t .

Period t profit is

p t 5 pS t 2 hI t
1 2 c e X t

e 2 c r X t
r. (5)

We also measure the long-run fraction of demand that is
lost and the fraction of demand satisfied using the regular
and expedited modes, respectively. We solve the dealer
inventory model by selecting a starting value of (zr, ze) and
generating a set of k demand scenarios. From these sce-
narios, we compute the estimated expected profit pt(zr, ze)
and the IPA derivative estimates dpt/dze and dpt/dzr ac-
cording to their recursions (shown in Appendix A). We
then use a subgradient-based search to find the optimal
value of (zr, ze). Because we are using simulation, a proof
of joint concavity of the profit function with respect to the
parameters is desirable. This is difficult to prove for our
problem, and, therefore, is the subject of parallel work. If
there were no lost sales, concavity would be relatively
straightforward to show using induction on Equations (1)–
(5). Our computer experiments, illustrated in Figure 4,
indicate that the profit function is concave when the base-
stock levels are high (which eliminates lost sales). While
always unimodal over zr Ä ze, the profit does fail to be
jointly concave at low (ze, zr) values, where significant
numbers of customers are lost.

Based on Figure 4 (which we generated for several prob-
lem parameters) and the concavity of profit in the absence
of a loss function, we believe that, for the high service
levels we use, the profit function is likely unimodal in the
region of interest. Assuming the dealer profit function is,
in fact, unimodal, our IPA procedure converges to the
optimal values of zr and ze. Refer to Scheller-Wolf and
Tayur (1998) for further details.

Prior to embarking on our IPA optimization, we con-
ducted the standard practice of removing initialization bias
and checking for “steady-state,” based on pilot runs. As
expected, simulation estimates of the optimal expected
profit become more accurate as the number of simulation
iterations (demand scenarios) increases. However, these
profit estimates differed by no more than 0.2% over a
range of simulation iterations between k 5 1,000 and k 5
10,000, while simulation run times increased by an order

198 / RAO, SCHELLER-WOLF, AND TAYUR



of magnitude. Therefore, to strike a balance between com-
putational time and accuracy, we generated 10,000 de-
mand scenarios for the last two simulation runs, just
before termination of the search for optimal (zr, ze), and
used k 5 3,000 demand scenarios during the IPA search.

4.2.2. The Transshipment Node Model. Using output
from the product routing and dealer inventory models, we
determine the fraction of customer demand satisfied at
each dealer using the regular and expedited modes. By
aggregating these product flows over all dealers we deter-
mine the mean, m, and variance, s2, of daily demand for
each product at each transshipment node. Given these pa-
rameters, the capacity C, desired service level d, and the
lead time L that the transshipment node faces for delivery
from its source, the base-stock level at a transshipment
node is set to

z 5 F ~L 1 1!m 1
s 2

2~C 2 m!
G

1 F 21~d!F ~L 1 1!s 2 1 S s 2

2~C 2 m!
D 2G 1/ 2

. (6)

The first bracketed term accounts for the mean demand
over the lead time and the mean shortfall, while the sec-
ond term corresponds to safety stock (incorporating de-
mand and shortfall variability). See Glasserman (1997) and
Tayur (1992) for details. Because demand at each trans-
shipment node is the sum of many demands originating at
different dealers, we assumed that the cumulative distribu-
tion function (CDF) of demand at the transshipment node
during its delivery lead time could be approximated by a
normal distribution F[. We denote the inverse of the

CDF by F21[. This demand model ignores correlation
between demands at different transshipment points. If cor-
relation effects or deviations from the normal distribution
are significant, we could use a more accurate, but compu-
tationally intensive simulation model similar to the dealer
model in §4.2.1.

Inventory holding costs at each transshipment node are
estimated as h[ z 2 m(L 1 0.5)]. This approximation is
fairly standard (see, for instance, formula (5-1) in Hadley
and Whitin 1963). Costs over different transship nodes are
aggregated to obtain estimated total costs for this subsystem.
This cost then is subtracted from the simulation-based esti-
mate of dealer profit for each product. This yields the
product’s contribution to expected profit. Total system
profit is the sum of the profit for all of the products.

5. RESULTS

For each product, solution of the routing problem took
just a few seconds on a Sparc20 workstation. This yields
the min-cost (regular) path from the source to each dealer
in the network. For expedited deliveries, we identified the
transshipment location that had the shortest delivery time
to the dealer. This was instantaneous. The average run-
time to compute the optimal inventory levels (zr, ze) for
each product was just under 40 seconds per dealer. Calcu-
lation of inventory levels at the transshipment nodes using
Equation (6) was instantaneous. We considered 21 dealer
districts, so complete analysis of one product over all deal-
ers took approximately 21 3 40 seconds or 14 minutes. Cat
provided comprehensive data for 21 products over two
years (2000 and 2004). Consequently, one run over all

Figure 4. SSL GP-bucket year 2000 profit function for a typical dealer.
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products, dealers, and study years took approximately 9.8
hours. For each scenario tested, we typically ran our exper-
iments in under five hours on two computers working in
parallel on independent sets of products or study years.

5.1. General Results

We considered several scenarios consisting of sets of per-
missible transshipment nodes. The four primary scenarios
were TF & PDC, PDC-Only, TF-Only, and DS-Only, for
which we generated solutions that were optimal within the
class of order-up-to policies for each of these networks. A
solution maximizes expected profit by setting order-up-to
levels for each of the products, locations, and both the
regular and expedited modes. These inventory levels en-
sure that a sufficiently high proportion of customers are
served. Our reported results include:

1. Optimal total profit for each scenario.
2. The relative profit from machines and worktools.
3. The geographical distribution of profit percentages

and the contribution of each product.
4. The market capture percentage (100% 2 lost

sales%).
5. The breakdown of cost components (source cost,

node costs, transportation costs, pipeline, and safety stock
costs).

6. Optimal transportation modes for each link in the
supply chain.

7. Product delivery lead times.
8. The effect of demand volume changes from 2000 to

2004.

As noted earlier, scenario costs exclude the fixed costs
associated with construction of the tool facilities. There-
fore, it comes as no surprise that the greatest expected
profit is attained by using the entire network, as shown in
Table 2. From the table, we observe that TFs will benefit
less from the increased demand volume in 2004. This may
be explained by noting that the linear transportation cost
component dominates the sublinear inventory cost compo-
nent for the TF-Only scenario.

Table 2 shows that inclusion of Tool Facilities (TFs)
adds about 2–3% to profit from worktools, as compared to
using the PDC-Only scenario, which is on the order of
several million dollars. Nevertheless, this was outweighed
by the estimated costs of building and operating the tool
facilities. Therefore, Caterpillar decided to implement the
use of the PDC-Only alternative (plus the Sanford TF due
to routing constraints) along with direct shipments. Our
model indicates that this supply chain configuration will
capture almost 100% of the demand. This negligible lost

sales is a consequence of the fact that the incremental
inventory holding costs are significantly smaller than the
lost profit due to shortages. This leads to large dealer
inventories primarily supported by the regular mode, with
the expedited mode used only occasionally during high
demand periods. This behavior can be seen in Figure 4,
which illustrates how profit changes with ze and zr for a
representative worktool. For this example, the optimal lev-
els are zr 5 6, ze 5 0, but many higher values of zr, ze (e.g.,
zr 5 6, ze 5 1) result in near-optimal profit with little or no
expediting. However, using zr 5 3 instead of the optimal
zr 5 6 reduces profit by more than 18%, primarily due to a
decrease in customer service from 100 to 81 percent.

Since demand forecasts form an integral part of our
optimization, we assessed the sensitivity of our recommen-
dations to variations in input demand data. We studied
performance measures (profit, inventory, and service lev-
els) for each scenario at four distinct mean demand levels:
(1) Caterpillar’s forecast m, (2) 0.8 3 m, (3) 1.2 3 m, and
(4) U(0.8, 1.2) 3 m, where U(a, b) denotes a uniform
random variate between a and b and each product’s mean
demand is multiplied by a different realization of U(0.8,
1.2). In all cases, the relative profitability of the different
scenarios remained remarkably insensitive to changes in
mean demand. We chose 0.8 and 1.2 after discussions with
Caterpillar. Caterpillar felt that a demand greater than 1.2
times the forecasted mean was unrealistic, given the ag-
gressive nature of their target. On the downside, if the
demand was less than 0.8 of the forecast, then a strategic
decision would be made on price and advertising that
would lead to a new analysis of the situation. Furthermore,
if deemed necessary by Caterpillar, we were prepared to
rerun the model for several values of mean demand to
better estimate the robustness of our recommendations.

We also note that each mean demand is an aggregation
of mean demands for different products/dealers (e.g., the
product type we call fork sets is actually comprised of
several distinct, but similar, fork sets; each dealer district is
an aggregation of several dealers). It is widely accepted
that such aggregate forecasts are likely to be more reliable,
and so a 620 percent variation on the mean, in general,
may be an acceptable range of analysis.

5.1.1. The Refined Model. Because the PDCs performed
well for worktools, Caterpillar decided to consider an al-
ternative scenario in which PDCs (and TFs) also were
permitted to act as transshipment points for machines.
Their hypothesis was that, if machines were allowed to
flow through the PDCs and TFs, the worktools would ben-
efit from lower transportation costs resulting from cheaper
modes of transport normally available only to machines.
This necessitated the generation of new data that specified
TL transportation costs and times via closed vans and flat-
beds, charged at new rates for worktools. Preliminary anal-
ysis showed that this would not increase total profits. The
added node costs incurred for processing machines over-
whelm any savings from combined worktool and machine

Table 2. Percentage of optimal profit across
different scenarios.

Year TF & PDC PDC-Only TF-Only DS-Only

2000 100.00 96.76 88.99 77.58
2004 100.00 97.98 89.38 81.23
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transportation. In addition, while PDCs were already well
equipped to handle worktools, this was not the case for
machines. Hence, Caterpillar decided to use the results of
the base model, which decoupled the distribution of ma-
chines and worktools.

5.2. Revenues, Costs, and Profits of First Model

The remainder of this section illustrates output analyses
conducted to provide a better understanding of the results
of our study. Caterpillar was interested in the breakdown
of costs by components such as source costs, transporta-
tion costs (separated by PDC and non-PDC costs), pipe-
line inventory costs, and on-hand inventory costs. This
information served a variety of purposes. For example, Cat
was considering different contracts with dealers, some of
which included Caterpillar’s ownership of “consignment”
inventory and/or a manufacturer buy-back option. Thus
Cat might be responsible for a portion of the dealer inven-
tory costs. In addition, the PDC costs and profits were
required to estimate the appropriate transfer payment to
the PDC logistics group, should they be included in the
supply chain. Consequently, these expected costs were cat-
egorized as:

1. Source (cost charged by external supplier);
2. Non-PDC Ship (non-PDC pipeline inventory and

transportation costs);
3. PDC Outbound (costs incurred after some PDC

took receipt and control of material);
4. TF Inv/Proc (on-hand inventory and node process-

ing costs at TFs); and
5. Dealer Inv (costs of on-hand inventory at dealers).

We illustrate this cost breakdown in Figure 5 for the
PDCs plus Sanford TF scenario. The bulk (90%) of costs
are source costs; non-PDC pipeline inventory and trans-
portation costs form a substantial portion (approximately
7%) of the remaining 10%; PDC-Outbound is between 1%
and 1.5%; and dealer inventory costs are under 1% of total
costs. This comparatively low dealer inventory cost comes
despite the high service levels and the use of longer lead
times (more regular shipments than expedited). The TF
cost portion is negligible (,0.02%) because the Sanford
TF is not used for most worktools, but is required for
processing a select few. Together with Figure 7, Figure 5
shows that inventory and costs shift from the dealer to the
pipeline, with an increase in demand volume and addi-
tional new routes in 2004. The increased demand volume
does not require much increased floor space or inventory
investment at the dealer; however, it does require the ca-
pability to handle larger volumes throughout the distribu-
tion network.

Our model’s output also includes regional profits. Figure
6 shows that the top six districts account for more than 60
percent of total profit from projected year 2004 worktool
sales in North America. Only 18 dealer districts are shown
instead of 21 because “Other Canada” actually consists of
four districts including Northeast (Newfoundland and

Nova Scotia) and Southeast (Montreal and Toronto) Can-
ada. Similar graphs illustrate the breakdown by volume of
material flow through distribution centers, as well as the
total profit generated by each worktool. These can be used
to prioritize operations by product and/or region, via an
ABC type analysis.

5.3. Inventory Levels

We now focus on the location and magnitude of inventory
within the supply chain, and illustrate our observations
using the TF & PDC scenario. Figure 7 demonstrates that
most of the inventory is in transit, the transshipment nodes
carry very little inventory, and the dealers carry most of
the on-hand inventory (cycle stock and safety stock). In
year 2000, expected total demand volume for SSL tools is
about four times the demand volume for CWL/MHE tools.
However, SSL tools have less relative demand variability,
so their safety stock is not proportionately larger than that
for CWL/MHE tools. Similar numbers hold for 2004.

We also studied the breakdown of each of these inven-
tories by product. For year 2000, the detailed breakdown
of average dealer on-hand inventory of 811 SSL worktools
and 320 CWL/MHE worktools is shown in Table 3. Be-
cause Caterpillar was considering different contracts with

Figure 5. Worktool cost breakdown by percentage.

Note: Ninety percent of the total cost is due to manufactur-
ing (termed “source” cost), approximately 7% of cost is due
to transportation and pipeline inventory prior to arrival at
PDCs, 1.5% of cost is due to transportation and inventory at
the PDC and in transit from PDCs to dealers, and the remain-
der is made up in inventory holding costs at the dealers. The
inventory carrying costs at the TF are negligible.
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dealers, as mentioned above, these inventory breakdowns
were of considerable importance. They also provide a first
estimate of which products could most benefit from im-
proved logistics. For example, there are more SSL GP
buckets in inventory on average than the combined total of
all of the CWL and MHE worktools that were studied.

A similar analysis of pipeline inventory (say, in terms of
use of TL and LTL rates and expedited vs. regular ship-
ments) over the network is possible from our results, but is
not included. We also graphed the worktool and machine
inventory by nondealer locations. The latter is shown in

Figure 8, which illustrates output from our analysis of the
supply chain for machines.

To summarize, our model evaluates different supply chain
configurations along the dimensions of profit, captured de-
mand, inventory parameters, and transportation mode usage.
From these evaluations we obtain optimal inventory routes
and levels corresponding to order-up-to policies with dual
supply modes. These evaluations proved to be robust with
respect to changes in system parameters such as demand
intensity, transportation options, and customer impatience.

6. CONCLUDING REMARKS

In this paper, we develop an integrated model to analyze
different supply chain configurations for Caterpillar’s new
line of compact construction equipment, the P2000 series.
We use decomposition techniques, network optimization
theory, inventory modeling, and simulation theory. The
novel features of our model include dual modes of supply
for dealer replenishments and net customer demand that
is responsive to speed of service. We were able to make
recommendations to Cat on the effects of different factors
on profits. In the last quarter of 1998, Caterpillar launched

Figure 6. Year 2004 worktool profits by region.

Figure 7. Worktool inventory location within supply
chain.

Table 3. Dealer inventory by worktool type 2000.

SSL Tool Units
CWL/MHE

Tool Units

Brooms 64 Brooms 20
GP Bucket 338 GP Bucket 67
MP Bucket 58 MP Bucket 60
Grapples 63 Grapples 64
Hammers 63 Hammers 59
Augers 67 Light Material 17
Derivatives 84 Special Dump 33
Fork Sets 74
Total 811 Total 320
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its P2000 line, supporting it with the supply chain—Part
Distribution Centers (PDCs) plus Sanford Tool Facility—
recommended by our analysis.

Without our analysis, Caterpillar likely would have im-
plemented either the Direct Shipment-Only (DS-Only) or
the Tool Facilities-Only (TF-Only) option. Internal con-
siderations caused Cat to question the value of inclusion
of PDCs into the network. Disregarding fixed costs of
TF construction, the annual benefit of our solution over
TF-Only is roughly eight percent of the maximal ex-
pected profit, which is several million dollars. This com-
parison does not capture the full benefit of our project.
It assumes that Caterpillar would have used the optimal
inventory in its implementation of the TF-Only option,
which we, in fact, specify. This is significant because our
IPA optimization indicates that choosing the correct in-
ventory ordering parameters can be vital. In our prob-
lem, setting the levels too low increases lost sales and
requires a greater use of expediting, resulting in signifi-
cantly lower profits, as shown in Figure 4. The actual
benefit of our project thus is likely to be significantly
greater than eight percent.

The work reported in this paper has concentrated on the
North American market. A similar analysis applies to Cat-
erpillar’s European market.

APPENDIX A. IPA DERIVATIVE RECURSIONS

The derivative recursions for dp/d(ze) and dp/d(zr) (used
by the gradient-based search for optimal ze and zr) are:

dp t

dz e
5 p1$S t . 0%

dS t

dz e
2 h1$I t . 0%

dI t

dz e

2 c e 1$X t
e . 0%

dX t
e

dz e
2 c r 1$X t

r . 0%
dX t

r

dz e
. (A1)

dS t

dz e
5 21$I t21 , 0%

dI t21

dz e

1 1$I t , 0%
dI t

dz e
2 1$+ t . 0%

d+ t

dz e
. (A2)

dI t

dz e
5

dI t21

dz e
1

dR t

dz e
1

d+ t

dz e
,

with
dR t

dz e
5

dX t2Le

e

dz e
1

dX t2Lr

r

dz e

~known from previous iterations!. (A3)

dX t
r

dz e
5 2

d+ t

dz e
2

dX t
e

dz e

~information from (A4) and (A5) will be used
in future iterations.)

(A4)

dX t
e

dz e
5 1$ z e . IP t2 %S 1 2

dIP t2

dz e
D

5 1$ z e . z r 2 D t 1 + t %S 1 2
d+ t

dz e
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dz e
5
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0

dz e
1
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1

dz e
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d+ t
0

dz e

5 b 0S21$I t21 . 0%
dI t21

dz e
2
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dz e
D

z 1$D t 2 I t21 2 R t . 0% and
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1

dz e

5 b 1S21$I t21 , 0%
dI t21

dz e
2 1$R t . D t %

dR t

dz e
D

z 1$+ t
1 . 0%. (A6)

The order of derivative computation is in the reverse
order of the listing above. We only track derivatives of It

and Xt
k (which yield all other required derivatives of Rt, +t,

etc.). Derivative recursions w.r.t. zr are identical in form,
except for item (A5) above, which becomes

dX t
e

dz r
5 1$ z e . z r 2 D t 1 + t %S21 2

d+ t

dz r
D .

The validity of these simulation-based derivative estimates
follows from arguments similar to Glasserman and Tayur
(1995).
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