
Circuit Satisfiability Problem, CSAT 
CS351 
 
The satisfiability problem was proved by Stephen Cook in the early 70’s to be the first 
NP Complete problem.   Here we will give the basic argument for a related problem, that 
of the circuit satisfiability problem.  The actual proof given by Cook involves quite a few 
more details.  Recall that to show something is NP Complete means that the problem is in 
NP, and that all other problems in NP can be reduced to the NP Complete problem in 
polynomial time. 
 
First, we need the concept of a certificate.  A certificate is just a proposed solution to a 
problem.  A certificate is used by a verification algorithm, V, where V is used to verify if 
the certificate is valid or not on input x (i.e. it is used to test if a problem is in NP).   
 
Algorithm V verifies an input string x if there exists a certificate y such that  
V(x,y) = true.  The language verified by V can be stated as: 
 
 L = { x | V(x,y) = 1  for some string y} 
 
In these terms, x is the problem statement (e.g. for Hamilton Cycle, it is the graph and all 
the edges).  Y is the certificate, or the proposed solution (e.g. for Hamilton Cycle, a list of 
all vertices in the cycle).  We measure the time of a verifier only in terms of the length of 
x, so a polynomial time verifier runs in polynomial time in the length of x.  If a language 
has a polynomial time verifier, then by definition it is in NP.  For polynomial time 
verifiers, the length of the certificate must be polynomial bounded to the length of x. 
 
Circuit Satisfiability 
 
The CSAT problem is very similar to the Satisfiability problem, but uses actual digital 
circuits instead of Boolean expressions.     
 
The CSAT problem is: 
 

Given a Boolean combinational circuit composed of AND, OR, and NOT gates, is 
it satisfiable? 

 
i.e. is there a set of inputs that makes the output 1?   Consider the example below: 
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In the above circuit, can you find values for X1, X2, and X3 that makes the output 1?  
Apparently we may need to simply try all the (exponential) possibilities until we find a 
satisfying assignment.  In this case the assignment 1,1,0 makes the output 1. 
 
However, not all circuits are satisfiable.  If we change the second OR to an AND the 
following is not satisfiable: 
 
 
 
 
 
 
 
 
 
 
 
 
Our claim is that CSAT is NP-Complete.  To make this claim, we must first show that 
CSAT belongs to the class NP. 
 
This part is easy to show.  Recall the verification algorithm, V(x,y) where x is the 
problem specification and y is a certificate.  Our verification algorithm is to construct the 
actual circuit out of the input specifications, x.  Then, y is a proposed solution.  Put the 
values of y into our constructed circuit and then simulate it.  If the output is 1, then the 
circuit is satisfiable, otherwise 0 is output.  This entire operation can be completed in 
time polynomial to the input, x, thus CSAT is in NP. 
 
Second, we must show that every language in NP is polynomial-time reducible to CSAT.  
Our proof is based on the workings of an actual computer (and thus is translatable to the 
workings of a Turing Machine).  This is much harder to prove, and here we only give a 
sketch of the formal proof. 
 
Consider a computer program.  The program operates as a sequence of instructions stored 
in memory.  Furthermore, data is stored in memory.  We have a program counter and 
other registers to operate on data and store the current instruction.    Let’s just consider all 
registers plus RAM to be “memory”.  At any point in the execution of a program, the 
entire state of the computation is represented in the computer’s memory. A particular 
state of computer memory is a configuration.  The execution of an instruction may be 
viewed as mapping one configuration to another.  In terms of traversing states, a program 
is traversing a sequence of configurations. 
 
This mapping from one configuration to another can be accomplished by a combinational 
circuit (in fact, this is what is done by the computer).  Call this combinatorial circuit, M.  
The execution of a program taking Z+1 steps can then be viewed as the following: 
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Now, we are ready to show that every language in NP is polynomial-time reducible to 
CSAT.    
 
Let L be any language in NP.  By definition, L has a verification algorithm, V(x,y), that 
runs in polynomial time.  This means that if the input x is of length n, then there is a 
constant k such that the runtime of V, T(V), is O(nk).   Similarly, the length of the 
certificate, y, must also be O(nk).   
 
Since V consists of a polynomial number of steps, then in polynomial time we can 
construct a single combinational circuit that computes all configurations produced by an 
initial configuration.  The input of x can be hardcoded to circuit M in terms of certain 
wires (e.g. for Hamilton Circuit, we could have wires encoding the nodes and edges in 
the graph).  This is because x never changes for each step of the configurations.  This 
leaves y as input values to the circuit.  In this case, we don’t know what y is – we want to 
find values of y that satisfy the circuit (and therefore solve the original NP problem).   
The picture is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

memoryconfig 0

Circuit M

memoryconfig 1

Circuit M

…

memoryconfig Z

memory                             Input Yconfig 0

Circuit M

memoryconfig 1

Circuit M

…

memoryconfig T(n)

X encoded in wires to circuit

X encoded in wires to circuit

0 or 1 output



The last configuration is T(n), the runtime of V.  We use some location in memory to get 
the ultimate output for the satisfiability of the circuit. 
 
If we take a step back, what have we just created?  It is simply a big version of a CSAT 
problem!  The input to the problem is configuration 0, and the output is configuration 
T(n).  In between is a big combinatorial circuit.  We now have reduced the problem in NP 
to the CSAT problem.  In this instance of CSAT, the input is certificate Y and we don’t 
know what the certificate Y is (i.e. we don’t know a proposed solution).  If we solve this 
CSAT problem, then we will have determined if an input Y exists or not. If this input Y 
exists, then it is a solution to the original problem in NP.  Thus, if CSAT is satisfiable, 
then Y solves the NP problem. 
 
In the other direction, suppose that some certificate exists.  When we feed this certificate 
into the circuit, it will produce an output of 1.  Thus, if the original problem is solvable, 
this instance of CSAT is also satisfiable. 
 
To complete the proof, we must show that the circuit can be constructed in polynomial 
time – i.e. the reduction is polynomial.  Since the verification algorithm runs in 
polynomial time, there are only a polynomial number of configurations.  This means we 
are hooking together some polynomial number of circuits M.  We can make an argument 
that M can be constructed in size polynomial to the length of a configuration – M is 
essentially the construction of the computer hardware for a simple CPU and memory 
system.   This makes the overall construction time polynomial. 
 
Based on the two properties of CSAT, we conclude that CSAT is therefore at least as 
hard as any language in NP and since it is in NP, it is NP Complete. 
 
 


