MATH 327: FOURTH PROBLEM SET

Due Monday, April 25

1. Let $R=k[x, y, s, t] /(x s-y t)$ and $S=R /(x, y) \cong k[s, t]$. Let $P=(s, t) \subset R$ and let Q be its image in S. Show that $h t(P)=1$ but $h t(Q)=2$.
2. let $R=k[x, y, z] /(x z-z)$ and consider the set $\{x, x y-y\}$. Notice that the ideal $(x, x y-y)$ in R is (x, y). Show that $\{x, x y-y\}$ is a regular sequence but $\{x y-y, x\}$ is not a regular sequence: permutations of regular sequences need not be regular.
3. Let $\{a, b\}$ be non-zero elements in an integral domain R.
(a) Show that the ideal $(a x-b)$ of $R[x]$ is prime if and only if $H_{1}(K(a, b))=0$ (which holds if $\{a, b\}$ is a regular sequence).
(b) When $(a x-b)$ is prime, show that $R[x] /(a x-b)$ is isomorphic to the subring $R(b / a)$ of the quotient field of R.

Recall that an associated prime of an R module M is a prime ideal that is the annhilator of a nonzero element of M. An associated prime P of an ideal I is defined (confusingly!) to be an associated prime of the R-module R / I, so that there is an $x \in R-I$ such that $P=\{r \mid r x \in I\}$. Notes on these notions are posted.

All given rings R are local (and Noetherian) in the rest of the problems.
4. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be elements of the maximal ideal of R.
(a) Show that $\left\{a_{1}, \ldots, a_{n}\right\}$ is a regular sequence if and only if a_{i} is not in any associated prime ideal of $\left(a_{1}, \ldots, a_{i-1}\right)$ for $1 \leq i \leq n$.
(b) Show that $\left\{a_{1}, \ldots, a_{n}\right\}$ is part of a system of parameters of R such that each $\left(a_{1}, \ldots, a_{i}\right)$ is of height i if and only if a_{i} is not in any minimal prime ideal of $R /\left(a_{1}, \ldots, a_{i-1}\right)$ for $1 \leq i \leq n$.

5 . Let M be a finitely generated R-module, P a prime ideal.
(a) Show that $\operatorname{depth}_{P}(M) \leq \operatorname{depth}_{P R_{P}}\left(M_{P}\right)$.
(b) Show that the inequality can be strict. Hint: Consider $R=k[x, y, z]$, $M=\left(x y, y^{2}, y z\right)$, and $P=(x, y)$. Note that this is not an esoteric example.
6. Let $\operatorname{dim}(R)=0$. Show the following.
(a) R is a Cohen Macaulay (CM) ring.
(b) R is regular if and only if R is a field.

7 and 8 . Let $\operatorname{dim}(R)=1$.
(a) If R has no nilpotent elements, show that R is CM.
(b) Construct an R such that $\operatorname{dim}(R)=1$ but R is not CM.
(c) If R is regular, then R is a DVR.
(d) For a field k, show that the subring of the DVR $k[[x]]$ generated by x^{2} and x^{3} is CM of dimension 1 but is not regular.
9. Let $R=S / I$, where S is a regular local ring and I is generated by a regular sequence in S. Show that any localization of R is also a quotient of a regular local ring by an ideal generated by a regular sequence.

A local ring R is called a "complete intersection" if its completion at its maximal ideal is the quotient of a regular local ring by an ideal generated by a regular sequence. The rings of problem 9 are examples.
10. Let $\mathbf{a}=\left(a_{1}, \cdots, a_{n}\right)$ be any sequence of elements in R, let $S=R\left[x_{1}, \cdots, x_{n}\right]$ and let $f: S \longrightarrow R$ be the ring homomorphism that sends x_{i} to a_{i}. Let M be an R-module and regard M as an S-module by pullback along $f, s m=f(s) m$. Regard R as the quotient S-module $S /\left(x_{1}, \cdots, x_{n}\right)$. Prove that

$$
H_{*}\left(K(\mathbf{a}) \otimes_{R} M\right) \cong \operatorname{Tor}_{*}^{S}(R, M)
$$

