MATH 327: FIFTH PROBLEM SET

Due Monday, May 2

We have shown that in a local ring, permutations of regular sequences are regular. Here is a conceptual statement that encodes this invariance differently.

1. Prove that if R is local, M is finitely generated, and $I=\left(x_{1}, \cdots, x_{n}\right)$ is proper and contains a regular sequence for M of length n, then $\left\{x_{1}, \cdots, x_{n}\right\}$ is itself a regular sequence for M.
2. Prove that if $\left\{x_{1}, \cdots, x_{n}\right\}$ is a regular sequence in R, then so is $\left\{x_{1}^{r_{1}}, \cdots, x_{n}^{r_{n}}\right\}$ for any n positive integers r_{i}. [17.5, page 442, Eisenbud]

The following two problems are relatively hard, and optional. If you do 3 , don't just copy out of Eisenbud. Try to understand it better.
3^{*}. Show that if an ideal I in R (not assumed to be local) can be generated by a regular sequence, then it can be generated by some regular sequence any permutation of which is again regular. [This is 17.6 , p. 442, in Eisenbud and a sketch proof is given on p.740.]

There should be easy way of doing the following problem, but I don't myself know one. I do know that the claim is true.
4^{*}. Show that an integrally closed local domain R of dimension 2 must be CM.
5. Let R be the localization of $k\left[x^{3}, x^{2} y, x y^{2}, y^{3}\right] \subset k[x, y]$ at the maximal ideal $\mathfrak{m}=\left(x^{3}, x^{2} y, x y^{2}, y^{3}\right)$. Show that R is Cohen-Macaulay.
6. Let R be the localization of $k\left[x^{4}, x^{3} y, x y^{3}, y^{4}\right] \subset k[x, y]$ at the maximal ideal $\mathfrak{m}=\left(x^{4}, x^{3} y, x y^{3}, y^{4}\right)$. Show that R is not Cohen-Macaulay.
(Problems 5 and 6 are taken from Eisenbud, 18.7 and 18.8, page 469, where some discussion of them may be found. Eisenbud calls height "codimension", and he notes that $h t(\mathfrak{m})=2$ in both cases.)

An ideal $I \subset R$ is "perfect" if $\operatorname{depth}_{I}(R)=p d(R / I)$.
7. Show that if R is CM and I is perfect, then $S=R / I$ is CM.
8. Show that an ideal generated by a regular sequence is perfect.
9. Give an example of a perfect ideal not generated by a regular sequence.

By Problem 9, Problem 7 is a generalization of the statement that a quotient of a CM local ring by an ideal generated by a regular sequence is CM.

