POINTWISE A POSTERIORI ERROR CONTROL FOR
ELLIPTIC OBSTACLE PROBLEMS

RICARDO H. NOCHETTO, KUNIBERT G. SIEBERT, AND ANDREAS VEESER

ABSTRACT. We consider a finite element method for the elliptic obstacle prob-
lem over polyhedral domains in R?, which enforces the unilateral constraint
solely at the nodes. We derive novel optimal upper and lower a posteriori error
bounds in the maximum norm irrespective of mesh fineness and the regularity
of the obstacle, which is just assumed to be Holder continuous. They exhibit
optimal order and localization to the non-contact set. We illustrate these re-
sults with simulations in 2d and 3d showing the impact of localization in mesh
grading within the contact set along with quasi-optimal meshes.

1. INTRODUCTION

Let Q be a bounded, polyhedral, not necessarily convex domain in R? with
d € {1,2,3}. Let f € L>(Q) be a load function, x € H(Q) N C%*(Q) be a lower
obstacle, and g € H!(Q) N C%%(Q) be a Dirichlet boundary datum with 0 < o < 1.
The last two functions satisfy the compatibility condition

g>x on 0f.
Let K be the following non-empty, closed and convex set of H'({2):
K:={ve H(Q)|v>xa.e. in Q and v = g on IN}.
The continuous problem reads as follows:
(1.1) uek: (Vu, V(u —v)) < (f, u—v) for all v € K.

It is well known that this problem admits a unique solution u; see e.g. [9, Theo-
rem 6.2] or [8], [13]. Moreover,  is also Holder continuous [7].
Let 0 € H™1(Q) = H}(Q)* be the non-positive functional defined by

(1.2) (0, 0) = (f, @) — (Vu, Vo) for all p € H(Q).

Note that ¢ = 0 in the open non-contact set {u > x} := {z € Q | u(z) > x(2)},
and that ¢ = f 4+ Ay in the interior of the contact set {u = x}.

Given a shape-regular partition 7 of Q, we let (up,0y) be piecewise linear finite
element approximations of (u,o) over T;. The unilateral constraint is imposed on
the discrete function u; only at the nodes of 7. This corresponds to up > X,
where x;, is the Lagrange interpolant of x. Since xj; does not in general satisfy
Xr > X, the ensuing method is non-conforming. Moreover, the discretization is
such that the discrete counterpart o, < 0 of ¢ < 0 holds; see §2 for details.

Rigorous a posteriori error estimates in the energy norm have been recently
derived by Chen and Nochetto [3] and Veeser [17, 18]. In [3] a global upper bound is
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shown which hinges on a positivity preserving finite element interpolation operator
II; such a II, will also be instrumental here. In [17, 18] the interior residual is
localized to the non-contact set, thereby sharpening the global upper estimate of
[3] and producing a lower estimate [18]; localization will be essential here as well.
The upper estimate guarantees reliability and the lower bound efficiency.

Before we embark on a formal discussion, it is instructive to pause on the stan-
dard approach for the Laplacian and compare it with (1.1). Since —A is an iso-
morphism between H'() and its dual H~1(f), we can simply write the equation
satisfied by the discrete solution uy, in this case, namely —Au, = f — R, =: f, and
thereby estimate the error |V (u — up)||o,2;0 in terms of the residual ||Ru||-1,2;0 =
|f = fll-1,2:0- Hereafter, ||-||o,:c denotes the L,(€)-norm, p € [1, 0], and ||-||_1,2.0
the dual norm of ||V - ||o,2,0. For the obstacle problem (1.1), the correspondence
between right-hand side f and « is nonlinear, non-differentiable, and most notably
not one-to-one since a change of f within the contact set {u = x} may yield no
change in u. This loss of information in « is accounted for in ¢ and, consequently,
the pair (u, o) is the relevant quantity for error analysis in the present context.
This crucial observation was first made by Veeser [18] for the energy norm, and
leads to both lower and upper bounds for the combined errors v — uy, and o — 0.

To understand the issues involved in deriving sharp pointwise a posteriori error
estimates, it is revealing to consider simple one-dimensional situations. We thus
resort to Figures 1.1-1.3, which were produced with the estimators of this paper.
These pictures display three meshes together with discrete solutions (thin lines).
The forbidden region below x is shaded for ease of visualization and x, is shown by
thick lines. Our estimators are consistent with those in [18] and thus control errors
in u and o with respect to the maximum norm and a negative Sobolev-type norm,
respectively. An optimal error estimator and associated adaptive procedure should
exhibit in particular the following basic properties (which are fulfilled for those of
this paper):

e In the discrete contact set {up, = xp} the estimator must be insensitive (apart
from oscillations) to the forcing term f, which should not dictate mesh quality.
Figures 1.1 and 1.2 illustrate this property since the meshes are rather coarse in
the contact sets.

e In the non-contact set {up, > x»} the estimator must be insensitive to the obstacle
and thus reduce to the usual estimator for the (unconstrained) Laplacian. This
effect is shown in Figures 1.1 and 1.2. The refinement in Figure 1.1 is due to the
curvature generated by f = —1 but not to the cusp of x pointing downwards.
On the other hand, the estimator does not feel the oscillatory character of x in
Figure 1.2 because it takes place below the discrete solution uy. Overall there is
an excellent accuracy for « in the non-contact set even though the approximation
of x is rather rough.

e The estimator must be able to detect the non-conforming situation xy > up, and
refine accordingly. This is depicted in Figure 1.3, where the concave part of x
above uy, is detected early on and thereby the solution is lifted up.

e If o = f + Au happens to be singular with respect to the Lebesgue measure,
as in Figure 1.1, then we could expect a strong refinement near the discrete free
boundary. In fact, the piecewise linear approximation o, of o cannot be very
accurate in such a case no matter whether the corresponding singularity in the
exact solution u can be resolved in the discrete space.
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FIGURE 1.1. Localization for an obstacle with downward cusp

F1GURE 1.2. Localization for an oscillatory obstacle below

FI1GURE 1.3. Localization for an obstacle not resolved on coarse grids

e It is not advisable to preadapt the mesh according to data f and x since the
contact set in unknown beforehand and its local mesh size should only depend
on x but not f, whereas the opposite situation occurs in the non-contact set.

Pointwise a priori error estimates for (1.1) were derived by Baiocchi [2] and
Nitsche [10]. It is instructive to review briefly their approach since the present one
is a “dual” version of it. To compare u with uy, the Ritz projection Ppu of u into
the finite element space Vi is introduced, namely

PoueV,: (V(u — Pyu), Vi) =0 for all ¢, € V.
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Such Ppu satisfies for quasi-uniform partitions 75 the following maximum norm
error estimate [10], [14]:

(13) ||U' - PhuHO,oo;Q S it (ua h) = Clin |10gh| w(h)’

where w is the modulus of continuity of Vu. If ||x — x&|lo,00;0 < 72(X, k), then

(14) ”’U, - uhHO,oo;Q S 0(771 ('Un h) + 772(Xa h)),

for a suitable constant C'. The idea behind (1.4) is rather simple and elegant. The

following functions uf are candidates for discrete barriers:

(1.5) uf = Ppu =+ Char (m (u, h) + n2(x, h)).

We then use the discrete maximum principle, which requires acute triangulations
Th, to prove u; < uj <uj. This, in conjunction with (1.3), results in (1.4).

To derive a posteriori error estimates we use a “dual approach”. We start from
the discrete solution wp, instead of u, and modify it by adding a correction w €
H 1(Q) which adjusts its Laplacian within elements and eliminates its jumps across
inter-element sides. Such a w turns out to be the Riesz representation of a Galerkin
functional closely related to that in [18], which for unconstrained problems reduces
to the usual residual. We can thus estimate ||w]|o,o0; by invoking improved variants
of the results [4], [11] from linear theory. After suitable lifting of uj + w, in the
spirit of (1.5), the resulting function is a candidate for continuous barrier of (1.1).
Application of the continuous maximum principle completes the argument without
restrictions (as the acuteness in [2] and [10]) on the partition 7j.

This paper is organized as follows. In §2 we introduce the discrete problem and
discrete variables (up, o), along with the positivity preserving operator I, of [3].
In §3 we discuss the Galerkin functional of [18], the localized residual and quad-
rature estimators, and their relation to the errors. We construct the continuous
barriers in terms of the corrector w in §4, and derive pointwise estimates for w in
§5. The upper a posteriori error estimates are proved in §5, whereas the corre-
sponding lower bounds are shown in §6. We finally conclude in §7 with a number
of simulations which clearly illustrate reliability, efficiency, and performance of the
proposed estimators in 2d and 3d.

2. DISCRETIZATION

Let {7} be a sequence of conforming partitions of  into (closed) simplices.
Given a simplex T, we write hr for its diameter and pr for the maximal radius of
a ball that is contained in T'. Shape-regularity of 7 is characterized by

hr
2.1 = — < y*
(2.1) ¥(Tr) max <

with v* bounded independently of A. In the sequel the same letter C' will be used to
denote different constants only depending on v*, the domain (2, and the dimension
d. In addition, we use < to indicate < up to such constants C. The set of nodes of
Tr is denoted by N}, and the subset of interior nodes by Ny, The set of (closed)
inter-element sides is denoted by Sy.

Let V;, indicate the space of continuous piecewise linear finite element functions
over T and Vi, := V, N H 1(Q). The nodal basis functions of Vj are given by
(¢%)zen, - Let I be the Lagrange interpolation operator onto V.
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Given a subset w of 2, we let Uy (w) be a discrete neighborhood of w, namely,
Up(w) := U{T ETh:TNw#0}.

The star associated with a node z € N}, is then Uy (2) := Uy, ({2}) = supp ¢%.

2.1. Discrete Problem. Let xp := Ipx be the discrete obstacle and let Irg be
the discrete Dirichlet datum. The discrete counterpart /Cp, of K is then

Kp :={vp € Vs | vp > xp in Q and vy, = I g on 9Q}.

The set K is non-empty, convex, closed but in general not a subset of X (non-
conforming approximation). Given the scalar products

(p, ) = /Q o, g o)) = /8 o,

the discrete problem reads as follows:
(2.2) up € Ky, : (Vuh, V(uh — ’Uh)> < (f, Up — ’Uh> for all vy, € Kp,.

Problem (2.2) admits a unique solution (use [8], [9] in the Hilbert space V).
We denote by (-, -), the lumped L, scalar product, i.e.,

(P, Yn)y, = / In(pn ¥n) for all pp, Yp € V4.
Q

We next introduce the discrete approximation o € V, to the measure o. For
interior nodes z € N}, we set

<0h; ¢Izz>h = <f7 ¢}zz> - <Vuh5 V¢i>a

whence

on(2) = (Jo 82) " ({f, ¢3) — (Vun, VZ)),

and op,(2) < 0. Inspired by this expression, we extend the definition of o5 (2) to
boundary nodes z as follows:

({f, 87) = (Vun, V5) + (Onun, $7)) . _
on(z) =14 ) ) Jo ‘;7; hh » iU(2) C {un = xnk,

0, otherwise.

Hereafter, n denotes the outer normal of Q and v~ := — min{v, 0} is the negative
part of a function v. We conclude that o, < 0 in (.
We finally split the triangulation 7} into

(2.3) Tw :={T € Ta |Un(T) C {un —xn =0}}, Tt :=Ta\Ty,
and Q into discrete contact set Ap and discrete non-contact set Q\Aj with

(2.4) Ap:=|H{T:TeT})
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2.2. Positivity Preserving Interpolation. We call a linear interpolation oper-
ator ITy: L1(Q) — Vj, positive if

(2.5) p>0 = Ihp>0.

Since we will make extensive use of the operator introduced by Chen and No-
chetto [3], we recall its definition. Given z € N}, and ¢ € L1(Q), we choose B(z)
to be a ball contained in the star Uy (z) and define the nodal value

1
(2.6) Mhep(z) := m 50:) ¥

The radius of B(z) must be comparable with the local mesh size for II;, to possess
the desired properties (listed below) uniformly in the mesh size. In Section 6 we
will investigate a suitable choice of radius.

It is clear from (2.6) that II, satisfies (2.5). The following properties are valid
forall1<p<oo, T€Ty,and S €S, [3]:

(2.72) IVIInellopr < [IV@llo,ps (1),
(2.7b) e =Mallopr < hrllVeollopus (1),
(2.7¢) le = Maello.ps < s /7 [1Veello,paan(5)-
provided ¢ € W}(Q). For ¢ € Wi (Q) with Vy € BV (Q)?, we also have
(2.7d) o = Tnpllor < A7 ID?@lvar (Un(T)),
(27¢) o~ Tallosss < hsID*pleas (a(5)),
where
d
(2.8) |D*@lvar := Y | DBiplvar
=1
is the sum of the variation measures |DO;p|var Of O;p, ¢ = 1,...,d; see e.g. [6,

Section 5.1]. Note that, if ¢ € W2(Q) and w is a measurable subset of 2, then
| D%¢|var(w) = ||D?¢||0,1,0- Estimate (2.7d) follows from local stability of IIj, in Ly,
validity of a similar estimate in W2, and approximation of ¢ by smooth functions ¢y,
such that ¢x, Vor = ¢, Vo in Ly (Up (T)) and [|D*@k|lo, 120, (T) = [D*@|var (Un(T))
as k — oo (cf. Theorem 2 in [6, Section 5.2]). Similarly, one obtains (2.7¢).

Note that II; is not a projection operator, namely I12 # II;, and that the
case of homogeneous boundary values is special for linear positive finite element
interpolation operators; see Nochetto and Wahlbin [12].

3. ERROR AND ESTIMATORS

Our error concept involves not only the pointwise error u — u but also an error
associated to the measure ¢. We will not compare ¢ with o, but rather with the
following quantity &, € L2(Q2) defined by

31 (Grne)= Y /UhSO+ > /Ih(UhHhSO) for all ¢ € L2(12)
e’ T TeT; T

with 72 and 7, as in (2.3). Such &), exhibits more suitable cancellation and
localization properties than o, in connection with the pointwise error u — up. We
point out that &5 is not piecewise linear, but like o5 it does satisfy

(3.2) 5, <0
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because of (2.5). Moreover, G}, is only needed in the subsequent analysis but not
in the estimator. We finally note that, in light of (2.6), 64| = on|r for all T € 7',?
such that Uy, (T') C A as well as those T for which Uy, (T) C {on = 0}.

3.1. Galerkin Functional. We are now in the position to define the Galerkin
functional G, € H~1(2), which plays the role of the residual for (unconstrained)
equations:

(Gh, @) := (V(u —un), Vo) + (0 = Gn, )
= — (Vup, Vo) + (f — &4, ¢)  for all p € H'(Q).

Note that this definition of the Galerkin functional G, differs slightly from the one
in Veeser [18]. In fact, we have &, instead of o, in (3.3).

Our next task is to investigate properties of G;, and relate G, to the errors. We
first observe that G, satisfies the almost Galerkin orthogonality property

(Ghy on) = (On, ©n)}, — (Oh, ©h)

(3.4) Z /Ih Oh®n) — Oh@n + Z /Ih on (on —Mren)),

TeT? TeT;

(3.3)

for all ¢, € Vj,. Making use of (3.4), we can write for any ¢ € H}(Q)
(Ghs ) = (Ghy ¢ — TInep) + (Gn, Lnp)

/[6 un] (p — M) + Z/ f—on) (¢ —Ixp)

SES;, TETO

+ > /f @ — o) — In(on (Mnp — 15 ¢0))
TeT;F

+ Z /Ih on Inp) —onpp + Z /Ih on (Inp — I ¢)),
TeT? TET;T

where [0,up] is the jump across sides S in the normal derivative of up; recall that
12 # II,. Here, one can see the cancellations built in the definition of &5. The
cancellation f — o, over T is responsible for localization in our error estimators,
while the cancellation of I, (o, (112 —IT,¢)) over 7, is the reason for dealing with
&1, instead of oy, (see (3.6) and (3.12) below). Thus, defining R, € H 1(Q) by

(R, ¢ Z/[[auh]]er Z/ —on)e + Z/fso

SESH TeTP TeT;

and 9y € §7h by

(Qn, on) == Y / In(on ¢n) — on P,

TeT?
we have the following representation formula for Gy:
(3.5) (G, 9) = (Rn, ¢ — ) + (Qn, IIngp) .
In contrast to (3.5), using o, instead of &, in (3.3), as in [18], would have led to
G o) = / [0vun] (p —Thep) + Y / —on) (p — Ilnp)

(3.6) SESh TeTn

+ [(Uha Hh(p>h - (Uha th)]
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This alternative representation formula does not yield a second order estimator and
is further discussed in (3.12). This justifies the use of 54 and II.

3.2. Localized Residual and Quadrature Estimators. The estimation of the
pointwise error ||u — up||o,00;0 can be reduced to an appropriate control of G. This
crucial step will be performed in §4 and will require an estimate for G in the dual
space of W2(Q2) N H' (). We now simply derive an estimate for G, in the dual
space W* of

W = {p € H'(Q) | Vy € BV(Q2)%}

equipped with the norm ¢ — |D%p|y. (Q) (see (2.8)). The space W is slightly
bigger than WZ(Q) N H'(Q) and contains the discrete space Vj,. This fact will be
useful for the discussion in §6.3. The estimate for G leads to residual type and
quadrature estimators.

We define the localized residual Ry, over T € Ty, for any 1 < p < oo to be
|f - Uh' T e T}P
1 TeTt,
where p' = p/(p — 1) is the dual exponent of p. In light of (2.7d), (2.7e), and the
additivity of | D?¢|yar, the localized residual bounds (R, ¢ — I1,¢) as follows:
(3.8) | (R ¢ = ap) | < (W Rosllo,00i2 | D*@lvar ().

The second term (Qp, I, ) on the right-hand side of (3.5) accounts for the effect
of quadrature; this contribution occurs also for unconstrained linear problems with
quadrature. The Bramble-Hilbert lemma, (2.7a), and the Sobolev-type inequality
IVelloara < 1D*¢lvar(®) for @ € W imply

[(Qn, o) | < [1B?Vanllo,aan [IVITello,as0
< 1B*Vanllo,ainn | D?¢lvar ().
Inserting (3.8) and (3.9) into the (3.5), we deduce the upper bound
(3.10) 1Gh]1-2,002 < 117*Roollo,cos + [1h°Vanllo,asnn

where

(3.7) Rylr = hz' 7 |77 /7 [Byun] llo porom + {

(3.9)

1Gh || =2,00;02 := sup{(Gn, ¢) | ¢ € W with |D?0lyar () < 1}.

The actual estimators &, to be discussed in §5, contain not only the terms on the
right-hand side of (3.10) but also additional consistency terms. We will show that

llu — unllo,00;0 X En-

Combined with (3.3) and
[ V= un) - Vo < 1u = o i |D*plar()
for all ¢ € W (approximate u — uj, appropriately), this leads to
llo = nll-2,00:0 < &
It is crucial to see that, invoking (3.3) once again, we easily obtain the lower bound

(3.11) 1GR ]| -2,00:0 < [lu — unllo,00;0 + llo — Fall-2,0050-

These estimates, similar to those in [18, Lemma 3.4], explain why the Galerkin
functional Gy, is intimately related to the error in both v and o and that, except
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possibly for consistency terms, it contains the correct information about the prob-
lem at hand. In the next two sections, we elaborate further on this issue.

Before we do so, note that the term between the square brackets in (3.6) would
yield the following expression for (3.9):

(3.12) 1{Qh, The) | < [1B*Vonllo,ase [ D*@lvar (2)-

Since o}, changes rapidly across the boundary of Ay, this term does not exhibit the
desired asymptotic second order, and thus spoils the overall error estimation.

4. UrPPER BOUND I: BARRIERS
Let w be the Riesz representation in H () of the Galerkin functional Gy, i.e.
41)  weH(Q): / V- Vo= (Gn, ) forall p € H(Q).
Q

With the help of w we construct now upper and lower barriers of v that involve,
besides w, only computable quantities which account for consistency errors. We
thereby suppose that w is continuous — a fact that is proven in the next section.

4.1. Upper Barrier. Let v+ = max{v, 0} denote the non-negative part of a func-
tion v. We now construct a (continuous) upper barrier u* of u.

Proposition 4.1 (Upper barrier). The function

(4.2) w = un + W+ [[wllo,csie + g = Trgllo,ccson + l0x — un) llo,co0

satisfies

Proof. 1. Since

(u—u")pe < (u—wun)ae — g — Ingllo,cc;00 < 0,

the function v := (u — u*)™ satisfies

(43) ’U|aQ =0.
We want to show that ||V’U||2 .o = 0 and then use (4.3) to conclude that v = 0.
2. In view of (3.1) and (3.3), we can write

Vv ||02Q—/Vu—u Vv—/Vu—uh Vv—/Vw Vv

op — 0o, v) < — (o, v)

(4.4)

It thus remains to show that (o, v) = 0.
3. Since o is a Radon measure (see e.g. [9, Theorem 6.9]) and v continuous, we
may write

(4.5) (o, v) = / vdo.
Q
We recall that the support of ¢ is in the closed contact set {u = x}, or equivalently
/ pdo =0 for all p € Cy({u > x})-
Q

On the other hand, we have {v > 0} = {u > u*} C {u > x} because

u > ut > x—(x—un) + I1(x —ur)lloeose > X
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A partition of unity of the open set {u > x} thus allows us to reduce the pairing
(4.5) to functions v with compact support contained in {u > x} and for which the
result is zero. O

4.2. Lower Barrier. We now construct a (continuous) lower barrier u, of w.
Proposition 4.2 (Lower barrier). The function
(4.6) = up+w = [[wllocse = g = Inglloccs00 — ll(wn — x)* llo,c05{on <0}
satisfies

Ue < U m Q.

Proof. 1. Arguing as in steps 1 and 2 of Proposition 4.1, it suffices to prove
(4.7 (Gh, v) =0

for the function v := (u, —u)™*.
2. Before establishing (4.7), we show the important property:

If there exists z € int(T') such that u.(z) > u(z), then oy = 0.

Let u.(z) > u(z) for some z € int(T). If we had op(z) < 0, then (4.6) would imply

un(®) > x(2) + | (wn = X) " llo,00i{on <0} = un(z),

a contraction; hence o (z) = 0. Since o, < 0 is affine in T', we arrive at o7 = 0.
3. Invoking the definition (3.1) of &4, namely,

Uh, Z /O’h’U+ Z /Ih UhHhU

TeTP TeT,t

we have to show that for each T' € T}, the corresponding integral vanishes.

Let T € 72. Ifv =0in T, then [, 0,v = 0. Otherwise, there exists an z € int(7)
with v(z) > 0 and we obtain [.osv = 0 by step 2.

Let T € 7,". We may write

/’;1_[},,(077, Hh’U) |T|1zah zz Hhv)('zz)

where 2p,..., 24 are the vertices of simplex T'. For boundary nodes z;, there is no
contribution on the right hand side, because II,v = 0 on 9. For an interior vertex
z; with (ITv)(2;) > 0, we get from (2.6) that v(z) > 0 for some z € Uy (z;)- Step 2
thus implies o (z;) = 0, and (4.7) follows, thereby proving the assertion. O

Remark 4.3 (Optimal choice). In (4.6) and the proof of Proposition 4.2, it would
suffice to deal with ||(un — ©)¥l0,00;{cs <0} instead of [[(ur — x)¥lo,00;{on<0}- This
would indeed be an optimal, but non-computable, choice.

4.3. Partial Pointwise Error Estimate. Propositions 4.1 and 4.2 yield

(45) llu — unllo,coi0 < 2 [wllo,ccs2 + 119 — Ingllo,c000

' +10¢ = un)llo,cos2 + Nl (wn = %)™ llo,001{o <0 -

Besides ||w||o,00;02, all terms involve only given data and the discrete solution and
are computable. It remains to estimate ||w||o,00;0 in terms of computable quantities.
This is a question about the linear problem (4.1), and is carried out in §5.



POINTWISE ERROR CONTROL FOR OBSTACLE PROBLEMS 11

5. UPPER BOUND II: POINTWISE ESTIMATES
In this section we derive pointwise estimates for both w and the error u — uy,.

5.1. Pointwise Estimates of w. In order to obtain a pointwise estimate for w =
(—A)~1G;, we proceed in three steps. We first bound w in a Hélder space, thus
stronger than L., (Q2). We then give an estimate weaker than ||w||o,00;0, and finally
we combine these two estimates.

In the previous section we used the continuity of w. This property is derived in
the next lemma.

Lemma 5.1 (Holder continuity of w and its control). The Riesz representation w of
the Galerkin functional Gy, is Hélder continuous. More precisely, for every p > d
there exists a € (0,1) such that

(5-1) ”wHCO'a(Q) < (||th||0,p;Q + ”h2vah||0,p;/\h) )
where the constant hidden in < depends on Q and p, and blows up as p | d.

Proof. Let p' = p/(p—1) be the dual exponent of p > d. A classical Holder estimate
of De Giorgi and Nash reads

[wllgoa @) < 1Ghll-1.m0 = sup{(Gn, ¢) | ¢ € W' (Q), [IVellopia < 1},

where the latter is the norm in the dual space of W1 (Q) (see e.g. [9, Theo-
rem C.2]); the constant hidden in < depends on € and p, and blows up as p | d.
In view of (3.5), we can estimate

1/p o 4
(Gh, ©) = (Hthl 0,p0 t+ ||h2V0h| O,P;Ah) IVollo,pe for all p € wh? (Q),

where we have used the Bramble-Hilbert lemma and (2.7). This proves (5.1). O

Note that the right-hand side of (5.1) is a first order estimator, while we have
to estimate ||wlo,00;0 by @ second order estimator. A key step is performed next.

Since w is continuous and satisfies wjpq = 0, there exists a 29 € Q with |w(zo)| =
||wllo,00;0- Invoking the uniform cone property of  [1, Section 4.7], we can choose

a ball B with radius p such that B C , dist(zq,B) < p, and p = Ch'?nin, where

B > 1 will be chosen later. Let § € C§°(2) be a regularization of the Dirac mass
satisfying

(5.2) suppd C B, /95 =1, 0<é=<p

Taking z; € B such that (J, w) = w(z;), we may write

(5.3) llwllo,cos2 < (6, w) | + |w(o) — w(z1)]-

Lemma 5.1 implies the following estimate for the second term of (5.3):
(5.4) [w(z0) —w(21)| < A (1A Rsllo.pse2 + 1R Vonllo,pias)-

In order to bound the first term of (5.3), we introduce the regularized Green’s
function G € H'() defined by

(VG, V) = (6, ¢) for all ¢ € H' ().

The following a priori estimate has been proved by Nochetto [11] in 2d and Dari et
al. [4] in 3d for any polyhedral domain Q:

(5.5) ID?Gllo,;2 + IDGllo,a/(a=1);2 < 108 Amin|”,

3
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where the constant hidden in < depends on 3 via p. This result is instrumental to
prove the following bound.

Lemma 5.2 (Estimate of (6, w)). The regularized Dirac mass § of (5.2) and the
Riesz representation w of (4.1) satisfy

(6, ) < 1108 huninl® (1A Rocllo.cci0 + 1n2Vonloain, ) -
where the geometric constant hidden in < depends on [ via p.
Proof. In light of (3.8), (3.9), and (5.5), we obtain
(6, w)y = (VG, Vw) = (G, G) = (Rn, G — IILG) + (Qp, II1G)
< 1B Recllo,col D?*Gllo,ui2 + [1B*Vanllo,aia, IDGllo,a/ a1y
< 108 husial* (11 Boc o2 + 12V o lo.an ),

as desired. O

Combining the two previous lemmas yields the main result of this section.

Proposition 5.3 (Pointwise estimate of |w|). The mazimum norm of the Riesz re-
presentation w of the Galerkin functional Gy, satisfies the a posteriori bound

(5:6)  lwllosca < 110 hminl? (|42l

0,00, T ||h2V0h||o,d;Ah)

Proof. For p > d fixed and 8 = 1/, we see that hﬁfn < hr<CforalTeT,,
and thereby the right-hand side of (5.4) satisfies

h%[iin (”thHO,p;Q + ||h2Vth||0,p;Ah) < ||h2R00||0,00;Q + ||h2vah”0,d;/\h-

The last term results from (3, ab)'/? < (3 ad)t/? for ap = h§1+d/p‘Vah|T|.
Consequently, the assertion follows by combining (5.4) and Lemma, 5.2. O

5.2. Pointwise Upper Bound. We now collect the results of §4.3 and §5.1. Let
Co and C1 be twice the constants hidden in (5.6). The pointwise estimator &}, is

En := Co|10g humin|® [|h®Roo ||0,00:02 localized residual
+ C1|1og hpin|? ||h2Vah||0,d;Ah localized quadrature
+ 10 = un) 0,002 + I[(wn — x) ™| 0,00;{on<0} localized obstacle approx.

+lg — Ingllo,c0;00- boundary datum approt.

Theorem 5.4 (Reliability). Let (u,o0) satisfy (1.1) and (1.2), as well as (un,r)
satisfy (2.2) and (3.1). Then the following a posteriori error estimate holds

(5.7) max {|[u = unllo.cc; Nl = nll-2000} < E.
Proof. This is an immediate consequence of (4.8) and (5.6). O

Several remarks are now in order about the various terms in (5.7), their optimal
character, and their connection to Figures 1.1-1.3.

Remark 5.5 (Improvement of [4], [11]). Lemma 5.1 applies also in the linear case
(without obstacle), and improves upon the assumption Amin > Y, with y > 1.
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Remark 5.6 (Mesh grading in Aj,). For piecewise linear obstacles x, the mesh size
within the discrete contact set might not tend to zero because all terms in £, could
vanish there. This happens in Figure 1.1 and Example 7.2, and shows that the
assumption Amin > h,,, with v > 1 of [4], [11] may be inadequate in this case.

max

Remark 5.7 (Localization of the interior residual). In view of (3.7) and (5.7), the
interior residual in the discrete contact set A reads

||h2(f - Uh)”U,OO;Ah-

The presence of o, is responsible for coarse meshes within A, irrespective of the
magnitude of f, for as long as u is smooth. This is the case of Figures 1.1-1.2.

Remark 5.8 (Role of ||(ur — x)™lo,00;{0n <0} ) Notice that for the leftmost picture
in Figure 1.1 we have uj, = x5, whence o5, = f = —1 and A, = . Since uy, is also
flat, then all estimators in (5.7) vanish except for ||(unr — X)* |lo,00;{on<0}> Which
drives the refinement initially. Once wp detaches from xp, then o, = 0 and thus
l(wr = X) T llo,00;{os<0} does no longer force refinement near the downward cusp
of Figure 1.1 thereby avoiding over-refinement; see middle and rightmost pictures
of Figure 1.1. The same localization effect takes place in Figure 1.2 because the
oscillatory part of obstacle x is below u, and thus o, = 0. The mesh is coarse,
thus reflecting the structure of u, and not that of .

Remark 5.9 (Role of ||(x — un)"||o,00;2). Consider Figure 1.3 which was obtained
with load function f = 0. Since uy, is constant in the leftmost picture, o} vanishes.
We thus see that all estimators are zero except for ||(x — ur)™|0,00;2, Which drives
the initial refinement; this term detects u # wp. A similar situation occurs in
Example 7.3. Notice also the “built-in localization” of [|(x — up) ™ |[o,00;02-

Remark 5.10 (Logarithmic factor). The presence of a logarithmic factor in & is
unavoidable in the a priori error analysis in 2d and 3d [10], [14]. Its power may be
improved from 2 to 1, as in the case of smooth or convex domains.

Remark 5.11 (1d). The pointwise error estimate (5.7) can be simplified in 1d.
First, we can remove the jumps in the residual R, of (3.7), and also take Iy, = I,
in the definition (3.1) of 54, because I}, is stable in H}(2). Secondly, we can remove
the log factor in £, because the regularized Green’s function is uniformly in W2(Q2).

6. LOWER BOUNDS

Once an a posteriori error estimator is obtained, the question arises whether or
not this estimator may overestimate the error. The purpose of this section is to
investigate this issue for the estimator &, of the Theorem 5.4.

We call an estimator (or some part of it) globally efficient, if it is dominated by
the global error and the global data approximation. Similarly, we call an estimator
(or some part of it) locally efficient, if the corresponding local indicator is dominated
by the local error and the local data approximation. Global efficiency is a desirable
property for stopping an adaptive procedure, while local efficiency protects against
over-refinement.

The following notions of data approximation will appear later:

e The oscillation ||A?(f — f)||o,c0:2 Of the load function f, where f is the piecewise
constant function defined by fir = |T|™* [} f for all T € Ty;
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e The discrete obstacle oscillation ||k [0, xr] |l0,00;02; hereafter, we set
1A [0y x1] llo,005w := max{hs [0y xr]g | S € Sp with S Nint(w) # 0}

for any subset w of €.
e The obstacle approximation ||(xn — X) T |o,c0;02-

For an open subset w C 2 and p € W*, we define the local seminorm
llpll—2,00:0 :=sup { {p, @) | ¢ € W with |D?*p|var(w) < 1 and suppyp C @}.

6.1. Efficiency of Localized Residual. We intend to show a lower bound for
the localized residual ||A%R (5.7). To combine
definitions (2.6) and (3.1), we will rely on a variant of Verfiirth’s argument (see
Verfiirth [19] and also Nochetto [11]). In fact, we construct suitable bubble functions
which, for simplicity, belong to W2(Q2) N H'(Q) C W instead of W.

We first consider (2.6) and investigate (as promised) a suitable choice of radius
for the ball B(z). Such radius is p, := max{r > 0 | B(z;7) C Ux(2)} in [3], but
it can be reduced at the expense of a larger stability constant. In order to obtain
additional properties of IT, and thus of 3, we redefine the radius of B(z) as follows.

Lemma 6.1 (Retracted bubble functions). Set B(z) := B(z;6p,) in (2.6). Then
there exists 6 € (0,1) depending only on the shape-regularity v(7Ty) and, for all
T € Ty and S € Sy, there exist bubble functions by and bs in W2(Q) N H(Q) such
that the following properties are valid for all ¢ € L1(Q), o1 € PY(T):

(6.1a) [ (pbr) = 0,

610)  llprloaer < sup{ [ proror| ¢ € P@), Ierllnsir <1,
(6.1c) lprbrllz,r < Arllerbrllosr < Az llerllo,T

(6.2a) I, (pbs) =0,

(6.2b) <18 / bs,

(6.2c) lbsll2,i;r < hg2llbsllo,r < hgtlS], if S C 9T.

Proof. 1. We first explain the idea informally. In order to obtain (6.1a) and (6.2a),
we ensure that the balls B(z) in (2.6) and the supports of the bubble functions
br and bs do not overlap. To this end, the support of a bubble function will be
contained in a sufficiently small ball centered at the barycenter 7 or zs of the
corresponding simplex T or side S.

2. Given z € .N./h, we define

(6.3) r, :==min{|z — 27|, |z — zs| | T CUn(2), SNint (Up(2)) # 0}.

Note that the barycenters of simplices and sides not appearing in (6.3) have at
least distance p, from z. Elementary geometry yields r, > p, and thus allows the
following definition: let § € (0, 1) be the largest constant, depending on the shape-
regularity v(7p), such that %rz > 0p, for all z € N,. This definition implies that
the balls B(z,dp,) stay away from the barycenters of simplices and sides.

3. To be more specific, let 0 < g < 1 be a constant solely depending on shape-
regularity such that

phr <min{ir, | 2e NynT}  forall T € Ty.
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The same holds for all S € S,. We thus infer that the balls B(z,dp,) and
B(zT, phr) do not overlap irrespective of the location of z and z7. Moreover,
this remains true, if we replace B(zr,uhr) by B(zs, phr) N T, where S is a side
of a simplex T'.

4. We now construct the bubble function by for any simplex T € 7. Let T be
the retraction of T' by factor p with respect to its barycenter 7. We then define

br(2) A2 (), ifz €T,
x) = -
’ 0, ifzeQ\T,
where A1,...,A\g4+1 are the barycentric coordinates of T. Squaring the barycentric

coordinates ensures that br is continuously differentiable and so br € WZ(Q);
compare with [19, Remark 3.6]. In view of step 3, we have supp br N B(z;8p,) = 0
for all interior nodes z € Ay, whence (6.1a) is valid. To establish (6.1b) and (6.1c)
we proceed as in [19, Lemma 3.3] upon noticing that the quotient hs/hr =
depends only on the shape-regularity (7).

5. We now construct the bubble function bg for any inter-element side S € Sy,.
Let Ty and T, be the two adjacent simplices whose intersection is S. Let S be the
retraction of S by factor y with respect to its barycenter zg. Let Ty and T, be the
tetrahedrals similar to 77 and 71> whose intersection is S. We define

bo@) = { T Ma@Xu(e),  ifzefiuly,
0, ifIGQ\(TlLJTQ),
where Aj1,...,A;d+1 are the (extended) barycentric coordinates of T;, with a num-

bering such that \; 411 corresponds to the node not contained in S,i=1,2. Again,
multiplying and squaring the barycentric coordinates ensures bg € WZ(f2). In view
of step 3, supp bs N B(z;8p,) = 0 for every interior z € A}, and thus (6.2a) is valid.
Since hg/hs = p, (6.2b) and (6.2c) can be proved similarly to (6.1b) and (6.1c). O

We choose § as in the preceding lemma and let II; be the interpolation operator
of (2.6) with B(z) = B(z;6p,). Using (6.1a) and (6.2a) in definition (3.1) yields

(6.4) (Gn, pbr) = / onpbr, {(Gn, pbs) = / onipbs for all p € Ly(Q);
Ah Ah

that is there is no contribution from the discrete non-contact set Q\ Ap. After these
preliminaries, we are ready to prove our main assertion.

Proposition 6.2 (Efficiency I). The localized residual ||h*>Reoll0,00;02, the boundary
value approzimation ||Ing — glo,00;00, and ||(x — un)t|lo,c0;0 are globally and locally
efficient. In particular, for any T € Ty, there holds

6.5) W7l Roollo,coir + 11hg = gllo.ccspant + 10X = un)* llo,cci

< lw = unllo,oos+ + [lo = Gnll-2,00;7+ + Ih?(f - JF)”O,OO;T*a
where T™ is the union of all simplices that share at least one side with T'.

Proof. 1. Since g — I,g = u — up, on 99, the bound for the middle term in (6.5)
is trivial. Since (x — un)™ < (u — up)™, the bound for the rightmost term in (6.5)
follows immediately. It remains to deal with the localized residual term R.
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2. We next estimate the interior residual. Given T' € 7,2, and noticing that
fr — on|lr € PY(T), we choose a function (r € P!(T) by means of (6.1b) such that

Iz = oulloseir < [ (fr —n)rbr and [crllosir <1
T

In view of (6.4) with ¢ = {r, we can write

/T(fT_a'h)CTbT:L(f_&h)CTbT+A(fT_f)CTbT,

whence, making use of (3.3) and (Vup, V({rbr)) = 0, we arrive at

/(fT —on)Crbr = (Gn, (rbr) + / (fr — f)¢rbr-
T T

Invoking (3.11) and (6.1c), adding and substracting f on the left-hand side and
using the triangle inequality, we infer that

B2l f = onllocosr < [lun — wllo,cos + 154 — oll—2,00i7 + hl| f1 — fll0,00:7-

If instead T € 7', the above argument also applies upon realizing from (6.4) that

[ artrbe = [ (7= awcabr+ [ (r = p)erbr.
In this case, we deduce that

h%‘”f”O,OO;T S U”O,OO;T +|6n — U||—2,00;T + h%’”fT - f||0,00;T'

3. We now estimate the jump residual hgJg for any inter-element side S, where
Js := [0,up] g is constant. According to (6.2b), there exists as € R such that

1 751l0,0055 < / Jsasbs,  llaslloys < 1.
s
Therefore, integrating by parts and making use of (3.3) as well as (6.4), we deduce
I 7sllo,00is < = | VunV(asbs) = (G, asbs) —/ (f — onla,)(asbs),
wg ws

where wg denotes the union of the two simplices that contain S and 14, is the
characteristic function of Ay. In light of (6.2c), we conclude the desired estimate

hs||Js|

4. Finally, combining the preceding steps and noticing hg < hr for S C 9T
completes the proof. O

0,00;8 = [l — Uh“O,OO;ws + [lo — 5h||f2,00;ws + h%”f —oply, ||0,00;ws'

6.2. Efficiency of [|(un — X)*lo,00;{on<0}- Before discussing the efficiency prop-
erties of ||(un — X)*lo,00;{on <0}, We recall Remark 4.3: to obtain computable er-
ror indicators we are forced to substitute the term ||(up — %)™ |0 00;{op<0} With
l(wr = X) " llo,0c0;{on<0}- The first term [|[(un — u)¥lo,00;{cs<0} is clearly locally
and globally efficient, while the computable term ||(un — X) ¥ [lo,00;{on <0} has the
following efficiency properties.

Proposition 6.3 (Efficiency I). Let T € Ty, with T N {op, < 0} # 0. Then the
following local lower bounds hold for ||(ur, — X)*0,00;T+

(i) If T C {un = xn}, then ||(un — X)* llo,c07 < [[(xn — x|
(ii) Otherwise, if T N{up > xn} # 0, then

0,00;T'-

ll(wn — x) Fllo,00r < et = wnllo,00iun (1) + 1o = Gl —2,00i40 ()

(6.6) )
+ |1h(f = Pllo,sozan(my + 10xn = X) o005 + 1 [0y Xk] 0,001 (T) -
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The non-trivial lower bound (ii) of Proposition 6.3 relies on the following discrete
counterpart of (2.9) in Baiocchi [2], which is a statement about quadratic growth
of any non-negative function with bounded second derivatives.

Lemma 6.4 (Discrete quadratic growth). Let vy, € V,, with vy, > 0 and v, (z) =0
for some interior node z € Ny. Then
(67) ||Uh||0,oo;uh(z) < hZ” H:al/vh]] ”0,oo;uh(z)

holds, where h, := max{hr; T € T, with T > z} and the constant hidden in < can
be bounded by the number of simplices in Uy (2).

Proof. 1. Combining v, > 0, v,(z) = 0, and the piecewise linear character of vy,
we conclude that there is an z € M, N 0Up(z) such that

(68) ||Uh||0,co;uh(z) = ’Uh(m)‘
2. Define
L r—=z
BEEE]

and choose one T € 7}, with =,z € T. Since z is an interior node, there exist a
simplex T' C Uy (z) and an € > 0 such that Z, 2z € T holds with Z := 2z —e7 (compare
Figure 6.1). Observing that

FIGURE 6.1. Neighbourhood U}, (z) with points z, # and simplices
T, T in the case d = 2.

0 < wp(z) = vp(z) —wn(2) = |z — 2| Vopr - 7

and

0 <wp(Z) —wn(2) = —e Vo7 -7
holds, we conclude
(6.9) Vopir-720 and - Vvhlr_,: -7 >0.

This implies

vp(z) < |z — 2| (V’UMT -T — VUh|q'~ . T)
(6.10)
= |z — 2| ‘(V’UMT - V’Uh‘j'w) 'T‘ <|z—2z| ‘V’UMT - Vvh‘:,w .

3. Let (T;)?_, C Un(2) be a sequence of simplices, connecting T and T, i.e.
To =T, T, =T,and T; 1 NT; = S; € S is a common side of T; 1 and T;
for i = 1,...,n. Denote by v; the unit normal of S; in the direction from T;
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to T;. Since vy is globally continuous, the jump of tangential derivatives across
inter-element sides is 0 and thus

n n

VUh\T - VUh|T = Z (V’Uhr_n._1 - VUhITi) = Z (VUhITi—l — Vvh\Ti) R ZRZE

=1 =1
Using (6.10) we further see that
on() < [0 = 2| |Vonz = Vou 2| < nhe 1| [80n] lo,cos o)

Since the number of elements n in Up(z) is uniformly bounded for shape-regular
partitions 7y, the proof is thus finished. O

Proof of Proposition 6.3. The statement (i) is trivial. In order to prove statement
(i), let T' € Ty, satisfy T N {0, < 0}, T N {up, > xn} # 0. We first observe that

l(wr = X)* llo,007 < llun = Xallo,ooir + 1(xa = X) lo,0057

and, therefore, it remains to estimate ||up, — Xhl|lo,00;7- Since T'N {op < 0} # 0,
there exists a node z € M, N T with o4(2) < 0 and so ux(2) = xi(2). Moreover,
due to TN{up > xn} # 0 and the definition of o;, the node z has to be an interior
node: z € Nj. Consequently, we can apply Lemma 6.4 to obtain

llun = xallo,coi7 < 17 [8vun] llo,coizan(y + 1 [0 XA ] llo 00524, (T) -
Finally, we conclude by estimating ||h [0, us] [lo,0054, () With the help of (6.5). O
The significance of the lower bound (6.6) hinges on the behavior of the terms

l(xh = X) T llo,00; and [|A [0y Xn] llo,00:24 (1)~ In the next remark, we show that these
terms are of second order, if the obstacle x is smooth.

Remark 6.5 (Smooth obstacles). If x € W2 (U(T)) for T € Ty, then we claim

10¢h = %) llo.cosr + 12 100 xa] llo,c04n (1) < T 1D*Xll0 00240 (1)-

By standard estimates for the Lagrange interpolation operator, we obtain

0,00;T < h%‘ ||D2X||0,00§T

10¢h = 20 llo,eoir < llxn — x|
as well as (use that [d,xn] = [0 (xr — X)])

||h [[5uXh]] ||0,oo;uh(T) < ||hV(Xh - X)||O,oo;uh(T) < h%" ||D2X||O,oo;uh(T)-

We summarize the above statements of this subsection as follows: the term
l(wr — x)Fllo,00:{on <0} %8 locally and globally efficient for smooth obstacles.

6.3. Efficiency of Quadrature Estimator. We finally investigate the estimator
lh*Vonllo,a;a, caused by mass lumping (-, -), in the definition of o},. This in turn
guarantees the crucial non-positivity and complementarity nodal properties of oy,.

Proposition 6.6 (Efficiency Ill). The quadrature estimator ||h®Vop|lo.a.a, is lo-
cally efficient. In particular, for any T € T}, there holds

(6.11)  ||K*Vonllo,a:r < [l — wnllo,ces + llo = Gall—2,00 + |W?(f — f1)]

0,00;T -
Proof. Let T € T,?. We first observe that an inverse estimate yields

h7lVonllo.ar = b7V (on = fr)llo.ar < h7llf = onllo,corr + A7l f = frllo,corr-

We finally deduce (6.11) with the help of step 2 in the proof of Proposition 6.2. [
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Note that, in contrast to the other local estimates in Propositions 6.2 and 6.3, the
local estimate (6.11) does not obviously imply global efficiency. This is due to the
fact that switching to the corresponding global quantities requires summing on the
left-hand side of (6.11) but maximizing on its right-hand side. Nevertheless our
numerical results of §7.2 display global efficiency for the quadrature estimator, if
the marking strategy takes into account the “different accumulation” (see §7.1).
We conclude this section by clarifying the reason for the different integrabilities
arising in (6.11). Let I} be the adjoint operator of II;, and consider ||} Q|| —2,00;0-
This quantity could be used to bound the term (Qj, I, ) in the representation
formula (3.5) and is globally efficient. To prove this claim, let ¢ € W and compute

1(Qn> a0} | = |(Gns ) — (R, @ — TIno0)|
< (||gh||—2,00;9 + ||h2R00||0,00;Q) |D2‘P|var(Q)
< (llw = unllo,cos0 + lo = Gnll 2,000 + 1K*(F = F)llo,00:2) [D>@lvar ()

by using (3.5), (3.8), (3.11), and (6.5). However, ||II} Qp||—2,00;0 is global and
non-computable. Unfortunately, the functional Q; € V;[ does not exhibit enough
cancellation to switch to |D2I,¢|var directly in (3.9), and so to |D%p|y.,. We are
thus forced to use a Sobolev-type inequality in (3.9) which bounds ||II} Q|| -2,00;0 in
terms of local computable quantities. A similar situation occurs for unconstrained
linear problems with quadrature, which does not seem to be investigated.

7. NUMERICAL EXPERIMENTS

In this section we present several simulations with smooth and rough obstacles
and illustrate the role of the various terms of &, in (5.7). We first compare £, with
the computable part ||u — upl|0,00;0 Of the error (see Example 7.2), and later discuss
the impact of the non-computable error ||o — 61| —2,00;0 (see Example 7.4).

7.1. Implementation. The solver for the obstacle problem (1.1) is implemented
within the finite element toolbox ALBERT [15, 16], which resorts to bisection and
thus guarantees (2.1). We solve the resulting nonlinear discrete system with the
projective SOR method analyzed in [5]. To implement the estimator, we first
compute o, which involves assembling and solving one additional linear system
with diagonal system matrix.

In our simulations we have replaced the factors C;|loghmin|?> (i = 1,2) of &,
by constants Co = 0.1 and C; = 0.01, namely we have used the more practical
estimator

En = Col|h? Rosllo,00s0 + C1[IR*Vonlo,a;n,
+ 10x — un) T llo,002 + 1(wr = X)Fllo,005{n <0} + 19 — Tngllo,00;00-

Note, that the last three terms actually enter &, and so &, without any constant.
For terms involving non-polynomial data, the maximum norm is approximated by
evaluating element point-values at the Lagrange nodes for 7th order polynomials.
We employ the maximum strategy to mark elements for refinement, which seems
adequate for error control in the maximum norm. Since the L4 quadrature indicator
Na;T = Ch |h2Vanlo.a;a,nT exhibits different accumulation in Q than the other Ly,
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indicators of £, namely,
Moo = Collh® Roollo,coi + 1(x = wn) *llo,c0ir
+ ||(uh - X)+||0,oo;{0'h<0}ﬁT + ||g - Ihg”O,oo;BQﬂTy

we resort to two marking loops. We first mark solely according to {Neo;r}reT:)
and next according to {na;r}rero provided quadrature dominates the estimator.
This 2-step strategy displays an optimal reduction rate of error and estimator in
our experiments of §7.2.

7.2. Example: Constant Obstacle. We consider a constant obstacle x = 0 on
the domain = (—1,1)¢ and, for r < 1, the forcing term

(@) —42|z> +d(|z|* = r?)), |z|>r
) =
=8r2 (L= (> =7?)), |zl <r
and Dirichlet value g(z) = (|z|2 — r?)2. Hence, the exact solution of (1.1) reads
u(z) = (max{|z|* — TZ,O})Z.

The corresponding measure o is absolutely continuous with respect to the Lebesgue
measure and has a bounded Radom-Nikodym derivative with a discontinuity across
the free boundary.

T T TTIT \‘ T 1T \\‘ T T TTIT \‘
[y e _
10 B G—o trueerror | 3
E G—H Estimate | 5
L C s - I [ opt. ]
= 1 RN
5 10 N -
] C N E
2 - 1 3
E L .
-2
= 10°F 3
87 ¢ N :
3| _
lo E 1 L1 11 \‘ 1 L1 \\‘ 1 L1 11 \‘ E
10° 10° 10*
DOFs
l[ T T TTTIT ‘ T T T TTT \‘ T T T T TTIT ‘ T T T TTT \‘ ]
10 G—oO trueerror | 3
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L T B opt. ]
2 o
5 100 =
o3 C 7
2 - E
E L .
-1
= 10°F E
- E
20
10 ; L1111l ‘ 1 . \‘ 1 L1111l ‘ 1 . \‘ i
10° 10° 10* 10°
DOFs

FIGURE 7.1. Example 7.2: Estimator and true error ||u—ua||o,00;0
for d = 2 (top) and d = 3 (bottom) for x = 0 vs. DOFs (Degrees
Of Freedom). The optimal decay is indicated by the dotted line
with slope —2/d.
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Figure 7.1 shows a comparison of the error and the estimator for the 2d and
3d simulations with » = 0.7. This picture corroborates that the estimator always
provides an upper bound for the error (reliability) and the average decay of both
error and estimator is the same (efficiency). It also shows the asymptotic relation
llu — upllo,00;0 = C DOFs=2/? typical of quasi-optimal meshes and thus of quasi-
optimal numerical complexity. In the log-log plot the optimal decay of ||u—up||0,00;0
is a straight line with slope —2/d. This (dashed) line is also plotted in Figure 7.1.

FIGURE 7.2. Example 7.2: Discrete solutions, constant obstacle,
and corresponding grids for d = 2 for adaptive iterations j = 7,15.

Figure 7.2 depicts the discrete solution and the corresponding adaptive grid for
two adaptive iterations in 2d. For the 3d simulation of Figure 7.3, the cuboid
(0,1)2 x (=1,1) has been cut out of the domain 2 and the grid has been plotted
on the boundary on the resulting domain. Note that there is nearly no refinement
inside the coincidence set although f does not vanish there (localization). The
discontinuity of o across the free boundary and the presence of |0 — G4||—2,00;0 in
the error are responsible for the additional refinement nearby.
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FiGURE 7.3. Example 7.2: Grids for d = 3 of the adaptive itera-
tions j = 7,15 on 9(Q\((0,1)% x (-=1,1))).

7.3. Example: Obstacle with a Cusp. We consider data (2, f, and g of Example
7.2, but with an obstacle x with an upward cusp at the origin, which happens to
be a node (see Figure 7.4). The corresponding measure o is singular with respect
to the Lebesgue measure with a mass supported at the origin — the contact set.
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FIGURE 7.4. Example 7.3: Grids for adaptive iterations j = 5,8,
and discrete solution and obstacle for j = 8.

We observe that the refinement is driven by the first two terms in (7.1) as well as
the forth. The latter is indeed essential to detect the strong discrepancy between
up, and x near the tip, and thus refine accordingly. The third term in (7.1) is zero
because the obstacle x is concave and the tip is located at a node of the grid. We
stress that the localization built into the forth term is clearly reflected in a localized
refinement.

7.4. Example: Lipschitz Obstacles. We consider f = —5 and g = 0 on the
domain Q = {(z1,...,24) | E?:l |zi| < 1}, d =2 or 3, together with two Lipschitz
obstacles x. The first one is

x(z) := dist(z, Q) — £.

The function x is piecewise linear and the graph is a pyramid in 2d. The corre-
sponding measure o is singular with respect to the Lebesgue measure since it has
mass supported along the edges of the obstacle within the contact set.

FIGURE 7.5. Example 7.4: Discrete solution and obstacle for d = 2
on grids aligned with the edges of the obstacle (left) and non-
aligned (right).

Figure 7.5 displays up and xj for d = 2 over two meshes, one aligned and the
other non-aligned with the edges of x: in the latter the representation yj of x is
rather crude. Even though the aligned meshes provide excellent approximability of
x and u, there is still a strong refinement along the edges within the contact set
due to poor approximation of ¢ in the non-computable part of the error (see left
of Figure 7.6). In contrast, the refinement for the non-aligned meshes is instead
due to lack of resolution of x and thus of u (see right of Figure 7.6). Note that the
non-aligned grids do not satisfy the discrete maximum principle.
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Figure 7.7 depicts the result for the same simulation in 3d. We display the grid on
the boundary of QN {z2 < 0} (left) and the set d{up = xn} (right) using the same
viewpoint. We observe that in 3d the refinement close to the interface (curvilinear
quadrilateral inside {z2 = 0}) dominates that due to poor approximation of o along
the edges of the obstacle (cross inside {z2 = 0}).

The second obstacle y, which we consider only for d = 2, is again piecewise linear
but with a downward peak:

x(@) :
where w = {(z1,22) | |z1] + |z2| < ;}. We observe that the edges of x contained
in w do not longer belong to the contact set, nor does the vertex of x. We refer to

Figure 7.8 where the obstacle and discrete solution are displayed in the sub-domain
{z1 < 0} for ease of visualization. In contrast to the pyramid, o is zero in w.

(z,00) — 2dist(z, Q\w) — &

FiGURE 7.8. Example 7.4: Obstacle and discrete solution with
corresponding adaptive grid on the domain {z; < 0}.

FIGURE 7.9. Example 7.4: Grids and 0{u, = xn} for adaptive
iterations j = 1,4,7, 10.

This property of o is reflected in the meshes of Figure 7.9: the refinement is
concentrated on the interfaces, in particular dw, and the edges of x but is rather
coarse in w because w is not part of the contact set. Boundaries of the discrete set
{un = xn} are also depicted.
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