Übungsaufgaben (4. Serie)

Abgabetermin: 18.11.2019

- 13. Es seien $v_1=(1,1,1), v_2=(1,3,1), v_3=(1,2,a^2)$. Untersuche, für welche reellen Zahlen a:
- a) die Vektoren v_1, v_2, v_3 eine Basis des \mathbb{R}^3 bilden,
- b) der Vektor (1, 2, a) eine Linearkombination von v_1, v_2, v_3 ist.
- 14. Bestimme zu denjenigen Teilmengen aus Übungsaufgaben 9 und 12, welche Unterräume bilden, die Dimension und eine Basis.
- 15. a) Beweise allgemein die eindeutige Zerlegung eines Vektors bez. komplementärer Unterräume, d.h. die Behauptung:

Sind U_1, U_2 komplementäre Unterräume eines Vektorraums V ($U_1 \oplus U_2 = V$), so gilt für jedes $v \in V$ die Darstellung

$$v = u_1 + u_2$$
 mit eindeutig bestimmten $u_i \in U_i$.

b) Bestimme im \mathbb{R}^3 zwei komplementäre Unterräume zu

$$U_1 := lin((0,1,1),(0,-2,4)).$$

- c) Bestimme für $(1,0,0) \in \mathbb{R}^3$ die Zerlegung bez. der Unterräume aus b).
- d) Veranschauliche die Ergebnisse aus b) und c) grafisch.
- 16. Seien V, W Vektorräume und $f: V \to W$ eine lineare Abbildung. Zeige:
- a) Kern(f) ist ein Unterraum von V.
- b) f injektiv $\Leftrightarrow \text{Kern}(f) = \{0\}.$
- c) Ist f bijektiv, so ist auch f^{-1} eine lineare Abbildung.