In this chapter we introduce and apply a limited notion of independence, known as
k-wise independence, focusing in particular on the important case of pairwise indepen-
dence. Applying limited dependence can allow us to reduce the amount of randomness
used by a randomized algorithm, in some cases enabling us to convert a randomized
algorithm into an efficient deterministic one. Limited dependence is also used in the
design of universal and strongly universal families of hash functions, giving space- and
time-efficient data structures. We consider why universal hash functions are effective
in practice and show how they lead to simple perfect hash schemes. Finally, we apply
these ideas to the design of effective and practical approximation algorithms for finding
frequent objects in data streams, generalizing the Bloom filter data structure introduced
in Chapter 5.

13.1. Pairwise Independence

Recall that in Chapter 2 we defined a set of events Ey, E», ..., E, to be mutually inde-
pendent if, for any subset I C [1,n],

Pr(ﬂ E[) = HPr(Ei).
iel iel

Similarly, we defined a set of random variables X, X, ..., X, to be mutually indepen-
dent if, for any subset / C [1,n] and any values x;,i € [,

Pr(ﬂ X; = x,-) = [ [Pr(y = %))
iel ]

Mutual independence is often too much to ask for. Here, we examine a more limited
notion of independence that proves useful in many contexts: k-wise independence.



Definition 13.1:

1. A set of events E\, E,, ..., E, is k-wise independent if, for any subset I < [1,n]

with |I| < k,
Pr(ﬂ E) =[] PreEn.

iel iel

2. A set of random variables X, X, ..., X, is k-wise independent if, for any subset
I C [1,n] with |I| < k and for any values x;, i € I,

Pr(ﬂ Xl' = }Ci) = l_[PL(X, = )C,').
iel ief

3. The random variables X, X», ..., X, are said to be pairwise independent if they are
2-wise independent. That is, for any pair i, j and any values a, b,

Pr((X; = a) N (X; = b)) =Pr(X; = a) Pr(X; = b).

13.1.1. Example: A Construction of Pairwise Independent Bits

A random bit is uniform if it assumes the values 0 and 1 with equal probability. Here
we show how to derive m = 2% — 1 uniform pairwise independent bits from b indepen-
dent, uniform random bits Xy, ..., X5.

Enumerate the 22 — 1 nonempty subsets of {1,2, ..., b} in some order, and let S; be
the jth subset in this ordering. Set

Y, =X,

iESj
where € is the exclusive-or operation. Equivalently, we could write this as

Y; =) X;mod2.

ie§;
Lemma 13.1: The Y; are pairwise independent uniform bits.

Proof: We first show that, for any nonempty set S;, the random bit
5=
ieS;

is uniform. This follows easily using the principle of deferred decisions (see Sec-
tion 1.3). Let z be the largest element of S. Then

sz( & Xi)@x_,.

ieSi—(z}



Suppose we reveal the values for X; for all i € S; — {z}. Then it is clear that the value
of X, determines the value of ¥; and that ¥; will take on the values 0 and 1 with equal
probability.

Now consider any two variables Y} and Y, with their corresponding sets S; and S,.
Let z be an element of S, that is not in S} and consider, for any values ¢, d € {0, 1},

PI‘(Yg =d | Y :C).

We claim, again by the principle of deferred decisions, that this probability is 1/2. For
suppose that we reveal the values for X; for all i in (S, U Sy) — {z}. Even though this
determines the value of Y}, the value of X will determine Y,. The conditioning on the
value of Y therefore does not change that Y, is equally likely to be 0 or 1. Hence

Pr((Yy =c)N (Yo =d)) =Pr(¥, = d | ¥y = ¢) Pr(¥, = ¢)
= 1/4.

Since this holds for any values of ¢, d € {0, 1}, we have proven pairwise independence.
m

Pairwise independence is much weaker than mutual independence. For example, we
can use Chernoff bounds to evaluate the tail distribution of a sum of independent ran-
dom variables, but we cannot directly apply a Chernoff bound if the X; are only pair-
wise independent. However, pairwise independence is strong enough to allow for easy
calculation of the variance of the sum, which allows for a useful application of Cheby-
shev’s inequality.

Theorem 13.3: Let X = Y " X;, where the X; are pairwise independent random

variables. Then

Var[X] = Z Var[X;].
i=1

Proof: We saw in Chapter 3 that

Var{zn: X,;] = i Var[X;]+2 Z Cov(X;, X;),
i=1

i=l i<j

where
Cov(X;, X;) = E[(X; — E[X:D)(X; — E[X;])] = E[X;X;] — E[X;]E[X]].

Since X;, Xo,..., X, are pairwise independent, it is clear (by the same argument as
in Theorem 3.3) that for any i £ j we have

E[X;X;] - E[X;]E[X;] = 0.



Therefore,

Var[X] = ZVar[Xi]. [
=]

Applying Chebyshev’s inequality to the sum of pairwise independent variables yields
the following.

Corollary 13.4: Let X = Y _, X;, where the X; are pairwise independent random
variables. Then

Pr(|X —E[X]| z a) =

Var[X] 2. Var[X;]
B

a?



