Simplifying the Solution of Ljunggren's Equation $X^{2}+1=2 Y^{4}$
 Ray Steiner
 Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403-0221

AND
Nikos Tzanakis
Department of Mathematics, University of Crete, Iraklion, Crete, Greece

Communicated by Hans Zassenhaus
Received July 17, 1989; revised January 23, 1990

Abstract

In 1942 Ljunggren gave a very complicated proof of the fact that the only positive integer solutions of the equation $X^{2}+1=2 Y^{4}$ are $(X, Y)=(1,1)$ and $(239,13)$. In the present paper we give a simpler solution of Ljunggren's problem. This is accomplished by reducing the problem to a Thue equation and then solving it by using a deep result of Mignotte and Waldschmidt on linear forms in logarithms and continued fractions. © 1991 Academic Pres, Inc.

I. Introduction

In 1942 Ljunggren [4] gave a very complicated proof of the following
Theorem 1. The only positive integer solutions of the diophantine equation

$$
\begin{equation*}
X^{2}+1=2 Y^{4} \tag{1.1}
\end{equation*}
$$

are $(X, Y)=(1,1)$ and $(239,13)$.
Ljunggren's proof depends upon the study of units of relative norm -1 in a quadratic extension of a quartic field and Skolem's p-adic method and is very difficult to follow. Indeed, the late Professor L. J. Mordell used to say: "One cannot imagine a more involved solution (of Eq. (1)). One could only wish for a simpler proof."

The purpose of this paper is to fulfill Mordell's desire by giving a simpler
solution of (1.1). This is accomplished by reducing it to a Thue equation and then solving the latter by using some elementary results of Tzanakis and de Weger [6], a deep but easily applicable result of Mignotte and Waldschmidt [5] on lower bounds for linear forms in logarithms of algebraic numbers and the theory of continued fractions. In fact, our solution is conceptually quite simple; anyway, far simpler than Ljunggren's solution. As in any case in which the theory of linear forms in logarithms of algebraic numbers is applied to the solution of a specific Diophantine equation, high precision calculations are required. A remarkable fact in our solution is that, thanks to Mignotte and Waldschmidt's theorem, the decimal digits required in our computations are "very few" compared to analogous situations: 30 decimal digits suffice!

II. Derivation of the Thue Equation

Factorization of Eq. (1.1) over the Gaussian field yields

$$
(X+i)(X-i)=2 Y^{4}
$$

and we have $2=-i(1-i)^{2}$. Clearly, both $X+i$ and $X-i$ must be divisible by $1+i$ and none of them by $(1+i)^{2}$. Therefore, we have the ideal equation

$$
\left(\frac{X+i}{1+i}\right)\left(\frac{X-i}{1+i}\right)=(Y)^{4}
$$

in which the two ideals in the left-hand side are relatively prime. It follows then that

$$
\begin{equation*}
(X+i)=i^{s}(1+i)(a+b i)^{4}, \quad s \in\{0,1,2,3\} \tag{2.1}
\end{equation*}
$$

where $a, b \in \mathbb{Z}$ and $Y=\operatorname{Norm}(a+b i)=a^{2}+b^{2}$. Consider now (2.1). If $s=0$ or 2 then $\operatorname{Im}\left\{(1+i)(a+b i)^{4}\right\}=1$ or -1 , respectively. If $s=1$ then $(X+i)=-(1-i)(a+b i)^{4}$. Replacing b by $-b$ (this does not affect Y) and taking conjugates gives $\operatorname{Im}\left\{(1+i)(a+b i)^{4}\right\}=1$. Finally, if $s=3$ then in a completely analogous way we obtain a similar equation with -1 in the right-hand side. We conclude therefore that, in any case, (2.1) implies

$$
\pm 1=\operatorname{Im}\left\{(1+i)(a+b i)^{4}\right\}=a^{4}+4 a^{3} b-6 a^{2} b^{2}-4 a b^{3}+b^{4}
$$

To simplify the last equation a bit we make the substitution $a=x-y, b=y$ and we obtain the Thue equation

$$
x^{4}-12 x^{2} y^{2}+16 x y^{3}-4 y^{4}= \pm 1
$$

Note that Y is related to x, y by

$$
\begin{equation*}
Y=(x-y)^{2}+y^{2} . \tag{2.2}
\end{equation*}
$$

III. Solution of the Thue Equation

$$
\begin{equation*}
x^{4}-12 x^{2} y^{2}+16 x y^{3}-4 y^{4}= \pm 1 \tag{3.1}
\end{equation*}
$$

In this section we will prove the following:
TheOrem 2. The only solutions of (3.1) are given by $\pm(x, y)=(1,3)$, $(1,0),(1,1),(5,2)$.

In view of (2.2), Theorem 2 immediately implies Theorem 1.

3.1. Preliminaries

Let θ be defined by

$$
\theta^{4}-12 \theta^{2}+16 \theta-4=0
$$

It is easy to check that $\mathbb{Q}(\theta)=\mathbb{Q}(\rho)$, where

$$
\rho=\sqrt{4+2 \sqrt{2}}
$$

and this is a totally real normal (Galois) field, since the four conjugates of ρ are $: \pm \rho$ and $\pm\left(-3 \rho+\frac{1}{2} \rho^{3}\right)= \pm \sqrt{4-2 \sqrt{2}}$. Put

$$
\mathbb{K}=\mathbb{Q}(\rho) \quad \text { and } \quad R=\mathbb{Z}\left[1, \rho, \frac{1}{2} \rho^{2}, \frac{1}{2} \rho^{3}\right] .
$$

The four conjugates of θ are

$$
\begin{aligned}
\theta^{(1)}=2+\rho-\frac{1}{2} \rho^{2}, & \theta^{(2)}=2-\rho-\frac{1}{2} \rho^{2} \\
\theta^{(3)}=-2-3 \rho+\frac{1}{2} \rho^{2}+\frac{1}{2} \rho^{3}, & \theta^{(4)}=-2+3 \rho+\frac{1}{2} \rho^{2}-\frac{1}{2} \rho
\end{aligned}
$$

In view of (3.1), $x-y \theta$ is a unit of the order R. Applying Billevic's method [1] (see [6, Appendix I]) we computed the following triad of fundamental units of R :

$$
\begin{aligned}
& \varepsilon_{1}=-1-\rho+\rho^{2}+\frac{1}{2} \rho^{3}=-6+21 \theta-\frac{5}{2} \theta^{2}-2 \theta^{3} \\
& \varepsilon_{2}=-5-2 \rho+4 \rho^{2}+\frac{3}{2} \rho^{3}=-25+79 \theta-9 \theta^{2}-\frac{15}{2} \theta^{3} \\
& \varepsilon_{3}=-7-2 \rho+\frac{11}{2} \rho^{2}+2 \rho^{3}=-36+111 \theta-\frac{25}{2} \theta^{2}-\frac{21}{2} \theta^{3}
\end{aligned}
$$

$\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}>0\right)$. Thus we obtain

$$
\begin{equation*}
x-y \theta= \pm \varepsilon_{1}^{a_{1}} \varepsilon_{2}^{\alpha_{2}} \varepsilon_{3}^{a_{3}}, \quad\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3} \tag{3.2}
\end{equation*}
$$

and we put

$$
A=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\} .
$$

3.2. Searching for Solution with Small $|y|$

A direct search shows that the only solutions (x, y) of (3.1) with $|y| \leqslant 5$ are those listed in the following table, in which the corresponding values of the a_{i} 's in (3.2) are also shown.

a_{1}	a_{2}	a_{3}	$\pm(x, y)$
-1	2	1	$(1,3)$
0	0	0	$(1,0)$
1	0	-1	$(1,1)$
10	-2	-4	$(5,2)$

Now let (x, y) be a solution of (3.1). In view of the above table we may assume that $|y| \geqslant 6$. We put

$$
\beta=x-y \theta
$$

According to a simple lemma (see [6, Chap. II, Lemma 1.1]), if $|y|>Y_{1}$, then there exists an index $i_{0} \in\{1,2,3,4\}$ such that

$$
\begin{equation*}
\left|\beta^{\left(i_{0}\right)}\right| \leqslant C_{1}|y|^{-3} . \tag{3.3}
\end{equation*}
$$

The formulas of Y_{1} and C_{1} give in our case

$$
Y_{1}=3, \quad C_{1}=1.3604
$$

Let $d_{0}, d_{1}, d_{2}, \ldots$ be the partial quotients and $p_{1} / q_{1}, p_{2} / q_{2}, \ldots$ the convergents in the continued fraction expansion of $\theta^{\left(i_{0}\right)}$ (for the actual computation of the continued fraction of a real algebraic number see [3] or [7, Chap. 4]). Put in view of the above mentioned lemma, $x / y=p_{n} / q_{n}$ for some $n=1,2, \ldots$. By a well-known result on continued fractions, we have

$$
\frac{1}{\left(d_{n+1}+2\right) q_{n}^{2}}<\left|\theta^{\left(i_{0}\right)}-\frac{p_{n}}{q_{n}}\right| .
$$

Combine this with the first relation (3.3) and the fact that $\left|q_{n}\right|=|y|$ to obtain

$$
\begin{equation*}
d_{n+1}>\frac{\left|q_{n}\right|^{2}}{C_{1}}-2 \tag{3.4}
\end{equation*}
$$

(note that $\left|q_{n}\right|=|y| \geqslant 6$; on the other hand, since $\left|q_{n}\right|$ grows very fast with n, we expect that (3.4) can be true for only a very few values of n).

We now want to search for solutions of (3.1) in the range $6 \leqslant|y| \leqslant 10^{30}$. For every $i_{0} \in\{1,2,3,4\}$ we check which convergents satisfy (3.4). If some p_{n} / q_{n} is such a convergent, then we check whether $(x, y)=\left(p_{n}, q_{n}\right)$ is a solution of (3.1).

In this way we checked that no solution exists in the range $6 \leqslant|y| \leqslant 10^{30}$. Therefore, from now on we suppose that

$$
\begin{equation*}
|y|>10^{30} \tag{3.5}
\end{equation*}
$$

and we will prove that (3.1) has no solutions in this range. This will imply that the only solutions of (3.1) are $\pm(x, y)=(1,3),(1,0),(1,1),(5,2)$.

We note now that from (3.6) we can easily find a useful lower bound for A as follows (this idea is due to A. Pethö): For every $(i, j) \in\{1,2,3\} \times$ $\{1,, 3,4\}$ put

$$
v_{i j}=\left\{\begin{array}{rll}
1 & \text { if } & \left|\varepsilon_{i}^{(i)}\right|>1 \\
-1 & \text { if } & \left|\varepsilon_{i}^{(j)}\right|<1
\end{array} \quad \text { and } \quad E_{j}=\prod_{i=1}^{3}\left|\varepsilon_{i}^{(j)}\right|^{v_{i j}} .\right.
$$

Then, for every $j \in\{1,2,3,4\}$,

$$
\left|\beta^{(j)}\right|=\prod_{i=1}^{3}\left|\varepsilon_{i}^{(j)}\right|^{a_{i}} \leqslant E_{j}^{A}
$$

and hence, from any pair $j_{1}, j_{2}\left(j_{1} \neq j_{2}\right)$ we have

$$
\begin{equation*}
|y|=\frac{\left|\beta^{\left(j_{1}\right)}-\beta^{\left(j_{2}\right)}\right|}{\left|\theta^{\left(j_{1}\right)}-\theta^{\left(j_{2}\right)}\right|} \leqslant \frac{E_{j_{1}}^{A}+E_{j_{2}}^{A}}{\left|\theta^{\left(j_{1}\right)}-\theta^{\left(j_{2}\right)}\right|} . \tag{3.6}
\end{equation*}
$$

Therefore, if we know a lower bound for $|y|$ (such as in (3.5), for example), then we can find a lower bound for A. Note that j_{1} and j_{2} can be chosen in such a way that the resulting lower bound for A can be the best possible. For example, in our case an easy computation shows that

$$
E_{1}<32476.1, \quad E_{2}<28.1422, \quad E_{3}<33.9, \quad E_{4}<34.1
$$

and if we choose $j_{1}=2, j_{2}=4\left(\left|\theta^{(2)}-\theta^{(4)}\right|>2.16478\right)$ and take into account (3.5), then we easily see from (3.6) that

$$
\begin{equation*}
A \geqslant 20 . \tag{3.7}
\end{equation*}
$$

3.3. From (3.2) to an Inequality Involving a Linear Form in Logarithms

Let $i_{0} \in\{1,2,3,4\}$ be as before (we have to check four possibilities). Take any pair (j, k) of indices from the set $\{1,2,3,4\}$ such that the three
indices i_{0}, j, and k be distinct. Consider the i_{0}, j, k-conjugates of the relation $\beta=x-y \theta$ and eliminate x and y to obtain

$$
\begin{equation*}
\frac{\theta^{\left.i_{0}\right)}-\theta^{(j)}}{\theta^{\left(i_{0}\right)}-\theta^{(k)}} \cdot \frac{\beta^{(k)}}{\beta^{(j)}}-1=-\frac{\theta^{(k)}-\theta^{(j)}}{\theta^{(k)}-\theta^{\left(i_{0}\right)}} \cdot \frac{\beta^{\left(i_{0}\right)}}{\beta^{(j)}} . \tag{3.8}
\end{equation*}
$$

For simplicity in our notation we put

$$
\delta_{0}=\frac{\theta^{\left(i_{0}\right)}-\theta^{(j)}}{\theta^{\left(i_{0}\right)}-\theta^{(k)}}, \quad \delta_{i}=\frac{\varepsilon_{i}^{(k)}}{\varepsilon_{i}^{(j)}} \quad(i=1,2,3) .
$$

In view of (3.2), (3.8) becomes

$$
\begin{equation*}
\delta_{0} \delta_{1}^{a_{1}} \delta_{2}^{a_{2}} \delta_{3}^{a_{3}}-1=-\frac{\theta^{(k)}-\theta^{(j)}}{\theta^{(k)}-\theta^{\left(i_{0}\right)}} \cdot \frac{\beta^{\left(i_{0}\right)}}{\beta^{(j)}} . \tag{3.9}
\end{equation*}
$$

If we put

$$
\Lambda=\log \left|\delta_{0} \delta_{1}^{a_{1}} \delta_{2}^{a_{2}} \delta_{3}^{a_{3}}\right|
$$

and estimate the right-hand side of (3.9) with the aid of (3.3) we can prove easily (see [6, Chap. II, Lemma 1.2]) that, if $|y|>Y_{2}^{*}$ then $0<|\Lambda|<$ $1.39 C_{1} C_{3} / C_{2}|y|^{-4}$. The formulas of Y_{2}^{*} and C_{3} in our case give

$$
Y_{2}^{*}=3 \quad \text { and } \quad C_{3}=6.02734
$$

and therefore

$$
\begin{equation*}
0<|\Lambda|<13.146|y|^{-4} . \tag{3.10}
\end{equation*}
$$

We would like now, to replace the right-hand side of (3.10) by an expression containing A but not $|y|$. We first need some notations. Consider the 4×3 matrix

$$
\mathscr{E}=\left(\log \left|\varepsilon_{h}^{(i)}\right|\right)_{1 \leqslant h \leqslant 3,1 \leqslant i \leqslant 4} .
$$

For every $j \in\{1,2,3,4\}$ let \mathscr{E}_{j} be the matrix which results from \mathscr{E} if we omit the j th row. Then $\left|\operatorname{det}\left(\mathscr{E}_{j}\right)\right|$ is equal to the regulator of the order R (in our case this is equal to 4.8835898 ...). Let

$$
N_{0}=\min \left\{3 \cdot \min _{1 \leqslant j \leqslant 4} N\left[\mathscr{E}_{j}^{-1}\right], \max _{1 \leqslant j \leqslant 4} N\left[\mathscr{E}_{j}^{-1}\right]\right\},
$$

where, in general, for an $m \times n$ matrix $\left(a_{i j}\right), N\left[\left(a_{i j}\right)\right]$ is the row-norm of the matrix defined by

$$
N\left[\left(a_{i j}\right)\right]=\max _{1 \leqslant i \leqslant m}\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right) .
$$

Define also

$$
|\bar{\theta}|=\max _{1 \leqslant i \leqslant 4}\left|\theta^{(i)}\right| .
$$

Then, for a solution satisfying $|y|>10^{s}$ we can easily show (see [2, relation (3)] that

$$
\begin{equation*}
A \leqslant C_{5} \log |y|, \quad C_{5}=N_{0}\left(1+\frac{1}{S} \log _{10}|\bar{\theta}|\right) \tag{3.11}
\end{equation*}
$$

Combine now (3.10) and (3.11) to obtain

$$
\begin{equation*}
0<|A|<13.146 \cdot e^{-4 A / c s} \tag{3.12}
\end{equation*}
$$

In our case $S=30$ and we computed that $N_{0}<5.475513$, so that

$$
C_{5}<5.58594
$$

Then, in view also of (3.7), (3.12) implies

$$
\begin{equation*}
0<|\Lambda|<e^{-0.5872777 A} \tag{3.13}
\end{equation*}
$$

and this is the required inequality. Note that (3.13) combined with (3.7) implies, in particular

$$
\begin{equation*}
|\Lambda|<7.93 \cdot 10^{-6} \tag{3.14}
\end{equation*}
$$

3.4. Explicit Computation of A

As already noted, once i_{0} is chosen we can choose j and k arbitrarily ($i_{0} \neq j \neq k \neq i_{0}$). So, we make the following choices:

If $i_{0}=3$ or 4 we take $k=1$ and $j=2$. In both cases it is a routine matter to compute that

$$
\left|\delta_{1}\right|=\varepsilon_{1}^{-2} \varepsilon_{3}^{2}, \quad\left|\delta_{2}\right|=\varepsilon_{1}^{-8} \varepsilon_{2}^{2} \varepsilon_{3}^{4}, \quad\left|\delta_{3}\right|=\varepsilon_{1}^{-4} \varepsilon_{3}^{4} .
$$

Also, if $i_{0}=3$ then

$$
\delta_{0}=\frac{\theta^{(3)}-\theta^{(2)}}{\theta^{(3)}-\theta^{(1)}}=\frac{-4-2 \rho+\rho^{2}+\frac{1}{2} \rho^{3}}{-4-4 \rho+\rho^{2}+\frac{1}{2} \rho^{3}}=-1+\rho+\frac{1}{2} \rho^{2}=\varepsilon_{1}^{-1} \varepsilon_{3}
$$

and, analogously, if $i_{0}=4$ then $\delta_{0}=-\varepsilon_{1}^{-1} \varepsilon_{3}$. Thus, if $i_{0}=3$ or 4 then

$$
\begin{aligned}
A & =\log \left(\varepsilon_{1}^{-1} \varepsilon_{3}\right)+a_{1} \log \left(\varepsilon_{1}^{-2} \varepsilon_{3}^{2}\right)+a_{2} \log \left(\varepsilon_{1}^{-8} \varepsilon_{2}^{2} \varepsilon_{3}^{4}\right)+a_{3} \log \left(\varepsilon_{1}^{-4} \varepsilon_{3}^{4}\right) \\
& =\left(1+2 a_{1}+4 a_{3}\right) \log \left(\varepsilon_{1}^{-1} \varepsilon_{3}\right)+2 a_{2} \log \left(\varepsilon_{1}^{-4} \varepsilon_{2} \varepsilon_{3}^{2}\right) \\
& =\left(1+2 a_{1}+2 a_{2}+4 a_{3}\right) \log \left(\varepsilon_{1}^{-1} \varepsilon_{3}\right)-2 a_{2} \log \left(\varepsilon_{1}^{3} \varepsilon_{2}^{-1} \varepsilon_{3}^{-1}\right)
\end{aligned}
$$

In an analogous way we find that if $i_{0}=1$ or 2 then

$$
\begin{aligned}
A & =\left(1+2 a_{1}+4 a_{3}\right) \log \left(\varepsilon_{1}^{3} \varepsilon_{2}^{-1} \varepsilon_{3}^{-1}\right)+2 a_{2} \log \left(\varepsilon_{1}^{2} \varepsilon_{2}^{-1}\right) \\
& =2 a^{2} \log \left(\varepsilon_{1}^{-1} \varepsilon_{3}\right)+\left(1+2 a_{1}+2 a_{2}+4 a_{3}\right) \log \left(\varepsilon_{1}^{3} \varepsilon_{2}^{-1} \varepsilon_{3}^{-1}\right)
\end{aligned}
$$

Thus

$$
\Lambda=b_{1} \log \gamma_{1}+b_{2} \log \gamma_{2}
$$

where

$$
\gamma_{1}=\varepsilon_{1}^{-1} \varepsilon_{3}=-1+\rho+\frac{1}{2} \rho^{2}, \quad \gamma_{2}=\varepsilon_{1}^{3} \varepsilon_{2}^{-1} \varepsilon_{3}^{-1}=3-3 \rho-\frac{1}{2} \rho^{2}+\frac{1}{2} \rho^{3}
$$

and
$\left(b_{1}, b_{2}\right)=\left(1+2 a_{1}+2 a_{2}+4 a_{3},-2 a_{2}\right)$ or $\left(2 a_{2}, 1+2 a_{1}+2 a_{2}+4 a_{3}\right)$.
We now put

$$
B=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|\right\}
$$

so that $B \leqslant 8.05 A$ and then, by (3.13),

$$
\begin{equation*}
0<|\Lambda|<e^{-C_{6} B}, \quad C_{6}=0.072954 \tag{3.16}
\end{equation*}
$$

3.5. An Upper Bound for B

Up to now, the results and arguments were elementary. At this point we use a really deep theorem of Mignotte and Waldschmidt.

Theorem [5, Corollary 1.1]. Let α_{1}, α_{2} be two multiplicatively independent algebraic numbers and b_{1}, b_{2} two positive rational integers such that $b_{1} \log \alpha_{1} \neq b_{2} \log \alpha_{2}$ (where $\log \alpha_{i}(i=1,2)$ is an arbitrary but fixed determination of the logarithm). Define $D=D\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right], B=\max \left\{b_{1}, b_{2}\right\}$ and choose two positive real numbers a_{1}, a_{2} satisfying

$$
a_{j}=\max \left\{1, h\left(\alpha_{j}\right)+\log 2, \frac{2 e\left|\log \alpha_{j}\right|}{D}\right\} \quad(j=1,2)
$$

(where, as usual, $h(\cdot)$ denotes the absolute logarithmic height). Then,

$$
\left|b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2}\right| \geqslant \exp \left\{-500 D^{4} a_{1} a_{2}(7.5+\log B)^{2}\right\}
$$

It is easy to check that in our case the above theorem implies

$$
|A|>\exp \left\{-500 \cdot 4^{4} \cdot 2.63 \cdot(7.5+\log B)^{2}\right\}
$$

and this inequality combined with (3.16) gives

$$
B<4.05 \cdot 10^{9}
$$

3.6. Reducing the Upper Bound of B

Equation (3.16) is equivalent to

$$
\begin{equation*}
\left|\delta-\frac{b_{1}}{b_{2}}\right|<\frac{1}{\left|b_{2}\right|} \cdot \frac{1}{\left|\log \gamma_{1}\right|} e^{-C_{6} B} \tag{3.17}
\end{equation*}
$$

where $\delta=-\log \gamma_{2} / \log \gamma_{1}$ and $B<C=4.05 \cdot 10^{9}$. We have

$$
\frac{1}{\left|b_{2}\right|\left|\log \gamma_{1}\right|} e^{-c_{6} B}<\frac{1}{1.61489\left|b_{2}\right|} 1.075681^{-B}<\frac{1}{2.1\left|b_{2}\right|^{2}}
$$

provided that $B \geqslant 60$. Now let $\tilde{\delta}$ be a rational approximation of δ such that

$$
\begin{equation*}
|\tilde{\delta}-\delta|<\frac{1}{1000 C^{2}} \tag{3.18}
\end{equation*}
$$

Then,

$$
\begin{aligned}
\left|\tilde{\delta}-\frac{b_{1}}{b_{2}}\right| & \leqslant|\tilde{\delta}-\delta|+\left|\delta-\frac{b_{1}}{b_{2}}\right|<\frac{1}{1000 C^{2}}+\frac{1}{2.1\left|b_{2}\right|^{2}} \\
& <\frac{1}{1000\left|b_{2}\right|^{2}}+\frac{1}{2.1\left|b_{2}\right|^{2}}<\frac{1}{2\left|b_{2}\right|^{2}}
\end{aligned}
$$

which implies that b_{1} / b_{2} is a convergent of the continued fraction expansion of $\tilde{\delta}$. Denote by $d_{0}, d_{1}, d_{2}, \ldots$ the partial quotients and by $p_{1} / q_{1}, p_{2} / q_{2}, \ldots$ the convergents in the continued fraction expansion of $\tilde{\delta}$. Suppose that $b_{1} / b_{2}=p_{n} / q_{n}$. Then,

$$
\begin{aligned}
\frac{1}{\left(d_{n+1}+2\right)\left|b_{2}\right|^{2}} & \leqslant \frac{1}{\left(d_{n+1}+2\right)\left|q_{n}\right|^{2}}<\left|\tilde{\delta}-\frac{p_{n}}{q_{n}}\right|=\left|\tilde{\delta}-\frac{b_{1}}{b_{2}}\right| \\
& \leqslant|\tilde{\delta}-\delta|+\left|\delta-\frac{b_{1}}{b_{2}}\right| \\
& <\frac{1}{1000 C^{2}}+\frac{1}{1.61489\left|b_{2}\right|} 1.075681^{-B}
\end{aligned}
$$

from which

$$
d_{n+1}+2>\left(10^{-3}+\frac{B}{1.61489} \cdot 1.076581^{-B}\right)^{-1}>29
$$

provided that $B \geqslant 104$. We computed a rational approximation $\tilde{\delta}$ of δ up to 30 decimal digits (so that (3.18) is satisfied) and we looked for all
convergents p_{n} / q_{n} of $\tilde{\delta}$ with $\max \left\{p_{n}, q_{n}\right\} \geqslant 104$ and such that $d_{n+1} \geqslant 28$. It turned out that no such convergent exists and consequently there are no solutions of (3.17) with $B \geqslant 104$. If $60 \leqslant B<104$ then, by our previous arguments, b_{1} / b_{2} is a convergent in the continued fraction expansion of $\tilde{\delta}$, but it is straightforward to check that no convergent p_{i} / q_{i} satisfies $60 \leqslant \max \left\{\left|p_{i}\right|,\left|q_{i}\right|\right\}<104$.

Therefore we are left with the case $B \leqslant 59$. From (3.17) we see that $b_{2} / b_{1}>1$; i.e., $B=\left|b_{2}\right|$, and by (3.15) b_{1}, b_{2} have opposite parities. Since they must satisfy (3.17), we have $B \geqslant 4$ and then (3.17) implies in particular that

$$
\begin{equation*}
0.140343\left|b_{2}\right|<\left|b_{1}\right|<0.359009\left|b_{2}\right| \tag{3.19}
\end{equation*}
$$

We have determined all pairs $\left(\left|b_{1}\right|,\left|b_{2}\right|\right)$, satisfying $4 \leqslant\left|b_{2}\right| \leqslant 59$ and (3.19), and for each such pair we calculated the corresponding value of Λ. In all cases it turned out that $|\Lambda|>0.00209$, which contradicts (3.14). This contradiction completes the proof of Theorem 2.

References

1. K. K. Billevic, On the units of algebraic fields of the 3 rd and 4 th degrees, Mat. $U S S R-S b$. 40 (1956), 123-136. [Russian]
2. J. Blass, A. M. W. Glass, D. Meronk, and R. Steiner, Practical solutions to Thue equations over the rational integers, submitted for publication.
3. D. G. Cantor, P. H. Galyean, and H. B. Zimmer, A continued fraction algorithm for real algebraic numbers, Math. Comp. 26 (1972), 785-791.
4. W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norske, Vid. Akad. Oslo 1, No. 5 (1942).
5. M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method, II in "Publication de l'Institut de récherche mathématique avancée, 373/P-206, Strasbourg, 1988."
6. N. Tzanakis and B. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.
7. H. G. Zimmer, Computational problems, methods, and results in algebraic number theory, in "Lecture Notes in Mathematics," Vol. 262, Springer-Verlag, New York, 1972.
