
ar
X

iv
:m

at
h/

04
10

53
3v

1 
 [

m
at

h.
G

R
] 

 2
5 

O
ct

 2
00

4

Annals of Mathematics, 156 (2002), 295–332

Parametrizing nilpotent orbits

via Bruhat-Tits theory

By Stephen DeBacker*

Abstract

Let k denote a field with nontrivial discrete valuation. We assume that k

is complete with perfect residue field. Let G be the group of k-rational points

of a reductive, linear algebraic group defined over k. Let g denote the Lie

algebra of G. Fix r ∈ R. Subject to some restrictions, we show that the set of

distinguished degenerate Moy-Prasad cosets of depth r (up to an equivalence

relation) parametrizes the nilpotent orbits in g.

1. Introduction

In this paper we give a uniform parametrization of the nilpotent orbits

in the Lie algebra of a p-adic reductive group. This classification, which was

motivated by harmonic analysis considerations, matches nilpotent orbits with

certain equivalence classes that arise naturally from Bruhat-Tits theory.

1.1. Motivation. In the early 1970s Harish-Chandra and Roger Howe stud-

ied the local behavior of the character of an irreducible smooth representation

of a reductive p-adic group [13], [14]. For example, they established what

is now called the Harish-Chandra-Howe local character expansion – in some

unspecified neighborhood of the identity the character can be expressed as a

linear combination of the Fourier transforms of nilpotent orbital integrals. At

the heart of their proofs was a remarkable finiteness statement, referred to

as “Howe’s conjecture” [15], about invariant distributions on the Lie algebra.

In some stunning work of the 1990s, J.-L. Waldspurger proved a very pre-

cise version of Howe’s conjecture for “unramified classical groups” [28]. This

sharpened finiteness statement allowed him to relate the range of validity for

the Harish-Chandra-Howe local character expansion to the first occurrence of

fixed-vectors with respect to congruence filtration subgroups [25].
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The fundamental work of Allen Moy and Gopal Prasad [20], [22] intro-

duced new ways to use the structure theory of F. Bruhat and J. Tits [8], [9]

to study questions in representation theory. One consequence of their work is

that to each representation we can attach a number, called the depth of the

representation. Roughly speaking, this number measures the first occurrence

of fixed-vectors with respect to all the natural subgroup filtrations arising from

Bruhat-Tits theory. The conjecture of Thomas Hales, Allen Moy, and Gopal

Prasad [22, §1] seeks to strengthen the results of J.-L. Waldspurger by asking

if the range of validity for the Harish-Chandra-Howe local character expansion

is controlled by the depth of the representation; such a result would greatly

enhance our understanding of characters. The parametrization of nilpotent or-

bits presented in this article is the cornerstone of my proof of their conjecture.

The remainder of the proof appears in [2], [11], [12].

1.2. The parametrization. In a special situation (r = 0), the main result

of this paper may be viewed as an affine analogue of Bala-Carter theory [4],

[5]. Namely, it provides a classification of the nilpotent orbits in terms of

equivalence classes of pairs (GF /G
+
F ,X). Here F is a facet in the Bruhat-

Tits building of our group, GF is the associated parahoric subgroup with pro-

unipotent radical G+
F , and X is a distinguished element of the Lie algebra of

GF /G
+
F . (Recall that X is called distinguished provided that it is nilpotent

and does not lie in a proper Levi subalgebra.)

In this article we prove this special case (r = 0) and take it one step

further – we classify the nilpotent orbits in terms of Moy-Prasad cosets of

an arbitrary fixed depth r (see below). We now discuss the parametrization

scheme in detail.

Let k denote a field with nontrivial discrete valuation. We assume that k

is complete with perfect residue field f. Let G denote the group of k-rational

points of a reductive, linear algebraic group G defined over k and let g denote

its Lie algebra. We let G◦ denote the group of k-rational points of the identity

component G◦ of G. Let B(G) denote the Bruhat-Tits building of G◦. For

each pair (x, r) ∈ B(G) × R, Allen Moy and Gopal Prasad [20], [22] have

defined the (Moy-Prasad) lattices gx,r+ ⊂ gx,r of g. For x ∈ B(G), an element

of gx,r/gx,r+ is called a Moy-Prasad coset of depth r.

Suppose r ∈ R. We partition B(G) into generalized r-facets – two points x

and y in B(G) belong to the same generalized r-facet provided that gx,r = gy,r
and gx,r+ = gy,r+ . If F ∗ is a generalized r-facet and x ∈ F ∗, then we define

the f-vector space VF ∗ = gx,r/gx,r+. For example, if r = 0, then generalized

0-facets are facets in the usual sense, and if F is a facet of B(G), then VF is

Lie(GF /G
+
F ).

Let Ir denote the set of pairs (F ∗, v) where F ∗ is a generalized r-facet and

v is an element of VF ∗. The set Ir parametrizes the set of Moy-Prasad cosets
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of depth r. In Section 3.6 we define on Ir an equivalence relation, denoted ∼,

which is a natural extension of the concept of associate [20], [22].

A pair (F ∗, v) ∈ Ir is degenerate if the coset it parametrizes contains a

nilpotent element. Let Inr denote the subset of Ir consisting of degenerate

pairs. With some restrictions on k and G (see Section 4.2), we generalize a

result of Dan Barbasch and Allen Moy [6, §3]. We show that to each element

(F ∗, e) of Inr we can associate a unique nilpotent orbit O(F ∗, e). This orbit is

characterized by the fact that it is the nilpotent orbit of minimal dimension

having nontrivial intersection with the coset corresponding to (F ∗, e).

The set Inr is too large for our purposes. We therefore restrict our attention

to the subset Idr of distinguished elements of Inr (see Section 5.5). For example,

if r = 0, then (F, e) ∈ In0 is distinguished if e is a distinguished element of

VF = Lie(GF /G
+
F ) in the sense discussed above.

We now state Theorem 5.6.1, the main result of this paper. Let O(0)

denote the set of nilpotent orbits in g.

Theorem. Assume that all of the hypotheses of Section 4.2 hold. There

is a bijective correspondence between Idr /∼ and O(0) given by the map which

sends (F ∗, e) to O(F ∗, e).

We remark that this result is false without some restrictions on k and G.

For example, if k is the field of Laurent series over the field with two elements,

then for the group SL2(k) the set Id0/∼ has cardinality three, but O(0) has

infinitely many elements. On the other hand, if we are not interested in a

proof which works in a general setting, then we can get by with less severe

restrictions. For example, we expect that the theorem is true for GLn(k) with

no restrictions on k; if r = 0, then this is easy to verify. If we assume that the

residual characteristic of k is not two, then we expect that the result is valid

for split classical groups.

In the special case when r = 0, the parametrization scheme discussed

in this article is inherent (though neither stated nor proved) in a paper of

Dan Barbasch and Allen Moy [6]. Magdy Assem pointed this out to Robert

Kottwitz who, in turn, pointed it out to me. Also in the case when r = 0,

J.-L. Waldspurger [27] develops a conjectural parametrization scheme similar

to that given here but for unipotent orbits. He verifies his conjecture in a

number of cases. Finally, if r = 0, k is the field of Laurent series over the

complex numbers, and G is a connected, simple, adjoint, and k-split group,

then the main result of Eric Sommers’ paper [23] is equivalent to the main

result of this paper; the proofs, however, are very different.

I thank both Robert Kottwitz and Gopal Prasad for their many correc-

tions and improvements to earlier versions of this paper. I thank Eugene

Kushnirsky and Gopal Prasad for allowing me to use their proofs (Lemma 4.5.1

and Lemma 4.5.3, respectively). This paper has benefitted from discussions
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with Jeff Adler, Robert Kottwitz, Allen Moy, Fiona Murnaghan, Amritan-

shu Prasad, Gopal Prasad, Paul J. Sally, Jr., and Jiu-Kang Yu. It is a true

pleasure to thank all of these people.

2. Notation

2.1. Basic notation. Let k denote a field with nontrivial discrete val-

uation ν. We also denote by ν the unique extension of ν to any algebraic

extension of k. We assume that k is complete and the residue field f is perfect.

Denote the ring of integers of k by R and fix a uniformizer ̟.

Let K be a fixed maximal unramified extension of k. Let RK denote the

ring of integers of K and let F denote the residue field of K. Note that F is an

algebraic closure of f.

If f has positive characteristic, then we let p denote the characteristic of f.

If f has characteristic zero, then we let p = ∞. Suppose n ∈ Z. If p <∞, then

(n, p) = gcd(n, p). If p = ∞, then (n, p) = 1.

Let G be a reductive, linear algebraic group defined over k. Let G◦ denote

the identity component of G. Note the G◦ is a connected, reductive, linear

algebraic group which is defined over k. We let G = G(k) and G◦ = G◦(k).

We denote by gg the Lie algebra of G. We let g = gg(k), the vector space of

k-rational points of gg . Let (X,Y) 7→ [X,Y ] denote the Lie algebra product for g.

We adopt the following conventions. We call a subgroup of G a parabolic

subgroup of G provided that it is a parabolic subgroup of G◦. Similar notation

applies to tori and Levi subgroups.

Let L be the minimal Galois extension of K such that G◦ is L-split. As

in [20], we define ℓ = [L : K], and we normalize ν by requiring ν(L×) = Z.

If g ∈ G and X ∈ g, then gX = Ad(g)X. If X ∈ g, then GX denotes the

G-orbit of X in g. We let Xk
∗(G) denote the set of one-parameter k-subgroups

of G.

An element X ∈ g is nilpotent if and only if there exists λ ∈ Xk
∗(G) such

that limt→0
λ(t)X = 0. Let N denote the set of nilpotent elements in g and

let O(0) denote the set of nilpotent G-orbits in g. It is more usual to say that

an element is nilpotent if the Zariski closure of its G-orbit contains zero. Let

N ′′ denote the set of elements in g that are nilpotent in this sense. We will let

N ′ denote the set of elements in g which contain zero in the p-adic closure of

their G-orbit. It follows that N ⊆ N ′ ⊆ N ′′. From [18] we have N = N ′′ if k

is perfect. From [2] we have that if k is perfect or f is finite, then N = N ′.

Similarly, we say that h ∈ G is unipotent provided that there exists λ ∈
Xk

∗(G) such that limt→0 λ(t)h(λ(t))−1 = 1.

As in [24, §2.2.1] a subset H of G is bounded provided that for every

k-regular function f on G, the set ν
(

f(H)
)

is bounded from below.
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2.2. Apartments, buildings, and associated notation. Let B(G) denote the

(enlarged) Bruhat-Tits building of G◦; i.e., B(G) takes into account the center

of G◦. We identify B(G) with the Gal(K/k)-fixed points of B(G,K), the

Bruhat-Tits building of G◦(K).

For Ω ⊂ B(G), we let stabG(Ω) denote the stabilizer of Ω in G.

We let dist:B(G)×B(G) → R+ denote a (nontrivial) G-invariant distance

function as discussed in [24, §2.3]. For x, y ∈ B(G), let [x, y] denote the geodesic

in B(G) from x to y and let (x, y] denote [x, y] r {x}.
For a k-Levi subgroup M of G, we identify B(M, k) in B(G, k). There

is not a canonical way to do this, but every natural embedding of B(M, k) in

B(G, k) has the same image.

Given a maximal k-split torus S of G we have the torus S = S(k) in G

and the corresponding apartment A(S) = A(S, k) in B(G). For Ω ⊂ A(S), we

let A
(

Ω,A(S)
)

denote the smallest affine subspace of A(S) containing Ω.

We let Φ(S) = Φ(A) = Φ(S, k) denote the set of roots of G with respect

to k and S; we denote by Ψ(S) = Ψ(A) = Ψ(S, k, ν) the set of affine roots

of G with respect to k, S, and ν. If ψ ∈ Ψ(A), then ψ̇ ∈ Φ(A) denotes the

gradient of ψ.

For ψ ∈ Ψ(A), let Uψ and U+
ψ := Uψ+ denote the corresponding subgroups

of the root group Uψ̇ (see [22, §2.4 and §3.1]).
For x ∈ B(G), we will denote the parahoric subgroup of G◦ attached to

x by Gx, and we denote its pro-unipotent radical by G+
x . Note that both Gx

and G+
x depend only on the facet of B(G) to which x belongs. If F is a facet

in B(G) and x ∈ F , then we define GF = Gx and G+
F = G+

x .

Suppose x ∈ B(G). The quotient Gx/G
+
x is the group of f-rational points

of a connected reductive group Gx defined over f. We let Zx denote the f-split

torus in the center of Gx corresponding to the maximal k-split torus in the

center of G.

We denote the parahoric subgroup of G◦(K) corresponding to x ∈ B(G,K)

by G(K)x. We denote the pro-unipotent radical of G(K)x by G(K)+x . The

subgroups G(K)x and G(K)+x depend only on the facet of B(G,K) to which x

belongs. If F is a facet in B(G,K) and x ∈ F , then we define G(K)F = G(K)x
and G(K)+F = G(K)+x . For a facet F in B(G,K), the quotient G(K)F /G(K)+F
is the group of F-rational points of a connected, reductive F-group GF .

2.3. The Moy-Prasad filtrations of g. When f is finite, in [20], [22] Allen

Moy and Gopal Prasad associate to a pair (x, r) ∈ B(G)×R a lattice gx,r in g.

There is no difficulty in extending their definition to our setting (see [2]), and

we will not repeat the definition here. However, we will need to know that gx,r
has a nice decomposition (with respect to the field k).

Suppose that S is a maximal k-split torus of G. Let T be a maximal

K-split k-torus containing S. We identify A(S, k) with A(T,K)Gal(K/k). For
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φ ∈ Ψ
(

A(T,K)
)

, we define as in [22, §3.2] the lattice uuφ in the root space uu φ̇

of gg(K). For ψ ∈ Ψ
(

A(S, k)
)

, define the lattice gψ in the root space gψ̇ of g

to be the Gal(K/k)-fixed points of
⊕

φ∈Ψ(A(T,K)); φ|A(S,k)=ψ

uuφ.

One can check that for ψ,ψ′ ∈ Ψ
(

A(S, k)
)

we have gψ = gψ′ if and only if

ψ = ψ′. We also define the lattice g+
ψ in the root space gψ̇ by

g+
ψ =

⋃

gψ′ ,

where the union is over those affine roots ψ′ ∈ Ψ
(

A(S, k)
)

such that ψ̇′ = ψ̇

and ψ′(x) > ψ(x) for some (hence any) x ∈ A(S, k).

Let mm denote the Lie algebra of the k-Levi subgroup CG◦(S). Let m =

mm(k). For x ∈ A(S, k), let mr = m ∩ gx,r. The lattice mr ⊂ m is independent

of the choice of x ∈ A(S, k). If x ∈ A(S, k), then

gx,r = mr ⊕
∑

ψ∈Ψ(A(S,k)); ψ(x)≥r

gψ.

We define gx,r+ := ∪s>rgx,s.
For x ∈ B(G,K) and s ∈ R, we denote by gg(K)x,s the Moy-Prasad

filtration lattice of gg(K) associated to x and s. If x is Gal(K/k)-invariant,

then gx,s = (gg(K)x,s)
Gal(K/k).

For (x, r) ∈ B(G)×R≥0, Moy and Prasad also define subgroups Gx,r ⊂ Gx
(see also [2]).

3. Generalized r-facets and associated objects

Fix r ∈ R. None of the statements in this section depend on the structure

of g as a Lie algebra. Consequently, all statements remain true when the roles

of g and g∗ are interchanged.

3.1. r-facets. Fix a maximal k-split torus S of G. Let A = A(S, k) be

the corresponding apartment in B(G). For each ψ ∈ Ψ(A), let

Hψ−r := {x ∈ A |ψ(x) = r}.

This defines a facet structure on A; a nonempty subset FA ⊂ A is called an

r-facet of A provided that there exists a finite subset S ⊂ Ψ(A) such that

FA ⊂ HS :=
⋂

ψ∈S

Hψ−r,
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and FA is a connected component (in HS) of

HS r
⋃

ψ∈Ψ(A)rS

(HS ∩Hψ−r).

If FA is an r-facet of A, then we define the dimension of FA by

dimFA := dimA(FA,A).

If FA is an r-facet of A of maximal dimension, then FA is called an r-alcove

of A.

Example 3.1.1.

{r-alcoves of A} = {connected components of A r
⋃

ψ∈Ψ(A)Hψ−r}.

Remark 3.1.2. FA is an r-facet of A if and only if FA is a (−r)-facet of A.

If FA is an r-facet of A and x, y ∈ FA, then gx,r = gy,r and gx,r+ = gy,r+ .

Therefore, the following definitions make sense.

Definition 3.1.3. Let FA be an r-facet of A. Fix x ∈ FA.

gFA
:= gx,r

and

g+
FA

:= gx,r+.

Sometimes, in order to avoid confusion, we denote gFA
by gFA,r and g+

FA

by gFA,r+.

Lemma 3.1.4. Let FA be an r-facet of A. A point x ∈ A lies in FA if

and only if gx,r = gFA
and gx,r+ = g+

FA
.

Thanks to a suggestion of Jiu-Kang Yu, the proof below is far more elegant

than the original.

Proof. The r-facet in A to which x belongs is completely determined by

the three sets

{ψ ∈ Ψ(A) |ψ(x) > r} {ψ ∈ Ψ(A) |ψ(x) = r} {ψ ∈ Ψ(A) |ψ(x) < r}.

These three sets are, in turn, completely determined by gx,r and gx,r+.

Lemma 3.1.5. If y ∈ A, then the union of all r-facets of A which contain

y in their closure is an open neighborhood of y in A.

3.2. Generalized r-facets.

Definition 3.2.1. For x ∈ B(G), define

F ∗(x) := {y ∈ B(G) | gx,r = gy,r and gx,r+ = gy,r+}.
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Definition 3.2.2.

F(r) := {F ∗(x) |x ∈ B(G)}.

Definition 3.2.3. An element of F(r) is called a generalized r-facet.

Remark 3.2.4. 1. If x ∈ B(G), then for all y ∈ F ∗(x) we have F ∗(x) =

F ∗(y).

2. Suppose that x, y ∈ B(G). We write x ∼ y if and only if F ∗(x) = F ∗(y).

Then

B(G) =
∐

x∈B(G)/∼

F ∗(x) =
∐

F ∗∈F(r)

F ∗.

3. For x ∈ B(G) and g ∈ G we have gF ∗(x) = F ∗(gx).

4. If F ∗ ∈ F(r) and A is an apartment of B(G) such that FA = A∩F ∗ 6= ∅,
then it follows from Lemma 3.1.4 that FA is an r-facet of A.

5. If F ∗ ∈ F(r), then F ∗ is a nonempty and convex subset of B(G).

Lemma 3.2.5. F ∗ ∈ F(r) if and only if F ∗ ∈ F(−r).

Proof. This follows from Remarks 3.1.2 and 3.2.4 (4).

Lemma 3.2.6. If x ∈ B(G) and A is an apartment in B(G) such that

FA = F ∗(x) ∩A 6= ∅, then for all y ∈ FA we have

F ∗(x) = GyFA.

Proof. Fix y ∈ FA.

“⊂”: Suppose z ∈ F ∗(x). Then there exists an h ∈ Gy such that hz ∈ A.

Note that

ghz,r = hgz,r = hgx,r = hgy,r = ghy,r = gy,r = gx,r

and similarly ghz,r+ = gx,r+. Thus hz ∈ A ∩ F ∗(x) = FA, and so z ∈ GyFA.

“⊃”: Suppose z ∈ FA and h ∈ Gy. We have

ghz,r = hgz,r = hgy,r = ghy,r = gy,r = gx,r

and similarly ghz,r+ = gx,r+. Thus hz ∈ F ∗(x).

Corollary 3.2.7. If F ∗ ∈ F(r), then the image of F ∗ in Bred(G), the

reduced Bruhat-Tits building, is bounded.

Lemma 3.2.8. For x ∈ B(G) we have

NG(gx,r) ∩NG(gx,r+) = stabG
(

F ∗(x)
)

.
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Proof. Let F ∗ = F ∗(x).

We have stabG(F ∗) ⊂ NG(gx,r) ∩NG(gx,r+).

Suppose n ∈ NG(gx,r) ∩ NG(gx,r+). Fix z ∈ F ∗. Let A be an apartment

of B(G) containing x and nz. Let FA = A ∩ F ∗ ( 6= ∅). If y ∈ A such

that gy,r = gx,r and gy,r+ = gx,r+ , then from Lemma 3.1.4 we have y ∈ FA.

Thus, since gnz,r = ngz,r = ngx,r = gx,r and similarly gnz,r+ = gx,r+, we have

nz ∈ FA ⊂ F ∗. Since z was arbitrary, we have nF ∗ ⊂ F ∗.

Lemma 3.2.9. If F ∗ ∈ F(r) and A is an apartment in B(G) such that

FA = F ∗ ∩A 6= ∅, then

FA = F ∗ ∩ A.

Proof. Suppose F ∗ ∈ F(r) and A is an apartment in B(G) such that

FA = F ∗ ∩A 6= ∅. It is enough to show that F ∗ ∩ A ⊂ FA.

Suppose x ∈ F ∗ ∩A. Let {xn} be a sequence in F ∗ which converges to x.

Fix y ∈ FA.

By choosing a subsequence of {xn}, we may assume that for each n ∈ N

there exists a zero-alcove Cn such that xn and x both live in Cn. We may

also assume that dist(xn, x) < 1/n for all n ∈ N. For the remainder of this

paragraph, fix n ∈ N. Let An be an apartment in B(G) containing both Cn
and y. Since x and y both lie in An∩A, there exists gn ∈ G such that gn fixes

both x and y and gnAn = A. Since gn fixes x, we have

dist(gnxn, x) = dist(xn, x) < 1/n.

Since gn fixes y, it follows from Lemma 3.2.8 that gn ∈ stabG(F ∗). Since

gnAn = A and gn ∈ stabG(F ∗), we have gnxn ∈ F ∗ ∩ A = FA.

Consequently, the sequence {gnxn} in FA converges to x. Thus x ∈ FA.

Definition 3.2.10. For F ∗ ∈ F(r) and δ > 0, define

F ∗(δ) := {x ∈ F ∗ | dist(x, z) ≥ δ for all z ∈ F ∗ r F ∗}.

Lemma 3.2.11. Suppose F ∗ ∈ F(r) and δ > 0. We have that F ∗(δ) is

a convex, closed, and stabG(F ∗)-invariant subset of B(G). Moreover, F ∗(δ) is

a nonempty subset of F ∗ if and only if there exists an apartment A in B(G)

such that the subset of FA = F ∗ ∩A defined by

FA(δ) = {x ∈ FA | dist(x, z) ≥ δ for all z ∈ FA r FA}

is nonempty.

Proof. F ∗(δ) is a closed and stabG(F ∗)-invariant subset of B(G). We now

consider the last statement of the lemma.

For all apartments A of B(G) we have F ∗(δ)∩A ⊂ FA(δ). Thus, if F ∗(δ)

is nonempty, then there exists an apartment A in B(G) such that FA(δ) 6= ∅.



304 STEPHEN DEBACKER

We will show that if there is an apartment A in B(G) such that FA(δ) 6= ∅,
then

(1) GyFA(δ) = F ∗(δ)

for all y ∈ FA(δ). This implies that if FA(δ) 6= ∅, then F ∗(δ) 6= ∅.
Suppose A is an apartment in B(G) such that ∅ 6= FA(δ) ⊂ FA = F ∗ ∩A.

Fix w ∈ FA(δ).

We first show that GwFA(δ) ⊂ F ∗(δ). Since Gw ≤ stabG(F ∗), we have

that F ∗(δ) is Gw-invariant. Thus, it will be enough to show that FA(δ) ⊂
F ∗(δ). Fix x ∈ FA(δ). Suppose z ∈ F ∗ r F ∗. Choose an apartment Az

such that x and z both belong to Az. There exists a g ∈ Gx such that

gAz = A. Since g ∈ Gx, it follows from Lemma 3.2.8 that g ∈ stabG(F ∗).

From Lemma 3.2.9 we have gz ∈ (F ∗ r F ∗) ∩ A = FA r FA. Thus

δ ≤ dist(x, gz) = dist(x, z).

Since z was arbitrary, we have x ∈ F ∗(δ).

We now show that GwFA(δ) ⊃ F ∗(δ). Fix z ∈ F ∗(δ). From Lemma 3.2.6

there exists k ∈ Gw such that kz ∈ FA. Since k ∈ Gw ⊂ stabG(F ∗), we have

kz ∈ FA ∩ kF ∗(δ) = FA ∩ F ∗(δ) ⊂ FA(δ). Thus, equation (1) is valid.

It remains to see that F ∗(δ) is convex. If F ∗(δ) is empty, there is nothing

to prove. So suppose F ∗(δ) is nonempty. Then there exists an apartment

A in B(G) such that FA(δ) is nonempty. Suppose x, z ∈ F ∗(δ). Fix w ∈
FA(δ). From (1) there exists k ∈ Gw such that kx ∈ FA(δ). Since k ∈ Gw ≤
stabG(F ∗), we have kz ∈ F ∗(δ). Thus, another application of (1) shows that

there exists k1 ∈ Gkx such that k1kz ∈ FA(δ). As FA(δ) is convex, we have

[k1kx, k1kz] ⊂ FA(δ) ⊂ F ∗(δ).

Since F ∗(δ) is stabG(F ∗)-invariant, we have [x, z] ⊂ F ∗(δ).

Definition 3.2.12. For F ∗ ∈ F(r), define

C(F ∗) :=

{

y ∈ F ∗ |
for all apartments A of B(G) for which

A∩ F ∗ 6= ∅ we have y ∈ A.

}

Corollary 3.2.13. If F ∗ ∈ F(r), then C(F ∗) 6= ∅.

Proof. Without loss of generality, we suppose that G◦ is semisimple.

Let N = stabG(F ∗). From Corollary 3.2.7 we have that F ∗ is bounded in

B(G) = Bred(G). Thus it follows from [24, §2.2.1] that N is a bounded

subgroup of G.

If F ∗ consists of a single point, there is nothing to prove. So we suppose

that F ∗ is not a point. Let A be an apartment in B(G) such that FA =

A∩ F ∗ 6= ∅. It follows from Lemma 3.2.6 that dimFA > 0. Thus, there exists
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δ > 0 such that the set

{x ∈ FA | dist(x, z) ≥ δ for all z ∈ FA r FA}

is nonempty. From Lemma 3.2.11 there exists δ > 0 such that F ∗(δ) is a

nonempty, convex, closed, N -stable subset of B(G). Consequently, there exists

a y ∈ F ∗(δ) ⊂ F ∗ such that ny = y for all n ∈ N [8, Proposition 3.2.4].

We now show that y ∈ C(F ∗). Suppose A′ is an apartment of B(G)

such that FA′ = A′ ∩ F ∗ 6= ∅. Choose z ∈ FA′ . From Lemma 3.2.6 we

have GzFA′ = F ∗. However, Gz ⊂ N from Lemma 3.2.8. Thus Gzy = y.

Consequently, we must have y ∈ FA′ ⊂ A′.

Corollary 3.2.14. If Ai (i = 1, 2) are two apartments of B(G) and F ∗ ∈
F(r) such that FAi

= F ∗ ∩Ai 6= ∅, then dimA(FA1 ,A1) = dimA(FA2 ,A2).

Lemma 3.2.15. If F ∗
i ∈ F(r) (i = 1, 2) such that F ∗

1 ∩ F ∗
2 6= ∅, then

F ∗
1 ⊂ F ∗

2 .

Proof. Fix yi ∈ C(F ∗
i ). We first show that y1 ∈ F ∗

1 ∩F ∗
2 . Let z ∈ F ∗

1 ∩F ∗
2 .

Choose an apartment A containing z and y2. Let Fi,A = F ∗
i ∩ A. Since

F1,A 6= ∅, we have y1 ∈ F1,A. We also have z ∈ F ∗
2 ∩ A = F2,A from

Lemma 3.2.9. Now z ∈ F1,A ∩ F2,A so F1,A ⊂ F2,A since these are both

r-facets of A. Thus y1 ∈ F ∗
2 .

Suppose w ∈ F ∗
1 . Let A′ be an apartment containing w and y2. Let

Fi,A′ = F ∗
i ∩ A′. From the previous paragraph we have y1 ∈ F1,A′ and y1 ∈

F ∗
2 ∩ A′ = F2,A′ . Since F2,A′ and F1,A′ are both r-facets of A′, we have

w ∈ F1,A′ ⊂ F2,A′ .

Thanks to Corollary 3.2.14 the following definition makes sense.

Definition 3.2.16. Suppose F ∗ ∈ F(r). Let A be an apartment in B(G)

such that A∩ F ∗ 6= ∅. We define

dimF ∗ := dimA(F ∗ ∩A,A).

Moreover, it follows from Lemma 3.2.15 that F ∗ is the disjoint union of

F ∗ and generalized r-facets which meet F ∗ and have dimension strictly smaller

than that of F ∗.

Lemma 3.2.17. If F ∗
i ∈ F(r) (i = 1, 2) such that F ∗

1 6= F ∗
2 and F ∗

1 ⊂ F ∗
2 ,

then for fixed yi ∈ C(F ∗
i ) there exists an x2 ∈ F ∗

2 such that

1. Gx2 ⊂ Gy1 and

2. x2 ∈ (y1, y2].
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Proof. Choose an apartment A containing y1 and y2. Let Fi,A = A∩ F ∗
i .

We have F1,A = F ∗
1 ∩ A ⊂ F ∗

2 ∩ A = F2,A. Let

F(y1, 0) = {H ∈ F(0) |H ⊂ A and y1 ∈ H}.

Note that
⋃

H∈F(y1,0)H is an open neighborhood of y1 in A. Consequently,

there exists an H ∈ F(y1, 0) such that H ∩ (y1, y2] 6= ∅.
Choose x2 ∈ H ∩ (y1, y2] ⊂ F2,A. We have Gx2 = GH ⊂ Gy1 .

Definition 3.2.18. Suppose F ∗ ∈ F(r). Fix x ∈ F ∗. We define

gF ∗ := gx,r

and

g+
F ∗ := gx,r+.

Sometimes, to avoid confusion, we denote gF ∗ by gF ∗,r and g+
F ∗ by gF ∗,r+.

We now present a corollary to the proof of Lemma 3.2.15.

Corollary 3.2.19. Suppose F ∗
i ∈ F(r) for i = 1, 2. If F ∗

1 ⊂ F ∗
2 , then

g+
F ∗

1
⊂ g+

F ∗
2
⊂ gF ∗

2
⊂ gF ∗

1
.

Proof. Choose yi ∈ C(F ∗
i ). Let A be an apartment in B(G) containing

y1 and y2. Let Fi,A = F ∗
i ∩ A. From the proof of Lemma 3.2.15, we have

F1,A ⊂ F2,A. We then have g+
F1,A

⊂ g+
F2,A

⊂ gF2,A
⊂ gF1,A

.

Lemma 3.2.20. If y ∈ B(G), then the union of all generalized r-facets

that contain y in their closure is an open neighborhood of y in B(G).

Proof. Fix y ∈ B(G) and an apartment A in B(G) which contains y. Let

HA denote the union of all r-facets of A which contain y in their closure. From

Lemma 3.1.5 the set HA is an open neighborhood of y in A. Fix ε > 0 so that

if x ∈ A and dist(x, y) < ε, then x ∈ HA.

Let H denote the union of all generalized r-facets that contain y in their

closure. We will show that the ball in B(G) of radius ε centered around y is

contained in H. Fix z ∈ B(G) such that dist(z, y) < ε. There exists g ∈ Gy
such that gz ∈ A. Since dist(gz, y) = dist(gz, gy) = dist(z, y) < ε, we have

gz ∈ HA. Since gz ∈ HA, there exists F ∗ ∈ F(r) such that y ∈ F ∗ ∩ A and

gz ∈ F ∗ ∩ A. Thus we have gz ∈ F ∗ and y ∈ F ∗. Since y = g−1y ∈ g−1F ∗ =

g−1F ∗, we conclude that z ∈ g−1F ∗ ⊂ H.

3.3. Associativity. In this subsection we introduce an equivalence relation

on the elements of F(r) which is a generalization of the concept of “associate”

found in [20], [22] (see Remark 3.3.5).
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Definition 3.3.1. Suppose F ∗ ∈ F(r) and A is an apartment in B(G).

We define A(A, F ∗) := A(F ∗ ∩ A,A).

Definition 3.3.2. Two generalized r-facets F ∗
1 and F ∗

2 are strongly r-

associated if for all apartments A such that F ∗
1 ∩ A 6= ∅ and F ∗

2 ∩ A 6= ∅,
we have

A(A, F ∗
1 ) = A(A, F ∗

2 ).

Lemma 3.3.3. Two generalized r-facets F ∗
1 , F

∗
2 ∈ F(r) are strongly

r-associated if and only if there exists an apartment A such that ∅ 6= A(A, F ∗
1 ) =

A(A, F ∗
2 ).

Proof. “⇒”: This follows from the definition.

“⇐”: Choose xi ∈ C(F ∗
i ) for i = 1, 2. Recall that for an apartment A′ of

B(G) we have A′ ∩ F ∗
i 6= ∅ if and only if xi ∈ A′. Suppose A′ ∩ F ∗

1 6= ∅ and

A′∩F ∗
2 6= ∅. There exists a g ∈ G such that g fixes A∩A′ point-wise and gA =

A′. Thus gx1 = x1 and gx2 = x2. This implies that g ∈ stabG(F ∗
1 )∩stabG(F ∗

2 )

and

A(A′, F ∗
1 ) = A(gA, gF ∗

1 ) = gA(A, F ∗
1 )

= gA(A, F ∗
2 ) = A(gA, gF ∗

2 )

= A(A′, F ∗
2 ).

Definition 3.3.4. Two generalized r-facets F ∗
1 and F ∗

2 are r-associated if

there exists a g ∈ G such that F ∗
1 and gF ∗

2 are strong r-associates.

Remark 3.3.5. If F ∗
1 , F

∗
2 ∈ F(0) are 0-associated, then the parahoric

subgroups GF ∗
1 ,0

and GF ∗
2 ,0

are associate in the sense of [22].

Example 3.3.6. In Figure 1, we have represented a 0-alcove in the build-

ing of SL3(k) (resp., G2(k)). The edges identified with hatch marks are 0-

associates; none of the remaining pictured 0-facets are 0-associated.

Figure 1. Associates in 0-alcoves for SL3(k) (resp., G2(k)).
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Lemma 3.3.7. r-associativity is an equivalence relation on F(r).

Proof. For two generalized r-facets F ∗
1 and F ∗

2 , we write F ∗
1 ∼ F ∗

2 if and

only if F ∗
1 and F ∗

2 are r-associated. The relation is reflexive and symmetric.

We now show that it is transitive.

Suppose F ∗
1 , F

∗
2 , F

∗
3 ∈ F(r) such that F ∗

1 ∼ F ∗
2 and F ∗

2 ∼ F ∗
3 . There exist

g2, g3 ∈ G and apartments A12,A23 in B(G) such that

A(A12, F
∗
1 ) = A(A12, g2F

∗
2 ) 6= ∅

and

A(A23, F
∗
2 ) = A(A23, g3F

∗
3 ) 6= ∅.

Let z ∈ C(F ∗
2 ). Then z ∈ g−1

2 A12∩A23 and so there exists h ∈ Gz ⊂ stabG(F ∗
2 )

such that hg−1
2 A12 = A23. We have

A(A12, F
∗
1 ) = A(A12, g2F

∗
2 ) = g2A(g−1

2 A12, F
∗
2 )

= g2h
−1A(A23, F

∗
2 ) = g2h

−1A(A23, g3F
∗
3 )

= A(A12, g2h
−1g3F

∗
3 ).

Remark 3.3.8. F(r)/∼ is finite.

3.4. Some finite-dimensional vector spaces.

Definition 3.4.1. For x ∈ B(G) denote the finite-dimensional f-vector

space gx,r/gx,r+ by Vx,r.

Definition 3.4.2. If F ∗ ∈ F(r) and x ∈ F ∗, then VF ∗ := Vx,r.

Definition 3.4.3. If A is an apartment in B(G), FA is an r-facet of A,

and x ∈ FA, then VFA
:= Vx,r.

3.5. A natural identification. In this subsection we show that if F ∗
1 , F

∗
2 ∈

F(r) are strongly r-associated, then we can naturally identify VF ∗
1

with VF ∗
2
.

Moreover, we show that these two spaces have the same orbit structure under

this identification.

Lemma 3.5.1. If F ∗
1 , F

∗
2 ∈ F(r) are strongly r-associated, then the natural

map

gF ∗
1
∩ gF ∗

2
→ VF ∗

i

is surjective with kernel g+
F ∗

1
∩ gF ∗

2
= gF ∗

1
∩ g+

F ∗
2

= g+
F ∗

1
∩ g+

F ∗
2
.

Proof. Choose an apartment A in B(G) for which Fi,A = F ∗
i ∩ A 6= ∅ for

i = 1, 2. If ψ ∈ Ψ(A) such that ψ|Fi,A
= r, then A(A, F ∗

i ) ⊂ Hψ−r ⊂ A. Thus,

since F1,A and F2,A are open in A(A, F ∗
2 ) = A(A, F ∗

1 ), we have

ψ|F1,A
= r if and only if ψ|F2,A

= r

for all ψ ∈ Ψ(A). The lemma follows.
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Remark 3.5.2. From Lemma 3.5.1, we obtain a bijective identification of

VF ∗
1

with VF ∗
2
. We write

VF ∗
1

i
=VF ∗

2

for this identification. More generally, we will use the “
i
=” notation whenever

two objects are to be identified via this natural bijection.

Definition 3.5.3. If F ∗ ∈ F(r) and x ∈ F ∗, then the image of Gx in

Autf(VF ∗) is denoted by Nx(F
∗).

Lemma 3.5.4. Suppose F ∗
i ∈ F(r) and xi ∈ F ∗

i for i = 1, 2. If F ∗
1 and F ∗

2

are strongly r-associated, then Nxi
(F ∗

i ) is the image of Gx1 ∩Gx2 in Autf(VF ∗
i
)

for i = 1, 2. Moreover

Nx1(F
∗
1 )

i
=Nx2(F

∗
2 )

under the identification of VF ∗
1

with VF ∗
2

introduced above.

Proof. We have that VF ∗
i

is the image of gx1,r∩gx2,r in VF ∗
i
(= gxi,r/gxi,r+)

for i = 1, 2. Let A be an apartment in B(G) containing x1 and x2. Suppose

ψ ∈ Ψ(A) such that ψ(x1) = 0 and the image of Uψ in Autf(VF ∗
1
) is nontrivial.

Since the image of Uψ is nontrivial, there exist X ∈ gx1,r ∩ gx2,r and g ∈ Uψ
such that gX 6= X mod (gx1,r+ ∩ gx2,r+).

We now show that ψ(x2) = 0.

If ψ(x2) > 0, then gX = X mod gx2,r+. Since gX − X ∈ gx1,r, from

Lemma 3.5.1 we have gX = X mod (gx1,r+ ∩ gx2,r+). We therefore conclude

that ψ(x2) ≤ 0.

If ψ(x2) < 0, then we let v denote the vector (x2 − x1). For all ε ∈ R we

have x1 + ε · v ∈ A. Consider the function

fv: R → R

which sends ε to ψ(x1 + ε · v). Note that fv(0) = 0 and fv(1) < 0. Since

ψ is affine, we have that fv(ε) > 0 for all ε < 0. Since F ∗
1 ∩ A is open in

A(A, F ∗
1 ) = A(A, F ∗

2 ) and x1 + R · v is an affine subspace of A(A, F ∗
1 ), there

exists an ε < 0 such that x1 + ε · v ∈ F ∗
1 ∩ A. Thus for some ε < 0 we have

x1 + ε · v ∈ F ∗
1 and Uψ ⊂ G+

x1+ε·v. Consequently, g ∈ Uψ acts trivially on

gF ∗
1

mod g+
F ∗

1
.

We therefore conclude that ψ(x2) = 0. Thus, if g ∈ Gx1 has nontrivial

image in Autf(VF ∗
1
), then it follows that we may assume that g ∈ Gx1 ∩ Gx2 .

The remainder of the lemma now follows.

From Lemma 3.5.4 we have that if F ∗ ∈ F(r) and x, y ∈ F ∗, then

Nx(F
∗) = Ny(F

∗). Therefore, the following definition makes sense.



310 STEPHEN DEBACKER

Definition 3.5.5. If F ∗ ∈ F(r) and x ∈ F ∗, then define N(F ∗) ⊂
Autf(VF ∗) by

N(F ∗) := Nx(F
∗).

We can now restate Lemma 3.5.4.

Corollary 3.5.6. If F ∗
1 , F

∗
2 ∈ F(r) are strongly r-associated, then

N(F ∗
1 )

i
=N(F ∗

2 ).

3.6. An equivalence relation on depth r cosets. In this subsection we

introduce the set Ir and an equivalence relation on Ir. The set Ir parametrizes

the set of all cosets of the form X + gx,r+ where x ∈ B(G) and X ∈ gx,r.

Definition 3.6.1.

Ir := {(F ∗, v) |F ∗ ∈ F(r) and v ∈ VF ∗}.

We now introduce a relation on Ir. Roughly speaking, two elements

(F ∗
1 , v1) and (F ∗

2 , v2) of Ir are identified if (1) F ∗
1 and F ∗

2 are r-associated,

and (2) v1 can then be identified with a twist of v2 (under the natural identi-

fication of the previous subsection).

Definition 3.6.2. For (F ∗
1 , v1) and (F ∗

2 , v2) in Ir we write (F ∗
1 , v1) ∼

(F ∗
2 , v2) if and only if there exist a g ∈ G and an apartment A in B(G) such

that

1. ∅ 6= A(A, F ∗
1 ) = A(A, gF ∗

2 ) and

2. gv2
i
= v1 in VgF ∗

2

i
=VF ∗

1
.

Here gv2 has the obvious interpretation: if X2 ∈ gF ∗
2

is any lift of v2, then
gv2 denotes the image of gX2 in VgF ∗

2
.

Lemma 3.6.3. The relation defined in Definition 3.6.2 is an equivalence

relation on Ir.

Proof. The relation is reflexive. We will show the relation is transitive;

once we do this, one can prove that the relation is symmetric in a similar

fashion.

We now show that the relation is transitive. Suppose that (F ∗
1 , v1), (F

∗
2 , v2),

(F ∗
3 , v3) ∈ Ir such that (F ∗

1 , v1) ∼ (F ∗
2 , v2) and (F ∗

2 , v2) ∼ (F ∗
3 , v3). Then there

exist g2, g3 ∈ G and apartments A12,A23 of B(G) such that

∅ 6= A(A12, F
∗
1 ) = A(A12, g2F

∗
2 )

∅ 6= A(A23, F
∗
2 ) = A(A23, g3F

∗
3 ),
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and
g2v2

i
= v1 in Vg2F ∗

2

i
=VF ∗

1

g3v3
i
= v2 in Vg3F ∗

3

i
=VF ∗

2
.

We now wish to show that (F ∗
1 , v1) ∼ (F ∗

3 , v3). We claim that in Defini-

tion 3.6.2 the role of the pair (g,A) will be played by (h′′h−1g2g3, A12) where

h ∈ Gg2x2 and h′′ ∈ Gh−1g2g3x3
∩Gh−1g2x2

will be specified below.

Fix xi ∈ C(F ∗
i ). There exists an element h ∈ Gg2x2 such that hA12 =

g2A23. As in the proof of Lemma 3.3.7 we have

∅ 6= A(A12, F
∗
1 ) = A(A12, g2F

∗
2 ) = h−1A(hA12, hg2F

∗
2 )

= h−1g2A(A23, F
∗
2 ) = h−1g2A(A23, g3F

∗
3 )

= A(A12, h
−1g2g3F

∗
3 ).

Arguing as in the proof of Lemma 3.5.1 we have that gF ∗
1
∩ gg2F ∗

2
∩ gh−1g2g3F ∗

3

surjects, under the natural map, onto VF ∗
1

(resp., Vg2F ∗
2
, resp., Vh−1g2g3F ∗

3
).

Choose X ∈ gF ∗
1
∩ gg2F ∗

2
∩ gh−1g2g3F ∗

3
such that the image of X in VF ∗

1
is v1.

We have that the image of X in Vg2F ∗
2

is g2v2. Thus the image of g
−1
2 X

in VF ∗
2

is v2. Since g−1
2 hg2 ∈ Gx2 , this implies that the image of g−1

2 hX =
(g−1

2 hg2)g
−1
2 X in VF ∗

2
is g−1

2 hg2v2. Note that g−1
2 hX ∈ gF ∗

2
∩ gg3F ∗

3
. Recall from

Corollary 3.5.6 that N(F ∗
2 )

i
=N(g3F

∗
3 ). Thus, from Lemma 3.5.4 there exists

an h′ ∈ Gg3x3 ∩Gx2 such that

g−1
2 hg2v2

i
= h′g3v3 in VF ∗

2

i
=Vg3F ∗

3
.

Thus, the image of X in Vh−1g2g3F ∗
3

is

h−1g2h′g3v3 = h−1(g2h′g
−1
2 )g2g3v3 = h′′h−1g2g3v3

where h′′ ∈ h−1g2(Gg3x3 ∩Gx2)g
−1
2 h ⊂ Gh−1g2g3x3

. We have shown that

∅ 6= A(A12, F
∗
1 ) = A(A12, h

−1g2g3F
∗
3 ) = A(A12, h

′′h−1g2g3F
∗
3 )

and

v1
i
= h′′h−1g2g3v3 in VF ∗

1

i
=Vh′′h−1g2g3F ∗

3
.

So the relation is transitive.

Remark 3.6.4. If f is finite, then Ir/∼ is finite.
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4. Jacobson-Morosov triples over f and k

Fix r ∈ R. Much of the material in this section may be thought of as a

generalization of the material in [6, §3].
In Section 4.3, we start with an x ∈ B(G) and an sssllll2(f)-triple in Vx,−r ×

Vx,0×Vx,r. From this data we manufacture an sssllll2(k)-triple in g which descends

to our sssllll2(f)-triple.

In Section 4.5 we perform this process in reverse. That is, we start with

an sssllll2(k)-triple in g and produce an x ∈ B(G) such that our given sssllll2(k)-triple

descends to an sssllll2(f)-triple in Vx,−r × Vx,0 × Vx,r.

4.1. Degenerate cosets.

Definition 4.1.1. Suppose F ∗ ∈ F(r). An element e ∈ VF ∗ is degenerate if

and only if there exists a lift E ∈ gF ∗ of e such that E ∈ N .

Lemma 4.1.2 (Moy and Prasad). Fix F ∗ ∈ F(r). An element e ∈ VF ∗ is

degenerate if and only if zero is in the Zariski closure of Gxe for all x ∈ F ∗.

Proof. “⇒”: Fix x ∈ F ∗. Suppose E ∈ gx,r ∩N is a lift of e. The desired

conclusion follows from [22, Proposition 4.3].

“⇐”: This may also be derived from [22]. We offer a slightly different

proof.

We need to produce an E ∈ N ∩ gF ∗ such that E is a lift of e.

Fix x ∈ F ∗. Let S be a maximal k-split torus of G such that x ∈

A
(

S(k)
)

. From [18] there exists a one-parameter subgroup ν̄ ∈ X
f
∗(Gx) such

that limt→0
ν̄(t)e = 0. Let S be the maximal f-split torus of Gx corresponding

to S. Since maximal f-split tori are Gx(f)-conjugate, there exist µ̄ ∈ X∗(S)

and ḡ ∈ Gx(f) such that limt→0
µ̄(t)ḡe = 0. Let µ ∈ X∗(S) be the lift of µ̄

and let g ∈ Gx be a lift of ḡ. Let E′ ∈ gx,r = gF ∗ be any lift of e. We have
g(E′ + gx,r+) = g(E′ + g+

F ∗) ⊂ gx+ε·µ,r+ for all ε sufficiently small and posi-

tive. Consequently, from [2] we have (E′ + g+
F ∗) ∩ N 6= ∅. Choose E in this

intersection.

4.2. Some hypotheses. The statements below list properties which I re-

quire; no attempt has been made to produce a minimal list of hypotheses. If

we assume that p is larger than some constant which can be determined by

examining the absolute root datum of G◦, then all of the hypotheses are valid.

In particular, if f has characteristic zero, then the following hypotheses always

hold. Where appropriate, I have identified references where a discussion about

the conditions under which the hypothesis is valid may be found.
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We begin by defining a finite-dimensional f-Lie algebra gx. Since we have

fixed a uniformizer̟ for k, for s ∈ R and j ∈ Z we have a natural identification

of Vx,s with Vx,s+j·ℓ. With respect to this identification, we define

gx :=
⊕

s∈R/ℓ·Z

Vx,s.

Note that dimf gx = dimk g. We define a product operation on gx in the

following manner. If Xs ∈ Vx,s and X t ∈ Vx,t, then we define [Xs,X t] to

be the image of [Xs,Xt] ∈ gx,(s+t) in Vx,(s+t) where Xs ∈ gx,s and Xt ∈ gx,t
are any lifts of Xt and Xs, respectively. Linearly extend this operation to an

operation on gx. With this product gx is an f-Lie algebra. For v ∈ gx, define

ad(v) ∈ Endf

(

gx

)

by ad(v)w = [v,w] for all w ∈ gx.

For more information about Hypothesis 4.2.1, see Appendix A.

Hypothesis 4.2.1. Suppose x ∈ B(G). If X ∈ N ∩ (gx,r r gx,r+), then

there exist H ∈ gx,0 and Y ∈ gx,−r such that

[H,X] = 2X mod gx,r+

[H,Y ] = −2Y mod gx,(−r)+

[X,Y ] = H mod gx,0+ .

If (f, h, e) denotes the image of (Y,H,X) in Vx,−r × Vx,0 × Vx,r ⊂ gx, then

(f, h, e) is an sssllll2(f)-triple, and gx decomposes into a direct sum of irreducible

(f, h, e)-modules of highest weight at most (p − 3). Moreover, there exists λ̄ ∈

X
f
∗(Gx), uniquely determined up to an element of X∗(Zx) whose differential is

zero, such that the following two conditions hold.

1. The image of dλ̄ in Lie(Gx) coincides with the one-dimensional subspace

spanned by h.

2. Suppose i ∈ Z. For v ∈ gx

if λ̄(t)v = tiv, then |i| ≤ (p− 3) and ad(h)v = iv.

Definition 4.2.2. In the notation of Hypothesis 4.2.1, we say that λ̄ ∈

X
f
∗(Gx) is adapted to the sssllll2(f)-triple obtained from the image of (Y,H,X) in

Vx,−r × Vx,0 × Vx,r.

Hypothesis 4.2.3. If X ∈ N , then there exists m ∈ N with m ≤ (p− 2)

such that ad(X)m = 0.

For more background on the next hypothesis see, for example, [10, §5.5].
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Hypothesis 4.2.4. Choose m ∈ N such that ad(X)m = 0 for all X ∈ N .

Suppose either that k has characteristic zero or that the characteristic of k is

greater than m. There exists a unique G-invariant map expt:N → U defined

over k such that for all X ∈ N the adjoint action of expt(X) on g is given by

m
∑

i=0

(

ad(X)
)i

i!
.

For more information about Hypothesis 4.2.5 see [10, §5.5].

Hypothesis 4.2.5. Suppose Hypothesis 4.2.4 is valid. Suppose X ∈ N .

There exists an sssllll2(k)-triple completing X. For any sssllll2(k)-triple (Y,H,X)

completing X there is a group homomorphism ϕ:SL2 → G defined over k such

that dϕ
(

0 1
0 0

)

= X, dϕ
(

0 0
1 0

)

= Y , dϕ
(

1 0
0 −1

)

= H, and for all t ∈ k

1. ϕ
(

1 t
0 1

)

= expt(tX) and

2. ϕ
(

1 0
t 1

)

= expt(tY ).

Finally, any two sssllll2(k)-triples completing X are conjugate by an element of

CG(X).

Remark 4.2.6. We note that the map ϕ occurring in Hypothesis 4.2.5 is

uniquely determined by dϕ.

For more information about Hypothesis 4.2.7, see [1, §1.6].

Hypothesis 4.2.7. Suppose x ∈ B(G). For all s ∈ R>0 and for all t ∈ R

there exists a map φx: gx,s → Gx,s such that for V ∈ gx,s and W ∈ gx,t we have

φx(V )W = W + [V,W ] mod gx,(s+t)+ .

4.3. From Jacobson-Morosov triples over f to Jacobson-Morosov triples

over k. Fix x ∈ B(G). Suppose that (f, h, e) ∈ Vx,−r × Vx,0 × Vx,r ⊂ gx is a

(nontrivial) sssllll2(f)-triple with adapted µ̄ ∈ X
f
∗(Gx). We now show that, subject

to some conditions on k and G, there exist Y ∈ gx,−r, H ∈ gx,0 and X ∈ gx,r
such that (Y,H,X) is an sssllll2(k)-triple in g and (Y,H,X) is a lift of (f, h, e) in

the obvious sense. We follow [6, §§3.8–3.9] where the proof is carried out for

certain G when r = 0.

Let S be a maximal k-split torus of G such that x ∈ A(S, k). Let S be

the maximal f-split torus of Gx corresponding to S. Since maximal f-split tori

are Gx(f)-conjugate, there exist λ̄ ∈ X∗(S) and ḡ ∈ Gx(f) such that λ̄ = ḡµ̄.

Let λ ∈ X∗(S) be the lift of λ̄ and replace (f, h, e) with (ḡf, ḡh, ḡe).

For i ∈ Z, define

g(i) := {Z ∈ g | λ(t)Z = ti · Z} and gx(i) := {v ∈ gx |
λ̄(t)v = ti · v}.
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For i ∈ Z and s ∈ R define

gx,s(i) := {Z ∈ gx,s |
λ(t)Z = ti · Z} and Vx,s(i) := {v ∈ Vx,s |

λ̄(t)v = ti · v}.

Because x ∈ A(S, k), λ ∈ X∗(S), and λ̄ ∈ X∗(S) we have

gx,s =
⊕

i

gx,s(i) and Vx,s =
⊕

i

Vx,s(i)

for s ∈ R and i ∈ Z.

Lemma 4.3.1. Suppose that Hypothesis 4.2.1 holds. If X ∈ gx,r(2) is any

lift of e, then for all s ∈ R, the map

ad(X)2: gx,s−r(−2) → gx,s+r(2)

is an isomorphism.

Proof. Fix X ∈ gx,r(2) which is a lift of e. Note that X is nilpotent. Since

ad(X)2 takes g(−2) to g(2) and k is complete, it will be sufficient to show that

for all t ∈ R, the map

ad(e)2:Vx,t−r(−2) → Vx,t+r(2)

is an isomorphism.

From Hypothesis 4.2.1 we have that the space gx is a direct sum of irre-

ducible (f, h, e)-modules. Consequently, it follows from sssllll2(f)-representation

theory that the map

ad(e)2: gx(−2) → gx(2)

is an isomorphism. The result follows.

Corollary 4.3.2. Suppose that Hypotheses 4.2.1 and 4.2.3 hold. If

X ∈ gx,r(2) is a lift of e, then there exist lifts Y ∈ gx,−r of f and H ∈ gx,0 of

h such that (Y,H,X) is an sssllll2(k)-triple in g.

Proof. Fix X ∈ gx,r(2) which is a lift of e. Since ad(X)2: gx,−r(−2) →
gx,r(2) is a surjection there exists Y ∈ gx,−r(−2) such that ad(X)2Y = −2X.

Since ad(e)2: gx(−2) → gx(2) is injective and ad(e)2f = −2e, Y is necessarily a

lift of f . Let H = [X,Y ] ∈ gx,0(0). H is a lift of h. We also have [H,X] = 2X.

We need to check that [H,Y ] = −2Y .

It follows from Hypothesis 4.2.3 and Morosov’s theorem (see [17, Lemma 7,

p. 98] or [10, the proof of Proposition 5.3.1; in particular, pp. 140–141]) that

there exists Y ′ ∈ g such that (Y ′,H,X) is an sssllll2(k)-triple. Since H ∈ g(0),

X ∈ g(2), and [g(i), g(j)] ⊂ g(i+j), we can assume that Y ′ ∈ g(−2). However,

since ad(X)2: gx,s−r(−2) → gx,s+r(2) is injective for all s ∈ R, we must have

Y ′ = Y .
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4.4. Some fixed-point results for one-parameter subgroups. Fix λ ∈ Xk
∗(G).

Let M denote the k-Levi subgroup of G whose group of k-rational points

is the Levi subgroup M = CG◦(λ). Note that for all z ∈ B(M) we have

dλ(R×) ⊂ gz,0 r gz,0+.

The following lemma and its subsequent applications in Corollaries 4.4.2

and 4.4.3 arose from discussions with Gopal Prasad. The results of this

subsection may be thought of as natural generalizations of the material in

[24, §3.6].

Lemma 4.4.1. Suppose F is a codimension one 0-facet in B(M,K).

Either every 0-alcove of B(G,K) which contains F in its closure belongs to

B(M,K) or exactly two of the 0-alcoves which contain F in their closure lie

in B(M,K).

Proof. Since F ⊂ B(M,K), there exists a maximal K-split torus T such

that T ⊂ M and F ⊂ A(T,K). Since λ ∈ X∗(T), we can consider the image λ̄

of λ in X∗(GF ). Let C1 and C2 denote the 0-alcoves in A(T,K) which contain

F in their closure. Let B denote the Borel subgroup of GF corresponding to C1.

First suppose that λ̄ lies in the center of GF . Since every Borel subgroup

of GF is conjugate to B by an element of GF , we conclude that every 0-alcove

in B(G,K) which contains F in its closure is conjugate to C1 by an element

of G(K)F ∩ M(K).

Now suppose that λ̄ does not lie in the center of GF . Since the derived

group of GF is either SL2 or PGL2, it follows that there are exactly two

Borel subgroups in GF containing λ̄. These Borel subgroups correspond to C1

and C2.

Corollary 4.4.2. Suppose that f has more than three elements. We

have

B(M) = B(G)λ(R×).

Proof. “⊂”: Since any natural embedding of B(M) into B(G) is M -

equivariant, this follows from the fact that λ(R×) fixes B(M) point-wise.

“⊃”: Suppose B(M) ( B(G)λ(R×). We will obtain a contradiction.

Since the group λ(R×) fixes B(M,K), there exists a 0-alcove C in B(G,K)

such that C̄ ∩ B(M,K) has codimension one and λ(R×) fixes C̄.

Choose an apartment A in B(M,K) such that F = C̄ ∩ B(M,K) ⊂ A.

Let T be the maximal K-split torus in G corresponding to A. Note that

λ ∈ X∗(T). Since C does not lie in B(M,K), from the proof of Lemma 4.4.1

we conclude that the image of λ in GF does not lie in the center of GF . Thus,

since the derived group of GF is either SL2 or PGL2, we conclude that if the



PARAMETRIZING NILPOTENT ORBITS 317

cardinality of f is greater than three, then the image of λ(R×) in GF lies only

in those Borel subgroups of GF corresponding to 0-alcoves in B(M,K). That

is, with our restrictions on f, C cannot be fixed by λ(R×).

Corollary 4.4.3. Suppose the characteristic of f is not two. Let H =

dλ(1). If y ∈ B(G), then H ∈ gy,0 if and only if y ∈ B(M).

Proof. “⇐”: This is immediate.

“⇒”: Let C denote the set of z ∈ B(G,K) for which H ∈ gg(K)z,0. The

set C is convex and contains B(M,K).

Suppose that C 6= B(M,K). We will derive a contradiction. Since C is

convex and contains B(M,K), there exists a 0-alcove C in B(G,K) such that

C̄ ∩ B(M,K) has codimension one and H ∈ gg(K)c,0 for all c ∈ C.

Choose an apartment A in B(M,K) such that C̄ ∩ B(M,K) ⊂ A. Let T

be the maximal K-split torus in G corresponding to A. Note that λ ∈ X∗(T).

Since C does not lie in B(M,K), from the proof of Lemma 4.4.1 we conclude

that the image of λ in GF does not lie in the center of GF . Thus, since the

derived group of GF is either SL2 or PGL2 and since the characteristic of f

is not two, the image of H in Lie(GF ) lies only in those Borel subalgebras of

Lie(GF ) corresponding to 0-alcoves in B(M,K). That is, with our restrictions

on f, we cannot have H ∈ gg(K)c,o for any c ∈ C.

4.5. From Jacobson-Morosov triples over k to Jacobson-Morosov triples

over f. Different versions of Lemma 4.5.1 were proved independently (and

nearly simultaneously) by Eugene Kushnirsky and myself. The proof here is

due to Eugene Kushnirsky; I thank him for allowing me to publish it here. My

proof will appear elsewhere.

Lemma 4.5.1. For any x, y ∈ B(G), we have stabG(x) ∩ Gy = Gx ∩
stabG(y) = G{x,y}.

Here G{x,y} is the Gal(K/k)-fixed points of the group of RK-rational

points of the identity component of the group scheme associated to the set

{x, y} (see [24, §3.4] and [9, §1.2.12]).

Proof (Eugene Kushnirsky). Without loss of generality, we work over K.

Let A be an apartment in B(G,K) containing x and y. Let T denote the

maximalK-split torus of G corresponding to A and let Z denote the centralizer

in G◦ of T.

For α ∈ Φ(T,K), let Uα ⊂ G◦(K) denote the corresponding root sub-

group. For a fixed ordering on Φ(T,K) we define U+ (resp., U−) to be the

group generated by {Uα}α>0 (resp., {Uα}α<0). For z ∈ A we define U±
z =

stabG(z)∩U±. Choose an ordering on Φ(T,K) so that U+
y ⊂ U+

x ; this implies
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that U+
{x,y} = U+

y . According to [9, Corollaire 4.6.7], Gy = U+
y U

−
y U

+
y I0(RK).

Here I is the smooth RK-model for Z constructed in [9, §4.4]. Another appli-

cation of [9, Corollaire 4.6.7] produces

stabG(x) ∩Gy = (stabG(x) ∩ U+
y U

−
y U

+
y )I0(RK)

= U+
{x,y}(stabG(x) ∩ U−

y )U+
{x,y}I

0(RK)

= U+
{x,y}U

−
{x,y}U

+
{x,y}I

0(RK)

= G{x,y}.

Remark 4.5.2. Recall the definition of unipotent in Section 2.1. Since

every unipotent element belongs to some parahoric subgroup, Lemma 4.5.1

implies that if u ∈ G is unipotent and x ∈ B(G) such that ux = x, then

u ∈ Gx.

For the remainder of this subsection we fix a nontrivial X ∈ N , and

we suppose that Hypothesis 4.2.5 holds. Let (Y,H,X) be an sssllll2(k)-triple

completing X. Suppose that ϕ is a homomorphism for (Y,H,X) as described

in Hypothesis 4.2.5. We have H = dϕ(
(

1 0
0 −1

)

) and Y = dϕ(
(

0 0
1 0

)

). We

wish to find a point y ∈ B(G) such that Y ∈ gy,−r, H ∈ gy,0, and X ∈ gy,r.

I thank Gopal Prasad for explaining to me the proof of the following

lemma; this lemma occurs without proof in [6, Corollary 3.7 (1)].

Lemma 4.5.3 (Dan Barbasch and Allen Moy). Suppose Hypothesis 4.2.5

holds. There exists x ∈ B(G) such that Y,H,X ∈ gx,0.

Proof (Gopal Prasad). Let J = ϕ
(

SL2(RK)
)

⊂ G◦(K). The group

J ⋊ Gal(K/k) acts on B(G,K). Moreover, since J ⋊ Gal(K/k) is bounded, its

action has a fixed point [24, §2.3.1]. Let x ∈ B(G,K) be such a fixed-point.

Let G denote the R-group scheme associated to stabG◦(K)(x) (see [9]).

The generic fiber G ⊗R k is G◦ and the group of RK-rational points of G is

stabG◦(K)(x). Let L(G) denote the Lie algebra of G. L(G) is a lattice in g

and gg(K)x,0 = L(G) ⊗R RK . Let J denote the R-group scheme associated

to SL2(RK). From [9, Proposition 1.7.6] the map ϕ induces an RK-scheme

homomorphism of J into G. Consequently, dϕ
(

sssllll2(RK)
)

⊂ gg(K)x,0.

Since x is fixed by Gal(K/k), we have x ∈ B(G) and Y,H,X ∈ gx,0.

Remark 4.5.4. The images of Y , H, and X in Vx,0 form an sssllll2(f)-triple.

Corollary 4.5.5. Suppose Hypotheses 4.2.3 and 4.2.5 hold. If x ∈
B(G) = B(G,K)Gal(K/k), then

x ∈ B(G,K)ϕ(SL2(RK )) if and only if dϕ
(

sssllll2(R)
)

⊂ gx,0.

Proof. “⇒”: This follows from the proof of Lemma 4.5.3.
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“⇐”: Suppose F is a Gal(K/k)-invariant 0-facet in B(G,K) such that x ∈

FGal(K/k). Since dϕ
(

sssllll2(R)
)

⊂ gx,0, it follows from Hypotheses 4.2.3 and 4.2.5

that for all t ∈ RK both ϕ(
(

1 t
0 1

)

) and ϕ(
(

1 0
t 1

)

) lie in NG(K)(gg(K)x,0) ∩

NG(K)(gg(K)x,0+). Since these elements generate ϕ
(

SL2(RK)
)

, it follows from

Lemma 3.2.8 that ϕ
(

SL2(RK)
)

⊂ stabG◦(K)(F ). From Remark 4.5.2 it follows

that ϕ
(

SL2(RK)
)

⊂ stabG◦(K)(F ) if and only if ϕ
(

SL2(RK)
)

⊂ G(K)F .

Thus, ϕ
(

SL2(RK)
)

⊂ G(K)F = G(K)x ⊂ stabG(K)(x).

Let λ ∈ Xk
∗(G) be the one-parameter subgroup derived from ϕ. That is,

λ(t) = ϕ(
(

t 0
0 t−1

)

) for all t ∈ k×.

Definition 4.5.6. The one-parameter subgroup λ constructed in the pre-

ceding paragraph is said to be adapted to the sssllll2(k)-triple (Y,H,X).

Define the Levi subgroup M = CG◦(λ). We now present two corollaries

of the results in subsection 4.4.

Corollary 4.5.7. Suppose Hypotheses 4.2.3 and 4.2.5 hold. There exists

y ∈ B(G) such that Y ∈ gy,−r, H ∈ gy,0, and X ∈ gy,r.

Proof. The hypotheses imply that f has more than three elements.

Choose x ∈ B(G) as in Lemma 4.5.3. Since x is fixed by the group λ(R×),

Corollary 4.4.2 tells us x ∈ B(M). Fix an apartment A in B(M) which contains

x. Since the group λ(k×) lies in the center of M , λ acts on every apartment in

B(M) by translation. It therefore makes sense to define y = x+ (r/2) · λ ∈ A.

This y satisfies the requirements of the lemma.

Remark 4.5.8. The image of (Y,H,X) in Vy,−r × Vy,0 × Vy,r forms an

sssllll2(f)-triple under the inherited Lie algebra operation.

The following result may be interpreted as a sharpening of Corollary 4.5.7.

Corollary 4.5.9. Suppose Hypotheses 4.2.3 and 4.2.5 hold. If y ∈ B(G)

such that Y ∈ gy,−r, H ∈ gy,0, and X ∈ gy,r, then y must lie in B(M).

Proof. The hypotheses imply that the characteristic of f is not two. There-

fore, the result follows from Corollary 4.4.3.
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5. The parametrization

Fix r ∈ R. In this section we combine the material of the previous two

sections and produce a parametrization of the nilpotent orbits in g.

5.1. A “building set” related to an sssllll2(k)-triple. Suppose Hypotheses 4.2.3

and 4.2.5 hold. Given an sssllll2(k)-triple in g, we want to produce a nice subset

of B(G). The idea for the definitions in this subsection originated in [21].

Fix Z ∈ N and s ∈ R.

Definition 5.1.1.

B(Z, s) := {z ∈ B(G) |Z ∈ gz,s}.

The set B(Z, s) is a nonempty and convex subset of B(G). Moreover, it is

the union of generalized s-facets.

Lemma 5.1.2. B(Z, s) is closed.

Proof. Suppose that y ∈ B(Z, s). Let F ∗ be the generalized s-facet con-

taining y. From Lemma 3.2.20, the union of all generalized s-facets that contain

y in their closure is an open neighborhood of y. Consequently, there exists a

generalized s-facet H∗ such that H∗ ⊂ B(Z, s) and F ∗ ⊂ H∗. From Corol-

lary 3.2.19, we have Z ∈ gH∗,s ⊂ gF ∗,s = gy,s. Thus y ∈ B(Z, s).

Suppose (Y,H,X) is an (possibly trivial) sssllll2(k)-triple in g.

Definition 5.1.3.

B(Y,H,X) := B(X, r) ∩ B(Y,−r).

The set B(Y,H,X) is a nonempty (Corollary 4.5.7), closed (Lemma 5.1.2),

and convex subset of B(G). Moreover, it is also the union of generalized

r-facets.

These properties imply the following result (see also [6, Lemma 3.6]).

Lemma 5.1.4. Suppose F ∗
1 , F

∗
2 ∈ F(r) and F ∗

i ⊂ B(Y,H,X). If F ∗
1

and F ∗
2 are maximal generalized r-facets in B(Y,H,X), then F ∗

1 and F ∗
2 are

strongly r-associated.

Proof. Choose xi ∈ F ∗
i . Let A be an apartment in B(G) containing x1

and x2. Since F ∗
i is maximal in B(Y,H,X) and since B(Y,H,X) is convex, we

have ∅ 6= F ∗
j ∩ A ⊂ A(A, F ∗

i ) for i, j ∈ {1, 2}.
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Remark 5.1.5. In the language of Section 4.5, if X is not trivial, then

from Corollaries 4.4.2, 4.5.5 and 4.5.9 we have

B(Y,H,X) = B(G,K)ϕ(SL2(RK ))⋊Gal(K/k) + (r/2) · λ.

The sum on the right-hand side occurs in B(G)λ(R×) = B
(

CG◦(λ)
)

.

5.2. An extension of some work of J.-L. Waldspurger. We assume that

Hypotheses 4.2.3, 4.2.5, and 4.2.7 are in effect.

Fix X ∈ N r {0}. Suppose (Y,H,X) is an sssllll2(k)-triple in g. Suppose

λ ∈ Xk
∗(G) is adapted to (Y,H,X). Fix x ∈ B(Y,H,X).

We will explore the relationship between the coset X + gx,r+ and the

nilpotent orbit GX. For example, from [6] we expect that GX is the unique

nilpotent orbit of minimal dimension which intersects X + gx,r+ nontrivially.

This result requires some work; we follow J.-L. Waldspurger’s presentation

[26, §IX.4].

Since H ∈ gx,0, it follows from Corollary 4.5.9 that there exists a maximal

k-split torus S in G such that x ∈ A(S, k) and λ ∈ X∗(S). For i ∈ Z and

s ∈ R, define (for λ) the objects g(i) and gx,s(i) as in Section 4.3. As before

we have

(2) gx,s =
⊕

i

gx,s(i).

Lemma 5.2.1. Assume that Hypotheses 4.2.3, 4.2.5, and 4.2.7 hold.

G+
x

(

X + Cg
x,r+ (Y )

)

= X + gx,r+.

Proof (A generalization of an argument of J.-L. Waldspurger).

“⊂”: There is nothing to prove here.

“⊃”: From Hypothesis 4.2.3 and [10, Proposition 5.4.8] we can write g as

a direct sum of irreducible (Y,H,X)-modules of highest weight at most (p−3).

Write

g =
⊕

ρ∈Z

gρ

where gρ denotes the isotypic component consisting of irreducible (Y,H,X)-

modules of highest weight ρ. For i, ρ ∈ Z we define g(ρ, i) := gρ ∩ g(i). We

have g(i) = ⊕ρg(ρ, i) and so g = ⊕ρ,ig(ρ, i). For i, ρ ∈ Z and s ∈ R we define

gx,s(ρ, i) := gx,s ∩ g(ρ, i).

We first want to show

(3) gx,s =
⊕

ρ,i

gx,s(ρ, i).
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A calculation shows that if g(ρ, i) is nontrivial, then

g(ρ, i) = {Z ∈ g(i) |
(

ad(X) ◦ ad(Y )
)

(Z) = j(ρ, i) · Z},

where j(ρ, i) :=
(

(ρ + 1)2 − (i − 1)2
)

/4. Note that if g(ρ, i) and g(ρ′, i) are

nontrivial and ρ 6= ρ′, then (j(ρ, i) − j(ρ′, i), p) = 1.

Fix ρ, i ∈ Z such that g(ρ, i) is nontrivial. Define the nonzero integer

C(ρ) :=
∏

ρ′ 6=ρ; g(ρ′,i)6={0}

(

j(ρ, i) − j(ρ′, i)
)

.

From the previous paragraph (C(ρ), p) = 1 and so C(ρ) ∈ R×. Write Z ∈ g(i)

as Z =
∑

Zρ′ where Zρ′ ∈ g(ρ′, i). Since the operator

C(ρ)−1 ·
∏

ρ′ 6=ρ; g(ρ′,i)6={0}

(

ad(X) ◦ ad(Y ) − j(ρ′, i)
)

maps Z to Zρ and preserves depth, we have

(4) gx,s(i) =
⊕

ρ

gx,s(ρ, i).

Equations (4) and (2) imply that equation (3) is valid.

Note that Cg(X) = ⊕ig(i, i) and Cg(Y ) = ⊕ig(−i, i). Equation (3) tells

us that

(5) Cgx,s(Y ) =
⊕

i

gx,s(−i, i).

From equation (4) and its proof we have

gx,s(i) = gx,s(−i, i) + ad(X)
(

gx,(s−r)(i− 2)
)

.

Combining this, equation (2), and equation (5) yields

(6) gx,s = Cgx,s(Y ) + ad(X)(gx,(s−r)).

Suppose Z ∈ gx,r+. We wish to produce an h ∈ G+
x and C ∈ Cg

x,r+ (Y )

such that h(X + C) = X + Z. Let h0 = 1 and C0 = 0.

Fix s1 > r such that gx,r+ = gx,s1 6= gx,s+1
. From equation (6), we can

write Z = C ′
1 + ad(X)P1 with C ′

1 ∈ Cgx,s1
(Y ) and P1 ∈ gx,(s1−r). From

Hypothesis 4.2.7, there exists h′1 = φx(−P1) ∈ Gx,(s1−r) ⊂ G+
x such that

h′1h0(X + C0 + C ′
1) = X + C ′

1 + ad(X)P1 mod gx,s+1
= X + Z − Z1

with Z1 ∈ gx,s+1
. Let h1 = h′1 · h0 and C1 = C0 + C ′

1
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Fix s2 > s1 such that gx,s+1
= gx,s2 6= gx,s+2

. From equation (6), we can

write Z1 = C ′
2 + ad(X)P2 with C ′

2 ∈ Cgx,s2
(Y ) and P2 ∈ gx,(s2−r). From

Hypothesis 4.2.7, there exists h′2 = φx(−P2) ∈ Gx,(s2−r) ⊂ Gx,(s1−r) such that

h′2h1(X + C1 + C ′
2) = h′2(X + Z − Z1 + C ′

2) mod gx,s+2

= X + Z − Z1 + C ′
2 + ad(X)P2 mod gx,s+2

= X + Z − Z2

with Z2 ∈ gx,s+2
. Let h2 = h′2 · h1 and C2 = C1 + C ′

2.

Continuing in this way we produce a sequence r < s1 < s2 < · · · < sn · · ·
with sn → ∞, elements hn = h′nh(n−1) ∈ G+

x with h′n ∈ Gx,(sn−r) , and

elements Cn = C(n−1) + C ′
n ∈ Cg

x,r+ (Y ) with C ′
n ∈ Cgx,sn

(Y ) such that

hn(X + Cn) = X + Z mod gx,s+n
.

Let h = limn→∞ hn and C = limn→∞Cn. Then h ∈ G+
x , C ∈ Cg

x,r+ (Y ) and
h(X + C) = X + Z.

Lemma 5.2.2. Suppose that Hypothesis 4.2.5 is valid.
(

X + Cg(Y )
)

∩ GX = {X}.

Proof. See, for example, [26, V.7 (9)].

Corollary 5.2.3. Assume that Hypotheses 4.2.3, 4.2.5, and 4.2.7 hold.

(X + gx,r+) ∩ GX = G+
x X.

Corollary 5.2.4. Assume that Hypotheses 4.2.3, 4.2.5, and 4.2.7 hold.

If O ∈ O(0) such that

(X + gx,r+) ∩ O 6= ∅,

then GX ⊂ O.

Here the closure is taken in the p-adic topology on g.

Proof (J.-L. Waldspurger). There exist h ∈ G+
x and C ∈ Cg

x,r+ (Y ) such

that h(X +C) ∈ O. Thus, X +C ∈ O. Since X +C is nilpotent, there exists

(from Hypothesis 4.2.5) a µ ∈ Xk
∗(G) such that µ(t)(X +C) = t2 · (X +C) for

all t ∈ k×. Since C ∈ ⊕i≤0g(i), we have

lim
t→0

λ(t)−1µ(t)(X + C) = X + lim
t→0

λ(t)−1
(t2 · C)

= X.
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We close with a corollary to the above corollary.

Corollary 5.2.5. Assume that Hypotheses 4.2.3, 4.2.5, and 4.2.7 hold.

Choose F ∗ ∈ F(r) such that F ∗ ⊂ B(Y,H,X). If O ∈ O(0) such that

(X + g+
F ∗) ∩ O 6= ∅,

then GX ⊂ O.

Proof. Note that in this entire subsection the only assumption on x was

that x ∈ B(Y,H,X). The result follows from Corollary 5.2.4.

5.3. A map for degenerate cosets. We assume that all of the hypotheses

stated in Section 4.2 hold.

The set Ir is too large. We first restrict to degenerate cosets of depth r.

Definition 5.3.1.

Inr := {(F ∗, v) ∈ Ir | v is a degenerate element of VF ∗}.

Remark 5.3.2. Suppose (F ∗
i , vi) ∈ Ir for i = 1, 2 and (F ∗

1 , v1) ∼ (F ∗
2 , v2).

We have (F ∗
1 , v1) ∈ I

n
r if and only if (F ∗

2 , v2) ∈ Inr .

Suppose that (F ∗, e) ∈ Inr . We wish to attach to (F ∗, e) a nilpotent orbit

O(F ∗, e) ∈ O(0).

Suppose x ∈ F ∗. We adopt the following conventions. If e is trivial, then

we declare that the sssllll2(f)-triple (f, h, e) ∈ Vx,−r × Vx,0 × Vx,r completing e is

the trivial triple. Moreover, given a trivial sssllll2(f)-triple (f, h, e) as above, we

declare that the sssllll2(k)-triple lifting (f, h, e) is the trivial sssllll2(k)-triple.

Lemma 5.3.3. Suppose all the Hypotheses of Section 4.2 hold. Suppose

(F ∗, e) ∈ Inr .

1. Fix x ∈ F ∗. There exists an sssllll2(f)-triple (f, h, e) ∈ Vx,−r × Vx,0 × Vx,r
completing e and an sssllll2(k)-triple (Y,H,X) which lifts (f, h, e).

2. For any x ∈ F ∗, for any sssllll2(f)-triple (f, h, e) ∈ Vx,−r × Vx,0 × Vx,r com-

pleting e, and for any sssllll2(k)-triple (Y,H,X) which lifts (f, h, e) we have

F ∗ ⊂ B(Y,H,X) and GX is the unique nilpotent orbit of minimal di-

mension which intersects the coset e nontrivially.

Proof. We first prove (1). Fix x ∈ F ∗. If e is trivial, there is nothing to do.

Suppose e is nontrivial. Hypothesis 4.2.1 says that there exist f ∈ Vx,−r and

h ∈ Vx,0 such that (f, h, e) is an sssllll2(f)-triple (under the inherited Lie algebra

operation). From Corollary 4.3.2 we know that a lift (Y,H,X) of (f, h, e)

exists.



PARAMETRIZING NILPOTENT ORBITS 325

Now we prove (2). Suppose x ∈ F ∗, the sssllll2(f)-triple (f, h, e) ∈ Vx,−r ×
Vx,0×Vx,r completes e, and (Y,H,X) is an sssllll2(k)-triple which lifts (f, h, e). We

have F ∗ ⊂ B(Y,H,X). It follows from Corollary 5.2.5 that GX is the unique

nilpotent orbit of minimal dimension which intersects the coset e nontrivially.

The following definition now makes sense.

Definition 5.3.4. Suppose all the Hypotheses of Section 4.2 hold. For

(F ∗, e) ∈ Inr let O(F ∗, e) denote the unique nilpotent orbit of minimal dimen-

sion which intersects the coset e nontrivially.

Remark 5.3.5. If g ∈ G and (F ∗, e) ∈ Inr , then O(gF ∗, ge) = O(F ∗, e).

5.4. The map is well defined. Recall the equivalence relation on Ir defined

in Section 3.6.

Lemma 5.4.1. We assume that all of the hypotheses of Section 4.2 hold.

The map from Inr to O(0) which sends (F ∗, e) to O(F ∗, e) induces a well-defined

map from Inr /∼ to O(0).

Proof. Suppose (F ∗
i , ei) ∈ Inr for i = 1, 2. We need to show that if

(F ∗
1 , e1) ∼ (F ∗

2 , e2), then O(F ∗
1 , e1) = O(F ∗

2 , e2). We may assume that ei ∈ VF ∗
i

is not trivial.

Choose xi ∈ C(F ∗
i ). Since (F ∗

1 , e1) ∼ (F ∗
2 , e2), there exist g ∈ G and an

apartment A in B(G) such that

∅ 6= A(A, F ∗
1 ) = A(A, gF ∗

2 )

and

e1
i
= ge2 in VF ∗

1

i
=VgF ∗

2
.

From Remark 5.3.5 we can assume that g = 1.

Let S denote the maximal k-split torus in G corresponding to A. Let S

denote the maximal f-split torus in Gx1 corresponding to S.

Complete e1 to an sssllll2(f)-triple (f1, h1, e1) ∈ Vx1,−r × Vx1,0 × Vx1,r and

suppose λ̄ ∈ X
f
∗(Gx1) is adapted to this triple. There exists h ∈ Gx1 such that

h̄λ̄ ∈ X∗(S). (Here h̄ denotes the image of h in Gx1(f).) Since F ∗
1 and F ∗

2 are

strongly r-associated and e1
i
= e2 in VF ∗

1

i
=VF ∗

2
, it follows from Lemma 3.5.4

that there exists h′ ∈ Gx1 ∩Gx2 such that

he1
i
= h′e1

i
= h′e2 in VF ∗

1

i
=VF ∗

1

i
=VF ∗

2
.

Let λ ∈ X∗(S) be the lift of h̄λ̄.
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Let g = ⊕jg(j) be the decomposition of g arising from λ. We have

gF ∗
i

= ⊕jgF ∗
i
(j). There exists an X ∈ gF ∗

1
(2) ∩ gF ∗

2
(2) such that the image of

X in VF ∗
i

is h′ei.

It follows from Corollary 4.3.2 and Lemma 5.3.3 that

O(F ∗
i , ei) = O(F ∗

i ,
h′ei) = GX.

5.5. Distinguished cosets. We assume that all of the hypotheses of Sec-

tion 4.2 hold.

The set Inr /∼ is too large. We now restrict our attention to distinguished

cosets of depth r.

Definition 5.5.1. We define Idr ⊂ Inr to be those pairs (F ∗, e) ∈ Inr such

that for any x ∈ F ∗, for any sssllll2(f)-triple (f, h, e) ∈ Vx,−r×Vx,0×Vx,r completing

e, and for any sssllll2(k)-triple (Y,H,X) which lifts (f, h, e), we have that F ∗ is a

maximal generalized r-facet in B(Y,H,X).

Remark 5.5.2. If r = 0, then it can be shown that this definition of

distinguished is equivalent to the usual one. That is, if (F ∗, e) ∈ Id0 , then e

does not lie in any proper Levi subalgebra of the f-Lie algebra VF ∗,0.

Lemma 5.5.3. Suppose all of the hypotheses of Section 4.2 hold. If

(F ∗, e) ∈ Inr and e is nontrivial, then (F ∗, e) ∈ Idr if and only if there exist

an x ∈ F ∗, an sssllll2(f)-triple (f, h, e) ∈ Vx,−r × Vx,0 × Vx,r completing e, and an

sssllll2(k)-triple (Y,H,X) in g lifting (f, h, e) such that F ∗ is a maximal general-

ized r-facet in B(Y,H,X).

Proof. “⇒”: This follows from the definitions.

“⇐”: Suppose we have an x ∈ F ∗, an sssllll2(f)-triple (f, h, e) ∈ Vx,−r×Vx,0×
Vx,r completing e, and an sssllll2(k)-triple (Y,H,X) in g lifting (f, h, e) such that

F ∗ is a maximal generalized r-facet in B(Y,H,X).

Suppose we also have data x′ ∈ F ∗, an sssllll2(f)-triple (f ′, h′, e) ∈ Vx′,−r ×
Vx′,0 × Vx′,r completing e, and an sssllll2(k)-triple (Y ′,H ′,X ′) in g which lifts

(f ′, h′, e) such that F ∗ is not a maximal generalized r-facet in B(Y ′,H ′,X ′).

We will derive a contradiction.

Since gx′,−r = gx,−r (from Lemma 3.2.5) and gx′,r = gx,r, we have

[gx′,−r, gx′,r] ⊂ gx,0.

Thus, we can assume that x = x′.

From Lemma 5.3.3 we have

GX = GX ′ = O(F ∗, e).
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From Corollary 5.2.3 we can assume (after replacing (Y ′,H ′,X ′) with a G+
x -

conjugate) that X = X ′. From Hypothesis 4.2.5, there exists a g ∈ CG(X)

such that Y ′ = gY and H ′ = gH. Consequently, B(Y ′,H ′,X) = gB(Y,H,X).

By assumption, g−1F ∗ ⊂ g−1B(Y ′,H ′,X) = B(Y,H,X) is not a maxi-

mal generalized r-facet in B(Y,H,X). Since dim g−1F ∗ = dimF ∗, this is a

contradiction.

Remark 5.5.4. Suppose (F ∗
i , ei) ∈ I

n
r for i = 1, 2 and (F ∗

1 , e1) ∼ (F ∗
2 , e2).

From Lemma 5.4.1 we have O(F ∗
1 , e1) = O(F ∗

2 , e2). From the proof above, we

conclude that (F ∗
1 , e1) ∈ Idr if and only if (F ∗

2 , e2) ∈ Idr .

5.6. A bijective correspondence. We assume that all of the hypotheses

of Section 4.2 hold. In this subsection we establish the following theorem.

Theorem 5.6.1. Assume that all of the hypotheses of Section 4.2 hold.

There is a bijective correspondence between Idr /∼ and O(0) given by the map

which sends (F ∗, e) to O(F ∗, e).

Proof. We have already seen that the map is well defined.

We first show that the map is injective. We need to show that if (F ∗
1 , e1),

(F ∗
2 , e2) ∈ Idr and O(F ∗

1 , e1) = O(F ∗
2 , e2), then (F ∗

1 , e1) ∼ (F ∗
2 , e2).

If O(F ∗
i , ei) = {0}, then F ∗

i is open in B(G) and the result follows. Thus,

we may assume that ei is not trivial.

Fix xi ∈ C(F ∗
i ). Complete ei to an sssllll2(f)-triple (fi, hi, ei) ∈ Vxi,−r

× Vxi,0 × Vxi,r. From Corollary 4.3.2 we may lift (fi, hi, ei) to an sssllll2(k)-triple

(Yi,Hi,Xi) in g. From Lemma 5.3.3 we have O(F ∗
i , ei) = GXi.

Since O(F ∗
1 , e1) = O(F ∗

2 , e2), there exists a g ∈ G such that (gY2,
gH2,

gX2)

= (Y1,H1,X1). Consequently, since (F ∗
i , ei) ∈ Idr , from Lemma 5.1.4 we have

that F ∗
1 and gF ∗

2 are strongly r-associate. Thus, there exists an apartment A
in B(G) such that

∅ 6= A(A, F ∗
1 ) = A(A, gF ∗

2 ).

Moreover, since X1 has image e1 in VF ∗
1

and X1 has image ge2 in VgF ∗
2
, we have

X1 ∈ gF ∗
1
∩ ggF ∗

2
and

e1
i
= ge2 in VF ∗

1

i
=VgF ∗

2
.

Thus, the map is injective.

We now show that the map is surjective. Suppose O ∈ O(0).

If O is trivial, then let F ∗ be an open generalized r-facet and let e be

trivial in VF ∗ . We have (F ∗, e) ∈ Idr and O(F ∗, e) = {0}.
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Suppose O is not trivial. Fix X ∈ O. Complete X to an sssllll2(k)-triple

(Y,H,X) in g. Let F ∗ be a maximal generalized r-facet in B(Y,H,X) and

let e denote the image of X in VF ∗ . We will be done if we can show that

O(F ∗, e) = GX. This, however, follows from Lemma 5.3.3 (2).

For future reference, we record the following corollary of the proof of

Theorem 5.6.1.

Corollary 5.6.2. Assume that all of the hypotheses of Section 4.2 hold.

Suppose (F ∗
1 , e1), (F

∗
2 , e2) ∈ Idr and (F ∗

1 , e1) ∼ (F ∗
2 , e2). There exists g ∈ G and

an sssllll2(k)-triple (Y,H,X) such that

1. X ∈ gF ∗
1
∩ ggF ∗

2
,

2. X has image e1 in VF ∗
1

and image ge2 ∈ VgF ∗
2
, and

3. F ∗
1 and gF ∗

2 are maximal generalized r-facets in B(Y,H,X).

Appendix A. Some comments on Hypothesis 4.2.1

A.1. Introduction. We will show that, subject to some conditions on k

and G, Hypothesis 4.2.1 is valid. This result is related to material in [16] and

[19, §2] . No attempt has been made to produce an optimal set of conditions.

Fix x, r, and X as in the statement of Hypothesis 4.2.1. Without loss of

generality, we assume throughout this appendix that G is connected.

A.2. An sssllll2(f)-triple. In this subsection, we establish the existence of Y

and H in g satisfying the requirements of Hypothesis 4.2.1.

We let g′ (resp., z) denote the Lie algebra of the group of k-rational points

of the the derived group of G (resp., the connected component of the center of

G). From [3, Proposition 3.1] if p is larger than some constant which may be

determined by examining the absolute root datum of G, then we may assume

that g = z + g′. Thus, without loss of generality, we may assume that G is

semisimple.

We claim that, under suitable conditions on k and G, the Killing form

κ identifies gx,s with g∗x,s for all s ∈ R; in particular, for all Z ∈ gx,s r gx,s+

there exists a W ∈ gx,−sr gx,(−s)+ such that κ(Z,W ) ∈ R×. Indeed, since gx,s
[1, Proposition 1.4.1] and κ behave well with respect to Galois descent, we may

reduce to the case when G is k-split. If G is k-split, we can fix a Chevalley

basis for gg . In this situation the statement follows if p is greater than some

constant which may be derived from the absolute root datum of G.

Recall the definition of the finite-dimensional f-Lie algebra gx from Sec-

tion 4.2. From the previous paragraph we see that, under suitable conditions

on k and G, the representation ad of gx has a nondegenerate trace-form. Let

e ∈ gx denote the image of X in Vx,r. From Hypothesis 4.2.3 we have that

ad(e)m = 0 for some m ≤ (p − 2). Thus from [10, Proposition 5.3.1] there

exists an sssllll2(f)-triple (f, h, e) in gx completing e.
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We claim that we may assume that f ∈ Vx,−r and h ∈ Vx,0. (We already

know that e ∈ Vx,r.) Indeed, let f−r denote the image of f under the projection

of gx onto Vx,−r ⊂ gx. Since e ∈ Vx,r ⊂ gx, it follows that ad(e)2f−r =

ad(e)2f = −2e. Let h0 denote the image of h under the projection of gx onto

Vx,0. We have ad(e)f−r = h0 and ad(e)h0 = −2e. From Morosov’s theorem

(see [17, Lemma 7, p. 98] or [10, the proof of Proposition 5.3.1; in particular,

pp. 140–141]) there exists f ′ ∈ gx such that (f ′, h0, e) is an sssllll2(f)-triple. Since

h0 ∈ Vx,0, e ∈ Vx,r, and [Vx,s, Vx,t] ⊂ Vx,(s+t) for all s, t ∈ R, we can assume

that f ′ ∈ Vx,−r. Thus we may assume that f ∈ Vx,−r and h ∈ Vx,0.
Consequently, we can choose lifts Y ∈ gx,−r of f and H ∈ gx,0 of h which

satisfy the initial requirements of Hypothesis 4.2.1. From Lemma 4.1.2 we may

assume that Y is nilpotent. Thus from Hypothesis 4.2.3 we have that ad(f)m =

ad(e)m = 0 for some m ≤ (p − 2). Therefore, from [10, Proposition 5.4.8] we

have that gx is a direct sum of irreducible (f, h, e)-modules of highest weight

at most (p − 3).

A.3. A one-parameter subgroup in Gx. We now wish to establish the ex-

istence of λ̄ ∈ X
f
∗(Gx) satisfying the requirements of Hypothesis 4.2.1. We

continue to use the notation introduced above, but we now remove the as-

sumption that G is semisimple.

Since h is semisimple, from [7, Proposition 11.8 and its proof] there exists

a maximal f-torus T of Gx such that h ∈ Lie(T). Let T be a maximal K-split

k-torus of G associated to T. (That is, we have x ∈ A(T,K) and the image

of T(K) ∩ G(K)x in Gx(F) is T(F). That the torus T exists follows from the

argument made in the final paragraph of the proof of [9, Proposition 5.1.10].)

Let

g(F)x :=
⊕

s∈R/ℓ·Z

gg(K)x,s/gg(K)x,s+.

As in Section 4.2, we give g(F)x a natural Lie algebra structure; in fact, gx
may be identified with the set of Gal(F/f)-fixed points of the f-Lie algebra

g(F)x. Since g(F)x decomposes into irreducible (f, h, e)-modules, it follows

from [10, Lemmas 5.5.3 and 5.5.4] that there exists a one-parameter subgroup

λ̄2: GL1 → GL(g(F)x) defined over f such that for v ∈ g(F)x

if λ̄2(t) · v = tiv, then |i| ≤ (p− 3) and [h, v] = iv.

For α ∈ Φ(T,K), we denote by (g(F)x)α the (nontrivial) subspace of g(F)x
on which T acts by α. We define a linear map λ2 from the K-root lattice in

X∗(T) to Z via λ̄2. That is, for α ∈ Φ(T,K) we define 〈λ2, α〉 ∈ Z by the

equality

λ̄2(t) · v = t〈λ2,α〉v

for all v ∈ (g(F)x)α and extend linearly. Note that λ2 is Gal(K/k)-invariant.
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For i ∈ Z, we define

gg(K)(i) :=
⊕

α∈Φ(T,K)∪{0};〈λ2,α〉=i

gg(K)α.

Write g(i) for the Gal(K/k)-fixed points of gg(K)(i). Let X ∈ g(2) ∩ gx,r
be any lift of e. Since ḡx decomposes into irreducible (e, h, f)-modules of

highest weight at most (p − 3), we conclude that ad(e)2: ḡx(−2) → ḡx(2) is

an isomorphism (here ḡx(±2) = {v ∈ ḡx | ad(h)v = ±2v}). Thus, since k

is complete, for all s ∈ R the map ad(X)2: g(−2) ∩ gx,s−r → g(2) ∩ gx,s+r
is an isomorphism (see also the proof of Lemma 4.3.1). Hence, there exists

Y ∈ g(2) ∩ gx,−r such that ad(X)2Y = −2X. Let H = ad(X)Y . Note that H

is a lift of h and Y is a lift of f . We claim that (Y,H,X) is an sssllll2(k)-triple.

From Hypothesis 4.2.3 and Morosov’s theorem, there exists Y ′ ∈ g such that

(Y ′,H,X) is an sssllll2(k)-triple. However, as usual, we conclude that we may

assume that Y ′ = Y (see also the proof of Corollary 4.3.2).

From Hypothesis 4.2.5 there exists a k-homomorphism ϕ:SL2 → G such

that dϕ
(

0 1
0 0

)

= X, dϕ
(

0 0
1 0

)

= Y , and dϕ
(

1 0
0 −1

)

= H. Let λ denote the

one-parameter subgroup t 7→ ϕ
(

t 0
0 t−1

)

. Statements (1) and (2) of Hypothe-

sis 4.2.5 along with Hypothesis 4.2.3 imply that for all v ∈ g

(*) if λ(t)v = tiv, then |i| ≤ (p− 3) and ad(H)v = iv.

From Corollary 4.5.9 we have x ∈ B(CG(λ)). Thus, there exists a maximal

k-split torus S such that x ∈ A(S, k) and λ ∈ X∗(S). Let λ̄ denote the image

of λ in X
f
∗(Gx). The image of dλ̄ in Lie(Gx) coincides with the one-dimensional

subspace spanned by h. From (*) and that fact that H is a lift of h we have

that for all v ∈ ḡx

if λ̄(t)v = tiv, then |i| ≤ (p− 3) and ad(h)v = iv.

Finally, we consider the uniqueness statement. Fix i ∈ Z such that

−2 ≤ i ≤ 2. Note that if m ∈ N and v ∈ gx such that ad(h)v = iv,

then λ̄(t)
(

ad(e)mv
)

= ti+2m
(

ad(e)mv
)

and λ̄(t)
(

ad(f)mv
)

= ti−2m
(

ad(f)mv
)

.

Since gx is spanned by the set of all vectors of the form ad(e)mv or ad(f)mv (m

and v as above), we conclude that λ̄ is uniquely determined up to an element

of X∗(Zx) whose differential is zero.
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