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Abstract

We consider Springer fibers and orbital varieties for GL,,. We show that the irreducible components
of an intersection of components of Springer fiber are in bijection with the irreducible components
of intersection of orbital varieties; moreover, the corresponding irreducible components in this corre-
spondence have the same codimension. Finally we give a sufficient condition to have an intersection
in codimension one.
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1. Introduction

J.1. Let G be a semisimple (connected) complex algebraic group with Lie algebra
Lie(G) = g on which G acts by the adjoint action. For g € G and u € g we denote this
action by g.u := gug™L.
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Fix a Cartan subalgebra . Let W denote the associated Weyl group. We have the
Chevalley—Cartan decomposition of g:

g=b@zga,

a€R

where R is the root system of g relatively to b. Let IT be a set of simple roots of R. Denote
R* (respectively R ™) the positive roots (respectively negative roots) (w.r.t. IT). We some-
times prefer the notation o > 0 (respectively a < 0) to designate a positive (respectively
negative) root. Let b :=h & > wcr+ 8o be the standard Borel subalgebra (w.r.t. JT) and
ni= ,er+ Bq its nilpotent radical. Let B be the Borel subgroup of G with Lie(B) =b.
Let G x Bn be the space obtained as the quotient of G x n by the right action of B given
by (g, x).b:= (gb, b~'.x) with g € G, x enand b € B. By the Killing form we get the
following identification G xBn~ T*(G/B). Let g x x denote the class of (g,x) and F :=
G/B the flag manifold. The map GxBn— F x g,g *xx — (gB,g.x) is an embedding
which identify G x Zn with the following closed subvariety of F x g (see [16, p. 19]):

Y= {(gB,x) lx e g.n}.

The map f: GxBn — g, g *x > g.x is called the Springer resolution and we have the
following commutative diagram:

GxBp ———> Y
x /P'z
g

where pry: F x g — g8, (gB,x) = x. The map f is proper (because G/B is complete)
and its image is exactly G.n = N, the nilpotent variety of g [21].
Let x be a nilpotent element in n. By the diagram above we have:

Fe=flx)={gBeFlx egn)={¢B eFlglxen} (1.1)

The variety F is called the Springer fiber above x and has been studied by many
authors. It was one of the most stimulating subjects during the last three decades, appearing
in many areas, for example, in representation theory and singularity theory. But it remains
a very mysterious object, and the major difficulty is its geometric description which is
known in a few cases. For x in the regular orbit in g it is reduced to one point. For x in
the subregular orbit in g it is a finite union of projective lines which intersect themselves
transversally and is usually called the Dynkin curve, it was obtained by J. Tits (see e.8.
[24, Theorem 2, p. 153]). For x in the minimal orbit its irreducible components are some
Schubert varieties [2].

The Springer fibers arise in many contexts. They arise as fibers of Springer’s resolution
of singularities of the nilpotent variety in [16,17,21]. In the course of these investigations,
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Springer defined W-module structures on the rational homology groups Hy(Fx, Q) on
which also the finite group A(x) = Zg(x)/ ZZ(x) (where Z(x) is a stabilizer of x and
Zg(x) is its neutral component) acts compatibly. Set d = dim(Fy), the A(x)-fixed sub-
space Hoq(Fx, Q)A(") of the top homology is known to be irreducible [22].

In [8], D. Kazhdan and G. Lusztig tried to understand Springer’s work connecting nilpo-
tent classes and representations of Weyl groups. Among problems they have posed, the
conjecture 6.3 in [8] has stimulated much research into the relation between the Kazhdan—
Lusztig basis and the Springer fibers.

1.2. More known for G =GL,. Forx €n its only characteristic value is 0, so that
its Jordan form is completely defined by A = (A1, ..., A¢) a partition of n where A; is
the length of ith Jordan block. Arrange the numbers in a partition A = (A1, ..., Ax) in the
decreasing order (that is A} 2 Ao 2.2 Ak 2 1)and write J(x) = A. In turn an ordered
partition can be presented as a Young diagram Dj—an array with k rows of boxes starting
on the left with the ith row containing A; boxes. In such a way there is a bijection between
Springer fibers and Young diagrams.

Fill the boxes of Young diagram Dj with n distinct positive integers. If the entries
increase in rows from left to right and in columns from top to bottom we call such an array
a Young tableau or simply a tableau of shape A. Let Tab;, be the set of all Young tableaux
of shape A.

Given x € n such that J(x) = A by Spaltenstein (18] and Steinberg [26] there is a bi-
jection between components of F, and Tab, (cf. 2.5). For T € Tab, set Fr to be the
corresponding component of Fy.

For GL, the conjecture of Kazhdan and Lusztig mentioned in 1.1 is equivalent to the
irreducibility of certain characteristic varieties [1, Conjecture 4]. It was shown to be re-
ducible in general by Kashiwara and Saito [7]. Nevertheless, the description of pairwise
intersections of the irreducible components of the Springer fibers is still open. In particular
the determination in terms of Young tableaux of a pair of irreducible components with the
intersections in codimension 1 is unknown in general. The search of these intersections is
the main motivation of our paper. The general answer seems to be beyond our means but
we can address these questions in some special cases.

Let us first describe the answers in the special cases which are already known.

1.3. The description of the Springer fiber was completely done for the hook and two-
row Young diagrams in [4,27]. P. Lorist studied the Springer fiber of dimension 2, [10]. He
showed in that case that all the irreducible components of the Springer fiber are either the
product of two projective lines or are ruled surfaces over a projective line with e =2 and
he also gave the complete description of the intersection between them; his method is very
basic but very cumbersome, it consists of calculations of the different intersections of the
Springer fiber with every Schubert cell and then pasting them together.

For one of us this work was motivated by Lorist’s work, by the desire to find a more
efficient way of computation of the Springer fiber (cf. [14, p. 108]). The idea is to find
the unique Schubert cell which intersects generically with a given irreducible component.
Obviously the determination of such Schubert cell depends on the choice of the point above
which we are looking at the Springer fiber, another point will generate another Schubert
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cell. In this work we will determine all these possibilities, in fact it will be realized just by
interpreting in a geometric way the notion of Young cell (see Theorem 2.13). Actually this
interpretation helps to understand a work of Tits [21] who showed that any two points of
F,, can be connected by a finite union of projective lines. An immediate application of this
interpretation is the sufficient condition for the intersection of two irreducible components
of the Springer fiber to be in codimension one (see Remark 3.4).

1.4. Let us return to a semisimple algebraic group G. Let x € n be some nilpotent
element and let O, = G.x be its orbit. Consider O, Nu. Its irreducible components are
called orbital varieties associated to Ox. By Spaltenstein’s construction [19] there is a tight
connection between F and O; Nn. We explain it in 2.1,

In particular, for G = GL, the Spaltenstein’s construction provides the bijection be-
tween the orbital varieties associated to O, and components of F. That islet J(x) =X
then there is a natural bijection ¢ between {Fr)reTab, and the set of orbital varieties asso-
ciated to Oy. Let us denote the set of orbital varieties by {Vr}reTab, Where Vr = ¢ (Fr).
As a straightforward corollary of this construction we get in Proposition 2.2 that the num-
ber of irreducible components and their codimensions of Fr N Fr are equal to the number
of irreducible components and their codimensions of V7 NVr+. Thus from our point of view
orbital varieties are equivalent to the components of Springer fibre.

1.5. The body of the paper consists of three sections. In Section 2 we explain Spal-
tenstein’s and Steinberg’s constructions and show that on the level of intersections the
components of Springer fibre and orbital varieties are the same objects. Finally in Sec-
tion 3 we give an sufficient condition to have an intersection in codimension one.

2. The Spaltenstein’s and Steinberg’s constructions

2.1.  We start with the Spaltenstein’s construction [19]. Recall notation from 1.1 and
from 1.4. Given x e nput G, = {g € G: g lxg en}. Set f1:Gx — O, Nnby filg) =
g“xg. Note that fj is a surjection. Let {V,~}f=1 be the set of orbital varieties associated to
Oyand ¥; = fl_l(V,-) its preimage in G . One has Y; is closed in G, and G = Ule Y;.

Set f:Gy — Fx by f2(8) = gB. Again, f is a surjection. Let {Fy}oes be the set of
components of F and Yo = fz—l(fa) its preimage in G. Again, Y, is closed in G, and
Gx = UaeS Yo

Let Zg(x) :={g € G: g~ 'xg = g} be the stabilizer of x and Zg(x) be its neutral
component. Let A(x) := Zc(x)/ Z"G (x) be the component group. Note that since V; is B
stable one has Zg(x)Y; B =7Y;. On one hand, if : G — G/B is the natural projection we
have Yy = 6 1(Fy), since 6 is a locally trivial fibration with fiber isomorphic to B we
deduce that Y, is irreducible and dim(Yy) = dim(F,) + dim(B); on the other hand, the
obvious identity Zg (x)Yy B = Y, allows us to define a natural action A(x) X {Ys}oes =
{Yolaes, (@, Yo) = Ya@) = 8Z%(x)Ys B, with a = gZZ(x). As it is shown in [19] for
any i there exists o such that
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Y, = U Y0y, 2.1

acA(x)
in particular Y; is equidimensional, dim(Y;) = dim(Y,) and one has
Theorem (Spaltenstein). Fx and O, Nn are equidimensional and

dim(Ox N 1) + dim(Zg (x)) = dim(Fy) + dim(B),
dim(O, Nn) + dim(Fy) = dim(n),

1
dim(O, Nn) = 2 dim(Oy).

2.2. Inparticular,if G = GL, then Zg(x) is connected and A (x) is trivial so that there
exists a bijection 7 : {FY_; — (Wi}, where (V) := fi( LY FEN=Vi
As a straightforward corollary of Spaltenstein’s construction for the case GL, we get

Proposition. Let x € n and let Fy, F» be two irreducible components of Fx and {81};=1 the
set of irreducible components of F1 N F,. Then {n (81)};=1 is exactly the set of irreducible
components of V1 N V2 and codim g, (&) = codimy, (&))-

Proof. Denote {W,}f=l the set of irreducible components of ViNVy. Put Y1 N Yz =
£V 0 Vo). By (2.1) we have Y1 N Y2 = U, /o) = frto 0 f7H o) =
Unareaco fo Fa) f5 ' (Far), since A(x) is trivial we have Y| NY2 = f; ' (Fay) N
fz—l(}'(z)) = U§=1{ fy L&), where {&}]_, is the set of irreducible components of

Fi N F. In the same spirit as before each subset fz”l(&) = 9~1(&) is irreducible and
we have

dim(f;"' (€)) = dim(&)) + dim(B) 2.2)

and fori=1,2
dim(f; (F)) = dim(F;) + dim(B). (2.3)

If fy L&) c €, where C is an irreducible component of Y1 N Y2, then #(C) is irreducible
and we necessary have G(fz_l(&)) =67 1(&)) = & C 6(C), therefore we have & =
6(C).C=fy L&) and { f2'1(z‘)1)};=1 is exactly the set of distinct irreducible components
of Y; N Y. We can suppose that x € Vi NV, then if we notice that fi is the restriction
of the orbit map ¢:G — Ok, g +> g'lxg which is open, we deduce that f1(f2—1(81)) is
closed and irreducible in V1 N V2. We can also easily deduce that {fi(f, 1 (z‘,‘l))}§=1 is the
set (maybe redundant) of irreducible components of V1 N )2, therefore t < 5.

On the other hand, the identity Z&(x) f, LEpB = fz-l (&) gives us a natural action of
A(x) = Zaw)(F1) N Za)(F2) on the set {f{l(&)};=l. Moreover, for any g € G, we
have £ (f1(8)) = ¢~ (9(8)) = Zg(x)g, therefore we have AU EMNN
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Ys = Ui f ' (Eay), since A(x) is trivial, we deduce that £ (fi(f5  ENN NYIN

Y= fz“(&); by this observation we deduce that {f1( f{‘ (EN))i_y is exactly the set of
distinct irreducible components of Vi N V, therefore ¢ = s and

dim(f; €)) = dim(f; (i (£ €))) = dim(fi (f3 ' (€D)) + dim(Zg(x))
2.4)

andfori=1,2

dim(f; ) = dim(f7 (A (£ ) = dim(fi (f71(FD)) + dim(Zg ().
.5)

By (2.2)—(2.5) we get
codimy, (1 (£} (&) = codimy, (f; (€n) = codimz; (€. O (2.6)

This simple proposition shows that in G = GL,, orbital varieties associated to Oy are
equivalent to the components of Fx.

2.3 In what follows we fix the standard triangular decomposition of gl,, namely gl, =
n, @ bp ®ny, where n; is the subalgebra of strictly lower triangular n X n matrices, b is
the subalgebra of diagonal n x n matrices and n is the subalgebra of strictly upper triangular
n x n matrices. (As well in what follows we omit index 7 in the cases where it is clear what
is our n.) Accordingly we put B, (or simply B) to be the subgroup of all upper-triangular
invertible matrices in GL,, and b := Lie(B)=n®b.

Let ¢;,; be an n X n matrix having 1 in the ijth entry and O elsewhere. Then
{ei )] j=1,izj Y {eii — e,~+1,i+1};'='11 is a basis of sl,.

Take i < j and let o; ;j be the root which is the weight of e; ;. Set aj; = —0, j. We
write @; j+1 simply as &;. Then IT = {«; }:’__fll. Moreover, o;,j € Rt & i < j.One has

j—1 s
i:i“k ifi <j.

j-1 ces
i a ifi > j,
ot,-'j = [ k=i k J
Let gy, ; '= 8i,j *= Ce;, j be the root space defined by ; j € R.
For o; € I1, let Py, be the standard parabolic subgroup of GLp with Lie(FPy) =
b® g =0 git,i Let My, be the unipotent radical of P, and mg; 1= Lie(My;) =

@1<s<1<n, (s.0)#3i+1) Bs.t

2.4, Let us return to the parametrization of the components of F, in GL, by standard
Young tableaux. But first a few general remarks.

The group G operates diagonally on F x F and one version of the Bruhat’s lemma says
that the G-orbits are parameterized by the elements of the Weyl group W [23, p. 146].
More precisely, putting

O(w):={(gB.g'B) € F x Flg ‘g e BuB},
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we have a decomposition into G-orbits

FxF=]] ow.
weW

If Y and Z are two irreducible subvarieties of F, then there is a unique O(w) such that
O(w) NY x Z is an open dense set of Y x Z, and we say that Y and Z are in relative
position with respect to w.

In GL, the relative position can be interpreted as follows. If irreducible subvarieties
y and Z of F are in relative position with respect to w then for two generic flags F1 =
(Vi,...,Vn) €Y and Fp = (V!,...,V)) € Z there exists a basis {v;}7_, of C" such that
for any j: 1< j < n onehas {vi}]_, is a basis of V; and {vw@)}_, is a basis of V.

2.5. Now we restrict to g = sl,, then N is the variety of all nilpotent matrices,
F is identified with the set of complete flags £ = (V1 C -+ C V, =C") and Fx =
(=) eF|x(Vi)C Vil

Recall notation from 1.2. Given x € n let J (x) = A. By a slight abuse of notation we
will not distinguish between the partition A and its Young diagram. By R. Steinberg [26]
and N. Spaltenstein [18] we have a parametrization of the irreducible components of Fy
by the set Tab,: Let & = (V;) € Fy, then we geta sutured chain

St(€) := (Y (), Y(xlv,_)s -+ > Y (xIva), Y (xlw))

in the poset of Young diagrams (where x|y, is the nilpotent endomorphism induced by x
by restriction to the subspace V;). Note that J (x|v,,,) differs from J (x|y;) by one corner
box, put i + 1 in it. It is easy to see that in such a way we get a standard Young tableau
corresponding to the given chain. So we get a map St: F; — Tab,. Then the collection
{St'l(T)}TETabA is a partition of Fy into smooth irreducible subvarieties of the same di-
mension and {St'1 (T)}7cTab, is the set of the irreducible components of F . Let us denote
Fy = Fy if J(x) = A and the components of F by Fr .= St~!1(T) where T € Tab,.

On the level of orbital varieties the construction is as follows. Consider the canonical
projections 71 p—i 10 —> Na—i acting on a matrix by deleting the last i columns and the
last i rows. Given x € n with J(x) = A for any u € O, Nnset Jy(w):=J@W) =2 and
Jn—i(u) == J (1 n—i(u)) for any i+1<i<n—1. Exactly as in the previous construction
we get a standard Young tableau corresponding to the chain (J, (), ..., Ji(w)), so that
St; : O, Nn — Tab,. Again the collection {Stl—l(T)}TeT,,bA is a partition of Oy N n into

smooth irreducible subvarieties of the same dimensions and {St; 1(T) N Oy }TeTab, are the
set of the irreducible components of Ox N 1. Let us denote @y := Oy if J(x) = A and

orbital varieties associated to Oy by Vr := Stl—1 (T)N Oy, where T € Tab,.

2.6. A general construction for orbital varieties by R. Steinberg (cf. [25]) is as follows.
For « € R let g, denote the root space.
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For w € W consider the subspace

nNYn:= @ Bo
aeRHN¥R+*

of n. Then G.(nNY n) is an irreducible locally closed subvariety of N . Since the nilpotent
variety is a finite union of nilpotent orbits, it follows that there is a unique nilpotent orbit
O, such that G.(nN* n) = Ow. By [25] Vy 1= B.(nN?¥ n) N Oy is an orbital variety
associated to Oy, and the map ¢:w > Vy is a surjection of W onto the set of all orbital
varieties. According to the map ¢, we decompose the Weyl group into the subsets Cw =
{ve W | Vy =V} which are called the geometric cells of W.

Let Py, be the maximal standard parabolic subgroup of G stabilizing Vy. Set t(Vy) 1=
@ € T: Py Vw = Vy}. Obviously, Py, = (Pa: @ € T(Vyp)). Set t(w) = {x € IT:
w~ (@) € R™}. By [5, §9] one has T(Vy) = T(w). In particular, T(w) = 7(y) for any
y € Cy and we can define 7(Cy) = T(w).

Denote R(w) := {o € RT: w™! () <0} and S(w) := (@ e RT: w™ () > 0} Here is
a very useful lemma

Lemma. Fix a simple root a. Denote I() the length function:
(1) Ifl(sqw) =I(w) + 1, then S(sew) = so(S(w)) — {a}-
) Ifl(sqw) =1w) — 1, then S(sqw) = 5q(S(w)) U {}.
(3) If l(wsqy) =I(w) + 1, then S(wse) = S(w)) — {w(@)}
@ If (wse) =1(w) -1, then S(wsqy) = S(w)) U {w(—a)}.

Proof. If [(sqw) = l(w)+ 1 andif w = si; =~ - 5i; is a reduced expression for w then sqw =
SaSip - Si is also a reduced expression for sqw, then by [23, p. 142] we have

R(w) = {otiy, siy (@) -+ Siy i (o) } 2.7
and
R(sqw) = {ot, 5o (i), Sasiy (@), - - -+ SaSiy o Sie (@)} (2.8)
Therefore we get R(sqw) = {a} U s (R(w)); on the other hand, we have
R = Resaw) | [ SCsaw) = (10} Usa(Rw))) [ [ SGaw) = R [ [ S0, 29)
moreover, we have
sa(RY) = (RT = {a)) U~} = su(Rw)) | [ sa(S)). (2.10)

By (2.9) and (2.10) we deduce that S(spw) = 5¢(S(w)) — {}. The other cases can be
obtained in the same manner. O
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2.7 Let us consider Steinberg’s construction in si,. Here W = S, where we identify
S =i+ 1D (in the cyclic form). We write an element w € Sp, in a word form w =
[ai,...,an] where w(i) =a;. In what follows we denote §; 1= Sq; -

Put py (i) := w~1(i) to be its position in the word w. By [6, 2.3] one has

Proposition. For any w € Sy

anYn= @ 8i,j-

1Ci<jgn
Pw@)<puw(j)

In particular, T(w) = {a;: pu(i) > pw + D}

2.8. Let us describe the geometric cells in the case G = GL,. In The Robinson—
Schensted correspondence gives the bijection from the ordered pairs of standard Young
tableaux of the same shape onto the S, (cf. [3], for example). Let us denote it by
RS:][;., Tabs x Taby — S, and describe it in short. Let (T, T’) be the pair of Stan-
dard Young tableaux of the same shape. Remove the number n (and the cell that contains
it) from 7. Then take the number which is in the same position in 7 as n was in T’ and
move it up one row to displace the largest number in that row that is smaller than it; use the
displaced number to displace a number in the next higher row according to the same rule,
and so on, until a number ry, is displaced from the first row; set RS(T, T')(n) = rp. Note
that the two new tableaux of size n — 1 are again of the same shape and the second tableau
is standard. Repeat the process to get RS(T,TY(n—1)=rp1 and so on. Repeating this
procedure n times we get the required element RS(7', T'). We will write it in a word form
RS(T, T =1[r1,...,Tn)

S, is decomposed into Young cells where a Young cell corresponding to T € Tab,
is defined by Cr := {RS(T, T'): T' € Tab,}. By [25, §5] one has (cf. [11, p. 201}, for
example).

Theorem. Let w = RS(T, T') where T, T' are of shape . Then

M Oy = Oy;
() Vw=Vr;
3) Cy =Cr.

2.9. Note also that the two constructions we gave in GL, coincide, namely (cf., for
example, [12, 3.4]). Moreover, we can notice that the geometric cells coincide with the
Young cells.

Proposition. Let x € n N Oy and T < Tab,. Then for any w = RS(T, T") one has
B.(n N n) NSty }(T) is dense in B.(n N n).

2.10. Let us mention a few well-known combinatorial facts concerning Robinson—
Schensted procedure.
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Let C} := (RS(T', T): T’ € Taby}. Let Co:={w €8Sp: Oy = O} Obviously, C; =
UTeTabA Cr= UTeTabA Cr.

Given T € Tab, putrr(j)tobe the number of the row j belongs to and c7(j) to be the
number of the column j belongs to.

Proposition.

(1) 1Cr) = {ey: rr@) <rr@+ D}

@ € ={w welr}

(3) Let w=RS(T,T') and let A be the shape of T. If ws; € Cy (respectively s;w € Cy) for
some i then ws; € Cr (respectively siw € Cr).

Proof. We give a short proof for the completeness.

(1) The first result is a straightforward corollary of RS algorithm and of Proposition 2.17.

(2) The second resultis a straightforward corollary of the Robinson-Schensted theorem
(cf. [9, 5.1.4], for example) claiming (RS(T, 7)1 =RS(T', T).

(3)If l(ws;) = [(w) + 1, by Lemma 2.6(3), one has n(\"** n C nNY n so that Vi, C Vo
On the other hand, by equidimensionality of orbital varieties associated to O, one has
dimV,, = dim Vy;,. Thus V, = Vis;» 1.6. w, wsi € Cr. Now if I(ws;) = l(w) — 1 then
w = ys; where y = ws; and I(w) =1(y) + 1 so that by the previous Vy = Vy.

The result for w, s;w is obtained by applying (2). O

For a tableau T we put T(T) :={a;: rr (i) <77 (i + 1)}. By the proposition above one
has ©(T) = t(C7)-

2.11. 1In [26] R. Steinberg gives also a very beautiful interpretation of the relative
position between the irreducible components of ) by the Robinson—Schensted correspon-
dence. Let T, T' € Tab,, and let Fr, Fr+ be the corresponding components of Fy. Then
by [26] the relative position between the irreducible components Fr and Fr is exactly
RS(T,T").

2.12.  Recall the Bruhat-Tits decomposition of the flag manifold:

F=1] Xu

weS,

Where Xy, := B.(w(&p)) is the B-orbit of the flag w(&o) where & is the canonical flag.
It is well known that X, is an affine space called the Schubert cell (associated to w) and
its closure X, is called a Schubert variety (cf. [23, p. 149D).

Let C be an irreducible subvariety of F, then there is a unique Schubert cell Xy, such
that X, N C in an open dense subset of C. We will call the element w the position of Cin
the flag manifold F (w.r.t. (9, b)).

2.13. Note also the following straight connection between Steinberg’s construction and
relative position:
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Theorem. Let T € Taby and let w = RS(T, T"). Then for a general element x € vr N
B.(n ¥ 1) the position of the irreducible component Fp: of the Springer fiber Fy is given
by w.

Proof. Let x € Vr N B.(nN¥ n) be in a general position. Let Fr be an irreducible com-
ponent of the Springer fiber F, above x, and denote w its position. Then Xy N Fr
is an open dense subset of Fr and by the Bruhat-Tits decomposition any element
g =gBe Xy, NFr can be written as g = bny,b’ where ny, is a representative of w in
Normg (§) and we can assume that b’ = e. By (1.1) we have

gBeF, o xegn
&S x ebnyn
b lxbenn?n

& xeB.(nn? n).

Note that by [25, Corollary 3.9.] x € Vr N B.(n N¥ n) being in a general position is
equivalent to choose gB in a general position in Fr.

Because of the fact that x is in a general position in V7 we may assume x € n(T) by
2.9, so we get & € Fr. Now the key point is to observe that we can choose x generically
in n(T) such that & is also in general position in Fr, and the proof is complete. O

Remarks.

(1) Thus, the Young cell corresponding to 7' describes generically the different positions
of the irreducible components of the Springer fiber above the orbital variety Vr.

(2) The last theorem is a natural generalization of a result obtained in [15]: Let B =
(e1,...,en) a base of C" such that E; = (e1, ..., €i). A nilpotent element x is said
to be adapted to B if the matrix of x in B is a Jordan matrix with decreasing
block sizes. Let Tmax denote the standard tableau obtained by filling first line of the
Young diagram Y () with the integers {1,..., A1}, the second one with the integers
M+ LMt X2}, and so on.... Then we have &y € Fr,,,, moreover, we have
shown that the irreducible component Fr,,, contain a dense orbit under the central-
izer of x, this property is not true in general (cf. {25, Remark 5.7. (d))). As it was
explained in [14], the choice of x in the Jordan form is done to have a computation of
the Springer fiber easier.

3. Some intersections of codimension one

3.1. 1In this section we start to consider the orbital varieties (respectively components
of Springer fiber) of codimension 1.

For this last section we give a very simple sufficient condition for two orbital varieties
associated to O, (respectively two components of ) to intersect in codimension 1.
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Proposition.

W If o € T(W) then BSc(nnvn) C Ve, BSk(anN¥n) N Oy, € Vy and
codimy, B.S(nN*n) N Ow< 1.
() Ifag ¢ T(w) and Oy = Ogw then codimy, Vi NV = 1.

groof. (1) If o € T(w),denote ng a representative of s in Normg(h); we have by 2.6 that
Vy is Py, -stable, and since ng, € Py, we have Sk (mN¥n) =ng .mN¥ 1) C Py, . (nN¥ )=

B.nN¥n) = Vw, so we deduce that B (nN*¥n) € V. On the over hand, we have
BSk(nN¥ n) C Py, Sc(nN¥ n) = Py, (n¥ ) = Vw, and since codimp,, B =1 we get

codimy; B.s(n ¥ n) < 1. G.1)

Since Vyp = B.(nN*¥ 1) N Oy, We deduce in particular that (n ¥ n) N Oy # 0 and
nN¥n) C O, s0*k(N¥ ) NOy # @and S (nN¥n) C O, . The subvariety B.5(n N n)
is irreducible and is contained in the nilpotent variety, there is a unique nilpotent orbit O
such that BSx(n¥ n) N O is open and dense in B.S%(nN¥ n), and by the analysis did
before we necessary have O = Oy, and B.% ®N¥ 1) NOy, € Vy, and with (3.1) we get

codimy; B.S(nN¥n) = codimg; B (¥ n)NOy
= codimy, B (nN¥n) N Oy < 1. (3.2)

) If a ¢ T(w) (e l(w) = I(sxw) — 1) then by Lemma 2.6(2) we get nN¥ n =
gk k41 D% (nN*¥ ), then B.* M N%¥n) C B.(nN* n) = V., and as before we have also
BSk(mnN@ n)NO, S Vy. If Ogw = Oy then with the analysis did in (1) for the case o €
7(syw) we have B.Sk(nN%¥ n) N O C V5w, therefore B.Sk(n NSk ) N Oy C Vi N Vgw
and since Vy # Vs With (3.2) we get

codimy, ,, B.* (nw 1) N Ogw = codimy,, B (nn¥n)NOy=1. o (33)

Actually we can also deduce the last result from the work of J. Tits: Let x € n a nilpotent
element. Consider an element § = gB € Fx, by the Bruhat-Tits decomposition we write
g = bn,,b' and we can assume that b’ = e. Write w = 51 - - - 5k, where s; is the reflexion with
respect to the simple root o; € § and k is minimal (i.e. w = s ---5¢ isa reduced expression
for w, in particular we have w(oy) < 0). Denote g1 = bn,y where w =81+ Sk—1, and
Py the minimal parabolic subgroup containing B associated to the simple root ag. Then
the projective line g1 P B in F joins the two points g B and g B, moreover, J. Tits showed
that g1 PxB lies in F (cf. [21, p. 377] or [24, Proposition 1, p. 131]). In particular, if
w corresponds to the position of the irreducible component Fr, then Fr is a union of
projective lines of type a, i.e. the natural projection 7¢ : G/B — G/ Py induces a structure
of P!-bundle on Fr (see e.g. [20, Lemme 1.11.]).

Consider the morphism

nw:XwﬂfTe]-'x,gBHng (3.4)
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which consists to “flat” the irreducible component Fr under the direction o, then Im ()
is an irreducible subvariety of codimension 1 in Fr. In particular if w' is the position of an
other irreducible component Fr, then Fr and Fr’ have an intersection of codimension 1.

If Oy = O, then by Proposition 2.10(3) there exist T, T', T" € Taby such that w =
RS(T, T”) and szw = RS(T’, T”). By the last proposition we have

codimy, (Vr N Vr) = codimy,, Vrnvr =1
By Proposition 2.2, we also have
codimg, (Fr N Fr) =codimg,, (FrNFr)=1

This is coherent with the description we did just above with the work of J. Tits: Indeed by
Theorem 2.13, w™! and w15y are exactly the positions of the irreducible components Fr
and Fr above the orbital variety Vrv.

Remarks.

(1) Thus, if there exists T" e Tab, such that RS(T”, T') = RS(T", T)sy for some s, then
Fr and F7r have an intersection in codimension one.

(2) The computation in low rank cases and the full picture in hook case described in [27]
gives an impression that codimz, (Fr N Fyr) = 1if and only if there exists T" € Tab,
such that RS(T', T") = sy RS(T, T") for some s¢. However this is not true in general
as we show in [13]. The problem of defining all possible pairs T, T’ € Tab, such that
codimy, (Fr N Fr) =1 in terms of Young tableaux only is very tricky.
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