Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken

Marcel Meuthen

Mathematisches Institut

25. Juni 2015

Übersicht

1. Ziel des Vortrags

- 2. Einleitung
- 3. Varianzreduzierende Techniker Bedingtes Monte Carlo Importance Sampling
- 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung
- 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure
- 6. Zusammenfassung

Ziel des Vortrags

Was sind Monte-Carlo-Simulationen? Was wollen die Lebensversicherer mit den Monte-Carlo-Methoden erreichen?

- Bewertung von (komplizierten) Cashflows
- Da jedoch keine Formel zu dessen Bestimmung existiert
 → MC Methode
- Ziel: Wahren Wert bzw. Verteilung zu schätzen
- Da nur endliche Rechenkapazität: Begrenzte Anzahl an MC-Simulationen

Ziel der varianzreduzierenden Techniken:

möglichst gute Approximation

Übersicht

1. Ziel des Vortrags

2. Einleitung

- 3. Varianzreduzierende Techniker Bedingtes Monte Carlo Importance Sampling
- **4. Diskrepanz**geringe Diskrepanz
 Koksma-Hlawka Ungleichung
- 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure
- 6. Zusammenfassung

Einführung 1/6

Die Monte Carlo Methode ist eine Methode zur numerischen Integration mit Hilfe einer Folge von Zufallszahlen mit

$$I(f) = \underbrace{\int_0^1 f(x) dx}_{(1)} \approx \frac{1}{n} \sum_{i=1}^n f(\xi_i) = I_N(f)$$

- wobei f bekannt
- Integral von f zu approximieren
- *n* Anzahl zufälliger Punkte und $\xi_1,...,\xi_n \in [0,1]$

Beispiel

Wähle für $\xi_i = \frac{i}{n} \quad \forall i \in 1, ..., n$ so ergibt sich die Trapezregel.

Einführung 2/6

Wir wollen den Fehler $I_N(f) - I(f)$ minimieren:

$$I_N(f) - I(f) = \frac{1}{n} \sum_{i=1}^n f(\xi_i) - \mathbb{E}[f]$$

 $\stackrel{G.d.g.Z.}{\Rightarrow}$ durch normalvert. ZV mit $\mu = 0$ und $\frac{\sigma^2}{n}$ beschrieben werden

wobei :
$$\sigma^2 = \int_{[0,1]^s} (f(\xi) - I)^2 d\xi$$

So ergibt sich das 95%-Konfidenzintervall

$$I_n(f) \stackrel{+}{-} \frac{1,96 \cdot \hat{\sigma}}{\sqrt{n}}$$

6/37

Einführung 3/6

wobei

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (f(\xi_i))^2 - I_n^2(f).$$

So ergibt sich die Fehlerschranke : $\mathcal{O}(n^{-\frac{1}{2}})$

Merke

Um eine zusätzliche genaue Kommastelle eines Schätzwerts zu bekommen muss die Zahl *n* um den Faktor 100 wachsen.

Einführung 4/6

Wenn man nun keine Vorschrift (vgl. Trapezregel) um die Stützstellen ξ_i zu generieren, sondern randmoisierte \Rightarrow Monte Carlo Methode

Ziel: Folgen zu finden, sodass

- möglichst geringe Rechenzeit
- möglichst große Genauigkeit
- ⇒ möglichst kleine Diskrepanz (Low-Discrepancy Folgen)

Definition

Wenn die Koordinatenmit Hilfe Low-Discrepancy Folgen generiert werden wird die Methode als quasi-Monte Carlo Methode bezeichnet.

Einführung 5/6

Merke

Diese Folgen helfen dabei den Raum anstelle mit Millionen (exakten) Werten, (möglichst) intelligent, mit deutlich weniger Punkten abzudecken.

Simulation und Auswertung zur Approximation

Beispiel

Mit Hilfe dieser Verfahren kann man u.A.

- das Solvency Capital Requirement (eine Sollgröße für das EK) bestimmen
- π bestimmen

Einführung 6/6

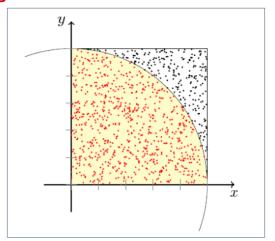


Abbildung: Approximation von π mit Hilfe eines Viertelkreises

Bildquelle: https://de.wikipedia.org/wiki/Monte-Carlo-Simulation

10 / 37

Übersicht

- 1. Ziel des Vortrags
- 2. Einleitung
- 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance Sampling
- 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung
- 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure
- 6. Zusammenfassung

Varianzreduzierende Techniken 1

Man versucht eine andere ZV Z' als Z zu finden, sodass

$$\alpha = \mathbb{E}[g(Z')] = \int_{\mathbb{R}^s} g(Z') dF'_Z(z')$$
 äquivalent zu (1)

 $\mathsf{mit}\ g:\mathbb{R}^s\to\mathbb{R}.$

Beispiel: europäische Option

- g(Z') Payoff der Option
- F'_Z Verteilungsfunktion des Underlyings

sodass:

$$\mathbb{E}[g(Z)] = \mathbb{E}[g(Z')] \tag{1}$$

$$jedoch : Var[g(Z')] < Var[g(Z)]$$
 (2)

Bedingtes Monte Carlo

Sei *Y* eine weitere, aber gleichzeitig erzeugte ZV wie *Z*. Dann gilt:

$$g_1(Y) = \mathbb{E}[g(Z)|Y]$$
 und $\mathbb{E}[g_1(Y)] = \mathbb{E}[g(Z)] = \alpha$

Dann kann man für $g_1(Y)$ den MC Schätzer von α verwenden:

$$Var[g(Z)] = Var[\underbrace{\mathbb{E}[g(Z)|Y]}_{Vor.}] + \underbrace{\mathbb{E}[Var[[g(Z)|Y]]}_{\geq 0}$$

 $\Rightarrow Var[g_1(Y)] \leq Var[g(Z)]$

⇒ Varianzreduktion.

Importance Sampling

- Idee: anderes Wahrscheinlichkeitsmaß verwenden
- wichtige Pfad mehr Gewicht ⇒ Effizienz erhöhen
- F_Z hat Dichte $f: \mathbb{R}^s \to \mathbb{R}_+$

$$\alpha = \mathbb{E}[g(Z)] = \int_{\mathbb{R}^s} g(z)f(z)dz.$$

Sei nun $f_l: \mathbb{R}^s \to \mathbb{R}_+$ andere Dichtefkt., sodass $f_l(z) > 0 \quad \forall z \in \mathbb{R}^s \setminus \{z: f(z) \cdot g(z) = 0\}$

$$\alpha = \int_{\mathbb{R}^s} g(z) \frac{f(z)}{f_I(z)} f_I(z) dz = \mathbb{E}_I \left[g(z) \frac{f(z)}{f_I(z)} \right]$$

 \Rightarrow Z mit f_l verteilt.

14 / 37

Generiere Stichproben $z_1, ..., z_n$ und verwende erwartungstreuen Schätzer:

$$\hat{\alpha}_I = \frac{1}{n} \sum_{i=1}^n g(z_i) \frac{f(z_i)}{f_I(z_i)}$$

Varianzreduktion falls f_l so gewählt, dass

$$\mathbb{E}_{I}\left[\left(g(Z)\frac{f(Z)}{f_{I}(Z)}\right)^{2}\right] = \mathbb{E}_{I}\left[g^{2}(Z)\frac{f(Z)}{f_{I}(Z)}\right] < \mathbb{E}\left[g^{2}(Z)\right]$$

Erfolgreich wenn f_l so proportional wie möglich an $g(z) \cdot f(z)$.

Weitere Möglichkeit der Varianzreduktion: Kontrollvariablen.

Übersicht

- 1. Ziel des Vortrags
- 2. Einleitung
- 3. Varianzreduzierende Techniker Bedingtes Monte Carlo Importance Sampling
- **4. Diskrepanz**geringe Diskrepanz
 Koksma-Hlawka Ungleichung
- 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure
- 6. Zusammenfassung

Diskrepanz

$$D_{\infty}^{*}(\xi, N) = \sup_{R \in J^{*}} \left| \frac{A(R; \xi)}{N} - \lambda_{s}(R) \right|$$

- mit $\xi = \xi_1, ... \xi_N$
- $A(R; \xi)$ Anzahl Punkte von ξ in R
- λ_s s-dim. Lebesguemaß
- J^* Menge der Intervalle der Form: $\prod_{i=1}^s u_i$ und $u_i \in [0,1)$

geringe Diskrepanz 1/4

Definition geringe Diskrepanz

Eine Folge $(\xi_i)_{i\in\mathbb{N}}\subset [0,1]^n$ hat **geringe Diskrepanz**, falls

$$D_k^*(\xi_1,...,\xi_k) \leq C_n \frac{(\log k)^n}{k}$$

für alle k mit einer von der Dimension abhängigen Konstante C_n , wobei

geringe Diskrepanz 2/4

Diskrepanz ist ein Maß dafür, wie weit die durch Folge $\xi_1, ..., \xi_n$ gegebene Verteilung vom Idealzustand auf [0, 1] entfernt ist.

Merke

Desto kleiner der Fehler der Quasi-Monte-Carlo-Schätzung \approx Desto geringer ist die Diskrepanz der Folge

geringe Diskrepanz 3/4

Definition Koksma-Hlawka Ungleichung

Sei f eine Funktion mit endlicher Variation V auf $[0,1]^s$ und sei $\xi = (\xi_i)$ eine Folge in $[0,1]^s$, dann gilt für irgendein n:

$$\left| \int_{[0,1]^s} f(x) dx - \frac{1}{n} \sum_{i=1}^n f(\xi_i) \right| \leq V(f) \cdot D_{\infty}^*(\xi, n)$$

geringe Diskrepanz 4/4

Diese Ungleichung stellt die Basis für die Überlegenheit der QMC gegen über der MC Methode, weil der Fehler der Berechnung des Integrals gegen Null geht in $\mathcal{O}(\frac{(logN)^s}{N})$.

Problem:

 Praxis fast unmöglich Fehlerabschätzung mit der Koksma-Hlawka Ungleichung (Variation von f schwer berechenbar)

Übersicht

- 1. Ziel des Vortrags
- 2. Einleitung
- 3. Varianzreduzierende Techniker Bedingtes Monte Carlo Importance Sampling
- 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung
- 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure
- 6. Zusammenfassung

Low-Discrepancy Folgen

Es gibt mehrere Low-Discrepancy Folgen:

- Sobolfolge
- Haltonfolge
- Faurefolge
- Niederreiterfolge
- Niederreiter-Xingfolge

Beispiel Vorteil gegenüber zufälligen Folgen

Beispiel

Integriere

$$I = \int_0^1 \int_0^1 \int_0^1 \int_0^1 \int_0^1 \int_0^1 \prod_{i=1}^6 (i\cos(ix_i)) dx_1 dx_2 dx_3 dx_4 dx_5 dx_6$$

Der exakte Wert des Integrals ist:

$$I = \prod_{i=1}^{6} \sin(i) = \sin(1)\sin(2)\sin(3)\sin(4)\sin(5)\sin(6)$$

Approximativ: $I \approx -0.0219$

Betrachte folgende Approximationen

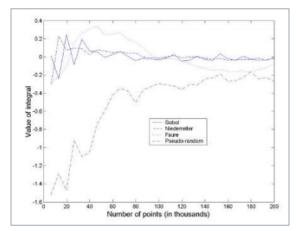


Abbildung: Wert der approximierten Integralen in Abhängigkeit der Anzahl von Punkten

Bildquelle: http://www.nag.co.uk/industryarticles/introduction_to_quasi_random_numbers.pdf

25 / 37

Beispiel Halton Folge mit Basis 3

- einfach zu berechnen
- mit Hilfe von Basen, welche die ersten d(Dimension)
 Primzahlen sind
- Jede Dimension hat andere Basen

Ziel: Generieren von Punkten $(0,1)\times(0,1)\subseteq\mathbb{R}^2$ Auf den folgenden Folien exemplarisch zur Basis 3

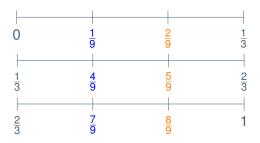
Beispiel Halton Folge $(0,1) \times (0,1) \subseteq \mathbb{R}^2$ 1/3

Schritt 1 Teile das Intervall in 3 (=Basis) Teile auf und extrahiere die inneren Punkte als erste Koordinaten



Schritt 2 Betrachte jedes Teilintervall separat und unterteile es wieder in 3 Teilintervalle und starte bei jedem Intervall wieder bei *Schritt 1*

Beispiel Halton Folge $(0,1) \times (0,1) \subseteq \mathbb{R}^2$ 2/3



$$\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{4}{9}, \frac{7}{9}, \frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right)$$

Beispiel Halton Folge $(0,1) \times (0,1) \subseteq \mathbb{R}^2$ 3/3

 analog ergeben sich die Punkte zur Basis 2 und es ergeben sich die ersten 10 Koordinaten wie folgt

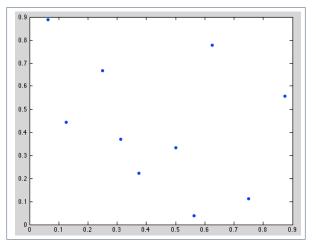


Abbildung: ersten 10 Paare der 2D-Halton Folge in $(0,1) \times (0,1) \subseteq \mathbb{R}^2$

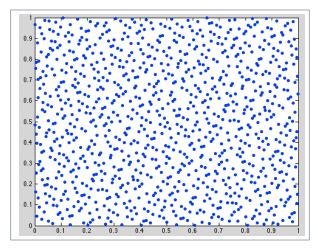


Abbildung: ersten 1000 Paare der 2D-Halton Folge in $(0,1)\times(0,1)\subseteq\mathbb{R}^2$

31 / 37

Sobolzahlen

Vorteile

- leichter die Anzahl der Punkte und/oder Dimensionen zu variieren
- Durch das Muster, welches sich ergibt, kann man problemlos nur Teilmengen betrachten
- höhere Einheitlichkeit als bei Gleichverteilung
- Schnelligkeit: die ersten zehn Millionen Sobol-Paare benötigen auf meinem PC weniger als zwei Sekunden

Vergleich an Hand eines Beispiels: Sobol zu Faure 1/2

Die zu integrierende Funktion lautet:

$$\int_0^1 \dots \int_0^1 \prod_{i=1}^s |4x_i - 2| dx_1 \dots dx_2 = 1$$

Beide Folgen lösen die Aufgabe in **fast identischer** Zeit mit folgenden Ergebnissen

Vergleich an Hand eines Beispiels: Sobol zu Faure 2/2

Table II. Estimates of the Integral											
Generator	N	s = 4	s = 7	s = 13	s = 20	s = 25	s = 4				
FAURE	500	1.000	0.982	0.658	1.047	1.048	0.193				
SOBOL	500	0.976	0.961	0.741	0.442	0.788	0.235				
FAURE	1000	1.011	0.996	0.993	1.054	0.863	0.206				
SOBOL	1000	0.983	0.996	0.817	0.698	0.586	0.709				
FAURE	7000	1.000	1.006	1.025	0.878	1.001	0.330				
SOBOL	7000	0.997	0.986	0.973	0.932	0.928	0.351				
FAURE	20,000	1.000	1.005	0.999	0.964	1.034	0.637				
SOBOL	20,000	1.000	0.994	0.975	0.883	0.808	0.490				
FAURE	40,000	1.000	1.005	0.998	0.925	0.889	0.682				
SOBOL	40,000	1.000	1.001	1.010	1.013	0.908	0.459				
FAURE	100,000	1.000	0.996	0.990	1.008	0.838	0.675				
SOBOL	100,000	1.000	0.999	1.003	0.974	0.979	0.625				
FAURE	15,625	1.000									
FAURE	78,125 390,625	1.000	F-favorab	e							
	,	1.000 J									
FAURE	16,807 117.649		1.008	F-favorable							
FAURE	823,543		1.000	F-favorable							
FAURE	2.197		1.000)	1.000)							
FAURE	28,561			1.000	F-favorab	le.					
FAURE	372,293			0.992	2 - javorao,	ie.					
SOBOL.	16,384	0.999)									
SOBOL	65,536	1.000	S-favorabl								
SOBOL	262,144	1.000									
SOBOL	131,072		1.000	S-favorable							
SOBOL	262,144		1.000 ∫	S-lavorable							
FAURE	1,000,000	1.00000	0.99954	0.99950							
SOBOL	1,000,000	0.99999	1.00029	0.99557							

Abbildung: Direkter Vergleich, wobei *N* Anzahl Punkte, *s* dim. Einheitswürfel

Bildquelle: http://dl.acm.org/citation.cfm?id=214372

34 / 37

Generator	N	s = 4	s = 7	s = 13	s = 20	s = 25	s = 40
FAURE SOBOL	500 500	1.000 0.976	0.982 0.961	0.658 0.741	1.047 0.442	1.048 0.788	0.193 0.235
FAURE SOBOL	1000 1000	1.011 0.983	0.996	0.993 0.817	1.054 0.698	0.863 0.586	0.208 0.709
FAURE SOBOL	7000 7000	1.000 0.997	1.006 0.986	1.025 0.973	0.878 0.932	1.001 0.928	0.330 0.351
FAURE SOBOL	20,000 20,000	1.000 1.000	1.005 0.994	0.999 0.975	0.964 0.883	1.034 0.808	0.637 0.490
FAURE SOBOL	40,000 40,000	1.000	1.005	0.998 1.010	0.925 1.013	0.889	0.682 0.459
FAURE SOBOL	100,000 100,000	1.000 1.000	0.996	0.990 1.003	1.008 0.974	0.838 0.979	0.675 0.625
FAURE FAURE FAURE	15,625 78,125 390,625	$1.000 \\ 1.000 \\ 1.000$	F-favorabl	e			
FAURE FAURE FAURE	16,807 117,649 823,543		$0.998 \\ 1.000$	F-favorable			
FAURE FAURE FAURE	2,197 28,561 372,293			1.000 1.000 0.992	F-favorabl	le	
SOBOL SOBOL SOBOL	16,384 65,536 262,144	0.999 1.000 1.000	S-favorabl	e			
SOBOL SOBOL	131,072 262,144		1.000 1.000	S-favorable			
FAURE SOBOL	1,000,000	1.00000	0.99954 1.00029	0.99950 0.99557			

35 / 37

Übersicht

- 1. Ziel des Vortrags
- 2. Einleitung
- 3. Varianzreduzierende Techniker Bedingtes Monte Carlo Importance Sampling
- 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung
- 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure
- 6. Zusammenfassung

Zusammenfassung

Ziel:

- möglichst geringe Rechenzeit
- möglichst große Genauigkeit

Varianzreduktion kann u.A. erreicht werden durch:

- Bedingte Monte Carlo
- Importance Sampling
- kluge Auswahl von Stützpunkten

