1	REVISION 1
2	
3	Vladykinite, Na ₃ Sr ₄ (Fe ²⁺ Fe ³⁺)Si ₈ O ₂₄ : a new complex sheet silicate from
4	peralkaline rocks of the Murun complex, eastern Siberia, Russia
5	
6	ANTON R. CHAKHMOURADIAN ¹ *, MARK A. COOPER ¹ , NEIL BALL ¹ , EKATERINA P. REGUIR ¹ ,
7	LUCA MEDICI ² , YASSIR ABDU ¹ AND ANTON A. ANTONOV ³
8	
9	¹ Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
10	² Istituto di Metodologie per l'Analisi Ambientale, Tito Scalo, 85050 Potenza, Italy
11	³ Centre for Isotopic Research, VSEGEI, 74 Sredniy Prospect, St. Petersburg, 199106, Russia
12	* Corresponding author; e-mail: chakhmou@cc.umanitoba.ca
13	
14	Abstract
15	Vladykinite, ideally $Na_3Sr_4(Fe^{2+}Fe^{3+})Si_8O_{24}$, is a new complex sheet silicate occurring as
16	abundant prismatic crystals in a dike of coarse-grained peralkaline feldspathoid syenite in the
17	north-central part of the Murun complex in eastern Siberia, Russia (Lat. 58° 22' 48" N; Long.
18	119°03'44" E). The new mineral is an early magmatic phase associated with aegirine, potassium
19	feldspar, eudialyte, lamprophyllite and nepheline; strontianite (as pseudomorphs after
20	vladykinite) and K-rich vishnevite are found in the same assemblage, but represent products of
21	late hydrothermal reworking. Vladykinite is brittle, has a Mohs hardness of 5 and distinct
22	cleavage on {100}. In thin section, it is colorless, biaxial negative [$\alpha = 1.624(2)$, $\beta = 1.652(2)$, γ
23	= 1.657(2), $2V_{\text{meas}} = 44(1)^\circ$, $2V_{\text{calc}} = 45(1)^\circ$] and shows an optic orientation consistent with its
24	structural characteristics (X ^{$^a = 5.1^{\circ}$ in β obtuse, Z^{$^c = 4.7^{\circ}$ in β acute, Y = b). The Raman}}
25	spectrum of vladykinite consists of the following vibration modes (listed in order of decreasing
26	intensity): 401, 203, 465, 991, 968, 915, 348, 167, 129, 264, 1039 and 681 cm ⁻¹ ; O-H signals
27	were not detected. The Mössbauer spectrum indicates that both Fe^{2+} and Fe^{3+} are present in the

mineral (Fe³⁺/Fe_{Σ} = 0.47), and that both cations occur in a tetrahedral coordination. The mean 28 chemical composition of vladykinite (acquired by wavelength-dispersive X-ray spectrometry and 29 laser-ablation inductively-coupled-plasma mass-spectrometry), with Fe_{Σ} recast into Fe^{2+} and Fe^{3+} 30 31 in accord with the Mössbauer data, gives the following empirical formula calculated to 24 32 oxygen atoms: $(Na_{2.45}Ca_{0.56})_{\Sigma 3.01}(Sr_{3.81}K_{0.04}Ba_{0.02}La_{0.02}Ce_{0.01})_{\Sigma 3.90}(Fe^{2+}_{0.75}Fe^{3+}_{0.66}Mn_{0.26}Zn_{0.16}Al_{0.12}Mg_{0.05})_{\Sigma 3.90}(Fe^{2+}_{0.75}Fe^{3+}_{0.66}Mn_{0.26}Zn_{0.16}Al_{0.12}Mg_{0.16})_{\Sigma 3.90}(Fe^{2+}_{0.75}Fe^{3+}_{0.75}Mg_{0.16})_{\Sigma 3.90}(Fe^{2+}_{0.75}Mg_{0.16}Mg_{0.16})_{\Sigma 3.90}(Fe^{2+}_{0.75}Mg_{0.16})_{\Sigma 3.90}(Fe^{2+}_{0.75}Mg_{0.16}Mg_{0.16})_{\Sigma 3.90}(Fe^{2+}_{0.75}Mg_{0.16})_{\Sigma 3.90}(Fe^{2+}_{0.75}Mg_{0.16})_{$ 33 $Ti_{0.01}\sum_{2.01} (Si_{7.81}Al_{0.19})\sum_{8.00}O_{24}$. The mineral is monoclinic, space group $P2_1/c$, a = 5.21381(13), b 34 = 7.9143(2), c = 26.0888(7) Å, $\beta = 90.3556(7)^{\circ}$, V = 1076.50(5) Å³, Z = 2. The ten strongest 35 lines in the powder X-ray diffraction pattern are $[d_{obs} \text{ in } \text{ Å } (I) (hkl)]$: 36 2.957 (100) (123, 123); 2.826 (100) (117, 117); 3.612 (58) (114, 114); 3.146 (37) (120); 2.470 37 (32) (210, 01.10); 4.290 (30) (111, 111); 3.339 (30) (106, 115, 106); 2.604 (28) (200); 2.437 38 (25) (034); 1.785 (25) (21.10, $\overline{2}34$). The structure of vladykinite, refined by single-crystal 39 techniques on the basis of 3032 reflections with $F_0 > 4\sigma F_0$ to $R_1 = 1.6\%$, consists of tetrahedral 40 sheets parallel to (100) and consisting of $(Si_8O_{24})^{16}$ units incorporating four-membered silicate 41 rings and joined into five- and eight-membered rings by sharing vertices with larger tetrahedra 42 hosting Fe²⁺, Fe³⁺, Mn, Zn, Al, Mg and Ti. Larger cations (predominantly Na, Sr and Ca) are 43 accommodated in octahedral and square-antiprismatic interlayer sites sandwiched between the 44 tetrahedral sheets. Structural relations between vladykinite and other sheet silicates incorporating 45 46 four-, five- and eight-membered rings are discussed. The name vladykinite is in honor of Nikolay V. Vladykin (Vinogradov Institute of Geochemistry, Russia), in recognition of his contribution 47 to the study of alkaline rocks. Holotype and cotype specimens of the mineral were deposited in 48 the Robert B. Ferguson Museum of Mineralogy in Winnipeg, Canada. 49 50 **Keywords:** Vladykinite, new mineral, sheet silicate, peralkaline rocks, Murun complex, Yakutia, Russia 51 52 53

54

55

INTRODUCTION

56 Potassic peralkaline syenites (wt.% $K_2O > wt.$ % Na_2O ; mol.% $Na_2O+K_2O > mol.$ % Al_2O_3) are an uncommon type of igneous rocks that, in extreme cases, contain an appreciable proportion 57 of kalsilite (KAlSiO₄) or leucite (typically replaced by kalsilite-orthoclase intergrowths). Notable 58 examples of these rocks occur in the Murun, Synnyr, Yaksha and Yuzhnosakunsky alkaline 59 60 complexes in eastern Siberia, and at Khibiny in Kola Peninsula, Russia (Kostyuk et al. 1990; Ageeva and Borutzky 2004; Pakhomovsky et al. 2009). These syenites, their associated 61 metasomatites and pegmatites host a plethora of exotic accessory minerals enriched in K, Sr or 62 63 Ba, which are exceedingly rare or unknown in other rock types. For example, out of some 160 minerals reported from the Murun complex, fifty-seven contain essential K, Ba or Sr, including 64 several species so far endemic to this locality (for details and bibliography, see Appendix 1, 65 online). It is important to note here that most of these exotic minerals are not at all rare at Murun 66 67 and locally gain the status of rock-forming constituents; a good understanding of their crystal chemistry and paragenetic relations is thus essential to the understanding of the petrogenesis of 68 69 their host rocks.

In her study of peralkaline syenitic dikes from the Murun complex, Reguir (2001) briefly 70 71 described a previously unknown Na-Fe-Sr silicate (pp. 162-163), but the dearth of available 72 material precluded its detailed examination. Complete characterization of this mineral became 73 possible only when additional samples were provided to us by Professor Nikolay V. Vladykin (Vinogradov Institute of Geochemistry in Irkutsk, Russia), who had also recognized this silicate 74 as a potential new species. The new mineral and its name have been approved by the 75 76 Commission on New Minerals, Nomenclature and Classification of the International 77 Mineralogical Association (IMA 2011-052). The name vladykinite (владыкинит) was chosen in honor of Nikolay V. Vladykin (b. 1944), in recognition of his contribution to the geochemistry, 78 petrology and mineralogy of alkaline rocks, including the Murun complex (Vladykin 1981, 1997, 79 2009; Mitchell and Vladykin 1993, 1996; Vladykin and Tsaruk 2003). Holotype and cotype 80 81 specimens (unmounted and epoxy-mounted grains, polished thin sections and the crystal used for

structure refinement) were deposited in the Robert B. Ferguson Museum of Mineralogy at the
University of Manitoba (Winnipeg, Canada) under catalogue number M7853.

- 84
- 85

GEOLOGICAL PROVENANCE AND PARAGENESIS

The Murun alkaline complex is a large ($\sim 60 \text{ km}^2$) composite pluton of Cretaceous age 86 emplaced in Archean high-grade metamorphic rocks and Neoproterozoic clastic and carbonate 87 sedimentary rocks (Kostyuk et al. 1990; Konev et al. 1996). The complex comprises a wide 88 89 variety of igneous, metasomatic and hydrothermal rocks, but the most volumetrically significant 90 are alkali-rich ultramafites, feldspathoid and quartz syenites, and their extrusive analogues 91 (phonolites, trachytes, leucitites). Murun is known widely as the type locality of the purple gemstone charoite (Evdokimov 1995) and several other compositionally and structurally unusual 92 93 minerals (Appendix 1, online).

94 Vladykinite was identified in a dike of coarse-grained mesocratic feldspathoid syenite 95 (lujavrite) at Mt. Maly Murun in the north-central part of the complex. Geographically, Maly Murun is situated in southwestern Yakutia near its administrative border with the Irkutsk Region 96 (Lat. $58^{\circ}22'48''$ N; Long. $119^{\circ}03'44''$ E). The host dike, measuring ~2-3 m in width and 20 m 97 in length, comprises aegirine, potassium feldspar, K-Sr-bearing eudialyte, vladykinite, 98 99 lamprophyllite, nepheline, strontianite and K-rich vishnevite, listed approximately in order of 100 decreasing modal abundance (for formulae, see Appendix 1, online). Note that the cancrinite-101 group phase tentatively identified here as vishnevite is stoichiometrically close to pitiglianoite, $Na_6K_2Si_6Al_6O_{24}(SO_4) \cdot 2H_2O$; the two minerals can be distinguished only on the basis of structural 102 103 data (Pekov et al. 2011), which are currently unavailable. In the Maly Murun lujavrite, 104 vladykinite is relatively abundant, locally composing up to 5% of its volume. The mineral occurs 105 as pointed prismatic crystals of brown color with a rhombic to pseudohexagonal cross-section perpendicular to the length, as well as parallel and radiating clusters of such crystals (Fig. 1a). 106 107 The size of individual grains does not exceed a few mm in length and 0.5 mm in width. In hand-108 specimen, vladykinite resembles acicular titanite common in feldspathoid syenites (but

uncommon in their peralkaline varieties); the two minerals, however, differ in their optical
properties (see below). The majority of crystals are partially or completely pseudomorphed by
strontianite (Fig. 1b).

- 112
- 113

PHYSICAL AND OPTICAL PROPERTIES

The new mineral is macroscopically pinkish to gravish brown, with a vitreous luster and a 114 115 white streak. It is brittle, has a Mohs hardness of 5 and a distinct cleavage on {100}. The specific gravity of vladykinite could not be measured, but is greater than that of di-iodomethane (3.22). 116 117 The density, calculated on the basis of the chemical and crystallographic data (see below), is 3.51 g/cm³. In thin section, the mineral is colorless, non-pleochroic, and shows a moderate positive 118 relief. The optical properties, determined with a spindle stage, are as follows: $\alpha = 1.624(2)$, $\beta =$ 119 1.652(2), $\gamma = 1.657(2)$, $2V_{\text{meas}} = 44(1)^{\circ}$, $2V_{\text{calc}} = 45(1)^{\circ}$. Vladykinite is biaxial negative and 120 shows the following optic orientation: $X^{a} = 5.1^{\circ}$ (β obtuse), $Z^{c} = 4.7^{\circ}$ (β acute), Y = b. Based 121 on these properties, vladykinite can be readily distinguished from titanite, which has a much 122 higher relief and birefringence, larger extinction angle ($Z^{\wedge}c \approx 50^{\circ}$), is pleochroic and biaxial 123 positive (Deer et al. 1997). The calculated Gladstone-Dale compatibility index is 0.023 124 (excellent). 125 The micro-Raman spectrum, measured on the grain subsequently used for single-crystal 126

126 The micro-Raman spectrum, measured on the grain subsequently used for single-crystal
 127 analysis (Fig. 2), is complex and consists of lattice vibrations in the 100-350 cm⁻¹ range and a
 128 series of Si-O and Fe-O modes between 400 and 1100 cm⁻¹. Because O-H stretching vibrations
 129 (3300-3600 cm⁻¹) were not observed, the presence of structural water or hydroxyl groups in this
 130 mineral can be conclusively ruled out.

131

132

MÖSSBAUER SPECTROSCOPY

Because Fe was identified as one of the major components in energy-dispersive X-ray

spectra of vladykinite, the structural state of Fe was investigated using Mössbauer spectroscopy.

135 The measurements were done at room temperature with a ⁵⁷Co(Rh) point source, using an Fe foil

136	for the spectrometer calibration. The ⁵⁷ Fe Mössbauer spectrum, collected from several grains
137	extracted from the holotype sample, indicates the presence of two active species, Fe ²⁺ (solid line
138	subspectrum in Fig. 3) and Fe ³⁺ (dashed line). Consequently, the spectrum was fitted using a
139	Voigt-based quadrupole-splitting distribution method to a model based on two species, each
140	represented by a single Gaussian component. The refined parameters for the center shift (CS)
141	relative to α -Fe at room temperature, and the quadrupole splitting (QS) are as follows: CS =
142	1.01(1) mm/s, QS = 2.77(3) mm/s for Fe ²⁺ ; and CS = 0.23(7) mm/s, QS = 0.87(9) mm/s for Fe ³⁺ .
143	The CS values indicate that both Fe^{2+} and Fe^{3+} occur in a tetrahedral coordination. Assuming
144	equal recoil-free fractions for both species, the calculated Fe^{3+}/Fe_{Σ} ratio is 0.47(5).
145	
146	CHEMICAL COMPOSITION
147	The chemical composition of vladykinite was initially determined by wavelength-dispersive
148	X-ray spectrometry (WDS) using a CAMECA SX 100 fully automated electron-microprobe
149	operated at an accelerating voltage of 15 kV and a beam current of 10 nA. Several crystals were
150	analyzed with a 10- μ m beam and found to show little compositional variation (Table 1). The
151	following standards were employed for the analysis: albite (Na), and alusite (Al), diopside (Ca,
152	Si), fayalite (Fe), forsterite (Mg), gahnite (Zn), orthoclase (K), spessartine (Mn), titanite (Ti),
153	synthetic SrTiO ₃ (Sr), LaPO ₄ (La) and CePO ₄ (Ce). In addition, F, Cl, Cr, Y, Zr, Nb, Ba, Pr, Nd,
154	Sm, Ta and Th were sought, but found not to be present at levels detectable by WDS.
155	Vladykinite was also analyzed by laser-ablation inductively-coupled-plasma mass-
156	spectrometry (LA-ICP-MS) using a 213-nm Nd-YAG Merchantek laser connected to a Thermo
157	Finnigan Element 2 sector-field mass-spectrometer. All measurements were performed using a
158	beam size of 30 μm , laser-energy density of ca. 5.45 J/cm^2 and repetition rate of 10 Hz. Ablation
159	was done in Ar and He atmospheres, and the rate of oxide production was monitored during
160	instrument tuning by measuring the ThO/Th ratio and kept below 0.2%. Synthetic glass standard
	instrument tuning by measuring the ThO/Th ratio and kept below 0.2%. Synthetic glass standard NIST SRM 610 was employed for calibration and quality control. After taking into account

163	analysis: ²⁵ Mg, ²⁹ Si, ⁴⁵ Sc, ⁵¹ V, ⁵⁵ Mn, ⁵⁹ Co, ⁶⁰ Ni, ⁶⁶ Zn, ⁸⁵ Rb, ⁸⁹ Y, ⁹⁰ Zr, ⁹³ Nb, ¹³⁷ Ba, ¹³⁹ La, ¹⁴⁰ Ce,
164	¹⁴¹ Pr, ¹⁴⁶ Nd, ¹⁴⁷ Sm, ¹⁵¹ Eu, ¹⁵⁵ Gd, ¹⁵⁹ Tb, ¹⁶³ Dy, ¹⁶⁵ Ho, ¹⁶⁶ Er, ¹⁶⁹ Tm, ¹⁷² Yb, ¹⁷⁵ Lu, ¹⁷⁸ Hf, ¹⁸¹ Ta,
165	²⁰⁸ Pb, ²³² Th, ²³⁸ U. All analyses were performed in a low-resolution mode (~300) using Pt
166	skimmer and sample cones. Data reduction was carried out online using the GLITTER software
167	(van Achterbergh et al. 2001). The Si concentrations determined by WDS show the least
168	variation around the mean value (Table 1) and were chosen as an internal standard for all
169	analyses. The quality control was achieved by keeping the fractionation at less than 10% and
170	fractionation/error ratio at < 3. The following elements were not detectable by LA-ICP-MS (their
171	approximate lower detection limits in ppm are given in parentheses): Ni (2), Rb (0.6), Zr (0.5),
172	Nb (0.5), Tb (0.1), Dy (0.2), Ho (0.05), Er (0.2), Tm (0.05), Yb (0.2), Lu (0.05), Hf (0.1), Ta
173	(0.05). For those elements that were quantified by both WDS and LA-ICP-MS, their measured
174	values are within the estimated standard deviation of each other (see Mg, Mn, Zn, La and Ce in
175	Table 1).
176	The mean chemical analysis of vladykinite, based on WDS (Na, Al, Si, Ca, Ti, Fe and Sr)
177	and LA-ICP-MS (Mg, Mn, Zn, La, Ce, Pr, Nd, Ba) data, with Fe_{Σ} recast into Fe^{2+} and Fe^{3+} in
178	accord with the Mössbauer data (4.76 wt.% FeO and 4.69 wt.% Fe ₂ O ₃), gives the following
179	empirical formula calculated to 24 oxygen atoms: (Na _{2.451} Ca _{0.557}) _{\$\sum_{23.008}\$} (Sr _{3.805} K _{0.038} Ba _{0.015} La _{0.023})
180	$Ce_{0.014}Pr_{0.001}Nd_{0.001})_{\Sigma 3.897}(Fe^{2+}{}_{0.746}Fe^{3+}{}_{0.662}Mn_{0.260}Zn_{0.164}Al_{0.118}Mg_{0.047}Ti_{0.014})_{\Sigma 2.011}(Si_{7.813}Mg_{0.047}Ti_{0.014})_{\Sigma 2.011}(Si_{7.813}Mg_{0.014})_{\Sigma 2.011}(Si_{7.813}Mg_{0.014})_{\Sigma 2.011}(Si_{7.813}Mg_{0.014})_{\Sigma 2.011}(Si_{$
181	$Al_{0.187}$) _{$\Sigma 8.000$} O ₂₄ . From crystal-chemical considerations (see CRYSTAL STRUCTURE), two
182	alternative end-member formulae can be proposed for vladykinite: $Na_3Sr_4(Fe^{2+}Fe^{3+})Si_8O_{24}$ or
183	$(Na_2Ca)Sr_4Fe^{2+}_2Si_8O_{24}$. These two expressions differ in the content of the Na and Fe sites and are
184	related to each other via the coupled substitution $Na^+ + Fe^{3+} \Leftrightarrow Ca^{2+} + Fe^{2+}$. Because the
185	trivalent-cation content in the Fe site (0.78 atoms per formula unit, apfu) is significantly in
186	excess of the Ca content in the Na sites (0.56 apfu), we give preference to the idealized formula
187	$Na_3Sr_4(Fe^{2+}Fe^{3+})Si_8O_{24}.$
188	

189

CRYSTAL STRUCTURE

Single-crystal data were acquired with a Bruker D8 three-circle diffractometer equipped with 191 a rotating anode generator (Mo $K\alpha$ radiation), multi-layer optics incident beam path and an 192 APEX-II charge-coupled-device (CCD) detector. A sphere of X-ray diffraction data was 193 collected to $2\theta = 60^{\circ}$ at 5 s per 0.2° frame and a crystal-to-detector distance of 5 cm. The unit-194 cell parameters were obtained by least-squares refinement of 9873 reflections with $I > 10\sigma I$. Of 195 25682 total reflections, there are 11807 individual reflections within the Ewald sphere, including 196 3159 unique data; the Laue-merging R value is 1.5% in 2/m. Systematically absent reflections are 197 consistent with the space group $P2_1/c$. The structure of vladykinite was refined on the basis of 198 199 3032 reflections with $F_0 > 4\sigma F_0$ to $R_1 = 1.6\%$ (for a fully anisotropic model). The refined unitcell parameters are: a = 5.21381(13), b = 7.9143(2), c = 26.0888(7) Å, $\beta = 90.3556(7)^{\circ}$, V =200 1076.50(5) Å³, Z = 2. Although the departure in β from 90° is small, the Laue-merging R value of 201 24% for *mmm* shows that the X-ray intensity data are inconsistent with orthorhombic symmetry 202 203 (see **DISCUSSION**). The crystal structure of vladykinite consists of complex tetrahedral sheets parallel to (100) 204

and consisting of (Si₈O₂₄)¹⁶⁻ units incorporating four-membered silicate rings joined into five-205 and eight-membered rings by sharing vertices with larger tetrahedra hosting Fe, Mn, Zn, Al and 206 Mg. The overall topology of the sheet can be formulated as $4^{1}5^{4}8^{1}$. Larger cations 207 (predominantly Na, Sr and Ca) are accommodated in a variety of interlayer sites sandwiched 208 209 between the tetrahedral sheets (Fig. 4; Table 2). The two Na sites are both dominated by Na 210 atoms in a distorted octahedral coordination, with $\langle Na - O \rangle$ distances of 2.453 and 2.535 Å, 211 respectively (Table 3). A site-occupancy refinement revealed that all Ca (0.56 apfu) is ordered in 212 the Na2 site (Table 4). There are also two Sr sites that are both dominated by Sr atoms and coordinated by eight O atoms in a square-antiprismatic arrangement with \langle Sr – O \rangle distances of 213 2.634 and 2.624 Å, respectively (Table 3). There is a slight deficit in scattering at the Sr2 site 214 relative to 100% Sr occupancy, which most likely stems from the presence of K and vacancies in 215 216 this site (Table 4). There are four unique Si tetrahedra with \langle Si – O> distances ranging from

217	1.625 to 1.634 Å; both site scattering and \langle Si – O> distances suggest that the Si sites are
218	occupied primarily by Si. A single larger tetrahedron ($\langle Fe - O \rangle = 1.941 \text{ Å}$) has a refined site
219	scattering of 47.59(8) electrons per formula unit (epfu), in reasonable agreement with the
220	assignment of all $Fe + Mn + Zn + Mg + Ti$, and some of the Al from the chemical analysis to this
221	site (Table 4). The \langle Fe – O \rangle distance calculated assuming the Fe ²⁺ /Fe ³⁺ ratio obtained from the
222	Mössbauer analysis is 1.952 Å (i.e., 0.572 + 1.38 Å), which is also in agreement with the
223	observed <fe o="" –=""> distance of 1.941 Å. The Fe tetrahedron is thus occupied by ~60% divalent</fe>
224	cations (predominantly Fe ²⁺) and 40% trivalent cations (mostly Fe ³⁺), providing further support
225	for the proposed end-member formula (see above).
226	
227	X-RAY POWDER DIFFRACTION
228	An X-ray diffraction (XRD) pattern was measured with a Bruker D8 Discover SuperSpeed
229	micro-powder diffractometer equipped with a CuK α source, multi-wire 2D detector and
230	modified Gandolfi attachment. In addition, a pseudo-powder XRD pattern was collected in situ
231	from a polished section using a Rigaku D-max Rapid micro-diffractometer equipped with a
232	curved-image-plate detector, variety of beam collimators and motorized stage allowing two
233	angular movements. The data were collected in reflection mode using various sample-to-beam
234	geometries and operating conditions. The patterns obtained by the two techniques are very
235	similar, but the in situ measurements did not detect, or underestimated the intensity of, low-angle
236	reflections ($d > 4$ Å), and showed strong preferred-orientation effects owing to the subparallel
237	alignment of vladykinite crystals in the sample. The measured XRD micro-powder pattern and
238	interplanar spacings calculated on the basis of structural data are given in Table 5. The unit-cell
239	parameters, refined from the powder XRD data by least-squares techniques, are in good
240	agreement with those determined by single-crystal techniques: $a = 5.215(2)$, $b = 7.897(6)$, $c =$
241	26.05(2) Å, $\beta = 90.21(5)^{\circ}$, $V = 1072.6(7)$ Å ³ .

- 242
- 243

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4528

244

DISCUSSION

245 *Relation to other mineral species*

Only a small number of phyllosilicate minerals contain complex tetrahedral sheets 246 247 comprising four-, five- and eight-membered rings, as in vladykinite (Fig. 4). The simplest arrangement, consisting of zigzag silicate chains $(Si_6O_{17})^{10}$ running parallel to [001] and 248 connected into a sheet by larger (Zn,Fe,Mn,Mg)O₄ tetrahedra, was reported in the crystal 249 structure of nordite-(Ce) and related minerals (Bakakin et al. 1970; Pushcharovsky et al. 1999). 250 Their general formula can be written as Na₃SrLREE(Zn,Fe²⁺,Mn,Mg)Si₆O₁₇, where LREE is a 251 light rare-earth element. A topologically similar sheet (ring symbol $4^{1}5^{2}8^{1}$) was recently 252 identified in the structure of bussyite-(Ce) REE₂CaNa₆MnBe₅Si₉(O,OH)₃₀(F,OH)₄, where all 253 tetrahedra are similar in size and populated by Si, Be or both (Grice et al. 2009). The pattern of 254 255 Be distribution within the sheet in bussyite-(Ce) is also different from the distribution of tetrahedrally coordinated divalent cations in the nordites (Figs. 5a and 5b), but the stoichiometry 256 of the sheet is preserved. A completely different arrangement of silicate rings and stoichiometry 257 are found in the beryllosilicates semenovite-(Ce). Na₀-258 $_{2}(Ca,Na)_{8}REE_{2}(Fe^{2+},Mn,Zn)(Be,Si)_{20}(O,OH,F)_{48}$ (Mazzi et al. 1979) and harstigite. 259 Ca₆MnBe₄Si₆O₂₂(OH)₂ (Hesse and Stümpel 1986). In contrast to the nordites, Mn and other 260 261 divalent cations larger than Be, but smaller than Ca occupy octahedral sites in bussyite-(Ce), semenovite-(Ce) and harstigite. Although tetrahedral sheets in the structure of vladykinite show 262 263 the same 1:4:1 proportion among four-, five- and eight-membered rings and, hence, the same 264 stoichiometry as in semenovite-(Ce) or harstigite (i.e. 10 tetrahedrally coordinated cations per 24 anions), they are topologically unique (cf. Figs. 5c and 5d). The structure of vladykinite does not 265 appear to have any known natural or synthetic analogues at present, but shows a clear structural 266 affinity to the nordites. The $4^{1}5^{4}8^{1}$ sheet in vladykinite can be visualized as consisting of eight-267 tetrahedra-long segments of nordite-like chains, $(Si_8O_{24})^{16}$ interconnected by sharing all of their 268 available vertices with FeO₄ tetrahedra (Figs. 4, 5a and 5d). In both structure types, tetrahedral 269 270 sheets are sandwiched between layers of NaO₆ octahedra and SrO₈ (\pm LREEO₈) square

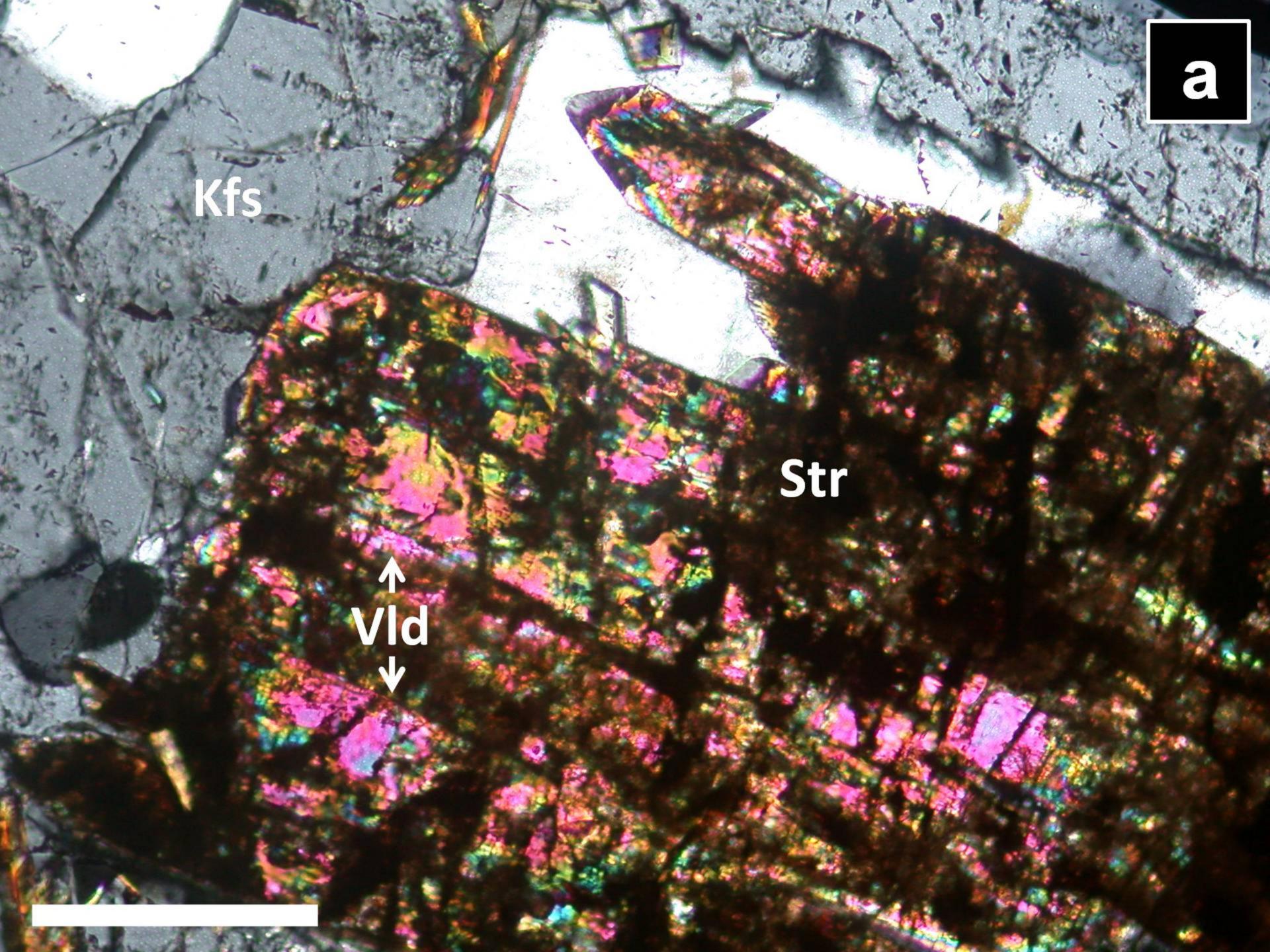
antiprisms. The Na1O₆, Na2O₆ and SrO₈ polyhedra are very similar in vladykinite and 271 ferronordite-(Ce), whereas the FeO₄ tetrahedron is somewhat larger in the latter mineral because 272 it accommodates only Fe^{2+} and other divalent cations (Pushcharovsky et al. 1999; Table 3). 273

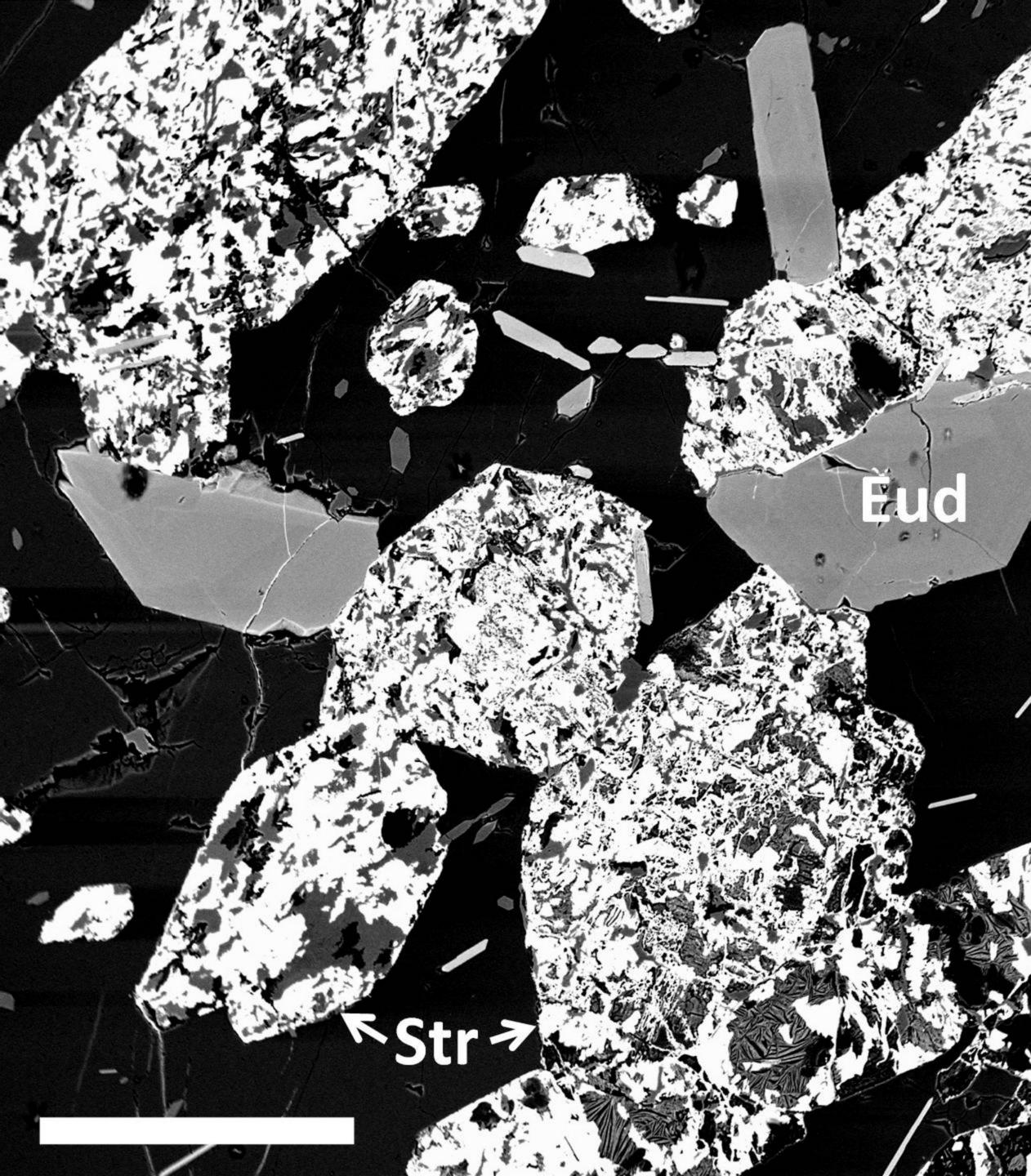
274

296

275 Paragenesis

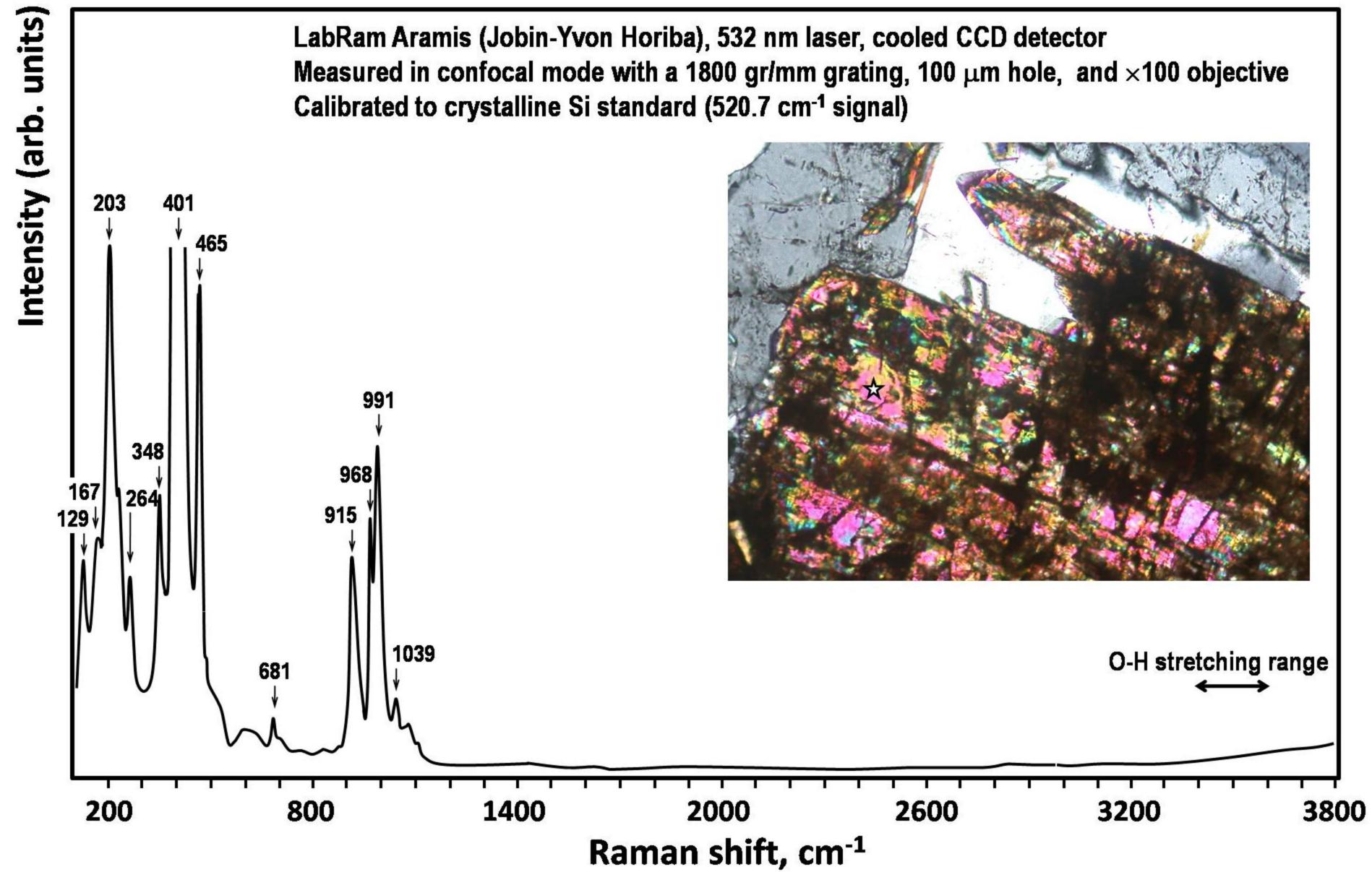
276 In the host lujavrite, vladykinite is a relatively early liquidus phase precipitated after lamprophyllite, but prior to potassium feldspar, Sr-bearing eudialyte and aegirine. The high 277 278 modal content of lamprophyllite, eudialyte and vladykinite, along with the presence of K-rich vishnevite and strontianite, in this rock are undoubtedly due to the extremely evolved, volatile-279 280 rich nature of its parental peralkaline melt. The lack of Ba silicates in the lujavrite, and low Ba contents in its constituent minerals (0.9-1.8 wt.% BaO in lamprophyllite, 0.2 wt.% in vladykinite, 281 282 and below detection in the feldspar) suggest that this melt was derived from a more primitive magma by fractional crystallization of potassium feldspar, in which Ba is much more compatible 283 than Sr (Henderson and Pierozynski 2012); BaO values up to 3 wt.% were reported in syenitic 284 285 feldspars from Murun by Konev et al. (1996) and Reguir (2001). The evolution of the lujavrite 286 culminated with the release of a sulfate-carbonate-rich fluid, which reacted with the early magmatic mineral assemblage to produce vishnevite and strontianite. At this stage, vladykinite 287 288 became chemically unstable and underwent pseudomorphization by strontianite (Fig. 1). Precipitation of SrCO₃ and removal of silica during the replacement imply alkaline conditions, 289 290 but a quantitative assessment of these conditions cannot be made at present because thermodynamic data for vladykinite are not available. Similar late-stage processes have been 291 292 documented elsewhere at Maly Murun, where strontianite developed at the expense of 293 fluorapatite and fluorstrophite (Chakhmouradian et al. 2002). 294 295 **ACKNOWLEDGEMENTS**

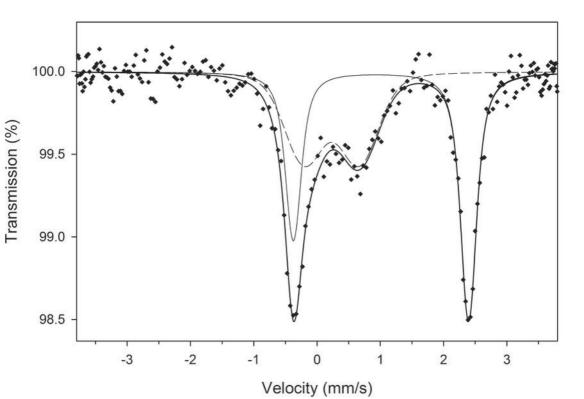

This work was supported by the Natural Sciences and Engineering Research Council of Canada and Canada Foundation for Innovation. The authors are grateful to Frank C. Hawthorne, 297

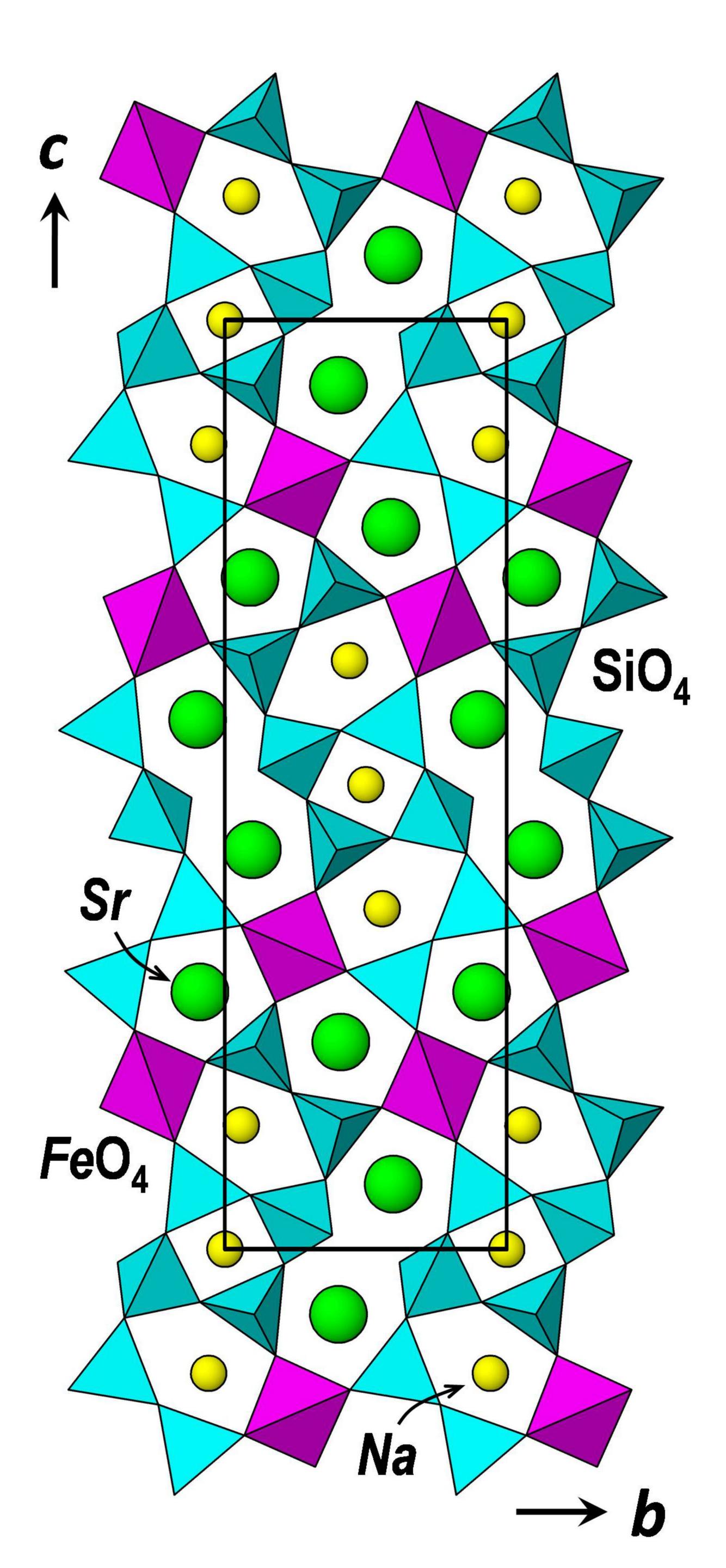

for access to the X-ray facilities at the University of Manitoba. Panseok Yang is thanked for his 298

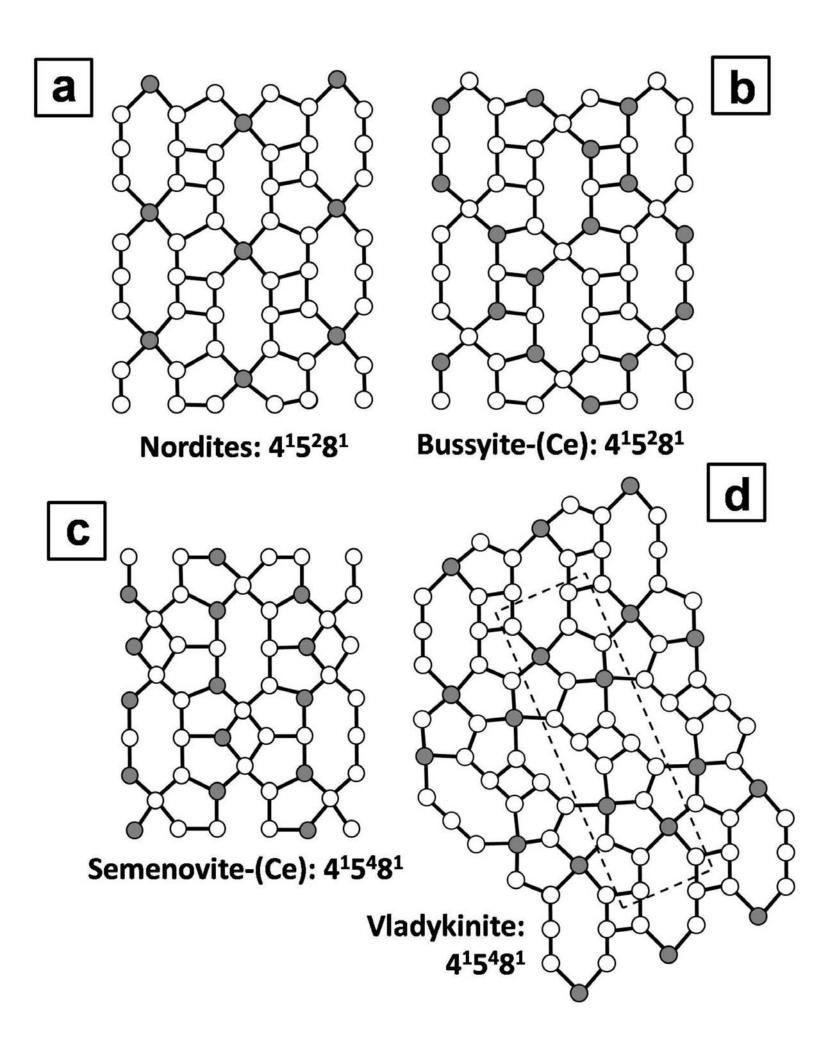
for their constructive comments on the earlier version of this manuscript, and Associate Editor				
for their constructive comments on the earlier version of this manuscript, and Associate Editor				
Hongwu Xu for speedy handling.				
R EFERENCES CITED				
Ageeva, O.A. and Borutzky, B.Ye. (2004) Kalsilite in the rocks of Khibiny massif: morphology,				
paragenesis, genetic conditions. New Data on Minerals, 39, 40-49.				
Bakakin, V.V., Belov, N.V., Borisov, S.V., and Solovyeva, L.P. (1970) The crystal structure of				
nordite and is relationship to melilite and datolite-gadolinite. American Mineralogist, 55,				
1167-1181.				
Chakhmouradian, A.R., Reguir, E.P., and Mitchell, R.H. (2002) Strontium-apatite: New				
occurrences, and the extent of Sr-for-Ca substitution in apatite-group minerals. Canadian				
Mineralogist, 40, 121-136.				
Deer, W.A., Howie, R.A., and Zussman, J. (1997) Rock-forming Minerals. Volume 1A:				
Orthosilicates. The Geological Society, Bath, UK, 932 pp.				
Evdokimov, M.D. (1995) Charoite: a unique mineral from a unique occurrence. World of Stones,				
1995 (7), 3-11.				
Grice, J.D., Rowe, R., Poirier, G., Pratt, A., and Francis, J. (2009) Bussyite-(Ce), a new				
beryllium silicate mineral species from Mont Saint-Hilaire, Quebec. Canadian Mineralogist,				
47, 193-204.				
Henderson, C.M.B. and Pierozynski, W.J. (2012) An experimental study of Sr, Ba and Rb				
partitioning between alkali feldspar and silicate liquid in the system nepheline – kalsilite –				
quartz at 0.1 GPa P(H ₂ O): a revisitation and reassessment. Mineralogical Magazine, 76, 157-				
190.				
Hesse, KF. and Stümpel, G. (1986) Crystal structure of harstigite, MnCa ₆ Be ₄ [SiO ₄] ₂ [Si ₂ O ₇] ₂				
(OH) ₂ . Zeitschrift für Kristallographie, 177, 143-148.				
Konev, A.A., Vorob'ev, E.I., and Lazebnik, K.A. (1996) Mineralogy of the Murun Alkaline				
Massif. Siberian Branch RAS press, Novosibirsk, Russia, 221 pp. (in Russian).				

Kostyuk, V.P., Panina, L.I., Zhidkov, A.Ya., Orlova, M.P., and Bazarova, T.Yu. (1990) Potassic 327 Alkaline Magmatism of the Baikal-Stanovoy Rift System. Nauka, Novosibirsk, Russia, 237 328 pp. (in Russian). 329 Mazzi, F., Ungaretti, L., and Dal Negro, A. (1979) The crystal structure of semenovite. 330 331 American Mineralogist, 64, 202-210. 332 Mitchell R.H. and Vladykin N.V. (1993) Rare-earth element-bearing tausonite and potassium 333 barium titanates from the Little Murun potassic alkaline complex. Mineralogical Magazine, 334 57, 651-668. (1996) Compositional variation of pyroxene and mica from the Little Murun ultrapotassic 335 336 complex, Aldan Shield, Russia. Mineralogical Magazine, 60, 907-925. Pakhomovsky, Ya.A., Yakovenchuk, V.N., and Ivanyuk, G.Yu. (2009) Kalsilite of the Khibiny 337 and Lovozero alkaline plutons, Kola Peninsula. Geology of Ore Deposits, 51, 822-826. 338 Pekov, I.V., Olysych, L.V., and Chukanov, N.V. (2011) Crystal chemistry of cancrinite-grpup 339 340 minerals with an AB-type framework: a review and new data. I. Chemical and structural variations. Canadian Mineralogist, 49, 1129-1150. 341 342 Pushcharovsky, D.Yu., Pekov, I.V., Pluth, J.J., Smith J.V., Ferraris, G., Vinogradova, S.A., Arakcheeva, A.V., Soboleva, S.V., and Semenov, E.I. (1999) Raite, manganonordite-(Ce) 343 344 and ferronordite-(Ce) from the Lovozero massif: crystal structures and mineralogical 345 geochemistry. Crystallography Reports, 44, 565-574. Reguir, E.P. (2001) Aspects of the Mineralogy of the Murun Alkaline Complex, Yakutia, Russia. 346 Unpublished MSc Thesis, Lakehead University, Thunder Bay, Canada, 193 pp. 347 van Achterbergh, E., Ryan, C.G., and Griffin, W.L. (2001) GLITTER on-line interactive data 348 reduction for the LA-ICPMS microprobe. Macquarie Research Ltd., Sydney. 349 350 Vladykin N.V. (1981) Geology of the Murun massif, the place of pseudoleucite (synnyrite-like) 351 syenites in the massif, and their chemical composition. In Problemy Osvoeniya Zony BAM. Novosibirsk, Russia, 106-113 (in Russ.). 352 (1997) Geochemistry and genesis of lamproites of the Aldan Shield. Russian Geology and 353 Geophysics, 38, 128-141. 354


355	(2009) Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore					
356	reserves. Russian Geology and Geophysics, 50, 1119-1128.					
357	Vladykin N.V. and Tsaruk I.I. (2003) Geology, chemistry and genesis of Ba-Sr-bearing					
358	("benstonite") carbonatites of the Murun Massif. Russian Geology and Geophysics, 44, 315-					
359	330.					
360						
361	FIGURE CAPTIONS					
362	Figure 1. (a) Prismatic crystals of vladykinite (Vld) showing turbid areas of partial replacement					
363	by strontianite (Str); the matrix is predominantly potassium feldspar (Kfs); cross-polarized					
364	light. (b) Pseudomorphs of strontianite (Str) after vladykinite associated with eudialyte (Eud)					
365	and lamprophyllite (Lmp); back-scattered-electron image. Scale bar is 0.2 mm for both					
366	images.					
367	Figure 2. Raman spectrum of vladykinite (analysis spot indicated by a star in the inset).					
368	Figure 3. ⁵⁷ Fe Mössbauer spectrum of vladykinite.					
369	Figure 4. The crystal structure of vladykinite viewed perpendicular to (100), showing complex					
370	sheets of SiO ₄ and (Fe,Mn,Zn,Al)O ₄ tetrahedra (FeO ₄) and locations of Na and Sr sites. The					
371	unit cell is outlined.					
372	Figure 5. Comparison of the tetrahedral sheet topology in the structures of: (a) ferronordite-(Ce)					
373	and related minerals (Pushcharovsky et al. 1999); (b) bussyite-(Ce) (Grice et al. 2009); (c)					
374	semenovite-(Ce) (Mazzi et al. 1979); and (d) vladykinite (this work). Silicon atoms are					
375	indicated by empty circles, and other tetrahedrally coordinated cations [i.e. mostly Be in					
376	bussyite-(Ce) and semenovite-(Ce); Fe^{2+} , Mn and Zn in the nordites; Fe^{2+} and Fe^{3+} in					
377	vladykinite] by filled circles.					
378						
379	Appendix 1 (online)					
380	Mineralogy of alkaline igneous and associated hydrothermal and metasomatic rocks, Murun					
381	complex, eastern Siberia, Russia.					







Oxide*	wt.%	range	ESD
Na ₂ O	6.74	6.41-7.18	0.21
MgO	0.14	0.13-0.15	0.01
Al_2O_3	1.38	1.21-1.70	0.15
SiO ₂	41.66	41.03-42.32	0.39
K ₂ O	0.16	0.15-0.17	0.01
CaO	2.77	2.58-2.96	0.09
TiO ₂	0.10	0.07-0.14	0.02
MnŌ	1.60	1.41-1.72	0.10
FeO _T [#]	8.98	8.64-9.29	0.19
ZnO	1.33	1.06-1.75	0.25
SrO	34.99	34.28-35.92	0.47
La_2O_3	0.22	0.11-0.33	0.08
Ce_2O_3	0.16	0-0.34	0.09
Total	98.90		0.07
Element‡	ppm	range	ESD
Mg	1010	903-1220	122
Sc	0.52		0.08
Mn	12683	11217-14005	1143
Co	29	28-32	2
Zn	9515	7899-11818	1581
Y	1.02	0.93-1.11	0.07
Ba	1838	1402-2194	312
La	2776	1949-3553	761
Ce	1709	1138-2361	575
Pr	74	44-108	28
Nd	101	58-148	41
Sm	2.4	1.4-3.9	0.9
Eu	0.37	0.17-0.60	0.14
Gd	48	32-65	14
Pb	12.9	11.8-14.2	0.9
Th	22	6-37	12
In		0.57	1 4

Table 1. Mean chemical composition of vladykinite

* Based on 16 WDS analyses.
* Based on the Mössbauer data, FeO_T should be recast into FeO (4.76 wt.%) and Fe₂O₃ (4.69 wt.%).

‡ Based on six LA-ICP-MS analyses.

Site	x	у	Z.	$U_{ m eq}$, Å 2
Na1	1/2	1/2	1/2	0.0278(3)
Na2	0.48483(11)	0.44221(9)	0.63351(2)	0.0210(2)
Sr1	0.49578(3)	0.90294(2)	0.57005(1)	0.01107(5)
Sr2	0.50609(3)	0.58890(2)	0.77700(1)	0.01184(6)
Fe	0.00453(5)	0.75589(3)	0.67545(1)	0.01134(9)
Si1	0.94527(9)	0.39083(6)	0.71424(2)	0.01073(9)
Si2	0.95867(8)	0.10612(6)	0.63401(2)	0.01018(9)
Si3	0.05166(8)	0.23197(6)	0.53139(2)	0.00944(9)
Si4	0.02973(8)	0.60042(5)	0.56752(2)	0.00895(8)
01	0.2495(2)	0.39304(17)	0.71818(5)	0.0175(3)
O2	0.8052(2)	0.56879(16)	0.70091(5)	0.0180(2)
03	0.7963(2)	0.32075(17)	0.76480(5)	0.0170(2)
O4	0.8411(2)	0.26336(17)	0.66773(5)	0.0169(2)
05	0.7412(2)	0.58495(19)	0.86101(5)	0.0209(2)
06	0.7921(2)	- 0.05618(16)	0.65173(5)	0.0161(2)
O7	0.8648(2)	0.14346(16)	0.57432(4)	0.0138(2)
08	0.2852(2)	0.11891(16)	0.51492(5)	0.0155(2)
09	0.1552(2)	0.41060(14)	0.55787(5)	0.0131(2)
O10	0.1358(2)	0.71048(16)	0.51702(4)	0.0131(2)
O11	0.7275(2)	0.60334(15)	0.57060(5)	0.0140(2)
O12	0.1881(2)	0.67881(16)	0.61515(5)	0.0145(2)

Table 2. The crystal structure of vladykinite: atomic coordinates and displacement parameters

$2 \times Na1 - O9$	2.4589(12)	Na2 – O1	2.5634(14)
$2 \times Na1 - O10$	2.5666(12)	Na2 - O2	2.6172(15)
$2 \times Na1 - O11$	2.3326(12)	Na2 - O4	2.4962(14)
		Na2 – O9	2.6208(13)
		Na2 – O11	2.4384(14)
		Na2 – O12	2.4738(14)
<na1 o="" –=""></na1>	2.453	<na2 o="" –=""></na2>	2.535
Sr1 – O5	2.6200(13)	Sr2 - O1	2.5540(13)
Sr1 – O6	2.6443(13)	Sr2 – O1	2.7262(13)
Sr1 - O7	2.7082(12)	Sr2 - O2	2.5371(13)
Sr1 – O8	2.4852(12)	Sr2 - O3	2.6271(13)
Sr1 – O8	2.5060(12)	Sr2 - O3	2.6497(13)
Sr1 – O10	2.7792(12)	Sr2 - O4	2.7010(13)
Sr1 – O11	2.6611(12)	Sr2 - O5	2.5049(13)
Sr1 – O12	2.6697(13)	Sr2 - O6	2.6887(13)
<sr1 o="" –=""></sr1>	2.634	<sr2 o="" –=""></sr2>	2.624
0.1 01	1 5007(12)	S:2 04	1 (147(12)
Si1 - O1	1.5887(13)	Si2 - O4	1.6447(13)
Si1 - O2	1.6231(14)	Si2 - O5	1.5781(13)
Si1 - O3	1.6320(13)	Si2 - O6	1.6194(14)
Si1 - O4	1.6662(13)	Si2 – O7	1.6563(12)
<si1 o="" –=""></si1>	1.628	<si2 o="" –=""></si2>	1.625
Si3 – O7	1.6455(12)	Si4 – O9	1.6583(12)
Si3 – O8	1.5729(13)	Si4 - O10	1.6763(12)
Si3 – O9	1.6620(13)	Si4 – O11	1.5786(13)
Si3 – O10	1.6562(12)	Si4 – O12	1.6118(12)
<si3 o="" –=""></si3>	1.634	<si4 o="" –=""></si4>	1.631
Fe - O2	1.9293(14)		
Fe - O3	1.9368(13)		
Fe - O6	1.9527(13)		
Fe – O12	1.9447(12)		
<fe o="" –=""></fe>	1.941		

Table 3. Selected bond distances (Å) in the crystal structure of vladykinite; mean distances for ferronordite-(Ce) are provided for comparison

Ferronordite-(Ce), Pushcharovsky et al. (1999):

<na1 o="" –=""></na1>	2.419	<na2 o="" –=""></na2>	2.527
<sr o="" –=""></sr>	2.629	<ree o="" –=""></ree>	2.546
<si1 o="" –=""></si1>	1.634	<si1 o="" –=""></si1>	1.629
<si3 o="" –=""></si3>	1.639	<fe o="" –=""></fe>	1.981

Site	Occupancy (from WDS and LA-ICP-MS)	Scattering, epfu calculated	Scattering, epfu observed, SCSR*
Na1	Na	11	11
Na2	Na _{1.45} Ca _{0.56}	27.2	27.90(9)
Sr1	Sr_2	76	76
Sr2	$Sr_{1.84}K_{0.04}La_{0.02}Ce_{0.01}[]_{0.10}$	72.4	70.46(8)
Fe	$Fe^{2+}_{0.75}Fe^{3+}_{0.66}Mn_{0.26}Zn_{0.16}Al_{0.12}Mg_{0.05}Ti_{0.01}$	50.3	47.59(8)

Table 4. Calculated cation-site occupancies in the crystal structure of vladykinite

* SCSR = single-crystal structure refinement.

		-	
Imeas	$d_{\rm meas}$, Å	$d_{ ext{calc}}$, Å	h k l
19	7.523	7.557	0 1 1
9	6.692*	6.752	0 1 2
6	5.839	5.842	0 1 3
5	5.167*	5.215	100
14	5.011	5.024	0 1 4
30	4.290	4.295	-111
		4.290	111
8	4.059	4.063	104
9	3.894	3.904	0 2 1
		3.895	-1 1 3
58	3.612	3.623	-114
		3.613	114
30	3.339	3.342	-106
		3.335	115
		3.330	106
7	3.258	3.256	0 0 8
37	3.146	3.148	120
100	2.957	2.962	-1 2 3
		2.957	123
100	2.826	2.832	-117
		2.824	117
28	2.604	2.608	200
5	2.553	2.551	-1 2 6
32	2.470	2.476	2 1 0
		2.473	0 1 10
25	2.437	2.440	034
14_{B}	2.391*	2.406	-1 2 7
		2.401	1 2 7
		2.383	-2 1 3
$10_{\rm B}$	2.334*	2.350	1 3 0
		2.334	-1 0 10
		2.327	1 0 10
		2.313	-1 3 2
16	2.109	2.112	-2 2 3
		2.109	223
18	2.063	2.065	-2 1 7
		2.058	2 1 7
$10_{\rm B}$	1.944*	1.948	-2 2 6
		1.942	0 1 13
		1.925	0 4 3
8	1.893	1.894	-1 2 11
		1.890	1 2 1 1
17	1.852	1.851	0 3 10
24	1.800	1.798	-2 1 10
		1.797	046

Table 5. Powder XRD pattern of vladykinite

Imeas	$d_{\rm meas}$, Å	$d_{ ext{calc}}$, Å	h k l
25	1.785	1.791	2 1 10
		1.783	-234
		1.781	234
15	1.743	1.746	-1 3 10
		1.743	1 3 10
11	1.684	1.683	0 2 14
4	1.639	1.641	3 1 4
5	1.616	1.616	-306
4	1.593	1.591	-3 2 0
8	1.565	1.566	-3 2 3
		1.564	3 2 3
5	1.548	1.547	-3 1 7

Notes: B = broad reflection;

* = reflection not used in the cell refinement