| 1  | Revision 1                                                                                   |
|----|----------------------------------------------------------------------------------------------|
| 2  | Optical absorption anisotropy of high-density, wide-gap, high-hardness ${ m SiO}_2$          |
| 3  | polymorphs seifertite, stishovite and coesite.                                               |
| 4  |                                                                                              |
| 5  | K. Klier <sup>a</sup> , J.A. Spirko <sup>b</sup> and K. M. Landskron <sup>a</sup>            |
| 6  |                                                                                              |
| 7  | <sup>a</sup> Department of Chemistry, Lehigh University, E. Packer Ave, Bethlehem, PA 18015  |
| 8  | <sup>b</sup> Department of Physical and Environmental Sciences, Texas A&M University-Corpus  |
| 9  | Christi, 6300 Ocean Dr, Unit 5802, Corpus Christi, TX 78414-5802                             |
| 10 |                                                                                              |
| 11 | KEYWORDS: Theory, silica polymorphs, seifertite, stishovite, coesite, rutile, band           |
| 12 | structure, effective mass, optical absorption                                                |
| 13 |                                                                                              |
| 14 |                                                                                              |
| 15 | ABSTRACT                                                                                     |
| 16 |                                                                                              |
| 17 | Dense, high-refractive index, ultra-hard, wide-gap polymorphs of SiO <sub>2</sub> , recently |
| 18 | discovered orthorhombic seifertite (space group 60 Pbcn), and earlier characterized          |
| 19 | tetragonal stishovite (space group 136 P42/mnm) and monoclinic coesite (space group 15       |

20  $C_{2/c}$ ) were studied using advanced methods of electronic structure calculations involving 21 full-potential linearized augmented plane wave density functional theoretical method 22 (FP-LAPW-DFT) with spin polarization, orbital dependent potentials, and modified 23 Becke-Johnson potential (mBJ) for accurate account of the band gaps. Even though these 24 calculations yield an excellent account of many properties, we here focus on quantitative 25 aspects of optical absorption and selection rules therein. Specifically, the valence-to-26 conduction band transition in *seifertite* is symmetry-allowed, and is symmetry-forbidden 27 in *stishovite* and *coesite*. Theory is compared with published experimental data, and 28 explanation is provided for weak pre-edge optical absorption in *stishovite*. Electronic 29 structure and calculated properties of *stishovite* are also compared with those of the 30 isostructural *rutile* TiO<sub>2</sub>. Effective masses are calculated from the energy dispersion 31 curves  $E(\mathbf{k})$  at the valence band maximum for holes and conduction band minimum for 32 electrons. In addition, we propose that splitting of the O2p valence-band in *coesite* and 33 also observed in  $\alpha$ -quartz is a general feature of polymorphs with tetrahedrally 34 coordinated Si, in contrast with continuous valence bands in those with octahedral SiO<sub>6</sub> 35 units such as *seifertite* and *stishovite*. Based on quantitative results obtained from the 36 BVA theory, this difference originates from a high degree of covalence in the tetrahedral 37 polymorphs as opposed to high iconicity in octahedral polymorphs.

38

### 39 I. INTRODUCTION

40

7/23

| 41 | Dense, high-refractive index, ultra-hard, wide-gap polymorphs of SiO <sub>2</sub> are of a great |
|----|--------------------------------------------------------------------------------------------------|
| 42 | interest not only owing to the history of discovery in extraterrestrial matter and their         |
| 43 | extraordinary physical properties, but also to the underlying chemical bonding and               |
| 44 | unusual coordination of the Si-On structure-forming units and their arrangements. The            |
| 45 | most recently discovered and characterized polymorph of this type is orthorhombic                |
| 46 | seifertite (space group 60 Pbcn) (Dera et al. 2002; El Goresy et al. 2008), after tetragonal     |
| 47 | stishovite (space group 136 P42/mnm) was first synthesized in laboratory by Stishov and          |
| 48 | Popova (1961) and reported on its natural occurrence in Arizona meteor crater by Chao et         |
| 49 | al. (1962). The monoclinic <i>coesite</i> (space group 15 C2/c) was first synthesized by Coes    |
| 50 | (1953), its natural occurrence reported by Chao et al. (1960) and crystal structure              |
| 51 | determined by Levien and Prewitt (1981) and Smyth et al. (1987). Some of the                     |
| 52 | experimentally determined properties of the investigated silicas as well as of selected          |
| 53 | reference materials are summarized in Table 1.                                                   |
| 54 |                                                                                                  |
| 55 | Table 1                                                                                          |
| 56 |                                                                                                  |
| 57 | The importance of these materials goes beyond their pure forms, especially as they serve         |
| 58 | as matrices holding impurities which impart on them new properties, both in nature and           |

technology. For example, the exchange of  $4H^+$  for Si<sup>4+</sup>, "the hydrogarnet substitution", is

60 considered to be one of the mechanisms for hydrogen storage in the deep Earth, *stishovite* 

- 61 being one of the vehicles for this storage as reported by Pawley et al. (1993), Williams
- 62 and Hemley (2001), the crystal structure of synthetic H-bearing aluminous *stishovite*

| 63 | having been reported by Smyth et al. (1995). Related to technology, diffusion of $Cu^+$ in       |
|----|--------------------------------------------------------------------------------------------------|
| 64 | $\alpha$ -cristobalite was studied theoretically for possible implications to the functioning of |
| 65 | nanoelectronic devices by Zelený et al. (2012), prompting an interest in general                 |
| 66 | interaction of metals with the silica polymorphs. To advance the understanding of metal-         |
| 67 | support interactions at surfaces related to adhesion and catalysis, strength of bonding and      |
| 68 | agglomeration of Co and Ni on silica surfaces have been examined theoretically by Ma et          |
| 69 | al. (2000), (2001a), compared with those on alumina support by Ma et al. (2001b), and            |
| 70 | analyzed for periodic trends in interactions of the entire first-row transition metal series     |
| 71 | with the silica surface by Ma et al. (2002) on a slab model derived from $\beta$ -cristobalite,  |
| 72 | using methods similar to those employed here, albeit focusing only on the ground-state           |
| 73 | properties.                                                                                      |

75 Theory has now advanced to a level of high reliability and accuracy to attack both the 76 fundamentals of electronic structure of pure crystalline materials such as the silicas 77 considered here, and the effects of impurities and deliberately added dopants on 78 properties such as optical spectra, luminescence, and carrier transport phenomena. While 79 electronic structure of stishovite and coesite has been addressed in numerous papers (Xu 80 and Ching 1991; Rudra and Fowler 1983), the most recently characterized *seifertite* has 81 not so far to our knowledge been subject to theoretical analysis. Experimental optical 82 absorption spectra of *stishovite* and *coesite*, but not *seifertite*, have also been reported by 83 Trukhin et al. (2004). In this work, we present calculations of all three high-pressure 84 polymorphs utilizing the full-potential linearized augmented plane wave (FP-LAPW) 85 method as described by Singh (1994a) and implemented by Blaha et al. (2013) with the

| 86  | modified Becke-Johnson (mBJ) potential of Tran and Blaha (2009) that is suited for                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 87  | analysis of the entire electronic structure including core levels, valence and conduction                                    |
| 88  | bands involving both oxygen and silicon orbitals, accurate band gaps, and core-level                                         |
| 89  | shifts (CLS) for interpretation of photoelectron spectra. Because stishovite is                                              |
| 90  | isostructural with TiO <sub>2</sub> rutile, we also compare their calculated properties and point out                        |
| 91  | the differences in bandgaps, optical transitions and carrier effective masses due to Ti $\leftrightarrow$                    |
| 92  | Si replacement. Reliability of the present FP-LAPW-mBJ method is tested by a                                                 |
| 93  | comparison with experiment of Garvie et al (2000) and with published calculations                                            |
| 94  | employing the GW quasiparticle approximation for $\alpha$ -quartz by Chang et al. (2000).                                    |
| 95  | Optical absorption spectra are calculated in the single-particle approximation of                                            |
| 96  | Ambrosch-Draxl and Sofo (2006), and spin-orbit interaction, although very small in the                                       |
| 97  | materials studied, is also assessed using the second variational method as implemented by                                    |
| 98  | Novák (2001). The present theoretical results may be considered as a background, or a                                        |
| 99  | first stage, for the interpretation of experimental absorption spectra, as previously done                                   |
| 100 | for amorphous SiO <sub>2</sub> using temperature dependence of Kramers-Kronig derived                                        |
| 101 | absorption spectra in a recent study of Vella et al. (2011), as well as with theoretical                                     |
| 102 | treatments of excitons in the pure and impurity-containing materials of this type,                                           |
| 103 | employing methods already used for other SiO <sub>2</sub> polymorphs: amorphous silica modeled                               |
| 104 | as $\beta$ -cristobalite by Laughlin (1980), $\alpha$ -quartz SiO <sub>2</sub> and TiO <sub>2</sub> using the Bethe-Salpeter |
| 105 | equation (BSE) employed by Lawler et al. (2008) and Kang and Hybertsen (2010), and $\beta$ -                                 |
| 106 | cristobalite with quasi-particle corrections to the Kohn-Sham eigenvalues determined by                                      |
| 107 | the GW approximation used by Ramos et al. (2004).                                                                            |
|     |                                                                                                                              |

# 109 II. SEMI-EMPIRICAL ASSESSMENT OF BOND STRENGTHS, COVALENCE110 AND IONICITY

| 112 | An initial assessment of bonding and physical properties is motivated by the expediency   |
|-----|-------------------------------------------------------------------------------------------|
| 113 | of semi-empirical methods for a large number of compounds, herein with emphasis on        |
| 114 | the relation between known structures and degree of iconicity and covalence of the silica |
| 115 | polymorphs studied. While ionic compounds are stabilized by long-range electrostatic      |
| 116 | [Madelung] interactions, covalent solids owe their stability to local bond strengths. The |
| 117 | silica polymorphs are expected to be an intermediate case, i.e. compounds that are        |
| 118 | partially ionic and partially covalent. Presently we focus on the relation between        |
| 119 | structures with octahedral and tetrahedral coordination of nearest-neighbor oxygen atoms  |
| 120 | to Si and partial ionicity of the Si-O and Ti-O bonds. The simple semi-empirical analysis |
| 121 | presented here leads to a clear distinction between the more ionic, octahedrally          |
| 122 | coordinated, and more covalent, tetrahedrally coordinated polymorphs.                     |
| 123 |                                                                                           |
| 124 | One of the widely used semi-empirical analysis, cast in quantitative terms as the Bond-   |
| 125 | Valence (BVA) theory summarized and reviewed in the recent book by Brown (2002), is       |
| 126 | employed here in view of its great success in assaying the structure - bond strength      |
| 127 | relationships for a large number of inorganic compounds as documented e.g. by Brese       |
| 128 | and O'Keeffe (1991). Focusing on the $MO_2$ oxides (M = Si, Ti), hexa- and tetra-         |
| 129 | coordination of M atoms is linked to the ionicity or covalence of the M-O bond through    |
| 130 | the bond strength as defined in the BVA method. The key relationship between bond         |

131 strength S and the M-O bond length R is formulated in terms of two empirical parameters,

132 the length  $R_0$  for a "reference" unit bond strength  $S_{ref} = 1$  and a gauge parameter b, as

134 
$$S = \exp[(R_0 - R)/b]$$
 (II-1).

135

136 In the present work, we used values  $R_0 = 1.624$  Å for Si and 1.815 Å for Ti, and b = 0.37137 Å for both Si and Ti in Si-O and Ti-O bonds. An alternative three-parameter relationship 138

139 
$$S = S_0 (R/R_0)^{-N}$$
 (II-2),

140

141 may be adopted, with  $S_0$ ,  $R'_0$  and N tabulated by Brown and Shannon (1973). For the 142 present oxides, we use  $S_0 = 1.0$  valence units (v.u.) for Si,  $S_0 = 0.666$  for Ti,  $R'_0 = 1.625$  Å 143 for Si,  $R'_0 = 1.952$  Å for Ti, and N = 4.5 for Si, N = 4.0 for Ti. This three-parameter bond-144 valence relationship has also been recast by Brown and Shannon (1973) in terms of bond 145 covalence  $f_c$  as

146

$$f_c = aS^M \tag{II-3},$$

7/23

| 149 | where parameter values $a = 0.54$ for 10 core electrons in Si, $a = 0.49$ for 18 core electrons             |
|-----|-------------------------------------------------------------------------------------------------------------|
| 150 | in Ti, and $M = 1.64$ for Si, $M = 1.57$ for Ti, are employed for the present MO <sub>2</sub> oxides.       |
| 151 | With these parameters, equation (II-3) yields practically identical results for $S$ determined              |
| 152 | from either Eq. (II-1) or (II-2). In Table 2 we present results using crystallographic bond                 |
| 153 | distances R for the Si-O and Ti-O bonds, parameters $R_0$ , b from Brown (2002), S                          |
| 154 | calculated by (II-1), and covalence $f_c$ calculated by (II-3) for the three silica polymorphs              |
| 155 | and TiO <sub>2</sub> <i>rutile</i> .                                                                        |
| 156 |                                                                                                             |
| 157 | Table 2                                                                                                     |
| 158 |                                                                                                             |
| 159 | Clearly, octahedrally coordinated Si or Ti oxides seifertite, stishovite and rutile are                     |
| 160 | largely ionic (in average 70% ionic, or 30 % covalent), irrespective of whether the                         |
| 161 | "cation" is Si or Ti, whereas those with tetrahedrally coordinated Si, <i>coesite</i> and $\alpha$ -quartz, |
| 162 | are largely covalent (in average 40% ionic, or 60 % covalent). Results of this BVA                          |
| 163 | analysis provide a powerful guidance for the interpretation of properties obtained from <i>ab</i>           |
| 164 | initio all-electron calculations in Section III ff. As an example, covalent character of the                |
| 165 | Si-O bonds in tetrahedral polymorphs results in an intrinsic gap in the valence band with                   |
| 166 | split-off lower, largely covalent band (viz. Section IV-2, Fig. 4 and Appendix 2).                          |
|     |                                                                                                             |

167

# 168 III. ELECTRONIC STRUCTURES AND OPTICAL TRANSITIONS FROM FIRST169 PRINCIPLES - METHODOLOGY

7/23

| 171 | A full account for physical properties, including those of excited states involved in              |
|-----|----------------------------------------------------------------------------------------------------|
| 172 | optical transitions, requires a theory that reaches beyond the semi-empirical relations            |
| 173 | described in Section II above. In the present work we employ a state-of-the-art quantum            |
| 174 | mechanical treatment specified in paragraphs III-1, III-2 and Appendix 1.                          |
| 175 |                                                                                                    |
| 176 | III-1. STRUCTURES AND RECIPROCAL LATTICE VECTORS                                                   |
| 177 |                                                                                                    |
| 178 | Structural data, reciprocal lattice vectors and their labeling used in the present study are       |
| 179 | given in Appendix 1. Graphic representations of the structures and reciprocal lattice              |
| 180 | vectors are in Figures A1-1 and A1-2 (seifertite), Figures A1-3 and A1-4 (stishovite), and         |
| 181 | Figures A1-5 and A1-6 (coesite).                                                                   |
| 182 |                                                                                                    |
| 183 | III-2. COMPUTATIONAL METHOD                                                                        |
| 184 |                                                                                                    |
| 185 | Electronic structure calculations presented herein involve full-potential linearized               |
| 186 | augmented plane wave density functional theoretical method (FP-LAPW-DFT) with spin                 |
| 187 | polarization, orbital dependent potentials and modified Becke-Johnson potential (mBJ)              |
| 188 | for accurate account of the band gaps. For $\alpha$ -quartz as reference material, the mBJ         |
| 189 | bandgap (9.41 eV at the $\Gamma$ point at the present level) and band structure was tested against |
| 190 | experimental bandgap of 9.65 eV obtained from low-loss measurement in EELS/TEM by 9                |

191 Garvie et al. (2000) and compared with results of calculations using the GW 192 approximation by Chang, Rohlfing and Louie (2000) resulting in the bandgap of 10.1 eV. 193 Details of this test are summarized in Appendix 2, wherein the two sets of calculations 194 are shown to be in a good agreement over the entire  $E(\mathbf{k})$  band structure (*viz.* Figs. A2-1 195 and A2-2).

196

197 Also employed in the present work was the self-interaction correction *via* implementation of the LDA+U method in the fully localized limit  $(FLL)^{\dagger}$  for calculating orbital-198 199 dependent potentials to ensure that possible strong electron correlation in the partially 200 occupied excited Si 3d\*-orbitals be taken into account. While the effects of such a strong 201 electron correlation are found to be small in periodic SiO<sub>2</sub> crystals, electron localization 202 around defects such as Si with adjacent oxygen vacancies, or Si in neighborhood of 203 transition-metal ion impurities, should not be a priori excluded. Therefore the present 204 approach is to be viewed as providing a background for future studies of value for 205 understanding coloration and, in general, optical properties of the silica polymorphs 206 containing such defects. The justification for exploration of the Si 3d\* orbitals in crystal 207 physics is founded in their known effects on chemical bonding and in the relatively low 208 separation of the Si3p and Si3d levels in the atomic spectrum of Si, 5.87 eV, from 209 Kramida et al. (2013), which falls within the bandgap energies of the studied oxides. In 210 the present work the value of Ueff = U-J = 0.46 Ry was used for the Si3d orbitals and, for 211 comparison, 0.25 Ry for Ti3d orbitals in *rutile*. Spin-orbit interaction was also included 212 using the second variational method (Singh 1994b) implemented in the Wien2k package 213 by Novák (2001), aiming at the detection of level splitting near the valence band

maximum that is well known for elemental silicon (experimental 42.6 meV found by Yu et al. (1989) and 42 meV determined by our theoretical calculations). In another example of spin-orbit effects in oxides, the value of -20 meV is obtained at the present level for ZnO, in agreement in sign and roughly in value with earlier tight-binding calculations by Fu and Wu (2008). These agreements validate the present theory for spin-orbit coupling energies as small as a few millielectron volts, which may or may not compete with crystal-field splittings caused by deviations from idealized high-symmetry structures.

221

222 Furthermore, as one of the main goals of this work, optical properties were calculated

using the optic program of the Wien2k package. The theoretical background of this

program has been developed by Ambrosch-Draxl and Sofo (2006). Because the Wien2k

225 package utilizes a dual basis set of spherical harmonics in non-overlapping atomic

226 "muffin tin" spheres  $\alpha$  (MT $_{\alpha}$ ) and plane waves in interstitial space (I), the matrix

elements of the quantum mechanical dipole moment operator  $\vec{\mu} = \sum_{i} q_i \vec{r}_i$  over all

228 particles *i* with charges  $q_i$  at positions  $\vec{r}_i$  are combined as a sum of contributions from

229 the atomic spheres  $MT_{\alpha}$  and interstitial space I as

230

231 
$$< n'\vec{k} \mid \vec{\mu} \mid n\vec{k} > = \sum_{\alpha} < n'\vec{k} \mid \vec{\mu} \mid n\vec{k} >_{\mathrm{MT}_{\alpha}} + < n'\vec{k} \mid \vec{\mu} \mid n\vec{k} >_{I},$$

232 symmetrized into square momentum matrix elements for all band combinations for each 233  $\vec{k}$  -point, and evaluated over a large number of  $\vec{k}$  -points (in this work 1,000) to obtain 234 joint density of states and, upon Kramers-Kronig transformation, real and imaginary

7/23

| 235   | components of the dielectric tensor and absorption coefficient. Calculations were carried          |
|-------|----------------------------------------------------------------------------------------------------|
| 236   | out in several stages: after initialization from the structures listed in Appendix 1, standard     |
| 237   | sef cycle with spin polarization was run to self-consistency within < 1 mRy/bohr in                |
| 238   | forces, $< 10^{-4}$ Ry in energy and $< 10^{-4}$ in charge convergence, followed by LDA+U to the   |
| 239   | same convergence limits, and mBJ calculations run to the same convergence limits                   |
| 240   | without forces. The properties were rendered by the energy bandstructure and optic                 |
| 241   | programs of the Wien2k package (Blaha et al. 2013).                                                |
| 242   |                                                                                                    |
| • • • |                                                                                                    |
| 243   | IV. ELECTRONIC STRUCTURES AND OPTICAL TRANSITIONS FROM FIRST                                       |
| 244   | PRINCIPLES – RESULTS                                                                               |
| 245   |                                                                                                    |
| 246   | Computational results are divided into sections describing bandgaps and selection rules            |
| 247   | for transitions (IV-1) and band structures and optical absorption spectra (IV-2) for the           |
| 248   | silica polymorphs studied, including a comparison of isostructural stishovite SiO <sub>2</sub> and |
| 249   | <i>rutile</i> $TiO_2$ . These results afford an accurate account for properties of the minerals    |
| 250   | studied, which justifies an extension of already reported experimental work, as well as            |
| 251   | provides an impetus for optical and XPS studies of newly discovered minerals.                      |
| 252   |                                                                                                    |
| 253   | IV-1. BAND GAPS AND SELECTION RULES FOR OPTICAL TRANSITIONS.                                       |
| 254   |                                                                                                    |

| 255 | All three SiO <sub>2</sub> polymorphs studied exhibit direct bandgaps at the $\Gamma$ -points of their |
|-----|--------------------------------------------------------------------------------------------------------|
| 256 | respective Brillouin zones. The state symmetries near bandgap edges are briefly                        |
| 257 | summarized in this paragraph to assist interpretation of band-to-gap transitions through               |
| 258 | the use of optical dipole selection rules, cf. Figure 1. Assignments of irreducible                    |
| 259 | representation labels are enabled by an analysis of the output of the present calculations             |
| 260 | consistent with the International Tables for Crystallography (1992) for space groups and               |
| 261 | tables of properties of point groups by Koster, Dimmock, Wheeler and Statz (1963) for                  |
| 262 | equivalent Mulliken symbols of irreducible representations at the $\Gamma$ -point of the BZ. In        |
| 263 | addition, the interactive Birkbeck College University of London space group database                   |
| 264 | (1997-1999) is found useful.                                                                           |
| 265 |                                                                                                        |
| 266 | Figure 1                                                                                               |
| 267 |                                                                                                        |
| 268 | Figure 1. Band-to-band transitions at the $\Gamma$ -points of the BZ at the direct gaps of (a)         |
| 269 | <i>seifertite</i> (using Mulliken irreducible representation labels of the $D_{2h}$ group), (b)        |
| 270 | stishovite $(D_{2h})$ and $(c)$ coesite $(C_{2h})$ . Green (red) arrows mark electric dipole allowed   |
| 271 | (forbidden) transitions. Thick arrows represent transitions VBM ( $E_F = 0$ ) $\rightarrow$ CBM which  |
| 272 | are allowed in seifertite, and forbidden in stishovite and coesite. The closely separated              |
| 273 | valence band levels in <i>coesite</i> are expanded for clarity. The symbol for the bottom of           |
| 274 | conduction band BCB is used interchangeably with CBM.                                                  |
|     |                                                                                                        |

| 276 | A. <u>Seifertite</u> . The <u>direct bandgap transition</u> between the top of valence band maximum                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| 277 | (VBM) and bottom of conduction band minimum (CBM) without spin-orbit coupling                                                     |
| 278 | (SOC) has the irreducible representation (irrep) symmetry $G_4^- \rightarrow G_1^+$ , or $B_{3u} \rightarrow A_g$ under           |
| 279 | the $D_{2h}$ group, hence it is allowed by the $B_{3u}$ x-component of the electric dipole vector.                                |
| 280 | Further down from the VBM are states $G_4^+$ (or $B_{3g}$ , a symmetric combination of O2py                                       |
| 281 | orbitals at -0.23 eV, leading to forbidden transition at the $\Gamma$ -point), $G_3^-$ (or $B_{1u}$ , at -0.28                    |
| 282 | eV, activated for transition to the $A_g$ state at CBM by the $B_{1u}$ z-component of the electric                                |
| 283 | dipole vector), and $G_2^-$ (or $B_{2u}$ , at -0.62 eV, activated for transition to the $A_g$ state at                            |
| 284 | CBM by the $B_{2u}$ y-component of the electric dipole vector). These selection rules are                                         |
| 285 | illustrated in Figure 1(a) and optical absorption is represented in Section IV-2.                                                 |
| 286 |                                                                                                                                   |
| 287 | With SOC, the VBM $\rightarrow$ CBM transition becomes $G_5^- \rightarrow G_5^+$ , or $E_{1/2u} \rightarrow E_{1/2g}$ and is spin |
| 288 | and symmetry allowed. This selection rule is consistent with the rule obtained without                                            |
| 289 | SOC.                                                                                                                              |
| 290 |                                                                                                                                   |
| 201 | <b>P</b> Stichewite The direct handgen transition VDM $\rightarrow$ CPM without SOC is C $^+ \rightarrow$ C $^+$                  |

291 B. <u>Stishovite</u>. The direct bandgap transition VBM  $\rightarrow$  CBM without SOC is  $G_3^+ \rightarrow G_1^+$ ,

292 or  $B_{1g} \rightarrow A_g$  under the  $D_{2h}$  group, hence it is symmetry and parity forbidden.

293 Identification of the irreps and forbiddenness is identical with the conclusion of Rudra

and Fowler (1983) based on a semiempirical tight-binding approximation. Further

295 inspection of levels below the VBM and above CBM reveals irrep symmetries shown in

Figure 1(b). Of those, transition  $G_2^-$ ,  $G_4^-$  (VBM-1)  $\rightarrow G_1^+$  (CBM), or  $B_{3u}$ ,  $B_{2u} \rightarrow A_g$  is

allowed by the B<sub>3u</sub>, B<sub>2u</sub> (x,y) components of electric dipole, transition G<sub>3</sub><sup>-</sup> (VBM-2)  $\rightarrow$ 

| 298 | $G_1^+$ (CBM), or $B_{1u} \rightarrow A_g$ is allowed by the $B_{1u}(z)$ component of electric dipole, and                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 299 | transitions from $G_3^+$ (VBM) to three levels above CBM are all forbidden. These                                                   |
| 300 | selection rules clearly explain optical absorption anisotropy of stishovite demonstrated in                                         |
| 301 | Section IV-2.                                                                                                                       |
| 302 |                                                                                                                                     |
| 303 | With SOC, the VBM $\rightarrow$ CBM transition becomes $G_5^+ \rightarrow G_5^+$ or $E_{1/2g} \rightarrow E_{1/2g}$ , and is spin   |
| 304 | and symmetry forbidden, consistent with the rule obtained without SOC.                                                              |
| 305 |                                                                                                                                     |
| 306 | C. <u><i>Coesite</i></u> . The <u>direct bandgap transition</u> VBM $\rightarrow$ CBM without SOC is $G_1^+ \rightarrow G_1^+$ , or |
| 307 | $A_{1g} \rightarrow A_{1g}$ under the $C_{2h}$ group, hence it <u>is symmetry forbidden</u> . Further inspection of                 |
| 308 | levels below the VBM and above CBM reveals irrep symmetries shown in Figure 1(c).                                                   |
| 309 | Of those, transitions $G_1^-$ (VBM-1,2) $\rightarrow G_1^+$ (CBM), or $A_u \rightarrow A_g$ are allowed by the $A_u(z)$             |
| 310 | component of electric dipole, transition $G_2^-$ (VBM-4) $\rightarrow G_1^+$ (CBM), or $B_u \rightarrow A_{1g}$ is                  |
| 311 | allowed by the $B_u$ (x or y) component of electric dipole. The first transition from $G_3^+$                                       |
| 312 | (VBM) to levels above CBM, $G_1^+$ (VBM) $\rightarrow G_1^-$ (CBM+1), or $A_g \rightarrow A_u$ is allowed.                          |
| 313 | These results explain the small optical anisotropy of <i>coesite</i> reported in Section IV-2.                                      |
| 314 |                                                                                                                                     |
| 315 | With SOC, the VBM $\rightarrow$ CBM transition becomes $\{G_3^+ + G_4^+\} \rightarrow \{G_3^+ + G_4^+\}$ , or $\{1E_{1/2g}\}$       |
| 316 | $+ 2E_{1/2g} \rightarrow \{1E_{1/2g} + 2E_{1/2g}\},$ and is parity forbidden. This rule is consistent with the                      |

317 forbiddenness obtained without SOC.

| 319 | D. <u><i>Rutile</i></u> . Here we give a brief summary of calculations of electronic structure of <i>rutile</i>              |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 320 | TiO <sub>2</sub> with which <i>stishovite</i> is isostructural, however with empty Ti3d levels inside the                    |
| 321 | large bandgap of 10 eV similar to that in stishovite. In addition, the rutile bandgap is                                     |
| 322 | indirect from the $\Gamma$ to M point. This result agrees with calculations of Ekuma and                                     |
| 323 | Bagaoyko (2011). The presently calculated $\Gamma \rightarrow M$ bandgap of 3.12 eV is in a good                             |
| 324 | agreement with that of Ekuma and Bagayoko and experimental values summarized                                                 |
| 325 | therein. The direct gap $\Gamma \rightarrow \Gamma$ , 3.13 eV, is only by 10 <sup>-2</sup> eV larger, also in agreement with |
| 326 | the results of Ekuma and Bagayoko (2011).                                                                                    |
| 327 |                                                                                                                              |
| 328 | IV-2. BAND STRUCTURES, ENERGY DISPERSION IN THE MOMENTUM                                                                     |
| 329 | SPACE, AND OPTICAL ABSORPTION                                                                                                |
| 330 |                                                                                                                              |
| 331 | We focus on several important features of the electronic structure of the silica                                             |
| 332 | polymorphs studied: the nature and symmetry of orbitals at the band edges, bandgaps,                                         |
| 333 | effective masses from curvatures of the energy dispersion, and intensities of optical                                        |
| 334 | absorption in different crystallographic directions that result in various degrees of optical                                |
| 335 | anisotropy. These properties are derived from calculated band structures and optical                                         |
| 336 | absorptions of the three silica polymorphs and are shown in Figure 2 (seifertite), Figure 3                                  |
| 337 | (stishovite), and Figure 4 (coesite). Electronic structure of TiO <sub>2</sub> rutile is presented in                        |
| 338 | Figure 5, and its optical absorption is also shown in Figure 3 to demonstrate a substantial                                  |
| 339 | difference with the isostructural stishovite.                                                                                |

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4890

7/23

| 341 |                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 342 |                                                                                                                          |
| 343 | Figure 2                                                                                                                 |
| 344 |                                                                                                                          |
| 345 |                                                                                                                          |
| 346 | Figure 3                                                                                                                 |
| 347 |                                                                                                                          |
| 348 |                                                                                                                          |
| 349 | The band structure and optical absorption in <i>coesite</i> with tetrahedrally coordinated SiO <sub>4</sub>              |
| 350 | unit, represented in Figure 4, is substantially different from those in octahedrally                                     |
| 351 | coordinated SiO <sub>6</sub> units of <i>seifertite</i> and <i>stishovite</i> . In particular, we note the intrinsic gap |
| 352 | within the O2p valence band, and a significant contribution of the off-diagonal                                          |
| 353 | component of absorption tensor (Abs-xz) and the low pre-edge absorption intensity at 8.5                                 |
| 354 | - 10 eV due to forbidden band-to-band transition.                                                                        |
| 355 |                                                                                                                          |
| 356 | Figure 4                                                                                                                 |
| 357 |                                                                                                                          |
| 358 | The <i>rutile</i> band structure calculated at the present level agrees well with the literature                         |
| 359 | cited in Ekuma and Bagayoko (2011). Figure 5 shows the band structure of $TiO_2$ with                                    |
| 360 | O2p and Ti3d orbital contributions to the VB and the empty Ti <sup>4+</sup> 3d intra-gap excited                         |
|     | 17                                                                                                                       |

7/23

| 361 | levels located within a gap of 10.1 eV which, although larger, resembles that of stishovite                |
|-----|------------------------------------------------------------------------------------------------------------|
| 362 | (Fig. 3) in terms of dispersion at the $\Gamma$ -point edges of TBM and BCM.                               |
| 363 |                                                                                                            |
| 364 | Figure 5                                                                                                   |
| 365 |                                                                                                            |
| 366 | Relations between band characters and splitting of the VB into two, separated by an                        |
| 367 | intrinsic gap that appears in the tetrahedrally coordinated Si in <i>coesite</i> (Figure 4) and $\alpha$ - |
| 368 | quartz (Figures A2-1 and A2-2 in Appendix 2), are also evident from partial DOS                            |
| 369 | analysis presented in Appendix 3, Figures A3-1 (coesite) and A3-2 ( <i>α-quartz</i> ). These VB            |
| 370 | gaps in the tetrahedral polymorphs are in a marked contrast with the continuous VB of                      |
| 371 | the octahedrally coordinated Si, also evident from partial DOS in Appendix 3, Figures                      |
| 372 | A3-3 (stishovite) and A3-4 (seifertite).                                                                   |
| 373 |                                                                                                            |
| 374 | V. DISCUSSION                                                                                              |
| 375 |                                                                                                            |
| 376 | General comments. The role of theory is seen not only in interpretation of experimental                    |
| 377 | data, but also in advancing powerful concepts that govern macroscopic physical                             |
| 378 | properties, relative stability of crystal structures, phase transformations, electronic and                |
| 379 | optical phenomena, defect structure and reactivity of matter occurring in nature as well as                |
| 380 | useful in man-made technologies. Theory also aims at the interpretation and derivation                     |
| 381 | of those relationships that have so far been empirical. An initial assessment of partial                   |

| 382 | iconicity/covalency is obtained with the use of simple and powerful semi-empirical                        |
|-----|-----------------------------------------------------------------------------------------------------------|
| 383 | method derived from the constructs of Linus Pauling in the 1920s to 1940s, as widely                      |
| 384 | acknowledged by Brown (2002) and many others. This method, the bond-valence theory                        |
| 385 | (BVA), has led to a clear-cut distinction between more ionic, octahedrally coordinated                    |
| 386 | M-O <sub>6</sub> and more covalent, tetrahetrally coordinated M-O <sub>4</sub> compounds (M = Si, Ti), as |
| 387 | described in Section II. The subsequent quantum theory outlined in Sections III                           |
| 388 | (methodology) and IV (results) has the main strength in accounting for spectroscopic                      |
| 389 | properties which are beyond the range and focus of the BVA method. The present state-                     |
| 390 | of-the art quantum mechanical method, its validation and results are briefly described                    |
| 391 | below.                                                                                                    |

393 The DFT method for wide-gap insulators. In the present work, we have investigated 394 high-hardness, wide-gap silica polymorphs, inspired by our ongoing experimental effort 395 to achieve their synthesis at low pressures (Mohanty, Li, Liu, Fei and Landskron 2009) 396 and by questions regarding their optical properties, including those of the so far 397 theoretically unexplored *seifertite*. The presently employed method is the density 398 functional theory (DFT) of periodic systems that has proven highly successful in 399 describing ground state properties of crystals but had been found significantly lacking in 400 accuracy for excited states. However, an intensive development of several decades has 401 led to extensions of the theory that resulted in a substantially improved account for 402 important properties such as bandgap energies and optical transitions, including their 403 selection rules and anisotropies investigated herein. Of necessity, such extensions are 404 approximate and require a thorough validation, usually tested on reference compounds

with well-known properties. Also useful are comparisons of various levels of theory and
approximations in terms of their relative merit. Furthermore, a successfully tested theory
may be used for making predictions and designing future experiments. Herein we briefly
describe the development of understanding the abovementioned properties of the silica
polymorphs investigated in this work.

410

411 Validation of theoretical approximations. Results of the present level of theory (DFT-412 LAPW with LDA+U and mBJ potential) for the bandgap and  $E(\mathbf{k})$  dispersion compare 413 favorably with the quasi-particle Green's Wavefunction approximation (GW): The 414 bandgap energy of  $\alpha$ -quartz is found to be 9.41 eV by present method, 10.1 eV by GW, 415 and from experiment 9.65 eV, as shown in Appendix 2. Thus  $\alpha$ -quartz is considered a 416 suitable test material for compositional silica polymorphs in terms of the choice of the 417 mBJ potential and the Hubbard parameter U. Furthermore, a wide agreement among 418 various theoretical methods and experiment on bandgap energy and  $E(\mathbf{k})$  dispersion of 419 TiO<sub>2</sub> rutile adds to the credibility of theory for the structural class of compounds which 420 includes the presently investigated stishovite. And, given successful validation tests for 421 stishovite, coesite and TiO<sub>2</sub> rutile, the new mBJ/LDA+U results for seifertite presented 422 here are expected to be equally reliable.

423

424 *Ionicity, covalence and intra-VB gap.* On the molecular, atomic and ionic level, the

silicas include the common polymorphs with tetra-coordinated building blocks SiO<sub>4</sub> and

426 the high-pressure polymorphs with hexa-coordinated SiO<sub>6</sub> units. Based on these local

| 427 | structural differences, a standard chemical argument as well as calculations using the                   |
|-----|----------------------------------------------------------------------------------------------------------|
| 428 | empirical BVA method (cf. Section II) would place the tetrahedral polymorphs among                       |
| 429 | compounds with stronger covalent bonds, while the six-fold coordination would indicate                   |
| 430 | prevalent ionic bonding. Indeed, one of the early tight-binding models by Rudra and                      |
| 431 | Fowler (1983) has successfully interpreted the VB structure of stishovite on the                         |
| 432 | assumption of a purely O2p ionic framework. The present work adds effects of Si orbitals                 |
| 433 | which merge into the lower portion of the VB but do not substantially change the VB $E(\mathbf{k})$      |
| 434 | dispersion. This is consistent with low BVA covalence of 30% (or high 70% ionicity)                      |
| 435 | found for stishovite (Table 2 in Section II). Similarly, the octahedral SiO <sub>6</sub> building        |
| 436 | blocks of <i>seifertite</i> are linked to high ionicity. In contrast, the high BVA covalence of 60%      |
| 437 | in the tetrahedrally coordinated Si in <i>coesite</i> and $\alpha$ -quartz strongly suggests that purely |
| 438 | ionic model for the VB is insufficient, and therefore participation of covalent bonding                  |
| 439 | between the Si and O atoms through orbital overlaps and hybridization is necessary. This                 |
| 440 | is in fact revealed by the present quantum mechanical calculations that also elucidate the               |
| 441 | structure-bonding relationships in the valence bands of the tetrahedral and octahedral                   |
| 442 | polymorphs.                                                                                              |

While the VB of *seifertite*, *stishovite* and *rutile* are filled in a continuous manner (Figures 2, 3 and 5), *coesite* (Figure 4) exhibits an intrinsic gap similar to that in  $\alpha$ -quartz as also evident from band structures in Figures A2-1 and A2-3 of Appendix 2, and DOS plots (Figures A3-4 and A3-5 of Appendix 3). The lack of the intrinsic gap within the valence band is clearly an attribute of structures with octahedral coordination of Si (or Ti) by nearest neighbor oxygen atoms, in contrast with the prevalence of such intrinsic gaps in

| 450 | the more common tetrahedrally coordinated SiO <sub>2</sub> polymorphs. Across this "tetrahedral                         |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 451 | polymorph" gap, the VB is split into a lower part, $VB_{lower}$ , and upper part, $VB_{upper}$ . A                      |
| 452 | qualitative explanation is in that $VB_{lower}$ entails covalent Si-O bonding while $VB_{upper}$ is                     |
| 453 | predominantly ionic. Quantum mechanical calculation of partial DOS for the Si and O                                     |
| 454 | contributions (Appendix 3) confirms this expectation: The ratio of contributions from                                   |
| 455 | atomic orbitals (AOs) in <i>coesite</i> AO(Si)/AO(O) is 0.34 in VB <sub>lower</sub> and low 0.05 in VB <sub>upper</sub> |
| 456 | Moreover, AO(Si) and AO(O) completely overlap in $VB_{lower}$ but not in $VB_{upper}$ . Similar                         |
|     |                                                                                                                         |

457 condition governs the split VB in  $\alpha$ -quartz, AO(Si)/AO(O) = 0.33 in VB<sub>lower</sub> and 0.04 in

458 VB<sub>upper</sub>.

459

460 Optical transitions. Calculated transitions represented in Figure 1 show allowed direct 461 transition for *seifertite*, and forbidden direct transition for *stishovite* and *coesite*. These 462 features, including anisotropies, are directly observable by optical measurements, which 463 as of this time are limited and lacking for *seifertite*. Present calculations predict that all 464 three SiO<sub>2</sub> polymorphs studied exhibit optical absorption anisotropy to various degrees. 465 The largest anisotropy of 1.5 eV is observed in stishovite, which is compared in Figure 3 466 with that of the isostructural *rutile*  $TiO_2$  with the smallest degree of anisotropy. 467 Evidently substitution of Ti by Si results in both an increased bandgap and anisotropy 468 between the axial and equatorial directions: an analysis of orbital coefficients allows identification of the lowest energy allowed transition as equatorial  $O2p_{x,y} \rightarrow Si4s$  (B<sub>2u</sub>, 469 470  $B_{3u} \rightarrow A_g$ ). Calculated energy of this transition, 8.45 eV, is in a very good agreement 471 with the experimental value of 8.75 eV determined by Trukhin et al. (2004) using 472 stishovite single crystals. However, Trukhin et al. observed an additional weak transition

| 473 | with a threshold of 7.6 eV, which these authors attributed to unspecified defects. Based                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 474 | on the remarkable coincidence of the energy of this transition with the calculated                                         |
| 475 | forbidden band-to-band transition (Figure 3), we suggest that this pre-edge weak                                           |
| 476 | transition is actually native to perfect stishovite crystal due to the forbidden band-to-band                              |
| 477 | B <sub>1g</sub> $\rightarrow$ A <sub>1g</sub> transition at the Γ-point, whose forbiddenness is offset by nearby levels of |
| 478 | lower symmetry in the $k$ -space. Inspection of Figure 3 for <i>stishovite</i> indeed shows the                            |
| 479 | onset of a weak transition with a threshold at 7.58 eV, close to the experimental value of                                 |
| 480 | 7.6 eV of Trukhin et al. (2004), which progresses to the onset of the main absorption                                      |
| 481 | edge at 8.45 eV of the allowed $B_{2u}$ , $B_{3u} \rightarrow A_{1g}$ transition. Calculations also predict a              |
| 482 | second intense absorption edge at 10 eV, stimulated by z-polarized light, due to the $\mathrm{O2}p_z$                      |
| 483 | → Si4s transition ( $B_{1u}$ → $A_{1g}$ in Figure 3). This transition lies out of the experimental                         |
| 484 | range covered by Trukhin et al. (2004) and should be verified by an experiment reaching                                    |
| 485 | into the 9-11 eV range. A comparison between calculated optical transitions between                                        |
| 486 | <i>stishovite</i> and <i>rutile</i> (Figure 3) shows that such an anisotropy is suppressed in <i>rutile</i> $TiO_2$        |
| 487 | due to close spacing of the $\mathrm{O2p}_{x,y,z}$ levels near the TVB and different nature of the final                   |
| 488 | states at BCB, Si4s in stishovite and Ti3d in rutile.                                                                      |

Because of the importance of selection rules for optical transitions even in those cases when the bandgap is direct, and the use of such rules for interpretation of observed optical spectra, we present a graphic symmetry analysis of the nature of *stishovite* VBM responsible for the forbidden transition across the direct VB → CB gap. In Figure 6 is shown the B<sub>1g</sub> orbital at the VB maximum, which causes the transition in *stishovite* across the direct gap at the Γ-point to be forbidden.



504 orbitals with incompatible symmetry.

505

506 *Effective masses*. Band structure calculations contain information on effective masses of 507 electrons and holes at the band edges, useful for assessing mobilities of current carriers 508 injected into semiconducting or insulating compounds. Both intrinsic and external 509 sources are considered for electron and hole injection. In this work, we present values of 510 effective masses calculated from the curvatures  $E(\mathbf{k})$  band structures at band edges as 511  $m_{eff} = \left[ \hbar^2 / \left( \frac{\partial^2 E}{\partial k^2} \right)_{\Gamma} \right]$ . Results are summarized in Table 3.

512

- 513 Table 3
- 514

| 515 | In all three silica polymorphs the bottom of the conduction band (conduction band                    |
|-----|------------------------------------------------------------------------------------------------------|
| 516 | minimum - CBM) at the $\Gamma$ -point is markedly dispersed, indicating significant mobility of      |
| 517 | conduction electrons if injected. External source of injected conduction electrons could             |
| 518 | employ surface-deposited Cs which was shown to transfer its 6s electron into a                       |
| 519 | chalcogenide lattice with near-100% efficiency by Park et al. (1996). The top of the                 |
| 520 | valence bands (valence band maximum - VBM) exhibits heavy character of holes if                      |
| 521 | injected, except in seifertite in which some mobility of conduction holes is indicated in            |
| 522 | the x-direction. Data for <i>rutile</i> $TiO_2$ are also given for comparison with the isostructural |
| 523 | stishovite. Effective masses in the Ti3d CBM and O2p VBM are high, indicating low                    |
| 524 | mobility of the current carriers compared to stishovite.                                             |
| 505 |                                                                                                      |

#### 526 VI. IMPLICATIONS

527

528 Among the many silica polymorphs, seifertite and stishovite are unique in their structure-529 property relationships linked to the six-coordination of Si: high density, ultra-hardness, 530 optical absorption, and valence. The optical anisotropy revealed by the present theory 531 affords an observational tool for the detection of particles of these minerals in polarized 532 light and appropriately chosen energy ranges of the probing far-UV radiation. 533 Furthermore, valence-band XPS will readily distinguish between octahedrally and 534 tetrahedrally coordinated Si in the SiO<sub>2</sub> polymorphs, as well as in the more complex 535 compositions such as the MgSiO<sub>3</sub> ilmenite. As in the case of many useful connections 536 between the mineral world and man-made technology ranging from artificial gems to

537 lasers (as in ruby) to catalysts (as in zeolites), it may be anticipated that the present high-538 density silica polymorphs will also find a number of practical applications. When 539 synthesized at mild conditions from mesoporous and microporous precursors, these 540 materials may be considered not only as cheap substitutes for diamond in cutting tools 541 and abrasives, but also as novel wide-gap insulators and semiconductors for 542 optoelectronics and lasers. The present study yields results regarding properties of 543 perfect crystals, which provide an incentive for experimental investigation of far-UV 544 optical absorption and excitons, and for combined theoretical and experimental studies of 545 intrinsic electronic defects such as oxygen vacancies, hydrogen, Cu, and Al or Ti 546 substituted for Si. In particular, Ti substitution can be achieved by using microporous 547 precursors such as the Ti-1 zeolite recently studied by Wells et al. (2004). Low effective 548 masses and consequent high mobilities calculated for the conduction band edge hold 549 promise for achieving n-conductivity upon appropriate doping with donors such as Zn 550 and interstitial hydrogen.

551

552 Furthermore, since most occurring forms of these polymorphs are nanocrystalline,

surface properties become important for their stability through termination of structure

*e.g.* with hydroxyls for control of hydrophobic/hydrophilic properties, bioactivity in

555 particle-cell interactions, external dopability by donors/acceptors for charge transfer, and

electronic effects at interfaces with metals, semiconductors and organic matter in devices

such as thin-film transistors, lasers and LEDs.

558

## 559 ACKNOWLEDGMENTS

560

| 561 | The authors acknowledge grants of computational time and resources from the                         |
|-----|-----------------------------------------------------------------------------------------------------|
| 562 | Brookhaven National Laboratory – Center for Functional Nanomaterials, grant 30789                   |
| 563 | "Computational Studies in Support of Display Technology and Experimental Interface                  |
| 564 | Science" and from Lehigh University High-Performance Computing facility. They are                   |
| 565 | indebted to Professor W. Beall Fowler for insightful discussions on the theory of                   |
| 566 | electronic and optical properties of the oxide materials and to Professor Miltiadis K.              |
| 567 | Hatalis for guiding applications of oxides for nano-electronics in Lehigh University's              |
| 568 | Display Lab. A note from a referee regarding the Full Localized Limit (FLL) of the self-            |
| 569 | interaction correction as implemented in the Wien2k package $(viz. (FLL)^{\dagger}$ in Section III- |
| 570 | 2), and his pointing out to the relevant discussion by Liechtenstein, Anisimov and Zaanen           |
| 571 | (1995) is highly appreciated.                                                                       |
| 572 |                                                                                                     |
| 573 | VII. REFERENCES                                                                                     |
| 574 |                                                                                                     |
| 575 | Ambrosch-Draxl, C., and Sofo, J.O. (2006) Linear optical properties of solids within the            |
| 576 | full-potential linearized augmented planewave method. Computer Physics                              |
| 577 | Communications 175, 1-14.                                                                           |

578

- 579 Birkbeck College University of London (1997-1999)
- 580 Crystallographic Space Group Diagrams and Tables
- 581 <u>http://img.chem.ucl.ac.uk/sgp/mainmenu.htm.</u>
- 582
- 583 Blaha, P., Schwarz, K., Madsen, G.K.H., Kwasnicka, D., and Luitz, J. (2013) WIEN2k -
- 584 An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties",
- 585 Edition Wien2k\_13.1; ISBN 3-9501031-1-2.
- 586
- 587 Brese, N.E., and O'Keeffe, M. (1991) Acta Crystallographica B47, 192-197.
- 588 Brown, I.D., and Shannon, R.D. (1973) Empirical bond-strength-bond-length curves for
- 589 oxides. Acta Crystallographica A29, 266-282.
- 590
- 591 Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The bond valence model.
- 592 Oxford University Press.

- 594 Chang, E.K., Rohlfing, M., and Louie, S.G. (2000) Excitons and optical properties of a-
- 595 quartz. Physical Review Letters 85, 2613-2616.

596

- 597 Chao, E.C.T, Shoemaker, E.M., and Madsen, B.M. (1960) First Natural Occurrence of
- 598 Coesite. Science 132, 220–222.

Chao, E.C.T., Fahey, J.J., Littler, J., and Milton, D.J. (1962) Stishovite, SiO<sub>2</sub>, a very high
pressure new mineral from meteor crater, Arizona. Journal of Geophysical Research 67,
419-421.

603

- 604 Coes, L. Jr. (1953) A New Dense Crystalline Silica. Science 118, 131–132.
- 605 Dera, P., Prewitt, C.T., Boctor, N.Z., and Hemley, R.J. (2002) Characterization of a
- 606 high-pressure phase of silica from the Martian meteorite Shergotty. American
- 607 Mineralogist 87, 1018–1023.

608

- 609 El Goresy, A., Dera, P., Sharp, T.G., Prewitt, C.T., Chen, M., Dubrovinsky, L., Wopenka,
- 610 B., Boctor, N.Z., and Hemley, R.J. (2008) Seifertite, a dense orthorhombic polymorph of
- 611 silica from the Martian meteorites Shergotty and Zagami. European Journal of
- 612 Mineralogy 20, 523–528.

613

- Ekuma, C.E., and Bagayoko, D. (2011) Ab-initio Electronic and Structural Properties of
   Rutile Titanium Dioxide. Japanese Journal of Applied Physics 50, 101103.
- 616
- 617 Fu, J.Y., and Wu, M.W. (2008) Spin-orbit coupling in bulk ZnO and GaN. Journal of
- 618 Applied Physics 104, 093712 [1 7].

619

| 620 | Garvie, L.A.J., | Rez, | P., Alvarez, | J.R., | Buseck, P.I | R., Craven | A,J., and Br | ydson, R. | (2000) |
|-----|-----------------|------|--------------|-------|-------------|------------|--------------|-----------|--------|
|-----|-----------------|------|--------------|-------|-------------|------------|--------------|-----------|--------|

- 621 Bonding in alpha-quartz (SiO<sub>2</sub>): A view of the unoccupied states. American Mineralogist
- 622 **85**, 732-738.
- 623
- 624 Horiuchi, H., Hirano, M., Ito, E., and Matsui, Y. (1982) MgSiO3 (ilmenite-type) : single
- 625 crystal X-ray diffraction study. American Mineralogist 67, 788-793.

627 International Tables for Crystallography (1992).

628

- 629 Kang, W., and Hybertsen, M.S. (2010) Quasiparticle and optical properties of rutile and
- 630 anatase TiO2. Physical Review B 82, 085203-1 to 085203-11.
- 631
- 632 Kokalj, A. (2003) Computer graphics and graphical user interfaces as tools in simulations
- 633 of matter at the atomic scale. Computational Materials Science 28, 155-168. Code
- 634 available from <u>http://www.xcrysden.org/</u>.
- 635
- 636 Koster, G.F., Dimmock, J.O., Wheeler, R.G., and Statz, H. (1963) Properties of the
- 637 Thirty-Two Point Groups. MIT press, Cambridge, Massachussetts.

| 639 | Kramida, A., Ralchemko, Yi., Reader, J., and NIST ASD Team (2013) NIST Atomic       |
|-----|-------------------------------------------------------------------------------------|
| 640 | Spectra Database – Energy Levels. <u>http://physics.nist.gov/PhysRefData/ASD.</u>   |
| 641 |                                                                                     |
| 642 | Laughlin, R.B. (1980) Optical absorption edge in SiO2. Physical Review B 22, 3021 - |
| 643 | 3029.                                                                               |
|     |                                                                                     |

- Lawler, H.M., Rehr, J.J., Vila, F., Dalosto, S.D., Shirley, E.L., and Levine, Z.H. (2008)
- 646 Optical to UV spectra and birefringence of SiO2 and TiO2: First principles calculation
- 647 with excitonic effects. Physical Review B 78, 205108-1 to 205108-8.
- 648 Levien, L., and Prewitt, C.T. (1981) High-pressure crystal structure and compressibility
- 649 of coesite. American Mineralogist 66, 324-333.

650

651 Liechtenstein, A.I., Anisimov, V.I., and Zaanen, J. (1995) Density-functional theory and

652 strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52,

653 R5467(R).

654

- Ma, Q., Klier, K., Cheng, H., Mitchell, J.W., and Hayes, K.S. (2000) Interaction
- between catalysts and support 1. Low coverage of Co and Ni on silica surface. Journal of
- 657 Physical Chemistry B 104, 10618-10626.

- Ma, Q., Klier, K., Cheng, H., Mitchell, J.W., and Hayes, K.S. (2001a) Interaction
- between catalyst and support 3. Metal agglomeration on the silica surface. Journal of
- 661 Physical Chemistry B 105, 9230-9238.
- 662
- Ma, Q., Klier, K., Cheng, H., Mitchell, J.W., and Hayes, K.S. (2001b) Interaction
- between catalysts and support 2. Low coverage of Co and Ni on alumina surface. Journal
- of Physical Chemistry B 105, 2212-2221.

- 667 Ma, Q., Klier, K., Cheng, H., and Mitchell, J.W. (2002) Interaction between catalyst and
- support. 4. Periodic trends and patterns in interactions of first-row transition metals with

the silica surface. Journal of Physical Chemistry B 106, 10121-10127.

- 671 Mohanty, P., Li, D., Liu, T., Fei, Y., and Landskron, K. (2009) Synthesis of stishovite
- nanocrystals from periodic mesoporous silica. Journal of American Chemical Society 131,
- 673 2764.
- 674
- Novák, P. (2001) in WIEN2k: "~/SRC/novak\_lecture\_on\_ldaumatrixelements.ps" and
  http://www.wien2k.at/reg\_user/textbooks.
- 677
- 678 Park, K.T., Richards-Babb, M., Freund, M.S., Weiss, J., and Klier, K. (1996) Surface
- 679 structure of single crystal MoS<sub>2</sub> (0002) and Cs/MoS<sub>2</sub> (0002) by X-ray photoelectron
- diffraction. Journal of Physical Chemistry 100, 10739-10745.

| 682 | Pawley, A.R., McMillan, P.F., and Holloway, J.R. (1993) Hydrogen in Stishovite, with |
|-----|--------------------------------------------------------------------------------------|
| 683 | Implications for Mantle Water Content. Science 261, 1024-1026.                       |

- 684
- Ramos, L.E., Furtmueller, J., and Bechstedt, F. (2004) Quasiparticle band structures and
- optical spectra of b-cristobalite SiO2. Physical Review B 69, 085102-1 to 085102-8.

687

- 688 Rudra, J.K., and Fowler, W.B. (1983) Electronic band structure of stishovite (tetragonal
- 689 SiO<sub>2</sub>). Physical Review B 28, 1061-1087.

690

- 691 Singh, D.J. (1994a) Planewaves, Pseudopotentials, and the LAPW Method. Kluwer
- 692 Academic Publishers Boston, Dordrecht, London.

693

- 694 Singh, D.J. (1994b) Planewaves, Pseudopotentials, and the LAPW Method, Kluwer
- 695 Academic Publishers Boston, Dordrecht, London, pp.86-87.
- 696 Smyth, J.R., Smith, J.V., Artioli, G., and Kvick, Åke (1987) Crystal Structure of Coesite,
- a High-pressure Form of SiO<sub>2</sub>, at 15 and 298 K from Single-Crystal Neutron and X-ray
- 698 Dlffraction Data: Test of Bonding Models. Journal of Physical Chenistry 91, 988-992.

| 700                      | Smyth, J.R., Swope, R.J., and Pawley, A.R. (1995) H in rutile-type compounds: II.                                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 701                      | Crystal chemistry of Al substitution in H-bearing stishovite. American Mineralogist 80,                                                                                                                              |
| 702                      | 454-456.                                                                                                                                                                                                             |
| 703                      |                                                                                                                                                                                                                      |
| 704<br>705<br>706<br>707 | Solovyev, I.V., Dederichs, P.H., and Anisimov, V.I. (1994) Corrected atomic limit in the local density approximation and the electronic structure of <i>d</i> impurities in Rb. Physical Review B 50, 16861 – 16871. |
| 708                      | Stishov, S.M., and Popova, S.V. (1961) A new modification of silica. Geokhimiya 10,                                                                                                                                  |
| 709                      | 837-839.                                                                                                                                                                                                             |
| 710                      |                                                                                                                                                                                                                      |
| 711                      | Tran, F., and Blaha, P. (2009) Accurate band gaps of semiconductors and insulators with                                                                                                                              |
| 712                      | a semilocal exchange-correlation potential. Physical Review Letters 102, 226401-1 -                                                                                                                                  |
| 713                      | 226401-4.                                                                                                                                                                                                            |
| 714                      |                                                                                                                                                                                                                      |
| 715<br>716               | Trukhin, A.N., Dyuzheva, T.I., Lityagina, L.M., and Bendeliani, N.A. (2004) Intrinsic absorption threshold of stishovite and coesite. Solid State Communications, 1–5.                                               |
| 717                      |                                                                                                                                                                                                                      |
| 718                      | Vella, E., Messina, F., Cannas, M., and Boscaino, R, (2011) Unraveling exciton                                                                                                                                       |
| 719                      | dynamics in amorphous silicon dioxide: Interpretation of the optical features from 8 to 11                                                                                                                           |
| 720                      | eV. Physical Review B 83, 174201-1 to 174201-8.                                                                                                                                                                      |
|                          |                                                                                                                                                                                                                      |

- Weinberg, Z.A., Rubloff. G.W., and Bassous, E. (1979) Transmission, photoconductivity, and the experimental band gap of thermally grown SiO<sub>2</sub> films. Physical Review B 19,
- 723 and the experi 724 3107 – 3117.
- 725
- 726 Wells, D.H. Jr., Delgass, W.N., and Kendall T. Thomson, K.T. (2004) Evidence of
- defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts:
- A DFT study. Journal of American Chemical Society 126, 2956-2962.

- 730 Williams, Q., and Hemley, R.J. (2001) Hydrogen in the Deep Earth. Annual Review of
- Earth Planetary Science 29, 365–418.

732

733 Xu, Y., and Ching, W.Y. (1991) Electronic and optical properties of all polymorphic

forms of silicon dioxide. Physical Review B 44, 11048-11058.

- 736 Yu, Z., Huang, Y.X., and Shen, S.C. (1989) Spin-orbit splitting of the valence bands in
- silicon determined by means of high-resolution photoconductive spectroscopy. Physical
- 738 Review B 39, 6287–6289.
- 739
- 740 Zelený, M., Hegedüs, J., Foster, A.S., Drabold, D.A., Elliott, S.R., and Nieminen, R.M.
- 741 (2012) Ab initio study of Cu diffusion in  $\alpha$ -cristobalite. New Journal of Physics 14,
- 742 113029.
- 743
| 772 | SUPPORTING DOCUMENTATION                                                                                          |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 773 |                                                                                                                   |
| 774 | APPENDIX 1 Structural data, reciprocal lattice vectors and their labeling for                                     |
| 775 | seifertite, stishovite, coesite and rutile used in the present study.                                             |
| 776 |                                                                                                                   |
| 777 | a. <u>Seifertite</u>                                                                                              |
| 778 |                                                                                                                   |
| 779 | Seifertite, space group 60 Pbcn, has the structure shown in Figure A1-1.                                          |
| 780 |                                                                                                                   |
| 781 | Figure A1-1                                                                                                       |
| 782 |                                                                                                                   |
| 783 | Figure A1-1 Unit cell of <i>seifertite</i> . Values of primitive translations a, b, c in the x, y, z              |
| 784 | directions and fractional coordinates of Si and O are given in the text. The coordination                         |
| 785 | of Si by O is nearly octahedral and that of O by Si is trigonal.                                                  |
| 786 |                                                                                                                   |
| 787 | Lattice constants and fractional coordinates are from Dera et al. (2002).                                         |
| 788 |                                                                                                                   |
| 789 | The primitive translation vectors of its orthorhombic cell $(a,b,c) \equiv (a \hat{x}, b \hat{y}, c \hat{z})$ are |
| 790 |                                                                                                                   |

- 791 a = 7.742210 bohr,
- 792 b = 9.528000 bohr,
- 793 c = 8.493570 bohr,

- 795 The unit cell contains 4 SiO<sub>2</sub> formula units with 4 equivalent Si atoms and 8 O atoms at
- 796 fractional coordinates of the unique atoms

797

- 798 Si (0.0000, 0.1522, 0.2500),
- 799 O (0.7336, 0.6245, 0.9186),

800

- the rest being generated by the symmetry operations of the Pbcn group as in the Birkbeck
- 802 College University of London (1997-1999) space group database. The space group Pb2n
- given by El Goresy et al. (2008) as an alternative was not used, since satisfactory results
- 804 were obtained with the higher symmetry Pbcn group.

805

806 The reciprocal lattice is also orthorhombic, formed by the vectors  $(a^*, b^*, c^*)$  such that

807

808 
$$a^* = 2\pi (b \ge c)/[a.(b \ge c)] = 0.811549 \ge bohr^{-1}$$

809  $b^* = 2\pi (c \ge a)/[a.(b \ge c)] = 0.659444 \text{ } \hat{y} \text{ bohr}^{-1},$ 

810 
$$c^* = 2\pi (a \ge b)/[a.(b \ge c)] = 0.739758 \hat{z} \text{ bohr}^{-1}$$

- 812 as shown in Figure A1-2.
- 813
- 814 Figure A1-2

815

- 816 Figure A1-2 Brillouin zone of the orthorhombic lattice. Critical points chosen for the
- band structure representation are labeled as Γ (0,0,0), Z (0,0,  $\frac{1}{2}$ ), R ( $\frac{1}{2}$ ,  $\frac{1}{2}$ ), S ( $\frac{1}{2}$ ,  $\frac{1}{2}$ , 0),
- 818 X ( $\frac{1}{2}$ ,0,0), U ( $\frac{1}{2}$ ,0,  $\frac{1}{2}$ ). Lengths of the reciprocal vectors a\*, b\*, c\* are in the ratio
- 819 generated by the *seifertite* structure.

820

- 821 *b. Stishovite*
- 822
- 823 *Stishovite*, space group 136 P42/mnm, has the structure shown in Figure A1-3.
- 824
- Figure A1-3
- 826

| 827 | Figure A1-3 Unit cell of <i>stishovite</i> . Values of primitive translations a, b, c in the x, y, z            |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 828 | directions and fractional coordinates of Si and O are given in the text. The coordination                       |
| 829 | of Si by O is nearly octahedral and that of O by Si is trigonal.                                                |
| 830 |                                                                                                                 |
| 831 | Lattice constants and fractional coordinates are from Rudra and Fowler (1983).                                  |
| 832 |                                                                                                                 |
| 833 | The primitive translation vectors of its tetragonal cell $(a,b,c) \equiv (a \hat{x}, a \hat{y}, c \hat{z})$ are |
| 834 |                                                                                                                 |
| 835 | a = 7.893770 bohr,                                                                                              |
| 836 | b = 7.893770 bohr,                                                                                              |
| 837 | c = 5.036310 bohr,                                                                                              |
| 838 |                                                                                                                 |
| 839 | The unit cell contains 2 $SiO_2$ formula units with fractional coordinates of the Si and O                      |
| 840 | atoms                                                                                                           |
| 841 |                                                                                                                 |
| 842 | Si (1) (0.0000, 0.0000, 0.0000),                                                                                |
| 843 | Si (2) (0.5000, 0.5000, 0.5000),                                                                                |
| 844 | O (3) (0.3062, 0.3062, 0.0000),                                                                                 |
| 845 | O (4) (0.6938, 0.6938, 0.0000),                                                                                 |
|     | 40                                                                                                              |

846 O (5) (0.1938, 0.8062, 0.5000), 847 O (6) (0.8062, 0.1938, 0.5000), 848 849 generated from unique positions of Si(1) and O(3) by the symmetry operations of the 850 P42/mnm group. 851 852 The reciprocal lattice is also tetragonal, formed by the vectors  $(a^*, b^*, c^*)$  such that 853 854  $a^* = 2\pi (b \ge c)/[a.(b \ge c)] = 0.795968 \ge bohr^{-1}$ 855  $b^* = 2\pi (c \ge a)/[a.(b \ge c)] = 0.795968 \hat{y} \text{ bohr}^{-1},$  $c^* = 2\pi (a \ge b)/[a.(b \ge c)] = 1.247577 \hat{z} \text{ bohr}^{-1}$ 856 857 858 shown in Figure A1-4 with labeling of the special points consistent with that that of 859 Rudra and Fowler (1983). 860 Figure A1-4 861 862 Figure A1-4 Brillouin zone of the tetragonal lattice. Critical points chosen for the band structure representation are labeled as  $\prod_{S}$  (0,0,0), Z (0,0,  $\frac{1}{2}$ ), A ( $\frac{1}{2}$ ,  $\frac{1}{2}$ ), M ( $\frac{1}{2}$ ,  $\frac{1}{2}$ , 0), X 863 864  $(\frac{1}{2},0,0)$ , R  $(\frac{1}{2},0,\frac{1}{2})$ . Intermediate points A, S, V,  $\Sigma$ ,  $\Delta$ , W and U have coordinates 41

| 865 | specified in the klist_band for the tetragonal lattice. Lengths of the reciprocal vectors a*,       |
|-----|-----------------------------------------------------------------------------------------------------|
| 866 | b*, c* are in the ratio yielded by the stishovite structure.                                        |
| 867 |                                                                                                     |
| 868 |                                                                                                     |
| 869 | c. <u>Coesite</u>                                                                                   |
| 870 |                                                                                                     |
| 871 | <i>Coesite</i> , space group 15 C2/c, has the structure shown in Figure A1-5.                       |
| 872 |                                                                                                     |
| 873 | Figure A1-5                                                                                         |
| 874 |                                                                                                     |
| 875 | Figure A1-5 Unit cell of <i>coesite</i> as a stereo picture. Values of primitive translations a, b, |
| 876 | c in the x, y, z directions and fractional coordinates of Si and O are given in the text. The       |
| 877 | coordination of Si by O is tetrahedral and that of O by Si is two-fold. O atoms at $(0,0,0)$        |
| 878 | and $(1/2, 1/2, 1/2)$ are linearly coordinated to the nearest two Si neighbors, a feature that      |
| 879 | has influence on distribution of levels in the valence band.                                        |
| 880 |                                                                                                     |
| 881 |                                                                                                     |
| 882 | Lattice constants and fractional coordinates are taken from single crystal neutron                  |
| 883 | diffraction data at 292 K by Smyth et al. (1987).                                                   |
| 884 |                                                                                                     |

885 The primitive translation vectors of its monoclinic cell  $(a,b,c) \equiv (a \hat{x}, b \hat{y}, c1 \hat{x} + c2 \hat{z})$  are 886 887 a = 13.4845 bohr, 888 b = 23.4014 bohr, 889 c1 = -6.8665 bohr, 890 c2 = 11.7154 bohr, 891 892 and the angle subtended by vectors **a** and **c** is  $\beta = 120.375^{\circ}$ . 893 894 The unit cell contains 16 SiO<sub>2</sub> formula units with two Si and five O unique atoms at 895 fractional coordinates 896 897 Si(1) (0.14032, 0.10832, 0.07231) multiplicity 4, 898 Si(2) (0.50677, 0.15800, 0.54073) multiplicity 4, 899 O(1) (0.00000, 0.00000, 0.00000) multiplicity 2, 900 O(2) (0.50000, 0.11643, 0.75000) multiplicity 2, 901 O(3) (0.26631, 0.12320, 0.94031) multiplicity 4, 902 O(4) (0.31144, 0.10379, 0.32785) multiplicity 4, 903 O(5) (0.01746, 0.21192, 0.47851) multiplicity 4, 43

905 the rest being generated by the symmetry operations of the C2/c group<sup>29</sup>.

906

907 The reciprocal lattice is also monoclinic, formed by the vectors  $(a^*, b^*, c^*)$  such that

908

909 
$$a^* = 2\pi (b \ge c)/[a.(b \ge c)] = (0.465956 \ge + 0.273102 \ge) \text{ bohr}^{-1},$$

- 910  $b^* = 2\pi (c \ge a)/[a.(b \ge c)] = 0.268496 \text{ } \text{ŷ bohr}^{-1},$
- 911  $c^* = 2\pi (a \ge b)/[a.(b \ge c)] = 0.536318 \text{ \cdot} \text{ bohr}^{-1},$

- 913 shown in Figure A1-6 with special points generated with the help of the Xcrysden
- 914 program, Kokalj (2003).
- 915 The angles between the reciprocal lattice vectors are  $\neq (a^*, c^*) = 59.625^\circ$  and  $\neq (a^*, b^*) =$
- 916  $\langle (b^*, c^*) = 90^\circ$ . and lengths of the reciprocal vectors  $a^*$ ,  $b^*$ ,  $c^*$  are in the ratio created
- 917 by the *coesite* structure. The coesite structure in this representation is close to hexagonal
- 918 about the principal axis **b**.
- 919
- 920 Figure A1-6
- 921
- 922 Figure A1-6 Brillouin zone of the monoclinic, nearly hexagonal lattice about the b\* axis.

| 923 | Critical points chosen for the band structure representation are labeled as:                                                                                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 924 | $\Gamma$ (0,0,0), K2 (0, <sup>1</sup> / <sub>2</sub> , 0), K3 (0.335, <sup>1</sup> / <sub>2</sub> , 0.33), K4 (0.335,0, 0.33), K5 = $\Gamma$ , K6 ( <sup>1</sup> / <sub>2</sub> ,0,0), K7 |
| 925 | $(\frac{1}{2},\frac{1}{2},0), K8 = K2.$                                                                                                                                                   |
| 926 | The corresponding labels for the idealized hexagonal lattice are:                                                                                                                         |
| 927 | $\Gamma \equiv [K1 = K5], A \equiv [K2 = K8], H \equiv K3, K \equiv K4, M \equiv K6 \text{ and } L \equiv K7$                                                                             |
| 928 |                                                                                                                                                                                           |
| 929 | Wien 2k structure files of seifertite, stishovite, coesite and rutile                                                                                                                     |
| 930 |                                                                                                                                                                                           |
| 931 | Seifertite                                                                                                                                                                                |
| 932 | P LATTICE, NONEQUIV. ATOMS 2 60 Pbcn                                                                                                                                                      |
| 933 | MODE OF CALC=RELA                                                                                                                                                                         |
| 934 | 7.742210 9.528000 8.493570 90.000000 90.000000 90.000000                                                                                                                                  |
| 935 | ATOM -1: X=0.00000000 Y=0.15220000 Z=0.25000000                                                                                                                                           |
| 936 | MULT= 4 ISPLIT= 8                                                                                                                                                                         |
| 937 | -1: X=0.00000000 Y=0.84780000 Z=0.75000000                                                                                                                                                |
| 938 | -1: X=0.50000000 Y=0.65220000 Z=0.25000000                                                                                                                                                |
| 939 | -1: X=0.50000000 Y=0.34780000 Z=0.75000000                                                                                                                                                |
| 940 | Sil NPT= 781 R0=0.00010000 RMT= 1.6000 Z: 14.0                                                                                                                                            |
| 941 | LOCAL ROT MATRIX: 0.0000000 1.0000000 0.0000000                                                                                                                                           |
| 942 | 0.0000000 0.0000000 1.0000000                                                                                                                                                             |

| 943 | 1.0000000 0.0000000 0.0000000                              |
|-----|------------------------------------------------------------|
| 944 | ATOM -2: X=0.73360000 Y=0.62450000 Z=0.91860000            |
| 945 | MULT= 8 ISPLIT= 8                                          |
| 946 | -2: X=0.26640000 Y=0.37550000 Z=0.08140000                 |
| 947 | -2: X=0.23360000 Y=0.12450000 Z=0.58140000                 |
| 948 | -2: X=0.76640000 Y=0.87550000 Z=0.41860000                 |
| 949 | -2: X=0.76640000 Y=0.12450000 Z=0.91860000                 |
| 950 | -2: X=0.23360000 Y=0.87550000 Z=0.08140000                 |
| 951 | -2: X=0.26640000 Y=0.62450000 Z=0.58140000                 |
| 952 | -2: X=0.73360000 Y=0.37550000 Z=0.41860000                 |
| 953 | O 2 NPT= 781 R0=0.00010000 RMT= 1.6000 Z: 8.0              |
| 954 | LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000            |
| 955 | 0.0000000 1.0000000 0.0000000                              |
| 956 | 0.0000000 0.0000000 1.0000000                              |
| 957 | 8 symmetry operations are auto-generated by the Pbcn group |
| 958 |                                                            |
| 959 |                                                            |
| 960 | Stishovite                                                 |
| 961 | P LATTICE, NONEQUIV. ATOMS 2 136 P42/mnm                   |
| 962 | MODE OF CALC=RELA                                          |
| 963 | 7.893770 7.893770 5.036310 90.000000 90.000000 90.000000   |

| 964 | ATOM -1  | : X=0.00000000 Y=0.00000000 Z=0.00000000                |
|-----|----------|---------------------------------------------------------|
| 965 |          | MULT= 2 ISPLIT= 8                                       |
| 966 | -1       | : X=0.50000000 Y=0.50000000 Z=0.50000000                |
| 967 | Si       | NPT= 781 R0=0.00010000 RMT= 1.6500 Z: 14.0              |
| 968 | LOCAL RC | DT MATRIX: 0.7071068 0.7071068 0.0000000                |
| 969 |          | -0.7071068 0.7071068 0.0000000                          |
| 970 |          | 0.0000000 0.0000000 1.0000000                           |
| 971 | ATOM -2  | : X=0.30620000 Y=0.30620000 Z=0.00000000                |
| 972 |          | MULT= 4 ISPLIT= 8                                       |
| 973 | -2       | : X=0.69380000 Y=0.69380000 Z=0.00000000                |
| 974 | -2       | : X=0.19380000 Y=0.80620000 Z=0.50000000                |
| 975 | -2       | : X=0.80620000 Y=0.19380000 Z=0.50000000                |
| 976 | 0 1      | NPT= 781 R0=0.00010000 RMT= 1.6500 Z: 8.0               |
| 977 | LOCAL RC | DT MATRIX: 0.0000000-0.7071068 0.7071068                |
| 978 |          | 0.0000000 0.7071068 0.7071068                           |
| 979 |          | -1.0000000 0.0000000 0.0000000                          |
| 980 |          |                                                         |
| 981 | 16 symme | etry operations are auto-generated by the P42/mnm group |
| 982 |          |                                                         |
| 983 |          |                                                         |
| 984 |          |                                                         |

| 985  | Coesite                                                     |
|------|-------------------------------------------------------------|
| 986  | P LATTICE, NONEQUIV. ATOMS 7                                |
| 987  | MODE OF CALC=RELA                                           |
| 988  | 13.484500 23.401400 13.579400 90.000000120.375000 90.000000 |
| 989  | ATOM -1: X=0.13998000 Y=0.10847000 Z=0.07211000             |
| 990  | MULT= 4 ISPLIT= 8                                           |
| 991  | -1: X=0.86002000 Y=0.89153000 Z=0.92789000                  |
| 992  | -1: X=0.86002000 Y=0.10847000 Z=0.42789000                  |
| 993  | -1: X=0.13998000 Y=0.89153000 Z=0.57211000                  |
| 994  | Sil NPT= 781 R0=0.00010000 RMT= 1.4900 Z= 14.0              |
| 995  | LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000             |
| 996  | 0.0000000 1.0000000 0.0000000                               |
| 997  | 0.0000000 0.0000000 1.0000000                               |
| 998  | ATOM -2: X=0.50722000 Y=0.15785000 Z=0.54153000             |
| 999  | MULT= 4 ISPLIT= 8                                           |
| 1000 | -2: X=0.49278000 Y=0.84215000 Z=0.45847000                  |
| 1001 | -2: X=0.49278000 Y=0.15785000 Z=0.95847000                  |
| 1002 | -2: X=0.50722000 Y=0.84215000 Z=0.04153000                  |
| 1003 | Si2 NPT= 781 R0=0.00010000 RMT= 1.4900 Z= 14.0              |
| 1004 | LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000             |
| 1005 | 0.0000000 1.0000000 0.0000000                               |

| 1006 |       |     |             | 0.0000  | 000 0.000 | 00000 1.0 | 0000000 |    |     |
|------|-------|-----|-------------|---------|-----------|-----------|---------|----|-----|
| 1007 | ATOM  | -3: | X=0.000000  | 00 Y=0. | 00000000  | Z=0.000   | 00000   |    |     |
| 1008 |       |     | MULT= 2     |         | ISPLIT= 8 | 3         |         |    |     |
| 1009 |       | -3: | X=0.000000  | 00 Y=0. | 00000000  | Z=0.500   | 00000   |    |     |
| 1010 | 0 1   |     | NPT= 781    | R0=0.   | 00010000  | RMT=      | 1.4900  | Z= | 8.0 |
| 1011 | LOCAL | ROT | MATRIX:     | 1.0000  | 000 0.000 | 00000 0.0 | 000000  |    |     |
| 1012 |       |     |             | 0.0000  | 000 1.000 | 00000 0.0 | 000000  |    |     |
| 1013 |       |     |             | 0.0000  | 000 0.000 | 00000 1.0 | 0000000 |    |     |
| 1014 | ATOM  | -4: | X=0.500000  | 00 Y=0. | 11524000  | Z=0.750   | 00000   |    |     |
| 1015 |       |     | MULT= 2     |         | ISPLIT= 8 | 3         |         |    |     |
| 1016 |       | -4: | X=0.500000  | 00 Y=0. | 88476000  | Z=0.250   | 00000   |    |     |
| 1017 | 02    |     | NPT= 781    | R0=0.   | 00010000  | RMT=      | 1.4900  | Z= | 8.0 |
| 1018 | LOCAL | ROT | MATRIX:     | 0.0000  | 000 1.000 | 00000 0.0 | 0000000 |    |     |
| 1019 |       |     |             | 0.0000  | 000 0.000 | 00000 1.0 | 0000000 |    |     |
| 1020 |       |     |             | 1.0000  | 000 0.000 | 00000 0.0 | 0000000 |    |     |
| 1021 | ATOM  | -5: | X=0.2640000 | 00 Y=0. | 12452000  | Z=0.9383  | 30000   |    |     |
| 1022 |       |     | MULT= 4     |         | ISPLIT= 8 | 3         |         |    |     |
| 1023 |       | -5: | X=0.7360000 | 00 Y=0. | 87548000  | Z=0.061   | 70000   |    |     |
| 1024 |       | -5: | X=0.7360000 | 00 Y=0. | 12452000  | Z=0.561   | 70000   |    |     |
| 1025 |       | -5: | X=0.2640000 | 00 Y=0. | 87548000  | Z=0.4383  | 30000   |    |     |
| 1026 | 03    |     | NPT= 781    | R0=0.   | 00010000  | RMT=      | 1.4900  | Z= | 8.0 |

| 1027 | LOCAL | ROT | MATRIX: | 1.0000000 | 0.000000 | 0.000000 |
|------|-------|-----|---------|-----------|----------|----------|
|      |       |     |         |           |          |          |

- 1028 0.0000000 1.0000000 0.0000000
- 0.0000000 0.0000000 1.0000000
- 1030 ATOM -6: X=0.31277000 Y=0.10319000 Z=0.32768000
- 1031 MULT= 4 ISPLIT= 8
- 1032 -6: X=0.68723000 Y=0.89681000 Z=0.67232000
- 1033 -6: X=0.68723000 Y=0.10319000 Z=0.17232000
- 1034 -6: X=0.31277000 Y=0.89681000 Z=0.82768000
- 1035 0 4 NPT= 781 R0=0.00010000 RMT= 1.4900 Z= 8.0
- 1036 LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
- 0.0000000 1.0000000 0.0000000
- 1038 0.0000000 0.0000000 1.0000000
- 1039 ATOM -7: X=0.01900000 Y=0.21178000 Z=0.47664000
- 1040 MULT= 4 ISPLIT= 8
- 1041 -7: X=0.98100000 Y=0.78822000 Z=0.52336000
- 1042 -7: X=0.98100000 Y=0.21178000 Z=0.02336000
- 1043 -7: X=0.01900000 Y=0.78822000 Z=0.97664000
- 1044 0 5 NPT= 781 R0=0.00010000 RMT= 1.4900 Z= 8.0
- 1045 LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
- 0.0000000 1.0000000 0.0000000
- 0.0000000 0.0000000 1.0000000

7/23

1048 1049 4 symmetry operations are auto-generated by the C2/c group 1050 \_\_\_\_\_ 1051 1052 Rutile - lattice constants from Ekuma and Bagayoko (2011), fractional 1053 coordinates as in stishovite 1054 LATTICE, NONEQUIV. ATOMS 2 136 P42/mnm Ρ 1055 MODE OF CALC=RELA 1056 8.683743 8.683743 5.593006 90.000000 90.000000 90.000000 1057 ATOM -1: X=0.00000000 Y=0.00000000 Z=0.00000000 1058 MULT= 2 ISPLIT= 8 1059 -1: X=0.50000000 Y=0.50000000 Z=0.50000000 1060 Тi NPT= 781 R0=0.00005000 RMT= 1.9000 Z: 22.0 1061 LOCAL ROT MATRIX: 0.7071068 0.7071068 0.0000000 1062 -0.7071068 0.7071068 0.0000000 1063 0.0000000 0.0000000 1.0000000 1064 ATOM -2: X=0.30620000 Y=0.30620000 Z=0.00000000 1065 MULT= 4 ISPLIT= 8 1066 -2: X=0.69380000 Y=0.69380000 Z=0.00000000 1067 -2: X=0.19380000 Y=0.80620000 Z=0.50000000 1068 -2: X=0.80620000 Y=0.19380000 Z=0.50000000

| 1069 | 01              | NPT=      | 781    | R0=0.  | .0001 | 0000 RMT= 1.7000 Z: 8.0                             |
|------|-----------------|-----------|--------|--------|-------|-----------------------------------------------------|
| 1070 | LOCAL ROT M     | IATRIX:   | C      | ).0000 | 000-  | 0.7071068 0.7071068                                 |
| 1071 |                 |           | C      | ).0000 | 0000  | 0.7071068 0.7071068                                 |
| 1072 |                 |           | -1     | L.0000 | 0000  | 0.000000 0.000000                                   |
| 1073 | 16 symmetry     | opera     | tions  | are    | auto  | -generated by the P42/mnm group                     |
| 1074 |                 |           |        |        |       |                                                     |
| 1075 |                 |           |        |        |       |                                                     |
| 1076 | List of k-point | ts for ba | nd str | ucture | rend  | ition of seifertite, stishovite, coesite and rutile |
| 1077 |                 |           |        |        |       |                                                     |
| 1077 |                 |           |        |        |       |                                                     |
| 1078 |                 |           |        |        |       |                                                     |
| 1079 | Seifertite:     |           |        |        |       |                                                     |
| 1080 | GAMMA           | 0         | 0      | 0      | 12    | 2.0-8.00 8.00                                       |
| 1081 |                 | 0         | 0      | 1      | 12    | 2.0                                                 |
| 1082 |                 | 0         | 0      | 2      | 12    | 2.0                                                 |
| 1083 |                 | 0         | 0      | 3      | 12    | 2.0                                                 |
| 1084 |                 | 0         | 0      | 4      | 12    | 2.0                                                 |
| 1085 |                 | 0         | 0      | 5      | 12    | 2.0                                                 |
| 1086 | Ζ               | 0         | 0      | 8      | 16    | 2.0                                                 |
| 1087 |                 | 1         | 1      | 8      | 16    | 2.0                                                 |
| 1088 |                 | 2         | 2      | 8      | 16    | 2.0                                                 |

| 1089 |       | 3 | 3 | 8 | 16 | 2.0 |
|------|-------|---|---|---|----|-----|
| 1090 |       | 4 | 4 | 8 | 16 | 2.0 |
| 1091 |       | 5 | 5 | 8 | 16 | 2.0 |
| 1092 |       | 6 | 6 | 8 | 16 | 2.0 |
| 1093 |       | 7 | 7 | 8 | 16 | 2.0 |
| 1094 | R     | 6 | 6 | 6 | 12 | 2.0 |
| 1095 |       | 6 | 6 | 5 | 12 | 2.0 |
| 1096 |       | 6 | 6 | 4 | 12 | 2.0 |
| 1097 |       | 6 | 6 | 3 | 12 | 2.0 |
| 1098 |       | 6 | 6 | 2 | 12 | 2.0 |
| 1099 |       | 6 | 6 | 1 | 12 | 2.0 |
| 1100 | S     | 8 | 8 | 0 | 16 | 2.0 |
| 1101 |       | 7 | 7 | 0 | 16 | 2.0 |
| 1102 |       | 6 | 6 | 0 | 16 | 2.0 |
| 1103 |       | 5 | 5 | 0 | 16 | 2.0 |
| 1104 |       | 4 | 4 | 0 | 16 | 2.0 |
| 1105 |       | 3 | 3 | 0 | 16 | 2.0 |
| 1106 |       | 2 | 2 | 0 | 16 | 2.0 |
| 1107 |       | 1 | 1 | 0 | 16 | 2.0 |
| 1108 | GAMMA | 0 | 0 | 0 | 14 | 2.0 |
| 1109 |       | 1 | 0 | 0 | 14 | 2.0 |

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4890

| 1110 |   | 2 | 0 | 0 | 14 | 2.0 |
|------|---|---|---|---|----|-----|
| 1111 |   | 3 | 0 | 0 | 14 | 2.0 |
| 1112 |   | 4 | 0 | 0 | 14 | 2.0 |
| 1113 |   | 5 | 0 | 0 | 14 | 2.0 |
| 1114 |   | 6 | 0 | 0 | 14 | 2.0 |
| 1115 | Х | 6 | 0 | 0 | 12 | 2.0 |
| 1116 |   | 6 | 0 | 1 | 12 | 2.0 |
| 1117 |   | 6 | 0 | 2 | 12 | 2.0 |
| 1118 |   | 6 | 0 | 3 | 12 | 2.0 |
| 1119 |   | 6 | 0 | 4 | 12 | 2.0 |
| 1120 |   | 6 | 0 | 5 | 12 | 2.0 |
| 1121 | U | 7 | 0 | 7 | 14 | 2.0 |
| 1122 |   | 6 | 0 | 7 | 14 | 2.0 |
| 1123 |   | 5 | 0 | 7 | 14 | 2.0 |
| 1124 |   | 4 | 0 | 7 | 14 | 2.0 |
| 1125 |   | 3 | 0 | 7 | 14 | 2.0 |
| 1126 |   | 2 | 0 | 7 | 14 | 2.0 |
| 1127 |   | 1 | 0 | 7 | 14 | 2.0 |
| 1128 | Z | 0 | 0 | 7 | 14 | 2.0 |
| 1129 |   |   |   |   |    |     |
| 1130 |   |   |   |   |    |     |

-----

#### 1132 Stishovite and Rutile:

| 1133 | GAMMA  | 0 | 0 | 0  | 22 | 2.0-8.00 | 8.00 |
|------|--------|---|---|----|----|----------|------|
| 1134 |        | 0 | 0 | 1  | 22 | 2.0      |      |
| 1135 |        | 0 | 0 | 2  | 22 | 2.0      |      |
| 1136 |        | 0 | 0 | 3  | 22 | 2.0      |      |
| 1137 |        | 0 | 0 | 4  | 22 | 2.0      |      |
| 1138 | LAMBDA | 0 | 0 | 5  | 22 | 2.0      |      |
| 1139 |        | 0 | 0 | 6  | 22 | 2.0      |      |
| 1140 |        | 0 | 0 | 7  | 22 | 2.0      |      |
| 1141 |        | 0 | 0 | 8  | 22 | 2.0      |      |
| 1142 |        | 0 | 0 | 9  | 22 | 2.0      |      |
| 1143 |        | 0 | 0 | 10 | 22 | 2.0      |      |
| 1144 | Z      | 0 | 0 | 10 | 20 | 2.0      |      |
| 1145 |        | 1 | 1 | 10 | 20 | 2.0      |      |
| 1146 |        | 2 | 2 | 10 | 20 | 2.0      |      |
| 1147 |        | 3 | 3 | 10 | 20 | 2.0      |      |
| 1148 |        | 4 | 4 | 10 | 20 | 2.0      |      |
| 1149 | S      | 5 | 5 | 10 | 20 | 2.0      |      |
| 1150 |        | 6 | 6 | 10 | 20 | 2.0      |      |
| 1151 |        | 7 | 7 | 10 | 20 | 2.0      |      |

| 1152 |       | 8  | 8  | 10 | 20 | 2.0 |
|------|-------|----|----|----|----|-----|
| 1153 |       | 9  | 9  | 10 | 20 | 2.0 |
| 1154 | A     | 11 | 11 | 11 | 22 | 2.0 |
| 1155 |       | 11 | 11 | 10 | 22 | 2.0 |
| 1156 |       | 11 | 11 | 9  | 22 | 2.0 |
| 1157 |       | 11 | 11 | 8  | 22 | 2.0 |
| 1158 |       | 11 | 11 | 7  | 22 | 2.0 |
| 1159 | V     | 11 | 11 | 6  | 22 | 2.0 |
| 1160 |       | 11 | 11 | 5  | 22 | 2.0 |
| 1161 |       | 11 | 11 | 4  | 22 | 2.0 |
| 1162 |       | 11 | 11 | 3  | 22 | 2.0 |
| 1163 |       | 11 | 11 | 2  | 22 | 2.0 |
| 1164 |       | 11 | 11 | 1  | 22 | 2.0 |
| 1165 | М     | 10 | 10 | 0  | 20 | 2.0 |
| 1166 |       | 9  | 9  | 0  | 20 | 2.0 |
| 1167 |       | 8  | 8  | 0  | 20 | 2.0 |
| 1168 |       | 7  | 7  | 0  | 20 | 2.0 |
| 1169 |       | 6  | 6  | 0  | 20 | 2.0 |
| 1170 | SIGMA | 5  | 5  | 0  | 20 | 2.0 |
| 1171 |       | 4  | 4  | 0  | 20 | 2.0 |
| 1172 |       | 3  | 3  | 0  | 20 | 2.0 |

| 1173 |       | 2  | 2 | 0  | 20 | 2.0 |
|------|-------|----|---|----|----|-----|
| 1174 |       | 1  | 1 | 0  | 20 | 2.0 |
| 1175 | GAMMA | 0  | 0 | 0  | 14 | 2.0 |
| 1176 |       | 1  | 0 | 0  | 14 | 2.0 |
| 1177 |       | 2  | 0 | 0  | 14 | 2.0 |
| 1178 |       | 3  | 0 | 0  | 14 | 2.0 |
| 1179 | DELTA | 4  | 0 | 0  | 14 | 2.0 |
| 1180 |       | 5  | 0 | 0  | 14 | 2.0 |
| 1181 |       | 6  | 0 | 0  | 14 | 2.0 |
| 1182 | Х     | 11 | 0 | 0  | 22 | 2.0 |
| 1183 |       | 11 | 0 | 1  | 22 | 2.0 |
| 1184 |       | 11 | 0 | 2  | 22 | 2.0 |
| 1185 |       | 11 | 0 | 3  | 22 | 2.0 |
| 1186 |       | 11 | 0 | 4  | 22 | 2.0 |
| 1187 | W     | 11 | 0 | 5  | 22 | 2.0 |
| 1188 |       | 11 | 0 | 6  | 22 | 2.0 |
| 1189 |       | 11 | 0 | 7  | 22 | 2.0 |
| 1190 |       | 11 | 0 | 8  | 22 | 2.0 |
| 1191 |       | 11 | 0 | 9  | 22 | 2.0 |
| 1192 |       | 11 | 0 | 10 | 22 | 2.0 |
| 1193 | R     | 7  | 0 | 7  | 14 | 2.0 |

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4890

| 1194 |          | 6   | 0    | 7   | 14   | 2.0           |
|------|----------|-----|------|-----|------|---------------|
| 1195 |          | 5   | 0    | 7   | 14   | 2.0           |
| 1196 |          | 4   | 0    | 7   | 14   | 2.0           |
| 1197 | U        | 3   | 0    | 7   | 14   | 2.0           |
| 1198 |          | 2   | 0    | 7   | 14   | 2.0           |
| 1199 |          | 1   | 0    | 7   | 14   | 2.0           |
| 1200 | Z        | 0   | 0    | 7   | 14   | 2.0           |
| 1201 |          |     |      |     |      |               |
| 1202 |          |     |      |     |      |               |
| 1203 |          |     |      |     |      |               |
| 1204 | Coesite: |     |      |     |      |               |
| 1205 | K.1      | 0   | 0    | 0   | 3822 | 2.0-8.00 8.00 |
| 1206 |          | 0   | 273  | 0   | 3822 | 2.0           |
| 1207 |          | 0   | 546  | 0   | 3822 | 2.0           |
| 1208 |          | 0   | 819  | 0   | 3822 | 2.0           |
| 1209 |          | 0   | 1092 | 0   | 3822 | 2.0           |
| 1210 |          | 0   | 1365 | 0   | 3822 | 2.0           |
| 1211 |          | 0   | 1638 | 0   | 3822 | 2.0           |
| 1212 | K.2      | 0   | 4095 | 0   | 8190 | 2.0           |
| 1213 |          | 183 | 4095 | 180 | 8190 | 2.0           |
| 1214 |          | 366 | 4095 | 360 | 8190 | 2.0           |

| 1215 |     | 549  | 4095 | 540  | 8190 | 2.0 |
|------|-----|------|------|------|------|-----|
| 1216 |     | 732  | 4095 | 720  | 8190 | 2.0 |
| 1217 |     | 915  | 4095 | 900  | 8190 | 2.0 |
| 1218 |     | 1098 | 4095 | 1080 | 8190 | 2.0 |
| 1219 |     | 1281 | 4095 | 1260 | 8190 | 2.0 |
| 1220 |     | 1464 | 4095 | 1440 | 8190 | 2.0 |
| 1221 |     | 1647 | 4095 | 1620 | 8190 | 2.0 |
| 1222 |     | 1830 | 4095 | 1800 | 8190 | 2.0 |
| 1223 |     | 2013 | 4095 | 1980 | 8190 | 2.0 |
| 1224 |     | 2196 | 4095 | 2160 | 8190 | 2.0 |
| 1225 |     | 2379 | 4095 | 2340 | 8190 | 2.0 |
| 1226 |     | 2562 | 4095 | 2520 | 8190 | 2.0 |
| 1227 | K.3 | 1281 | 1911 | 1260 | 3822 | 2.0 |
| 1228 |     | 1281 | 1638 | 1260 | 3822 | 2.0 |
| 1229 |     | 1281 | 1365 | 1260 | 3822 | 2.0 |
| 1230 |     | 1281 | 1092 | 1260 | 3822 | 2.0 |
| 1231 |     | 1281 | 819  | 1260 | 3822 | 2.0 |
| 1232 |     | 1281 | 546  | 1260 | 3822 | 2.0 |
| 1233 |     | 1281 | 273  | 1260 | 3822 | 2.0 |
| 1234 | K.4 | 2745 | 0    | 2700 | 8190 | 2.0 |
| 1235 |     | 2562 | 0    | 2520 | 8190 | 2.0 |

| 1236 |     | 2379 | 0 | 2340 | 8190 | 2.0 |
|------|-----|------|---|------|------|-----|
| 1237 |     | 2196 | 0 | 2160 | 8190 | 2.0 |
| 1238 |     | 2013 | 0 | 1980 | 8190 | 2.0 |
| 1239 |     | 1830 | 0 | 1800 | 8190 | 2.0 |
| 1240 |     | 1647 | 0 | 1620 | 8190 | 2.0 |
| 1241 |     | 1464 | 0 | 1440 | 8190 | 2.0 |
| 1242 |     | 1281 | 0 | 1260 | 8190 | 2.0 |
| 1243 |     | 1098 | 0 | 1080 | 8190 | 2.0 |
| 1244 |     | 915  | 0 | 900  | 8190 | 2.0 |
| 1245 |     | 732  | 0 | 720  | 8190 | 2.0 |
| 1246 |     | 549  | 0 | 540  | 8190 | 2.0 |
| 1247 |     | 366  | 0 | 360  | 8190 | 2.0 |
| 1248 |     | 183  | 0 | 180  | 8190 | 2.0 |
| 1249 | K.5 | 0    | 0 | 0    | 7098 | 2.0 |
| 1250 |     | 273  | 0 | 0    | 7098 | 2.0 |
| 1251 |     | 546  | 0 | 0    | 7098 | 2.0 |
| 1252 |     | 819  | 0 | 0    | 7098 | 2.0 |
| 1253 |     | 1092 | 0 | 0    | 7098 | 2.0 |
| 1254 |     | 1365 | 0 | 0    | 7098 | 2.0 |
| 1255 |     | 1638 | 0 | 0    | 7098 | 2.0 |
| 1256 |     | 1911 | 0 | 0    | 7098 | 2.0 |

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4890

| 1257 |     | 2184 | 0    | 0 | 7098 | 2.0 |
|------|-----|------|------|---|------|-----|
| 1258 |     | 2457 | 0    | 0 | 7098 | 2.0 |
| 1259 |     | 2730 | 0    | 0 | 7098 | 2.0 |
| 1260 |     | 3003 | 0    | 0 | 7098 | 2.0 |
| 1261 |     | 3276 | 0    | 0 | 7098 | 2.0 |
| 1262 | K.6 | 1911 | 0    | 0 | 3822 | 2.0 |
| 1263 |     | 1911 | 273  | 0 | 3822 | 2.0 |
| 1264 |     | 1911 | 546  | 0 | 3822 | 2.0 |
| 1265 |     | 1911 | 819  | 0 | 3822 | 2.0 |
| 1266 |     | 1911 | 1092 | 0 | 3822 | 2.0 |
| 1267 |     | 1911 | 1365 | 0 | 3822 | 2.0 |
| 1268 |     | 1911 | 1638 | 0 | 3822 | 2.0 |
| 1269 | K.7 | 3549 | 3549 | 0 | 7098 | 2.0 |
| 1270 |     | 3276 | 3549 | 0 | 7098 | 2.0 |
| 1271 |     | 3003 | 3549 | 0 | 7098 | 2.0 |
| 1272 |     | 2730 | 3549 | 0 | 7098 | 2.0 |
| 1273 |     | 2457 | 3549 | 0 | 7098 | 2.0 |
| 1274 |     | 2184 | 3549 | 0 | 7098 | 2.0 |
| 1275 |     | 1911 | 3549 | 0 | 7098 | 2.0 |
| 1276 |     | 1638 | 3549 | 0 | 7098 | 2.0 |
| 1277 |     | 1365 | 3549 | 0 | 7098 | 2.0 |

|      | This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)<br>Cite as Authors (Year) Title. American Mineralogist, in press.(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-48907/23 | 3 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1278 | 1092 3549 0 7098 2.0                                                                                                                                                                                                                                     |   |
| 1279 | 819 3549 0 7098 2.0                                                                                                                                                                                                                                      |   |
| 1280 | 546 3549 0 7098 2.0                                                                                                                                                                                                                                      |   |
| 1281 | 273 3549 0 7098 2.0                                                                                                                                                                                                                                      |   |
| 1282 | K.8 0 3549 0 7098 2.0                                                                                                                                                                                                                                    |   |
| 1283 |                                                                                                                                                                                                                                                          |   |
| 1284 |                                                                                                                                                                                                                                                          |   |
| 1285 |                                                                                                                                                                                                                                                          |   |
| 1286 |                                                                                                                                                                                                                                                          |   |
| 1287 | APPENDIX 2 Comparison of band structures of <i>α-quartz</i> in the GW approximation                                                                                                                                                                      |   |
| 1288 | (A2-1) and using the mBJ potential with spin polarization and self-interaction                                                                                                                                                                           |   |
| 1289 | correction for the Si3d orbitals (A2-2). Experimental bandgap obtained by low-loss                                                                                                                                                                       |   |
| 1290 | measurement in EELS/TEM is 9.65 eV from Garvie et al. (2000).                                                                                                                                                                                            |   |
| 1291 |                                                                                                                                                                                                                                                          |   |
| 1292 | A2-1: GW method from Chang et al. (2000):                                                                                                                                                                                                                |   |
| 1293 |                                                                                                                                                                                                                                                          |   |
| 1294 | Figure A2-1                                                                                                                                                                                                                                              |   |
| 1295 |                                                                                                                                                                                                                                                          |   |
| 1296 | Figure A2-1. Calculated quasiparticle band structure of $\alpha$ -quartz in the GW                                                                                                                                                                       |   |
| 1297 | approximation.                                                                                                                                                                                                                                           |   |

| 1298 |                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------|
| 1299 | A2-2. Present mBJ method:                                                                                         |
| 1300 |                                                                                                                   |
| 1301 | Figure A2-2                                                                                                       |
| 1302 |                                                                                                                   |
| 1303 | Figure A2-2. Calculated band structure of $\alpha$ -quartz in the mBJ/spin-polarized/Si3d-FLL                     |
| 1304 | approximation.                                                                                                    |
| 1305 | The two approaches yield very similar band structures of $\alpha$ -quartz and a very good                         |
| 1306 | account for the bandgap. Experimental gap energy is 9.65 eV, $\Gamma \rightarrow \Gamma$ gap is 10.1 eV           |
| 1307 | calculated by the GW approximation and 9.41 eV in the present work using the mBJ                                  |
| 1308 | approximation.                                                                                                    |
| 1309 |                                                                                                                   |
| 1310 | APPENDIX 3 Partial DOS in the VBs of coesite, <i>a-quartz</i> , stishovite and seifertite.                        |
| 1311 |                                                                                                                   |
| 1312 | Partial DOS graphs presented here reveal the causes of occurrence of intra-VB gap in                              |
| 1313 | silica polymorphs with tetrahedrally coordinated Si. Figure A3-1 shows conditions                                 |
| 1314 | prevailing in <i>coesite</i> , Figure A3-2 those in <i>α-quartz</i> , Figure A3-3 in <i>stishovite</i> and Figure |
| 1315 | A3-4 in seifertite.                                                                                               |
|      |                                                                                                                   |

| 1317 | Common features of the two tetrahedral polymorphs <i>coesite</i> and $\alpha$ -quartz are: (a) low |
|------|----------------------------------------------------------------------------------------------------|
| 1318 | contributions of Si to the split-off upper portion of VB; (b) significant contributions of Si      |
| 1319 | to the split-off lower portion of VB; and (c) overlap of Si and O contributions in the             |
| 1320 | lower VB indicating covalent Si-O bonding (Figures A3-1 and A3-2).                                 |
| 1321 |                                                                                                    |
| 1322 | Figure A3-1                                                                                        |
| 1323 |                                                                                                    |
| 1324 | Figure A3-1 Partial VB DOS of Si and O contributions in <i>coesite</i> , showing a separation      |
| 1325 | of ionic O2p band from covalent Si-O band across a 1.3 eV intrinsic gap.                           |
| 1326 |                                                                                                    |
| 1327 | Figure A3-2                                                                                        |
| 1328 |                                                                                                    |
| 1329 | Figure A3-2 Partial VB DOS of Si and O contributions in $\alpha$ -quartz, showing a                |
| 1330 | separation of ionic O2p band from covalent Si-O band across a 1.7 eV intrinsic gap.                |
| 1331 |                                                                                                    |
| 1332 |                                                                                                    |
| 1333 | Common features of the two octahedral polymorphs stishovite and seifertite entail                  |
| 1334 | continuous, predominantly O2p valence bands with small, progressively decreasing                   |
| 1335 | contributions of Si from the bottom to the top of the VB (Figures A3-3 and A3-4).                  |
| 1336 |                                                                                                    |

| 1337 | Figure A3-3                                                                                  |
|------|----------------------------------------------------------------------------------------------|
| 1338 |                                                                                              |
| 1339 | Figure A3-3 Partial VB DOS of Si and O contributions in <i>stishovite</i> , showing a        |
| 1340 | continuous band dominated by O2p orbitals with small contribution of Si orbitals             |
| 1341 | decreasing from the bottom to the top of VB.                                                 |
| 1342 |                                                                                              |
| 1343 | Figure A3-4                                                                                  |
| 1344 |                                                                                              |
| 1345 | Figure A3-4 Partial VB DOS of Si and O contributions in <i>seifertite</i> , showing features |
| 1346 | similar to those of the stishovite VB in Figure A3-3.                                        |
| 1347 |                                                                                              |
| 1348 |                                                                                              |
| 1349 |                                                                                              |
| 1350 |                                                                                              |
| 1351 |                                                                                              |
| 1352 |                                                                                              |
| 1353 |                                                                                              |
| 1354 |                                                                                              |
| 1355 |                                                                                              |

| <ol> <li>1357</li> <li>1358</li> <li>1359</li> <li>1360</li> <li>1361</li> <li>1362</li> <li>1363</li> <li>1364</li> <li>1365</li> <li>1366</li> <li>1367</li> <li>1368</li> <li>1369</li> <li>1370</li> <li>1371</li> <li>1372</li> </ol> | 1356 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1358<br>1359<br>1360<br>1361<br>1362<br>1363<br>1364<br>1365<br>1366<br>1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                       | 1357 |
| <ol> <li>1359</li> <li>1360</li> <li>1361</li> <li>1362</li> <li>1363</li> <li>1364</li> <li>1365</li> <li>1366</li> <li>1367</li> <li>1368</li> <li>1369</li> <li>1370</li> <li>1371</li> <li>1372</li> </ol>                             | 1358 |
| 1360<br>1361<br>1362<br>1363<br>1364<br>1365<br>1366<br>1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                       | 1359 |
| 1361<br>1362<br>1363<br>1364<br>1365<br>1366<br>1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                               | 1360 |
| 1362<br>1363<br>1364<br>1365<br>1366<br>1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                                       | 1361 |
| 1363<br>1364<br>1365<br>1366<br>1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                                               | 1362 |
| 1364<br>1365<br>1366<br>1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                                                       | 1363 |
| 1365<br>1366<br>1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                                                               | 1364 |
| 1366<br>1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                                                                       | 1365 |
| 1367<br>1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                                                                               | 1366 |
| 1368<br>1369<br>1370<br>1371<br>1372                                                                                                                                                                                                       | 1367 |
| 1369<br>1370<br>1371<br>1372                                                                                                                                                                                                               | 1368 |
| 1370<br>1371<br>1372                                                                                                                                                                                                                       | 1369 |
| 1371<br>1372                                                                                                                                                                                                                               | 1370 |
| 1372                                                                                                                                                                                                                                       | 1371 |
|                                                                                                                                                                                                                                            | 1372 |

1374

# 1375 FIGURES

1376

1377 Figures are presented in the following separate files:

1378

1379 "Optical absorption anisotropy of wide gap silica polymorphs stishovite - AmMiner-

1380 Figures-Revision1.docx", and

1381

1382 "Optical absorption anisotropy of wide gap silica polymorphs stishovite – AmMiner-

- 1383 Figures-Revision1.pdf".
- 1384

1385

1386

1387

1388

1389

1390

1391

1392

#### 1393

#### TABLES

1394

1395 Table 1 Experimentally determined properties of silica polymorphs investigated

#### 1396 here and of selected reference materials

1397

| SiO <sub>2</sub>                  | Density   | Refractive                                                              | Mohs     | Space                                            | Optical    | Si                                    |
|-----------------------------------|-----------|-------------------------------------------------------------------------|----------|--------------------------------------------------|------------|---------------------------------------|
| polymorph                         | gm/cc     | index at                                                                | scale    | group                                            | bandgap    | coordination                          |
|                                   |           | 0.588 nm                                                                | hardness |                                                  | eV         |                                       |
| Seifertite <sup>a,b</sup>         | 4.294     | n.a.                                                                    | > 8      | 60 Pbcn                                          | n.a.       | SiO <sub>2,2,2</sub><br>[~octahedral] |
| Stishovite <sup>c,d,e</sup>       | 4.28-4.30 | 1.799 - 1.800<br>$[n_{\omega}]$<br>1.826 - 1.845<br>$[n_{\varepsilon}]$ | 9-10     | 136<br>P42/mnm                                   | 8.75 - 7.6 | SiO <sub>4,2</sub><br>[~octahedral]   |
| <i>Coesite</i> <sup>f,g,e</sup>   | 2.911     | $n_x = 1.594$<br>$n_y = 1.595$<br>$n_z = 1.599$                         | 7.5      | 15 C2/c                                          | 8.6        | SiO <sub>4</sub><br>[~tetrahedral]    |
| <i>Cristobalite<sup>h,i</sup></i> | 2.33      | 1.487 $[n_{\omega}]$<br>1.484 $[n_{\varepsilon}]$                       | 6 - 7    | 92 P4 <sub>1</sub> 2 <sub>1</sub> 2<br>227 Fd-3m | n.a.       | SiO <sub>4</sub><br>[~tetrahedral]    |
| Quartz <sup>j</sup>               | 2.65 -    | 1.54426                                                                 | 7        | α-quartz:                                        | 9.65       | SiO <sub>4</sub>                      |

| 1                  |           | 1           | I   |                        |         |                    |
|--------------------|-----------|-------------|-----|------------------------|---------|--------------------|
|                    | 2.66      |             |     | 152 P3 <sub>1</sub> 21 |         | [~tetrahedral]     |
|                    |           |             |     |                        |         |                    |
|                    |           |             |     | and 154                |         |                    |
|                    |           |             |     |                        |         |                    |
|                    |           |             |     | P3 <sub>2</sub> 21     |         |                    |
|                    |           |             |     |                        |         |                    |
|                    |           |             |     | <i>Q</i>               |         |                    |
|                    |           |             |     | p-quartz:              |         |                    |
|                    |           |             |     |                        |         |                    |
|                    |           |             |     | 180 P6 <sub>2</sub> 22 |         |                    |
|                    |           |             |     |                        |         |                    |
|                    |           |             |     | and 181                |         |                    |
|                    |           |             |     |                        |         |                    |
|                    |           |             |     | P6422                  |         |                    |
|                    |           |             |     |                        |         |                    |
|                    |           |             |     |                        |         |                    |
| MgSiO <sub>3</sub> | 2.4 - 2.7 | 2.40 - 2.42 | 5-6 | 148 R-3                | n.a.    | SiO <sub>3,3</sub> |
|                    |           |             |     |                        |         |                    |
| Ilmonito k         |           |             |     |                        |         | [ a stale a dual]  |
| Innenne            |           |             |     |                        |         | [~octanedral]      |
|                    |           |             |     |                        |         |                    |
| Amorphous          | 2.648     | 1 458       | na  | 1 P1                   | 80-93   | SiO4               |
| Interprious        |           | 1.100       |     |                        | 0.0 9.0 | 5104               |
| un lm              |           |             |     |                        |         |                    |
| silica ","         |           |             |     |                        |         | [~tetrahedral]     |
|                    |           |             |     |                        |         |                    |
|                    | 1         | 1           | 1   |                        |         |                    |

<sup>a</sup> Dera et al. (2002); <sup>b</sup> El Goresy et al. (2008); <sup>c</sup> Stishov and Popova (1961); <sup>d</sup> Chao et al.

1399 (1962); <sup>e</sup> Trukhin et al. (2004); <sup>f</sup> Coes (1953); <sup>g</sup> Smyth et al. (1987);

1400 <sup>h</sup> <u>http://en.wikipedia.org/wiki/Cristobalite;</u> <sup>i</sup> Experimental bandgaps are nearly independent

1401 for various silica polymorphs where available from the literature. However, theoretical

1402 bandgaps span a range of some 2 eV, from 8 to 10 eV (Ramos et al. 2004, present work);

<sup>j</sup> Garvie et al. (2000); <sup>k</sup> Horiuchi et al. (1982); <sup>1</sup> Vella et al. (2011); <sup>m</sup> Weinberg et al. (1979).

1404

1405

1406

1407

1410

# 1411 Table 2 Empirical bond-valence parameters $R_{\theta}$ and b, bond strength S, and bond

1412 covalence fraction  $f_c$ 

1413

| Mineral                        | <b>R</b> (Å)         | $R_{\theta}$ (Å) | <b>b</b> (Å) | S                     | $f_c$                 |
|--------------------------------|----------------------|------------------|--------------|-----------------------|-----------------------|
|                                |                      |                  |              | (v.u.from<br>Eq.VI-1) | (covalent fraction of |
|                                |                      |                  |              |                       | M-O bond)             |
| Seifertite                     | 1.74158              | 1.624            | 0.37         | 0.72776               | 0.32067               |
| Stishovite                     | 1.75682              | 1.624            | 0.37         | 0.69839               | 0.29972               |
| <i>Rutile</i> TiO <sub>2</sub> | 1.94323              | 1.815            | 0.37         | 0.70711               | 0.28438               |
| Coesite <sup>a</sup>           | 1.59552 <sup>a</sup> | 1.624            | 0.37         | 1.08001               | 0.61266               |
| Coesite <sup>b</sup>           | 1.60536 <sup>b</sup> | 1.624            | 0.37         | 1.05167               | 0.58651               |
| α-Quartz                       | 1.60146              | 1.624            | 0.37         | 1.06281               | 0.59674               |

1414

# 1415 <sup>*a*</sup> Shortest Si-O bond distance in *coesite*

1416 <sup>b</sup> Longest Si-O bond distance in *coesite* 

7/23

1417

### 1418 Table 3 Effective mass m<sub>eff</sub> in *seifertite*, *stishovite*, *coesite* and *rutile* in units of

# 1419 electron mass m<sub>e</sub> = 9.10938e-31 kg.

1420

| $m_{e\!f\!f}$               | seifertite | stishovite | coesite            | TiO <sub>2</sub>   |
|-----------------------------|------------|------------|--------------------|--------------------|
|                             |            |            |                    | rutile             |
| CBM at Γ-point, z-direction | 0.434      | 0.433      | 0.550 <sup>a</sup> | 0.789              |
| CBM at Γ-point, x-direction | 0.452      | 0.541      | 0.553              | 0.923 <sup>b</sup> |
| VBM at Γ-point, z-direction | 5.551      | 1.823      | 4.549              | 3.737              |
| VBM at Γ-point, x-direction | 0.492      | 1.127      | 2.551              | 2.172              |
| Bandgap. eV                 | 7.49608    | 7.57373    | 8.52257            | 3.116 °            |

1421 <sup>a</sup> z-direction in *coesite* is approximate due to its monoclinic structure

1422 <sup>b</sup> M $\rightarrow$ A direction

1423 <sup>c</sup> Ti3d  $U_{eff} = 0.25$  was chosen as in Solovyev, Dederichs and Anisimov (1994)

1424

1425

1426

# Optical absorption anisotropy of high-density, wide-gap, high-hardness SiO<sub>2</sub> polymorphs *seifertite*, *stishovite* and *coesite*.

Kamil Klier<sup>a</sup>, Jeffery A. Spirko<sup>b</sup> and Kai M. Landskron<sup>a</sup>

 <sup>a</sup> Department of Chemistry, Lehigh University, E. Packer Ave, Bethlehem, PA 18015
 <sup>b</sup> Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Dr, Unit 5802, Corpus Christi, TX 78414-58

#### FIGURES



Figure 1. Band-to-band transitions at the  $\Gamma$ -points of the BZ at the direct gaps of (a) *seifertite* (using Mulliken irreducible representation labels of the D<sub>2h</sub> group), (b) *stishovite* (D<sub>2h</sub>) and (c) *coesite* (C<sub>2h</sub>). Green (red) arrows mark electric dipole allowed (forbidden) transitions. Thick arrows represent transitions VBM (E<sub>F</sub> = 0)  $\rightarrow$  CBM which are allowed in *seifertite*, and forbidden in *stishovite* and *coesite*. The closely separated valence band levels in *coesite* are expanded for clarity. The symbol for the bottom of conduction band BCB is used interchangeably with CBM.


Figure 2. Band structure and optical absorption of seifertite

<u>Left</u> – Energy band structure in the momentum space. Symbols for special points of the Brillouin zone are given in caption to Figure A1-2 in Appendix 1. Sizes of heavier plotting are given in parentheses with O2p-orbitals emphasized (0.2). Character of the bottom of conduction band (BCB) is a mixture of Si s-orbitals and a symmetric combination of O p-orbitals to give the total state symmetry  $A_g$ . The top of the valence band (TVB) is an antisymmetric combination of O2p orbitals of total state symmetry  $B_{2u}$ , giving rise to allowed TVB ( $B_{2u}$ )  $\rightarrow$  BCB ( $A_g$ ) transition.

<u>Right</u> – Optical absorption spectra along the principal crystallographic axes of the orthorhombic structure. Allowed lowest transition across the direct bandgap gives rise to a sharp band edge at 7.5 eV excited by the y-  $(B_{2u})$  component of the light electric dipole.



Figure 3. Band structure and optical absorption of stishovite

<u>Left</u> - Energy band structure in the momentum space. Symbols for special points of the Brillouin zone are given in caption to Figure A1-4 in Appendix 1. Sizes of heavier plotting are given in parentheses with O2p-orbitals emphasized (0.2). Character of CBM is mainly Si s-orbitals (not emphasized) of total state symmetry  $A_g$  under the  $D_{2h}$  group. The VBM is a combination of O2p orbitals to give total state symmetry  $B_{1g}$  and the VBM ( $B_{1g}$ )  $\rightarrow$  CBM ( $A_g$ ) transition is symmetry and parity forbidden. Details of splitting of O2p orbitals near VBM are indicated by arrows and symmetry labels. Transitions from  $B_{3u}$ ,  $B_{2u}$  and  $B_{1u}$  VB states to  $A_g$  (CBM) are allowed by the x,y- ( $B_{3u}$ , $B_{2u}$ ) and z- ( $B_{1u}$ ) components of electric dipole.

<u>Right</u> - Optical absorption spectra of *stishovite* along the principal crystallographic axes of the tetragonal structure showing a pre-edge absorption and a large anisotropy between equatorial (abs-xx = abs-yy) and apical (abs-zz) absorptions. Spectra of the isostructural *rutile* lacking such an anisotropy are shown for comparison.



Figure 4. Band structure and optical absorption of *coesite*.

<u>Left</u> - With O orbitals emphasized (0.4). Labels of the BZ special points are specified in Figure A1-6 in Appendix 1.

<u>Right</u> - Optical absorption spectra of *coesite* along the principal crystallographic axes of the monoclinic structure (Abs-xx, -yy, -zz) and off-diagonal Abs-xz.



Figure 5. Band structure of TiO<sub>2</sub> *rutile*.

Left - with Ti3d orbitals emphasized;

<u>Right</u> - with O2p orbitals emphasized.

Symbols for special points of the BZ are given in caption to Figure A1-4 in Appendix 1 and their layout is identical with that of the isostructural *stishovite* (Figure 3) for comparison.



Figure 6 Representation of the O2p – based orbitals of *stishovite* that give rise to the  $B_{1g}$  state at the TVB.

<u>Left:</u> calculated MO density at the  $\Gamma$ -point to within 0.1 eV from the Fermi level, showing the p-character of the orbitals of six O ligands around the central Si atom (cf. Figure A1-3 of Appendix 1). Corresponding phases of the wavefunction are marked with + and – signs.

<u>Center:</u> Schematic representation of the  $B_{1g}$  crystal orbital at the VBM. For a clear symmetry analysis, the x-axis is chosen as normal to the (110) plane (dashed outline) and the y-axis is placed in the (110) plane, i.e. in directions rotated about the crystallographic z-axis by 45°, while the z-axis coincides with the crystallographic z-direction of Figure 3 of Appendix 1. Phases of the equatorial O2p<sub>x</sub> orbitals are color coded red (+) and blue (-). Atomic O2p<sub>x</sub> orbitals form a 4-dimensional reducible representation  $\Gamma_4$  which is reduced, using projection operators of the D<sub>2h</sub> group, as  $\Gamma_4 = B_{1g} \oplus B_{1u} \oplus B_{2u} \oplus B_{3u}$ . The  $B_{1g}$  state is realized by the combination  $B_{1g} > = N [|1 > |2 > |3 > + |4 > ]$  as depicted in the center panel. Apical O2p<sub>y</sub> orbitals on the x-axis (shown only in the left panel) are in antibonding relation to the equatorial set and conform to the B<sub>1g</sub> symmetry.

<u>Right:</u> An overlap between equatorial orbitals |1 > + |4 >, and |2 > + |3 >, and a node between these two sets results in a weak  $\pi$ -bonding that is topologically equivalent to that in HOMO of cyclobutadiene. Thus the B<sub>1g</sub> symmetry of the O2p VBM originates from the planar rectangular cyclical structure of oxygen "ligands" to the Si atom.



Figure A1-1 Unit cell of *seifertite*. Values of primitive translations **a**, **b**, **c** in the x, y, z directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is nearly octahedral and that of O by Si is trigonal.



Figure A1-2 Brillouin zone of the orthorhombic lattice. Critical points chosen for the band structure representation are labeled as  $\Gamma$  (0,0,0), Z (0,0,  $\frac{1}{2}$ ), R ( $\frac{1}{2}$ ,  $\frac{1}{2}$ ), S ( $\frac{1}{2}$ ,  $\frac{1}{2}$ ,0), X ( $\frac{1}{2}$ ,0,0), U ( $\frac{1}{2}$ ,0,0,  $\frac{1}{2}$ ). Lengths of the reciprocal vectors **a**\*, **b**\*, **c**\* are in the ratio generated by the *seifertite* structure.



Figure A1-3 Unit cell of *stishovite*. Values of primitive translations **a**, **b**, **c** in the x, y, z directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is nearly octahedral and that of O by Si is trigonal.



Figure A1-4 Brillouin zone of the tetragonal lattice. Critical points chosen for the band structure representation are labeled as  $\Gamma$  (0,0,0), Z (0,0,  $\frac{1}{2}$ ), A ( $\frac{1}{2}$ ,  $\frac{1}{2}$ ), M ( $\frac{1}{2}$ ,  $\frac{1}{2}$ , 0), X ( $\frac{1}{2}$ , 0,0), R ( $\frac{1$ 



Figure A1-5 Unit cell of *coesite* as a stereo picture. Values of primitive translations **a**, **b**, **c** in the x, y, z directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is tetrahedral and that of O by Si is two-fold. O atoms at (0,0,0) and (1/2,1/2,1/2) are linearly coordinated to the nearest two Si neighbors, a feature that has influence on distribution of levels in the valence band.



Figure A1-6 Brillouin zone of the monoclinic, nearly hexagonal lattice about the **b**\* axis. Critical points chosen for the band structure representation are labeled as:  $\Gamma$  (0,0,0), K2 (0, <sup>1</sup>/<sub>2</sub>, 0), K3 (0.335, <sup>1</sup>/<sub>2</sub>, 0.33), K4 (0.335,0, 0.33), K5 =  $\Gamma$ , K6 (<sup>1</sup>/<sub>2</sub>,0,0), K7 (<sup>1</sup>/<sub>2</sub>,<sup>1</sup>/<sub>2</sub>,0), K8 = K2. The corresponding labels for the idealized hexagonal lattice are:  $\Gamma \equiv [K1 = K5], A \equiv [K2 = K8], H \equiv K3, K \equiv K4, M \equiv K6 \text{ and } L \equiv K7.$ 

The lengths of and angles between the reciprocal vectors **a**\*, **b**\*, **c**\* are in the ratio created by the *coesite* structure.

٦

7/23



Figure A2-1. Calculated quasiparticle band structure of  $\alpha$ -quartz in the GW approximation.



Figure A2-2. Calculated band structure of  $\alpha$ -quartz in the mBJ/spin-polarized/Si3d-SIC approximation.



Figure A3-1. Partial VB DOS of Si and O contributions in *coesite*, showing a separation of ionic O2p band from covalent Si-O band across a 1.3 eV intrinsic gap.



Figure A3-2. Partial VB DOS of Si and O contributions in  $\alpha$ -quartz, showing a separation of ionic O2p band from covalent Si-O band across a 1.7 eV intrinsic gap. Common features of the two tetrahedral polymorphs *coesite* and  $\alpha$ -quartz are: (a) low contributions of Si to the split-off upper portion of VB; (b) significant contributions of Si to the split-off VB; and (c) overlap of Si and O contributions in the lower VB indicating covalent Si-O bonding.



Figure A3-3. Partial VB DOS of Si and O contributions in *stishovite*, showing a continuous band dominated by O2p orbitals with small contribution of Si orbitals decreasing from the bottom to the top of VB.



Figure A3-4. Partial VB DOS of Si and O contributions in *seifertite*, showing features similar to those of the *stishovite* VB in Figure A3-3. Common features of the two octahedral polymorphs *stishovite* and *seifertite* entail continuous, predominantly O2p valence bands with small, progressively decreasing contributions of Si from the bottom to the top of the VB.

7/23

## Optical absorption anisotropy of high-density, wide-gap, high-hardness SiO<sub>2</sub> polymorphs *seifertite*, *stishovite* and *coesite*.

Kamil Klier<sup>a</sup>, Jeffery A. Spirko<sup>b</sup>, and Kai M. Landskron<sup>a</sup>

## TABLES

## Table 1 Experimentally determined properties of silica polymorphs and selected reference materials

| SiO <sub>2</sub><br>polymorph               | Density<br>(gm/cc) | Refractive<br>index at<br>0.588 nm                                   | Mohs<br>scale<br>hardness | Space<br>group                                   | Optical<br>bandgap<br>( eV) | Si<br>coordination                    |
|---------------------------------------------|--------------------|----------------------------------------------------------------------|---------------------------|--------------------------------------------------|-----------------------------|---------------------------------------|
| Seifertite <sup>a,b</sup>                   | 4.294              | n.a.                                                                 | > 8                       | 60 Pbcn                                          | n.a.                        | SiO <sub>2,2,2</sub><br>[~octahedral] |
| Stishovite <sup>c,d,e</sup>                 | 4.28-4.30          | $\frac{1.799 - 1.800}{[n_{\omega}]}$ 1.826-1.845 $[n_{\varepsilon}]$ | 9 – 10                    | 136<br>P42/mnm                                   | 8.75 - 7.6                  | SiO <sub>4,2</sub><br>[~octahedral]   |
| <i>Coesite</i> <sup>f,g,e</sup>             | 2.911              | $n_x = 1.594$<br>$n_v = 1.595$<br>$n_z = 1.599$                      | 7.5                       | 15 C2/c                                          | 8.6                         | SiO <sub>4</sub><br>[~tetrahedral]    |
| <i>Cristobalite</i> <sup>h,i</sup>          | 2.33               | 1.487 $[n_{\omega}]$<br>1.484 $[n_{\varepsilon}]$                    | 6 - 7                     | 92 P4 <sub>1</sub> 2 <sub>1</sub> 2<br>227 Fd-3m | n.a.                        | SiO <sub>4</sub><br>[~tetrahedral]    |
| Quartz <sup>i</sup>                         | 2.65 -<br>2.66     | 1.54426                                                              | 7                         |                                                  | 9.65                        | SiO <sub>4</sub><br>[~tetrahedral]    |
| MgSiO <sub>3</sub><br>Ilmenite <sup>k</sup> | 2.4 - 2.7          | 2.40 - 2.42                                                          | 5-6                       | 148 R-3                                          | n.a.                        | SiO <sub>3,3</sub><br>[~octahedral]   |
| Amorphous<br>silica <sup>1,m</sup>          | 2.648              | 1.458                                                                | n.a.                      | 1 P1                                             | 8.0 - 9.3                   | SiO <sub>4</sub><br>[~tetrahedral]    |

Notes: <sup>a</sup> Dera et al. (2002). <sup>b</sup> El Goresy et al. (2008). <sup>c</sup> Stishov and Popova (1961). <sup>d</sup> Chao et al. (1962). <sup>e</sup> Trukhin et al. (2004). <sup>f</sup> Coes (1953). <sup>g</sup> Smyth et al. (1987).

<sup>h</sup> <u>http://en.wikipedia.org/wiki/Cristobalite</u>. <sup>i</sup> Experimental bandgaps are nearly independent for various silica polymorphs where available from the literature. However, theoretical bandgaps span a range of some 2 eV, from 8 to 10 eV (Ramos et al. 2004, present work). <sup>j</sup> Garvie et al. (2000). <sup>k</sup> Horiuchi et al. (1982). <sup>1</sup> Vella et al. (2011). <sup>m</sup> Weinberg et al. (1979).

| Mineral                        | <b>R</b> (Á)                | <b>R</b> <sub>0</sub> (Á) | <b>b</b> (Á) | <b>S</b><br>(v.u.from<br>Eq.VI-1) | <b>f</b> <sub>c</sub><br>(covalent<br>fraction of<br>M-O bond) |
|--------------------------------|-----------------------------|---------------------------|--------------|-----------------------------------|----------------------------------------------------------------|
| Seifertite                     | 1.74158                     | 1.624                     | 0.37         | 0.72776                           | 0.32067                                                        |
| Stishovite                     | 1.75682                     | 1.624                     | 0.37         | 0.69839                           | 0.29972                                                        |
| <i>Rutile</i> TiO <sub>2</sub> | 1.94323                     | 1.815                     | 0.37         | 0.70711                           | 0.28438                                                        |
| Coesite <sup>a</sup>           | 1.59552 <sup><i>a</i></sup> | 1.624                     | 0.37         | 1.08001                           | 0.61266                                                        |
| Coesite <sup>b</sup>           | 1.60536 <sup>b</sup>        | 1.624                     | 0.37         | 1.05167                           | 0.58651                                                        |
| $\alpha$ -Quartz               | 1.60146                     | 1.624                     | 0.37         | 1.06281                           | 0.59674                                                        |

## Table 2 Empirical bond-valence parameters $R_0$ and b, bond strength S, and bond covalence fraction $f_{\rm c}$

Notes: <sup>a</sup> Shortest Si-O bond distance in *coesite*. <sup>b</sup> Longest Si-O bond distance in *coesite*.

Table 3 Effective mass  $m_{eff}$  in seifertite, stishovite, coesite and rutile in units of electron mass  $m_e = 9.10938e-31$  kg, and bandgap at the  $\Gamma$ -point

| $\mathbf{m}_{\mathbf{eff}}$ | seifertite | stishovite | coesite            | TiO <sub>2</sub><br>rutile |
|-----------------------------|------------|------------|--------------------|----------------------------|
| CBM at Γ-point, z-direction | 0.434      | 0.433      | 0.550 <sup>a</sup> | 0.789                      |
| CBM at Γ-point, x-direction | 0.452      | 0.541      | 0.553              | 0.923 <sup>b</sup>         |
| VBM at Γ-point, z-direction | 5.551      | 1.823      | 4.549              | 3.737                      |
| VBM at Γ-point, x-direction | 0.492      | 1.127      | 2.551              | 2.172                      |
| Bandgap (eV) <sup>d</sup>   | 7.49608    | 7.57373    | 8.52257            | 3.116 °                    |

,

Notes: <sup>a</sup> z-direction in *coesite* is approximate due to its monoclinic structure. <sup>b</sup> M $\rightarrow$ A direction. <sup>c</sup> Ti3d U<sub>eff</sub> = 0.25 was chosen as in Solovyev, Dederichs and Anisimov (1994). <sup>d</sup> Bandgap between valence band maximum (VBM) and conduction band minimum (CBM).