Revision 1

Optical absorption anisotropy of high-density, wide-gap, high-hardness SiO_{2}

 polymorphs seifertite, stishovite and coesite.K. Klier ${ }^{\text {a }}$ J.A. Spirko ${ }^{\text {b }}$ and K. M. Landskron ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, Lehigh University, E. Packer Ave, Bethlehem, PA 18015
${ }^{\mathrm{b}}$ Department of Physical and Environmental Sciences, Texas A\&M University-Corpus

Christi, 6300 Ocean Dr, Unit 5802, Corpus Christi, TX 78414-5802

KEYWORDS: Theory, silica polymorphs, seifertite, stishovite, coesite, rutile, band structure, effective mass, optical absorption

Abstract

Dense, high-refractive index, ultra-hard, wide-gap polymorphs of SiO_{2}, recently discovered orthorhombic seifertite (space group 60 Pben), and earlier characterized tetragonal stishovite (space group $136 \mathrm{P} 42 / \mathrm{mnm}$) and monoclinic coesite (space group 15

$\mathrm{C} 2 / \mathrm{c}$) were studied using advanced methods of electronic structure calculations involving full-potential linearized augmented plane wave density functional theoretical method (FP-LAPW-DFT) with spin polarization, orbital dependent potentials, and modified Becke-Johnson potential (mBJ) for accurate account of the band gaps. Even though these calculations yield an excellent account of many properties, we here focus on quantitative aspects of optical absorption and selection rules therein. Specifically, the valence-toconduction band transition in seifertite is symmetry-allowed, and is symmetry-forbidden in stishovite and coesite. Theory is compared with published experimental data, and explanation is provided for weak pre-edge optical absorption in stishovite. Electronic structure and calculated properties of stishovite are also compared with those of the isostructural rutile TiO_{2}. Effective masses are calculated from the energy dispersion curves $E(\mathbf{k})$ at the valence band maximum for holes and conduction band minimum for electrons. In addition, we propose that splitting of the O 2 p valence-band in coesite and also observed in α-quartz is a general feature of polymorphs with tetrahedrally coordinated Si , in contrast with continuous valence bands in those with octahedral SiO_{6} units such as seifertite and stishovite. Based on quantitative results obtained from the BVA theory, this difference originates from a high degree of covalence in the tetrahedral polymorphs as opposed to high iconicity in octahedral polymorphs.

I. INTRODUCTION

Dense, high-refractive index, ultra-hard, wide-gap polymorphs of SiO_{2} are of a great interest not only owing to the history of discovery in extraterrestrial matter and their extraordinary physical properties, but also to the underlying chemical bonding and unusual coordination of the $\mathrm{Si}-\mathrm{O}_{\mathrm{n}}$ structure-forming units and their arrangements. The most recently discovered and characterized polymorph of this type is orthorhombic seifertite (space group 60 Pbcn) (Dera et al. 2002; El Goresy et al. 2008), after tetragonal stishovite (space group 136 P42/mnm) was first synthesized in laboratory by Stishov and Popova (1961) and reported on its natural occurrence in Arizona meteor crater by Chao et al. (1962). The monoclinic coesite (space group $15 \mathrm{C} 2 / \mathrm{c}$) was first synthesized by Coes (1953), its natural occurrence reported by Chao et al. (1960) and crystal structure determined by Levien and Prewitt (1981) and Smyth et al. (1987). Some of the experimentally determined properties of the investigated silicas as well as of selected reference materials are summarized in Table 1.

Table 1

The importance of these materials goes beyond their pure forms, especially as they serve as matrices holding impurities which impart on them new properties, both in nature and technology. For example, the exchange of $4 \mathrm{H}^{+}$for Si^{4+}, "the hydrogarnet substitution", is considered to be one of the mechanisms for hydrogen storage in the deep Earth, stishovite being one of the vehicles for this storage as reported by Pawley et al. (1993), Williams and Hemley (2001), the crystal structure of synthetic H-bearing aluminous stishovite
having been reported by Smyth et al. (1995). Related to technology, diffusion of Cu^{+}in α-cristobalite was studied theoretically for possible implications to the functioning of nanoelectronic devices by Zelený et al. (2012), prompting an interest in general interaction of metals with the silica polymorphs. To advance the understanding of metalsupport interactions at surfaces related to adhesion and catalysis, strength of bonding and agglomeration of Co and Ni on silica surfaces have been examined theoretically by Ma et al. (2000), (2001a), compared with those on alumina support by Ma et al. (2001b), and analyzed for periodic trends in interactions of the entire first-row transition metal series with the silica surface by Ma et al. (2002) on a slab model derived from β-cristobalite, using methods similar to those employed here, albeit focusing only on the ground-state properties.

Theory has now advanced to a level of high reliability and accuracy to attack both the fundamentals of electronic structure of pure crystalline materials such as the silicas considered here, and the effects of impurities and deliberately added dopants on properties such as optical spectra, luminescence, and carrier transport phenomena. While electronic structure of stishovite and coesite has been addressed in numerous papers (Xu and Ching 1991; Rudra and Fowler 1983), the most recently characterized seifertite has not so far to our knowledge been subject to theoretical analysis. Experimental optical absorption spectra of stishovite and coesite, but not seifertite, have also been reported by Trukhin et al. (2004). In this work, we present calculations of all three high-pressure polymorphs utilizing the full-potential linearized augmented plane wave (FP-LAPW) method as described by Singh (1994a) and implemented by Blaha et al. (2013) with the
modified Becke-Johnson (mBJ) potential of Tran and Blaha (2009) that is suited for analysis of the entire electronic structure including core levels, valence and conduction bands involving both oxygen and silicon orbitals, accurate band gaps, and core-level shifts (CLS) for interpretation of photoelectron spectra. Because stishovite is isostructural with TiO_{2} rutile, we also compare their calculated properties and point out the differences in bandgaps, optical transitions and carrier effective masses due to $\mathrm{Ti} \leftrightarrow$ Si replacement. Reliability of the present FP-LAPW-mBJ method is tested by a comparison with experiment of Garvie et al (2000) and with published calculations employing the GW quasiparticle approximation for α-quartz by Chang et al. (2000). Optical absorption spectra are calculated in the single-particle approximation of Ambrosch-Draxl and Sofo (2006), and spin-orbit interaction, although very small in the materials studied, is also assessed using the second variational method as implemented by Novák (2001). The present theoretical results may be considered as a background, or a first stage, for the interpretation of experimental absorption spectra, as previously done for amorphous SiO_{2} using temperature dependence of Kramers-Kronig derived absorption spectra in a recent study of Vella et al. (2011), as well as with theoretical treatments of excitons in the pure and impurity-containing materials of this type, employing methods already used for other SiO_{2} polymorphs: amorphous silica modeled as β-cristobalite by Laughlin (1980), α-quartz SiO_{2} and TiO_{2} using the Bethe-Salpeter equation (BSE) employed by Lawler et al. (2008) and Kang and Hybertsen (2010), and β cristobalite with quasi-particle corrections to the Kohn-Sham eigenvalues determined by the GW approximation used by Ramos et al. (2004).

II. SEMI-EMPIRICAL ASSESSMENT OF BOND STRENGTHS, COVALENCE

 AND IONICITYAn initial assessment of bonding and physical properties is motivated by the expediency of semi-empirical methods for a large number of compounds, herein with emphasis on the relation between known structures and degree of iconicity and covalence of the silica polymorphs studied. While ionic compounds are stabilized by long-range electrostatic [Madelung] interactions, covalent solids owe their stability to local bond strengths. The silica polymorphs are expected to be an intermediate case, i.e. compounds that are partially ionic and partially covalent. Presently we focus on the relation between structures with octahedral and tetrahedral coordination of nearest-neighbor oxygen atoms to Si and partial ionicity of the $\mathrm{Si}-\mathrm{O}$ and Ti-O bonds. The simple semi-empirical analysis presented here leads to a clear distinction between the more ionic, octahedrally coordinated, and more covalent, tetrahedrally coordinated polymorphs.

One of the widely used semi-empirical analysis, cast in quantitative terms as the BondValence (BVA) theory summarized and reviewed in the recent book by Brown (2002), is employed here in view of its great success in assaying the structure - bond strength relationships for a large number of inorganic compounds as documented e.g. by Brese and O'Keeffe (1991). Focusing on the MO_{2} oxides $(\mathrm{M}=\mathrm{Si}, \mathrm{Ti})$, hexa- and tetracoordination of M atoms is linked to the ionicity or covalence of the M-O bond through the bond strength as defined in the BVA method. The key relationship between bond
strength S and the M-O bond length R is formulated in terms of two empirical parameters, the length R_{0} for a "reference" unit bond strength $S_{\text {ref }}=1$ and a gauge parameter b, as

$$
\begin{equation*}
S=\exp \left[\left(R_{0}-R\right) / b\right] \tag{II-1}
\end{equation*}
$$

In the present work, we used values $R_{0}=1.624 \AA \dot{\AA}$ for Si and $1.815 \AA$ for Ti , and $b=0.37$
$\AA ́$ for both Si and Ti in $\mathrm{Si-O}$ and Ti-O bonds. An alternative three-parameter relationship

$$
\begin{equation*}
S=S_{0}\left(R / R_{0}^{\prime}\right)^{-N} \tag{II-2}
\end{equation*}
$$

may be adopted, with S_{0}, R_{0}^{\prime} and N tabulated by Brown and Shannon (1973). For the present oxides, we use $S_{0}=1.0$ valence units (v.u.) for $\mathrm{Si}, S_{0}=0.666$ for $\mathrm{Ti}, R_{0}^{\prime}=1.625 \AA ́$ for $\mathrm{Si}, R_{0}^{\prime}=1.952 \AA \dot{\AA}$ for Ti , and $N=4.5$ for $\mathrm{Si}, N=4.0$ for Ti. This three-parameter bondvalence relationship has also been recast by Brown and Shannon (1973) in terms of bond covalence f_{c} as

$$
\begin{equation*}
f_{c}=a S^{M} \tag{II-3}
\end{equation*}
$$

where parameter values $a=0.54$ for 10 core electrons in $\mathrm{Si}, a=0.49$ for 18 core electrons in Ti , and $M=1.64$ for $\mathrm{Si}, M=1.57$ for Ti , are employed for the present MO_{2} oxides. With these parameters, equation (II-3) yields practically identical results for S determined from either Eq. (II-1) or (II-2). In Table 2 we present results using crystallographic bond distances R for the Si-O and Ti-O bonds, parameters R_{0}, b from Brown (2002), S calculated by (II-1), and covalence f_{c} calculated by (II-3) for the three silica polymorphs and TiO_{2} rutile.

Table 2

Clearly, octahedrally coordinated Si or Ti oxides seifertite, stishovite and rutile are largely ionic (in average 70% ionic, or 30% covalent), irrespective of whether the "cation" is Si or Ti , whereas those with tetrahedrally coordinated Si , coesite and α-quartz, are largely covalent (in average 40% ionic, or 60% covalent). Results of this BVA analysis provide a powerful guidance for the interpretation of properties obtained from $a b$ initio all-electron calculations in Section III ff. As an example, covalent character of the Si-O bonds in tetrahedral polymorphs results in an intrinsic gap in the valence band with split-off lower, largely covalent band (viz. Section IV-2, Fig. 4 and Appendix 2).

III. ELECTRONIC STRUCTURES AND OPTICAL TRANSITIONS FROM FIRST

 PRINCIPLES - METHODOLOGYA full account for physical properties, including those of excited states involved in optical transitions, requires a theory that reaches beyond the semi-empirical relations described in Section II above. In the present work we employ a state-of-the-art quantum mechanical treatment specified in paragraphs III-1, III-2 and Appendix 1.

III-1. STRUCTURES AND RECIPROCAL LATTICE VECTORS

Structural data, reciprocal lattice vectors and their labeling used in the present study are given in Appendix 1. Graphic representations of the structures and reciprocal lattice vectors are in Figures A1-1 and A1-2 (seifertite), Figures A1-3 and A1-4 (stishovite), and Figures A1-5 and A1-6 (coesite).

III-2. COMPUTATIONAL METHOD

Electronic structure calculations presented herein involve full-potential linearized augmented plane wave density functional theoretical method (FP-LAPW-DFT) with spin polarization, orbital dependent potentials and modified Becke-Johnson potential (mBJ) for accurate account of the band gaps. For α-quartz as reference material, the mBJ bandgap (9.41 eV at the Γ point at the present level) and band structure was tested against experimental bandgap of 9.65 eV obtained from low-loss measurement in EELS/TEM by

Garvie et al. (2000) and compared with results of calculations using the GW approximation by Chang, Rohlfing and Louie (2000) resulting in the bandgap of 10.1 eV . Details of this test are summarized in Appendix 2, wherein the two sets of calculations are shown to be in a good agreement over the entire $E(\mathbf{k})$ band structure (viz. Figs. A2-1 and A2-2).

Also employed in the present work was the self-interaction correction via implementation of the LDA $+U$ method in the fully localized limit $(\mathrm{FLL})^{\dagger}$ for calculating orbitaldependent potentials to ensure that possible strong electron correlation in the partially occupied excited Si 3d*-orbitals be taken into account. While the effects of such a strong electron correlation are found to be small in periodic SiO_{2} crystals, electron localization around defects such as Si with adjacent oxygen vacancies, or Si in neighborhood of transition-metal ion impurities, should not be a priori excluded. Therefore the present approach is to be viewed as providing a background for future studies of value for understanding coloration and, in general, optical properties of the silica polymorphs containing such defects. The justification for exploration of the $\mathrm{Si} \mathrm{3d}^{*}$ orbitals in crystal physics is founded in their known effects on chemical bonding and in the relatively low separation of the Si 3 p and Si 3 d levels in the atomic spectrum of $\mathrm{Si}, 5.87 \mathrm{eV}$, from Kramida et al. (2013), which falls within the bandgap energies of the studied oxides. In the present work the value of U eff $=U-J=0.46$ Ry was used for the Si3d orbitals and, for comparison, 0.25 Ry for Ti3d orbitals in rutile. Spin-orbit interaction was also included using the second variational method (Singh 1994b) implemented in the Wien2k package by Novák (2001), aiming at the detection of level splitting near the valence band
maximum that is well known for elemental silicon (experimental 42.6 meV found by Yu et al. (1989) and 42 meV determined by our theoretical calculations). In another example of spin-orbit effects in oxides, the value of -20 meV is obtained at the present level for ZnO , in agreement in sign and roughly in value with earlier tight-binding calculations by Fu and Wu (2008). These agreements validate the present theory for spin-orbit coupling energies as small as a few millielectron volts, which may or may not compete with crystal-field splittings caused by deviations from idealized high-symmetry structures.

Furthermore, as one of the main goals of this work, optical properties were calculated using the optic program of the Wien 2 k package. The theoretical background of this program has been developed by Ambrosch-Draxl and Sofo (2006). Because the Wien2k package utilizes a dual basis set of spherical harmonics in non-overlapping atomic "muffin tin" spheres $\alpha\left(\mathrm{MT}_{\alpha}\right)$ and plane waves in interstitial space (I), the matrix elements of the quantum mechanical dipole moment operator $\vec{\mu}=\sum_{i} q_{i} \vec{r}_{i}$ over all particles i with charges q_{i} at positions \vec{r}_{i} are combined as a sum of contributions from the atomic spheres MT_{α} and interstitial space I as

$$
<n^{\prime} \vec{k}|\vec{\mu}| n \vec{k}>=\sum_{\alpha}<n^{\prime} \vec{k}|\vec{\mu}| n \vec{k}>_{\mathrm{MT}_{\alpha}}+<n^{\prime} \vec{k}|\vec{\mu}| n \vec{k}>_{I}
$$

symmetrized into square momentum matrix elements for all band combinations for each \vec{k}-point, and evaluated over a large number of \vec{k}-points (in this work 1,000) to obtain joint density of states and, upon Kramers-Kronig transformation, real and imaginary
components of the dielectric tensor and absorption coefficient. Calculations were carried out in several stages: after initialization from the structures listed in Appendix 1, standard scf cycle with spin polarization was run to self-consistency within $<1 \mathrm{mRy} / \mathrm{bohr}$ in forces, $<10^{-4}$ Ry in energy and $<10^{-4}$ in charge convergence, followed by LDA +U to the same convergence limits, and mBJ calculations run to the same convergence limits without forces. The properties were rendered by the energy bandstructure and optic programs of the Wien2k package (Blaha et al. 2013).

IV. ELECTRONIC STRUCTURES AND OPTICAL TRANSITIONS FROM FIRST PRINCIPLES - RESULTS

Computational results are divided into sections describing bandgaps and selection rules for transitions (IV-1) and band structures and optical absorption spectra (IV-2) for the silica polymorphs studied, including a comparison of isostructural stishovite SiO_{2} and rutile TiO_{2}. These results afford an accurate account for properties of the minerals studied, which justifies an extension of already reported experimental work, as well as provides an impetus for optical and XPS studies of newly discovered minerals.

IV-1. BAND GAPS AND SELECTION RULES FOR OPTICAL TRANSITIONS.

All three SiO_{2} polymorphs studied exhibit direct bandgaps at the Γ-points of their respective Brillouin zones. The state symmetries near bandgap edges are briefly summarized in this paragraph to assist interpretation of band-to-gap transitions through the use of optical dipole selection rules, $c f$. Figure 1. Assignments of irreducible representation labels are enabled by an analysis of the output of the present calculations consistent with the International Tables for Crystallography (1992) for space groups and tables of properties of point groups by Koster, Dimmock, Wheeler and Statz (1963) for equivalent Mulliken symbols of irreducible representations at the Γ-point of the BZ. In addition, the interactive Birkbeck College University of London space group database (1997-1999) is found useful.

Figure 1

Figure 1. Band-to-band transitions at the Γ-points of the BZ at the direct gaps of (a) seifertite (using Mulliken irreducible representation labels of the $\mathrm{D}_{2 \mathrm{~h}}$ group), (b) stishovite $\left(\mathrm{D}_{2 \mathrm{~h}}\right)$ and (c) coesite $\left(\mathrm{C}_{2 \mathrm{~h}}\right)$. Green (red) arrows mark electric dipole allowed (forbidden) transitions. Thick arrows represent transitions VBM $\left(\mathrm{E}_{\mathrm{F}}=0\right) \rightarrow \mathrm{CBM}$ which are allowed in seifertite, and forbidden in stishovite and coesite. The closely separated valence band levels in coesite are expanded for clarity. The symbol for the bottom of conduction band BCB is used interchangeably with CBM .
A. Seifertite. The direct bandgap transition between the top of valence band maximum (VBM) and bottom of conduction band minimum (CBM) without spin-orbit coupling (SOC) has the irreducible representation (irrep) symmetry $\mathrm{G}_{4}{ }^{-} \rightarrow \mathrm{G}_{1}{ }^{+}$, or $\mathrm{B}_{3 \mathrm{u}} \rightarrow \mathrm{A}_{\mathrm{g}}$ under the $\mathrm{D}_{2 \mathrm{~h}}$ group, hence it is allowed by the $\mathrm{B}_{3 \mathrm{u}} \mathrm{x}$-component of the electric dipole vector. Further down from the VBM are states $\mathrm{G}_{4}{ }^{+}$(or $\mathrm{B}_{3 \mathrm{~g}}$, a symmetric combination of O2py orbitals at -0.23 eV , leading to forbidden transition at the Γ-point), $\mathrm{G}_{3}{ }^{-}$(or $\mathrm{B}_{1 \mathrm{u}}$, at -0.28 eV , activated for transition to the Ag_{g} state at CBM by the $\mathrm{B}_{1 \mathrm{u}} \mathrm{z}$-component of the electric dipole vector), and $\mathrm{G}_{2}{ }^{-}$(or $\mathrm{B}_{2 \mathrm{u}}$, at -0.62 eV , activated for transition to the Ag_{g} state at CBM by the $\mathrm{B}_{2 \mathrm{u}} \mathrm{y}$-component of the electric dipole vector). These selection rules are illustrated in Figure 1(a) and optical absorption is represented in Section IV-2.

With SOC, the VBM \rightarrow CBM transition becomes $\mathrm{G}_{5}{ }^{-} \rightarrow \mathrm{G}_{5}{ }^{+}$, or $\mathrm{E}_{1 / 2 \mathrm{u}} \rightarrow \mathrm{E}_{1 / 2 \mathrm{~g}}$ and is spin and symmetry allowed. This selection rule is consistent with the rule obtained without SOC.
B. Stishovite. The direct bandgap transition VBM $\rightarrow \mathrm{CBM}$ without SOC is $\mathrm{G}_{3}{ }^{+} \rightarrow \mathrm{G}_{1}{ }^{+}$, or $\mathrm{B}_{1 \mathrm{~g}} \rightarrow \mathrm{~A}_{\mathrm{g}}$ under the $\mathrm{D}_{2 \mathrm{~h}}$ group, hence it is symmetry and parity forbidden. Identification of the irreps and forbiddenness is identical with the conclusion of Rudra and Fowler (1983) based on a semiempirical tight-binding approximation. Further inspection of levels below the VBM and above CBM reveals irrep symmetries shown in Figure 1(b). Of those, transition $\mathrm{G}_{2}{ }^{-}, \mathrm{G}_{4}{ }^{-}(\mathrm{VBM}-1) \rightarrow \mathrm{G}_{1}{ }^{+}(\mathrm{CBM})$, or $\mathrm{B}_{3 \mathrm{u}}, \mathrm{B}_{2 \mathrm{u}} \rightarrow \mathrm{A}_{\mathrm{g}}$ is allowed by the $\mathrm{B}_{3 \mathrm{u}}, \mathrm{B}_{2 \mathrm{u}}(\mathrm{x}, \mathrm{y})$ components of electric dipole, transition $\mathrm{G}_{3}{ }^{-}(\mathrm{VBM}-2) \rightarrow$
$\mathrm{G}_{1}{ }^{+}(\mathrm{CBM})$, or $\mathrm{B}_{1 \mathrm{u}} \rightarrow \mathrm{A}_{\mathrm{g}}$ is allowed by the $\mathrm{B}_{\mathrm{lu}}(\mathrm{z})$ component of electric dipole, and transitions from $\mathrm{G}_{3}{ }^{+}(\mathrm{VBM})$ to three levels above CBM are all forbidden. These selection rules clearly explain optical absorption anisotropy of stishovite demonstrated in Section IV-2.

With SOC, the VBM \rightarrow CBM transition becomes $\mathrm{G}_{5}^{+} \rightarrow \mathrm{G}_{5}^{+}$or $\mathrm{E}_{1 / 2 \mathrm{~g}} \rightarrow \mathrm{E}_{1 / 2 \mathrm{~g}}$, and is spin and symmetry forbidden, consistent with the rule obtained without SOC.
C. Coesite. The direct bandgap transition VBM $\rightarrow \mathrm{CBM}$ without SOC is $\mathrm{G}_{1}{ }^{+} \rightarrow \mathrm{G}_{1}{ }^{+}$, or $\mathrm{A}_{1 \mathrm{~g}} \rightarrow \mathrm{~A}_{1 \mathrm{~g}}$ under the $\mathrm{C}_{2 \mathrm{~h}}$ group, hence it is symmetry forbidden. Further inspection of levels below the VBM and above CBM reveals irrep symmetries shown in Figure 1(c). Of those, transitions $\mathrm{G}_{1}{ }^{-}(\mathrm{VBM}-1,2) \rightarrow \mathrm{G}_{1}{ }^{+}(\mathrm{CBM})$, or $\mathrm{A}_{\mathrm{u}} \rightarrow \mathrm{A}_{\mathrm{g}}$ are allowed by the $\mathrm{A}_{\mathrm{u}}(\mathrm{z})$ component of electric dipole, transition $\mathrm{G}_{2}{ }^{-}(\mathrm{VBM}-4) \rightarrow \mathrm{G}_{1}{ }^{+}(\mathrm{CBM})$, or $\mathrm{B}_{\mathrm{u}} \rightarrow \mathrm{A}_{1 \mathrm{~g}}$ is allowed by the $\mathrm{B}_{\mathrm{u}}(\mathrm{x}$ or y$)$ component of electric dipole. The first transition from $\mathrm{G}_{3}{ }^{+}$ $(V B M)$ to levels above $C B M, \mathrm{G}_{1}^{+}(\mathrm{VBM}) \rightarrow \mathrm{G}_{1}{ }^{-}(\mathrm{CBM}+1)$, or $\mathrm{A}_{\mathrm{g}} \rightarrow \mathrm{A}_{\mathrm{u}}$ is allowed. These results explain the small optical anisotropy of coesite reported in Section IV-2.

With SOC, the VBM \rightarrow CBM transition becomes $\left\{\mathrm{G}_{3}{ }^{+}+\mathrm{G}_{4}{ }^{+}\right\} \rightarrow\left\{\mathrm{G}_{3}{ }^{+}+\mathrm{G}_{4}{ }^{+}\right\}$, or $\left\{1 \mathrm{E}_{1 / 2 \mathrm{~g}}\right.$ $\left.+2 \mathrm{E}_{1 / 2 \mathrm{~g}}\right\} \rightarrow\left\{1 \mathrm{E}_{1 / 2 \mathrm{~g}}+2 \mathrm{E}_{1 / 2 \mathrm{~g}}\right\}$, and is parity forbidden. This rule is consistent with the forbiddenness obtained without SOC.
D. Rutile. Here we give a brief summary of calculations of electronic structure of rutile TiO_{2} with which stishovite is isostructural, however with empty Ti3d levels inside the large bandgap of 10 eV similar to that in stishovite. In addition, the rutile bandgap is indirect from the Γ to M point. This result agrees with calculations of Ekuma and Bagaoyko (2011). The presently calculated $\Gamma \rightarrow \mathrm{M}$ bandgap of 3.12 eV is in a good agreement with that of Ekuma and Bagayoko and experimental values summarized therein. The direct gap $\Gamma \rightarrow \Gamma, 3.13 \mathrm{eV}$, is only by $10^{-2} \mathrm{eV}$ larger, also in agreement with the results of Ekuma and Bagayoko (2011).

IV-2. BAND STRUCTURES, ENERGY DISPERSION IN THE MOMENTUM SPACE, AND OPTICAL ABSORPTION

We focus on several important features of the electronic structure of the silica polymorphs studied: the nature and symmetry of orbitals at the band edges, bandgaps, effective masses from curvatures of the energy dispersion, and intensities of optical absorption in different crystallographic directions that result in various degrees of optical anisotropy. These properties are derived from calculated band structures and optical absorptions of the three silica polymorphs and are shown in Figure 2 (seifertite), Figure 3 (stishovite), and Figure 4 (coesite). Electronic structure of TiO_{2} rutile is presented in Figure 5, and its optical absorption is also shown in Figure 3 to demonstrate a substantial difference with the isostructural stishovite.

Figure 2

Figure 3

The band structure and optical absorption in coesite with tetrahedrally coordinated SiO_{4} unit, represented in Figure 4, is substantially different from those in octahedrally coordinated SiO_{6} units of seifertite and stishovite. In particular, we note the intrinsic gap within the O2p valence band, and a significant contribution of the off-diagonal component of absorption tensor (Abs-xz) and the low pre-edge absorption intensity at 8.5 -10 eV due to forbidden band-to-band transition.

Figure 4

The rutile band structure calculated at the present level agrees well with the literature cited in Ekuma and Bagayoko (2011). Figure 5 shows the band structure of TiO_{2} with O 2 p and Ti3d orbital contributions to the VB and the empty $\mathrm{Ti}^{4+} 3 \mathrm{~d}$ intra-gap excited
levels located within a gap of 10.1 eV which, although larger, resembles that of stishovite (Fig. 3) in terms of dispersion at the Γ-point edges of TBM and BCM.

Figure 5

Relations between band characters and splitting of the VB into two, separated by an intrinsic gap that appears in the tetrahedrally coordinated Si in coesite (Figure 4) and α quartz (Figures A2-1 and A2-2 in Appendix 2), are also evident from partial DOS analysis presented in Appendix 3, Figures A3-1 (coesite) and A3-2 (α-quartz). These VB gaps in the tetrahedral polymorphs are in a marked contrast with the continuous VB of the octahedrally coordinated Si, also evident from partial DOS in Appendix 3, Figures A3-3 (stishovite) and A3-4 (seifertite).

V. DISCUSSION

General comments. The role of theory is seen not only in interpretation of experimental data, but also in advancing powerful concepts that govern macroscopic physical properties, relative stability of crystal structures, phase transformations, electronic and optical phenomena, defect structure and reactivity of matter occurring in nature as well as useful in man-made technologies. Theory also aims at the interpretation and derivation of those relationships that have so far been empirical. An initial assessment of partial
iconicity/covalency is obtained with the use of simple and powerful semi-empirical method derived from the constructs of Linus Pauling in the 1920s to 1940s, as widely acknowledged by Brown (2002) and many others. This method, the bond-valence theory (BVA), has led to a clear-cut distinction between more ionic, octahedrally coordinated $\mathrm{M}-\mathrm{O}_{6}$ and more covalent, tetrahetrally coordinated $\mathrm{M}-\mathrm{O}_{4}$ compounds $(\mathrm{M}=\mathrm{Si}, \mathrm{Ti})$, as described in Section II. The subsequent quantum theory outlined in Sections III (methodology) and IV (results) has the main strength in accounting for spectroscopic properties which are beyond the range and focus of the BVA method. The present state-of-the art quantum mechanical method, its validation and results are briefly described below.

The DFT method for wide-gap insulators. In the present work, we have investigated high-hardness, wide-gap silica polymorphs, inspired by our ongoing experimental effort to achieve their synthesis at low pressures (Mohanty, Li, Liu, Fei and Landskron 2009) and by questions regarding their optical properties, including those of the so far theoretically unexplored seifertite. The presently employed method is the density functional theory (DFT) of periodic systems that has proven highly successful in describing ground state properties of crystals but had been found significantly lacking in accuracy for excited states. However, an intensive development of several decades has led to extensions of the theory that resulted in a substantially improved account for important properties such as bandgap energies and optical transitions, including their selection rules and anisotropies investigated herein. Of necessity, such extensions are approximate and require a thorough validation, usually tested on reference compounds
with well-known properties. Also useful are comparisons of various levels of theory and approximations in terms of their relative merit. Furthermore, a successfully tested theory may be used for making predictions and designing future experiments. Herein we briefly describe the development of understanding the abovementioned properties of the silica polymorphs investigated in this work.

Validation of theoretical approximations. Results of the present level of theory (DFTLAPW with LDA $+U$ and mBJ potential) for the bandgap and $E(\mathbf{k})$ dispersion compare favorably with the quasi-particle Green's Wavefunction approximation (GW): The bandgap energy of α-quartz is found to be 9.41 eV by present method, 10.1 eV by GW, and from experiment 9.65 eV , as shown in Appendix 2. Thus α-quartz is considered a suitable test material for compositional silica polymorphs in terms of the choice of the mBJ potential and the Hubbard parameter U. Furthermore, a wide agreement among various theoretical methods and experiment on bandgap energy and $E(\mathbf{k})$ dispersion of TiO_{2} rutile adds to the credibility of theory for the structural class of compounds which includes the presently investigated stishovite. And, given successful validation tests for stishovite, coesite and TiO_{2} rutile, the new $\mathrm{mBJ} / \mathrm{LDA}+U$ results for seifertite presented here are expected to be equally reliable.

Ionicity, covalence and intra-VB gap. On the molecular, atomic and ionic level, the silicas include the common polymorphs with tetra-coordinated building blocks SiO_{4} and the high-pressure polymorphs with hexa-coordinated SiO_{6} units. Based on these local
structural differences, a standard chemical argument as well as calculations using the empirical BVA method (cf. Section II) would place the tetrahedral polymorphs among compounds with stronger covalent bonds, while the six-fold coordination would indicate prevalent ionic bonding. Indeed, one of the early tight-binding models by Rudra and Fowler (1983) has successfully interpreted the VB structure of stishovite on the assumption of a purely O 2 p ionic framework. The present work adds effects of Si orbitals which merge into the lower portion of the VB but do not substantially change the VB $E(\mathbf{k})$ dispersion. This is consistent with low BVA covalence of 30% (or high 70% ionicity) found for stishovite (Table 2 in Section II). Similarly, the octahedral SiO_{6} building blocks of seifertite are linked to high ionicity. In contrast, the high BVA covalence of 60% in the tetrahedrally coordinated Si in coesite and α-quartz strongly suggests that purely ionic model for the VB is insufficient, and therefore participation of covalent bonding between the Si and O atoms through orbital overlaps and hybridization is necessary. This is in fact revealed by the present quantum mechanical calculations that also elucidate the structure-bonding relationships in the valence bands of the tetrahedral and octahedral polymorphs.

While the VB of seifertite, stishovite and rutile are filled in a continuous manner (Figures 2, 3 and 5), coesite (Figure 4) exhibits an intrinsic gap similar to that in α-quartz as also evident from band structures in Figures A2-1 and A2-3 of Appendix 2, and DOS plots (Figures A3-4 and A3-5 of Appendix 3). The lack of the intrinsic gap within the valence band is clearly an attribute of structures with octahedral coordination of Si (or Ti) by nearest neighbor oxygen atoms, in contrast with the prevalence of such intrinsic gaps in
the more common tetrahedrally coordinated SiO_{2} polymorphs. Across this "tetrahedral polymorph" gap, the VB is split into a lower part, $\mathrm{VB}_{\text {lower }}$, and upper part, $\mathrm{VB}_{\text {upper }}$. A qualitative explanation is in that $\mathrm{VB}_{\text {lower }}$ entails covalent $\mathrm{Si}-\mathrm{O}$ bonding while $\mathrm{VB}_{\text {upper }}$ is predominantly ionic. Quantum mechanical calculation of partial DOS for the Si and O contributions (Appendix 3) confirms this expectation: The ratio of contributions from atomic orbitals (AOs) in coesite $\mathrm{AO}(\mathrm{Si}) / \mathrm{AO}(\mathrm{O})$ is 0.34 in $\mathrm{VB}_{\text {lower }}$ and low 0.05 in $\mathrm{VB}_{\text {upper }}$. Moreover, $\mathrm{AO}(\mathrm{Si})$ and $\mathrm{AO}(\mathrm{O})$ completely overlap in $\mathrm{VB}_{\text {lower }}$ but not in $\mathrm{VB}_{\text {upper. }}$. Similar condition governs the split VB in α-quartz, $\mathrm{AO}(\mathrm{Si}) / \mathrm{AO}(\mathrm{O})=0.33$ in $\mathrm{VB}_{\text {lower }}$ and 0.04 in $\mathrm{VB}_{\text {upper }}$.

Optical transitions. Calculated transitions represented in Figure 1 show allowed direct transition for seifertite, and forbidden direct transition for stishovite and coesite. These features, including anisotropies, are directly observable by optical measurements, which as of this time are limited and lacking for seifertite. Present calculations predict that all three SiO_{2} polymorphs studied exhibit optical absorption anisotropy to various degrees. The largest anisotropy of 1.5 eV is observed in stishovite, which is compared in Figure 3 with that of the isostructural rutile TiO_{2} with the smallest degree of anisotropy. Evidently substitution of Ti by Si results in both an increased bandgap and anisotropy between the axial and equatorial directions: an analysis of orbital coefficients allows identification of the lowest energy allowed transition as equatorial $\mathrm{O} 2 \mathrm{p}_{\mathrm{x}, \mathrm{y}} \rightarrow \mathrm{Si4s}\left(\mathrm{~B}_{2 \mathrm{u}}\right.$, $\mathrm{B}_{3 \mathrm{u}} \rightarrow \mathrm{A}_{\mathrm{g}}$). Calculated energy of this transition, 8.45 eV , is in a very good agreement with the experimental value of 8.75 eV determined by Trukhin et al. (2004) using stishovite single crystals. However, Trukhin et al. observed an additional weak transition
with a threshold of 7.6 eV , which these authors attributed to unspecified defects. Based on the remarkable coincidence of the energy of this transition with the calculated forbidden band-to-band transition (Figure 3), we suggest that this pre-edge weak transition is actually native to perfect stishovite crystal due to the forbidden band-to-band $\mathrm{B}_{1 \mathrm{~g}} \rightarrow \mathrm{~A}_{1 \mathrm{~g}}$ transition at the Γ-point, whose forbiddenness is offset by nearby levels of lower symmetry in the \mathbf{k}-space. Inspection of Figure 3 for stishovite indeed shows the onset of a weak transition with a threshold at 7.58 eV , close to the experimental value of 7.6 eV of Trukhin et al. (2004), which progresses to the onset of the main absorption edge at 8.45 eV of the allowed $\mathrm{B}_{2 \mathrm{u}}, \mathrm{B}_{3 \mathrm{u}} \rightarrow \mathrm{A}_{1 \mathrm{~g}}$ transition. Calculations also predict a second intense absorption edge at 10 eV , stimulated by z-polarized light, due to the $\mathrm{O} 2 \mathrm{p}_{\mathrm{z}}$ \rightarrow Si4s transition ($\mathrm{B}_{1 \mathrm{u}} \rightarrow \mathrm{A}_{1 \mathrm{~g}}$ in Figure 3). This transition lies out of the experimental range covered by Trukhin et al. (2004) and should be verified by an experiment reaching into the $9-11 \mathrm{eV}$ range. A comparison between calculated optical transitions between stishovite and rutile (Figure 3) shows that such an anisotropy is suppressed in rutile TiO_{2} due to close spacing of the $\mathrm{O} 2 \mathrm{p}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}$ levels near the TVB and different nature of the final states at BCB, Si4s in stishovite and Ti3d in rutile.

Because of the importance of selection rules for optical transitions even in those cases when the bandgap is direct, and the use of such rules for interpretation of observed optical spectra, we present a graphic symmetry analysis of the nature of stishovite VBM responsible for the forbidden transition across the direct VB \rightarrow CB gap. In Figure 6 is shown the $\mathrm{B}_{1 \mathrm{~g}}$ orbital at the VB maximum, which causes the transition in stishovite across the direct gap at the Γ-point to be forbidden.

Figure 6

Referring to Figure 6, we note that the Si s- or p-orbitals are not compatible with the $\mathrm{B}_{1 \mathrm{~g}}$ symmetry, and the nearest possible "mixing in" Si orbital is $3 \mathrm{~d}_{\mathrm{xy}}$. Detailed analysis of partial charges in fact confirms the presence of such an admixture at the Γ-point, albeit small, on the order of $0.2 \%{\operatorname{Si} 3 \mathrm{~d}_{\mathrm{xy}} \text {, and of course zero contributions of the remaining Si3d }}^{\text {a }}$ orbitals with incompatible symmetry.

Effective masses. Band structure calculations contain information on effective masses of electrons and holes at the band edges, useful for assessing mobilities of current carriers injected into semiconducting or insulating compounds. Both intrinsic and external sources are considered for electron and hole injection. In this work, we present values of effective masses calculated from the curvatures $E(\mathbf{k})$ band structures at band edges as $m_{\text {eff }}=\left[\hbar^{2} /\left(\partial^{2} E / \partial k^{2}\right)_{\Gamma}\right] . \quad$ Results are summarized in Table 3.

Table 3

In all three silica polymorphs the bottom of the conduction band (conduction band minimum - CBM) at the Γ-point is markedly dispersed, indicating significant mobility of conduction electrons if injected. External source of injected conduction electrons could employ surface-deposited Cs which was shown to transfer its 6s electron into a chalcogenide lattice with near-100\% efficiency by Park et al. (1996). The top of the valence bands (valence band maximum - VBM) exhibits heavy character of holes if injected, except in seifertite in which some mobility of conduction holes is indicated in the x-direction. Data for rutile TiO_{2} are also given for comparison with the isostructural stishovite. Effective masses in the Ti3d CBM and O2p VBM are high, indicating low mobility of the current carriers compared to stishovite.

VI. IMPLICATIONS

Among the many silica polymorphs, seifertite and stishovite are unique in their structureproperty relationships linked to the six-coordination of Si: high density, ultra-hardness, optical absorption, and valence. The optical anisotropy revealed by the present theory affords an observational tool for the detection of particles of these minerals in polarized light and appropriately chosen energy ranges of the probing far-UV radiation. Furthermore, valence-band XPS will readily distinguish between octahedrally and tetrahedrally coordinated Si in the SiO_{2} polymorphs, as well as in the more complex compositions such as the MgSiO_{3} ilmenite. As in the case of many useful connections between the mineral world and man-made technology ranging from artificial gems to
lasers (as in ruby) to catalysts (as in zeolites), it may be anticipated that the present highdensity silica polymorphs will also find a number of practical applications. When synthesized at mild conditions from mesoporous and microporous precursors, these materials may be considered not only as cheap substitutes for diamond in cutting tools and abrasives, but also as novel wide-gap insulators and semiconductors for optoelectronics and lasers. The present study yields results regarding properties of perfect crystals, which provide an incentive for experimental investigation of far-UV optical absorption and excitons, and for combined theoretical and experimental studies of intrinsic electronic defects such as oxygen vacancies, hydrogen, Cu , and Al or Ti substituted for Si . In particular, Ti substitution can be achieved by using microporous precursors such as the Ti-1 zeolite recently studied by Wells et al. (2004). Low effective masses and consequent high mobilities calculated for the conduction band edge hold promise for achieving n -conductivity upon appropriate doping with donors such as Zn and interstitial hydrogen.

Furthermore, since most occurring forms of these polymorphs are nanocrystalline, surface properties become important for their stability through termination of structure e.g. with hydroxyls for control of hydrophobic/hydrophilic properties, bioactivity in particle-cell interactions, external dopability by donors/acceptors for charge transfer, and electronic effects at interfaces with metals, semiconductors and organic matter in devices such as thin-film transistors, lasers and LEDs.

ACKNOWLEDGMENTS

The authors acknowledge grants of computational time and resources from the Brookhaven National Laboratory - Center for Functional Nanomaterials, grant 30789 "Computational Studies in Support of Display Technology and Experimental Interface Science" and from Lehigh University High-Performance Computing facility. They are indebted to Professor W. Beall Fowler for insightful discussions on the theory of electronic and optical properties of the oxide materials and to Professor Miltiadis K. Hatalis for guiding applications of oxides for nano-electronics in Lehigh University's Display Lab. A note from a referee regarding the Full Localized Limit (FLL) of the selfinteraction correction as implemented in the Wien2k package (viz. (FLL) $)^{\dagger}$ in Section III2), and his pointing out to the relevant discussion by Liechtenstein, Anisimov and Zaanen (1995) is highly appreciated.

VII. REFERENCES

Ambrosch-Draxl, C., and Sofo, J.O. (2006) Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer Physics Communications 175, 1-14.

Birkbeck College University of London (1997-1999)
Crystallographic Space Group Diagrams and Tables
http://img.chem.ucl.ac.uk/sgp/mainmenu.htm.

Blaha, P., Schwarz, K., Madsen, G.K.H., Kwasnicka, D., and Luitz, J. (2013) WIEN2k An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties", Edition Wien2k_13.1; ISBN 3-9501031-1-2.

Brese, N.E., and O'Keeffe, M. (1991) Acta Crystallographica B47, 192-197.

Brown, I.D., and Shannon, R.D. (1973) Empirical bond-strength-bond-length curves for oxides. Acta Crystallographica A29, 266-282.

Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The bond valence model. Oxford University Press.

Chang, E.K., Rohlfing, M., and Louie, S.G. (2000) Excitons and optical properties of aquartz. Physical Review Letters 85, 2613-2616.

Chao, E.C.T, Shoemaker, E.M., and Madsen, B.M. (1960) First Natural Occurrence of Coesite. Science 132, 220-222.

617 Fu, J.Y., and Wu, M.W. (2008) Spin-orbit coupling in bulk ZnO and GaN. Journal of
Chao, E.C.T., Fahey, J.J., Littler, J., and Milton, D.J. (1962) Stishovite, SiO_{2}, a very high pressure new mineral from meteor crater, Arizona. Journal of Geophysical Research 67, 419-421.

Coes, L. Jr. (1953) A New Dense Crystalline Silica. Science 118, 131-132.

Dera, P., Prewitt, C.T., Boctor, N.Z., and Hemley, R.J. (2002) Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. American Mineralogist 87, 1018-1023.

El Goresy, A., Dera, P., Sharp, T.G., Prewitt, C.T., Chen, M., Dubrovinsky, L., Wopenka, B., Boctor, N.Z., and Hemley, R.J. (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy 20, 523-528.

Ekuma, C.E., and Bagayoko, D. (2011) Ab-initio Electronic and Structural Properties of Rutile Titanium Dioxide. Japanese Journal of Applied Physics 50, 101103. Applied Physics 104, 093712 [1-7].

Garvie, L.A.J., Rez, P., Alvarez, J.R., Buseck, P.R., CravenA,J., and Brydson, R. (2000) Bonding in alpha-quartz $\left(\mathrm{SiO}_{2}\right)$: A view of the unoccupied states. American Mineralogist 85, 732-738.

Horiuchi, H., Hirano, M., Ito, E., and Matsui, Y. (1982) MgSiO3 (ilmenite-type) : single crystal X-ray diffraction study. American Mineralogist 67, 788-793.

International Tables for Crystallography (1992).

Kang, W., and Hybertsen, M.S. (2010) Quasiparticle and optical properties of rutile and anatase TiO2. Physical Review B 82, 085203-1 to 085203-11.

Kokalj, A. (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science 28, 155-168. Code available from http://www.xcrysden.org/.

Koster, G.F., Dimmock, J.O., Wheeler, R.G., and Statz, H. (1963) Properties of the Thirty-Two Point Groups. MIT press, Cambridge, Massachussetts.

Kramida, A., Ralchemko, Yi., Reader, J., and NIST ASD Team (2013) NIST Atomic Spectra Database - Energy Levels. http://physics.nist.gov/PhysRefData/ASD.

Laughlin, R.B. (1980) Optical absorption edge in SiO2. Physical Review B 22, 3021 3029.

Lawler, H.M., Rehr, J.J., Vila, F., Dalosto, S.D., Shirley, E.L., and Levine, Z.H. (2008) Optical to UV spectra and birefringence of SiO 2 and TiO 2 : First principles calculation with excitonic effects. Physical Review B 78, 205108-1 to 205108-8.

Levien, L., and Prewitt, C.T. (1981) High-pressure crystal structure and compressibility of coesite. American Mineralogist 66, 324-333.

Liechtenstein, A.I., Anisimov, V.I., and Zaanen, J. (1995) Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467(R).

Ma, Q., Klier, K., Cheng, H., Mitchell, J.W., and Hayes, K.S. (2000) Interaction between catalysts and support 1. Low coverage of Co and Ni on silica surface. Journal of Physical Chemistry B 104, 10618-10626.

Ma, Q., Klier, K., Cheng, H., Mitchell, J.W., and Hayes, K.S. (2001a) Interaction between catalyst and support 3. Metal agglomeration on the silica surface. Journal of Physical Chemistry B 105, 9230-9238.

Ma, Q., Klier, K., Cheng, H., Mitchell, J.W., and Hayes, K.S. (2001b) Interaction between catalysts and support 2 . Low coverage of Co and Ni on alumina surface. Journal of Physical Chemistry B 105, 2212-2221.

Ma, Q., Klier, K., Cheng, H., and Mitchell, J.W. (2002) Interaction between catalyst and support. 4. Periodic trends and patterns in interactions of first-row transition metals with the silica surface. Journal of Physical Chemistry B 106, 10121-10127.

Mohanty, P., Li, D., Liu, T., Fei, Y., and Landskron, K. (2009) Synthesis of stishovite nanocrystals from periodic mesoporous silica. Journal of American Chemical Society 131, 2764.

Novák, P. (2001) in WIEN2k: "~/SRC/novak_lecture_on_ldaumatrixelements.ps" and http://www.wien2k.at/reg_user/textbooks.

Park, K.T., Richards-Babb, M., Freund, M.S., Weiss, J., and Klier, K. (1996) Surface structure of single crystal $\mathrm{MoS}_{2}(0002)$ and $\mathrm{Cs} / \mathrm{MoS}_{2}(0002)$ by X-ray photoelectron diffraction. Journal of Physical Chemistry 100, 10739-10745.

Pawley, A.R., McMillan, P.F., and Holloway, J.R. (1993) Hydrogen in Stishovite, with Implications for Mantle Water Content. Science 261, 1024-1026.

Ramos, L.E., Furtmueller, J., and Bechstedt, F. (2004) Quasiparticle band structures and optical spectra of b-cristobalite SiO2. Physical Review B 69, 085102-1 to 085102-8.

Rudra, J.K., and Fowler, W.B. (1983) Electronic band structure of stishovite (tetragonal SiO_{2}). Physical Review B 28, 1061-1087.

Singh, D.J. (1994a) Planewaves, Pseudopotentials, and the LAPW Method. Kluwer Academic Publishers Boston, Dordrecht, London.

Singh, D.J. (1994b) Planewaves, Pseudopotentials, and the LAPW Method, Kluwer Academic Publishers Boston, Dordrecht, London, pp.86-87.

Smyth, J.R., Smith, J.V., Artioli, G., and Kvick, Åke (1987) Crystal Structure of Coesite, a High-pressure Form of SiO_{2}, at 15 and 298 K from Single-Crystal Neutron and X-ray Dlffraction Data: Test of Bonding Models. Journal of Physical Chenistry 91, 988-992.

Smyth, J.R., Swope, R.J., and Pawley, A.R. (1995) H in rutile-type compounds: II.
Crystal chemistry of Al substitution in H-bearing stishovite. American Mineralogist 80, 454-456.

Solovyev, I.V., Dederichs,P.H., and Anisimov, V.I. (1994) Corrected atomic limit in the local density approximation and the electronic structure of d impurities in Rb . Physical Review B 50, 16861 - 16871.

Stishov, S.M., and Popova, S.V. (1961) A new modification of silica. Geokhimiya 10, 837-839.

Tran, F., and Blaha, P. (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Physical Review Letters 102, 226401-1 -226401-4.

Trukhin, A.N., Dyuzheva, T.I., Lityagina, L.M., and Bendeliani, N.A. (2004) Intrinsic absorption threshold of stishovite and coesite. Solid State Communications, 1-5.

Vella, E., Messina, F., Cannas, M., and Boscaino, R, (2011) Unraveling exciton dynamics in amorphous silicon dioxide: Interpretation of the optical features from 8 to 11 eV. Physical Review B 83, 174201-1 to 174201-8.

Weinberg, Z.A., Rubloff. G.W., and Bassous, E. (1979) Transmission, photoconductivity, and the experimental band gap of thermally grown SiO_{2} films. Physical Review B 19, 3107-3117.

Wells, D.H. Jr., Delgass, W.N., and Kendall T. Thomson,K.T. (2004) Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: A DFT study. Journal of American Chemical Society 126, 2956-2962.

Williams, Q., and Hemley, R.J. (2001) Hydrogen in the Deep Earth. Annual Review of Earth Planetary Science 29, 365-418.

Xu, Y., and Ching, W.Y. (1991) Electronic and optical properties of all polymorphic forms of silicon dioxide. Physical Review B 44, 11048-11058.

Yu, Z., Huang, Y.X., and Shen, S.C. (1989) Spin-orbit splitting of the valence bands in silicon determined by means of high-resolution photoconductive spectroscopy. Physical Review B 39, 6287-6289.

Zelený, M., Hegedüs, J., Foster, A.S., Drabold, D.A., Elliott, S.R., and Nieminen, R.M. (2012) Ab initio study of Cu diffusion in α-cristobalite. New Journal of Physics 14, 113029.

Abstract

APPENDIX 1 Structural data, reciprocal lattice vectors and their labeling for seifertite, stishovite, coesite and rutile used in the present study. a. Seifertite

Seifertite, space group 60 Pbcn , has the structure shown in Figure A1-1.

Figure A1-1

Figure A1-1 Unit cell of seifertite. Values of primitive translations $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is nearly octahedral and that of O by Si is trigonal.

Lattice constants and fractional coordinates are from Dera et al. (2002).

The primitive translation vectors of its orthorhombic cell $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) \equiv(\mathrm{a} \hat{\mathrm{x}}, \mathrm{b} \hat{\mathrm{y}}, \mathrm{c} \hat{\mathrm{z}})$ are

$$
\mathrm{a}=7.742210 \text { bohr, }
$$

$\mathrm{b}=9.528000$ bohr, $\mathrm{c}=8.493570$ bohr,

The unit cell contains $4 \mathrm{SiO}_{2}$ formula units with 4 equivalent Si atoms and 8 O atoms at fractional coordinates of the unique atoms

Si ($0.0000,0.1522,0.2500$), O (0.7336, 0.6245, 0.9186),
the rest being generated by the symmetry operations of the Pbcn group as in the Birkbeck College University of London (1997-1999) space group database. The space group Pb 2 n given by El Goresy et al. (2008) as an alternative was not used, since satisfactory results were obtained with the higher symmetry Pben group.

The reciprocal lattice is also orthorhombic, formed by the vectors $\left(\boldsymbol{a}^{*}, \boldsymbol{b}^{*}, \boldsymbol{c}^{*}\right)$ such that
$\boldsymbol{a}^{*}=2 \pi(\boldsymbol{b} \times \boldsymbol{c}) /[\boldsymbol{a} .(\boldsymbol{b} \times \boldsymbol{c})]=0.811549 \hat{\mathrm{x}} \mathrm{bohr}^{-1}$,
$\boldsymbol{b}^{*}=2 \pi(\boldsymbol{c} \times \boldsymbol{a}) /[\boldsymbol{a} .(\boldsymbol{b} \times \boldsymbol{c})]=0.659444 \hat{\mathrm{y}} \mathrm{bohr}^{-1}$,
$\boldsymbol{c}^{*}=2 \pi(\boldsymbol{a} \times \boldsymbol{b}) /[\boldsymbol{a} .(\boldsymbol{b} \times \boldsymbol{c})]=0.739758 \mathrm{z}_{\mathrm{bohr}}{ }^{-1}$
as shown in Figure A1-2.

Figure A1-2

Figure A1-2 Brillouin zone of the orthorhombic lattice. Critical points chosen for the band structure representation are labeled as $\Gamma(0,0,0), \mathrm{Z}(0,0,1 / 2), \mathrm{R}(1 / 2,1 / 2,1 / 2), \mathrm{S}(1 / 2,1 / 2,0)$, $X(1 / 2,0,0), U(1 / 2,0,1 / 2)$. Lengths of the reciprocal vectors $\mathrm{a}^{*}, \mathrm{~b}^{*}, \mathrm{c}^{*}$ are in the ratio generated by the seifertite structure.
b. Stishovite

Stishovite, space group $136 \mathrm{P} 42 / \mathrm{mnm}$, has the structure shown in Figure A1-3.

Figure A1-3

Figure A1-3 Unit cell of stishovite. Values of primitive translations a, b, c in the x, y, z directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is nearly octahedral and that of O by Si is trigonal.

Lattice constants and fractional coordinates are from Rudra and Fowler (1983).

The primitive translation vectors of its tetragonal cell $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) \equiv(\mathrm{a} \hat{\mathrm{x}}, \mathrm{a} \hat{\mathrm{y}}, \mathrm{c} \hat{\mathrm{z}})$ are $\mathrm{a}=7.893770 \mathrm{bohr}$, $\mathrm{b}=7.893770 \mathrm{bohr}$, $\mathrm{c}=5.036310 \mathrm{bohr}$,

The unit cell contains $2 \mathrm{SiO}_{2}$ formula units with fractional coordinates of the Si and O atoms

Si (1) (0.0000, 0.0000, 0.0000), Si (2) (0.5000, 0.5000, 0.5000), O (3) (0.3062, 0.3062, 0.0000), O (4) (0.6938, 0.6938, 0.0000),

O (5) (0.1938, 0.8062, 0.5000),

O (6) (0.8062, 0.1938, 0.5000),
generated from unique positions of $\operatorname{Si}(1)$ and $\mathrm{O}(3)$ by the symmetry operations of the P42/mnm group.

The reciprocal lattice is also tetragonal, formed by the vectors $\left(\boldsymbol{a}^{*}, \boldsymbol{b}^{*}, \boldsymbol{c}^{*}\right)$ such that $\boldsymbol{a}^{*}=2 \pi(\boldsymbol{b} \times \boldsymbol{c}) /[\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})]=0.795968 \hat{\mathrm{x}} \mathrm{bohr}^{-1}$, $\boldsymbol{b}^{*}=2 \pi(\boldsymbol{c} \times \boldsymbol{a}) /[\boldsymbol{a} .(\boldsymbol{b} \times \boldsymbol{c})]=0.795968 \hat{\mathrm{y}}_{\mathrm{bohr}}{ }^{-1}$, $\boldsymbol{c}^{*}=2 \pi(\boldsymbol{a} \times \boldsymbol{b}) /[\boldsymbol{a} .(\boldsymbol{b} \times \boldsymbol{c})]=1.247577 \hat{\mathrm{z}}_{\mathrm{bohr}}{ }^{-1}$ shown in Figure A1-4 with labeling of the special points consistent with that that of Rudra and Fowler (1983).

Figure A1-4

Figure A1-4 Brillouin zone of the tetragonal lattice. Critical points chosen for the band structure representation are labeled as $\underset{\mathrm{S}}{\Gamma}(0,0,0), \mathrm{Z}(0,0,1 / 2), \mathrm{A}(1 / 2,1 / 2,1 / 2), \mathrm{M}(1 / 2,1 / 2,0), \mathrm{X}$ $(1 / 2,0,0), \mathrm{R}(1 / 2,0,1 / 2)$. Intermediate points $\Lambda, \mathrm{S}, \mathrm{V}, \Sigma, \Delta, \mathrm{W}$ and U have coordinates
specified in the klist_band for the tetragonal lattice. Lengths of the reciprocal vectors a*, b^{*}, c^{*} are in the ratio yielded by the stishovite structure.
c. Coesite

Coesite, space group $15 \mathrm{C} 2 / \mathrm{c}$, has the structure shown in Figure A1-5.

Figure A1-5

Figure A1-5 Unit cell of coesite as a stereo picture. Values of primitive translations a, b, c in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is tetrahedral and that of O by Si is two-fold. O atoms at $(0,0,0)$ and (1/2,1/2,1/2) are linearly coordinated to the nearest two Si neighbors, a feature that has influence on distribution of levels in the valence band.

Lattice constants and fractional coordinates are taken from single crystal neutron diffraction data at 292 K by Smyth et al. (1987).

The primitive translation vectors of its monoclinic cell $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) \equiv(\mathrm{a} \hat{\mathrm{x}}, \mathrm{b} \hat{\mathrm{y}}, \mathrm{c} 1 \hat{\mathrm{x}}+\mathrm{c} 2 \hat{\mathrm{z}})$ are
$\mathrm{a}=13.4845 \mathrm{bohr}$,
$\mathrm{b}=23.4014$ bohr,
$\mathrm{c} 1=-6.8665 \mathrm{bohr}$, $\mathrm{c} 2=11.7154$ bohr,
and the angle subtended by vectors \boldsymbol{a} and \boldsymbol{c} is $\beta=120.375^{\circ}$.

The unit cell contains $16 \mathrm{SiO}_{2}$ formula units with two Si and five O unique atoms at fractional coordinates
$\operatorname{Si}(1)(0.14032,0.10832,0.07231)$ multiplicity 4, $\operatorname{Si}(2)(0.50677,0.15800,0.54073)$ multiplicity 4, $\mathrm{O}(1)(0.00000,0.00000,0.00000)$ multiplicity 2 , $\mathrm{O}(2)(0.50000,0.11643,0.75000)$ multiplicity 2, $\mathrm{O}(3)(0.26631,0.12320,0.94031)$ multiplicity 4, $\mathrm{O}(4)(0.31144,0.10379,0.32785)$ multiplicity 4, $\mathrm{O}(5)(0.01746,0.21192,0.47851)$ multiplicity 4,
the rest being generated by the symmetry operations of the $\mathrm{C} 2 / \mathrm{c}$ group ${ }^{29}$.

The reciprocal lattice is also monoclinic, formed by the vectors $\left(\boldsymbol{a}^{*}, \boldsymbol{b}^{*}, \boldsymbol{c}^{*}\right)$ such that

$$
\boldsymbol{a}^{*}=2 \pi(\boldsymbol{b} \times \boldsymbol{c}) /[\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})]=(0.465956 \hat{\mathrm{x}}+0.273102 \hat{\mathrm{z}}) \mathrm{bohr}^{-1},
$$

$$
\boldsymbol{b}^{*}=2 \pi(\boldsymbol{c} \times \boldsymbol{a}) /[\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})]=0.268496 \hat{\mathrm{y}} \mathrm{bohr}^{-1},
$$

$$
\boldsymbol{c}^{*}=2 \pi(\boldsymbol{a} \times \boldsymbol{b}) /[\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})]=0.536318 \mathrm{z} \mathrm{bohr}^{-1}
$$

shown in Figure A1-6 with special points generated with the help of the Xcrysden program, Kokalj (2003).

The angles between the reciprocal lattice vectors are $\Varangle\left(\boldsymbol{a}^{*}, \boldsymbol{c}^{*}\right)=59.625^{\circ}$ and $\Varangle\left(\boldsymbol{a}^{*}, \boldsymbol{b}^{*}\right)=$ $\Varangle\left(\boldsymbol{b}^{*}, \boldsymbol{c}^{*}\right)=90^{\circ}$. and lengths of the reciprocal vectors $\mathrm{a}^{*}, \mathrm{~b}^{*}, \mathrm{c}^{*}$ are in the ratio created by the coesite structure. The coesite structure in this representation is close to hexagonal about the principal axis \boldsymbol{b}.

Figure A1-6

Figure A1-6 Brillouin zone of the monoclinic, nearly hexagonal lattice about the b^{*} axis.

Critical points chosen for the band structure representation are labeled as:

$$
\begin{aligned}
& \Gamma(0,0,0), \mathrm{K} 2(0,1 / 2,0), \mathrm{K} 3(0.335,1 / 2,0.33), \mathrm{K} 4(0.335,0,0.33), \mathrm{K} 5=\Gamma, \mathrm{K} 6(1 / 2,0,0), \mathrm{K} 7 \\
& (1 / 2,1 / 2,0), \mathrm{K} 8=\mathrm{K} 2 .
\end{aligned}
$$

The corresponding labels for the idealized hexagonal lattice are:
$\Gamma \equiv[\mathrm{K} 1=\mathrm{K} 5], \mathrm{A} \equiv[\mathrm{K} 2=\mathrm{K} 8], \mathrm{H} \equiv \mathrm{K} 3, \mathrm{~K} \equiv \mathrm{~K} 4, \mathrm{M} \equiv \mathrm{K} 6$ and $\mathrm{L} \equiv \mathrm{K} 7$

Wien 2k structure files of seifertite, stishovite, coesite and rutile

Seifertite

```
P LATTICE,NONEQUIV. ATOMS 2 60 Pbcn
```

MODE OF CALC=RELA
$7.742210 \quad 9.528000 \quad 8.49357090 .000000 \quad 90.00000090 .000000$
ATOM - $1: \mathrm{X}=0.00000000 \quad \mathrm{Y}=0.15220000 \mathrm{Z}=0.25000000$
MULT $=4 \quad$ ISPLIT $=8$
$-1: X=0.00000000 \quad Y=0.84780000 \quad Z=0.75000000$
$-1: X=0.50000000 \quad Y=0.65220000 \quad Z=0.25000000$
-1: X=0.50000000 Y=0.34780000 Z=0.75000000
Si1 NPT= 781 R0=0.00010000 RMT= $1.6000 \quad Z: 14.0$
LOCAL ROT MATRIX: 0.00000001 .00000000 .0000000
0.00000000 .00000001 .0000000

```
ATOM -2: X=0.73360000 Y=0.62450000 Z=0.91860000
    MULT= 8 ISPLIT= 8
    -2: X=0.26640000 Y=0.37550000 Z=0.08140000
    -2: X=0.23360000 Y=0.12450000 Z=0.58140000
        -2: X=0.76640000 Y=0.87550000 Z=0.41860000
        -2: X=0.76640000 Y=0.12450000 Z=0.91860000
        -2: X=0.23360000 Y=0.87550000 Z=0.08140000
        -2: X=0.26640000 Y=0.62450000 Z=0.58140000
        -2: X=0.73360000 Y=0.37550000 Z=0.41860000
        O 2 NPT= 781 R0=0.00010000 RMT= 1.6000 Z: 8.0
        LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
        0.0000000 1.0000000 0.0000000
        0.0000000 0.0000000 1.0000000
```

 8 symmetry operations are auto-generated by the Pbon group

 Stishovite
 P LATTICE,NONEQUIV. ATOMS 2
 \(136 \mathrm{P} 42 / \mathrm{mnm}\)
 MODE OF CALC=RELA
 \(7.893770 \quad 7.893770 \quad 5.036310 \quad 90.000000 \quad 90.000000 \quad 90.000000\)
    ```
    ATOM -1: X=0.00000000 Y=0.00000000 Z=0.00000000
            MULT= 2 ISPLIT= 8
            -1: X=0.50000000 Y=0.50000000 Z=0.50000000
            Si NPT= 781 R0=0.00010000 RMT= 1.6500 Z: 14.0
            LOCAL ROT MATRIX: 0.7071068 0.7071068 0.0000000
            -0.7071068 0.7071068 0.0000000
            0.0000000 0.0000000 1.0000000
            ATOM -2: X=0.30620000 Y=0.30620000 Z=0.00000000
            MULT= 4 ISPLIT= 8
            -2: X=0.69380000 Y=0.69380000 Z=0.00000000
            -2: X=0.19380000 Y=0.80620000 Z=0.50000000
                            -2: X=0.80620000 Y=0.19380000 Z=0.50000000
                    O 1 NPT= 781 R0=0.00010000 RMT= 1.6500 Z: 8.0
                    LOCAL ROT MATRIX: 0.0000000-0.7071068 0.7071068
                        0.0000000 0.7071068 0.7071068
                        -1.0000000 0.0000000 0.0000000
```

 16 symmetry operations are auto-generated by the \(\mathrm{P} 42 / \mathrm{mnm}\) group

986
987

Coesite

P LATTICE,NONEQUIV. ATOMS 7

MODE OF CALC=RELA

```
    13.484500 23.401400 13.579400 90.000000120.375000 90.000000
    ATOM -1: X=0.13998000 Y=0.10847000 Z=0.07211000
        MULT= 4
        ISPLIT= 8
        -1: X=0.86002000 Y=0.89153000 Z=0.92789000
        -1: X=0.86002000 Y=0.10847000 Z=0.42789000
        -1: X=0.13998000 Y=0.89153000 Z=0.57211000
    Si1 NPT= 781 R0=0.00010000 RMT= 1.4900 Z= 14.0
    LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
            0.0000000 1.0000000 0.0000000
            0.0000000 0.0000000 1.0000000
```

 ATOM -2: X=0.50722000 Y=0.15785000 Z=0.54153000
 MULT \(=4 \quad\) ISPLIT \(=8\)
 \(-2: X=0.49278000 \quad \mathrm{Y}=0.84215000 \quad \mathrm{Z}=0.45847000\)
 \(-2: X=0.49278000 \quad \mathrm{Y}=0.15785000 \quad \mathrm{Z}=0.95847000\)
 \(-2: X=0.50722000 \quad Y=0.84215000 \quad Z=0.04153000\)
 Si2 NPT= \(781 \quad \mathrm{R} 0=0.00010000 \mathrm{RMT}=1.4900 \quad \mathrm{Z}=14.0\)
 LOCAL ROT MATRIX: 1.00000000 .00000000 .0000000
 0.00000001 .00000000 .0000000
 \(-3: \quad X=0.00000000 \quad Y=0.00000000 \quad Z=0.50000000\)


```
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
                                    0.0000000 1.0000000 0.0000000
            0.0000000 0.0000000 1.0000000
ATOM -6: X=0.31277000 Y=0.10319000 Z=0.32768000
    MULT= 4 ISPLIT= 8
    -6: X=0.68723000 Y=0.89681000 Z=0.67232000
    -6: X=0.68723000 Y=0.10319000 Z=0.17232000
    -6: X=0.31277000 Y=0.89681000 Z=0.82768000
    O 4 NPT= 781 R0=0.00010000 RMT= 1.4900 Z= 8.0
    LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
            0.0000000 1.0000000 0.0000000
            0.0000000 0.0000000 1.0000000
    ATOM -7: X=0.01900000 Y=0.21178000 Z=0.47664000
        MULT= 4 ISPLIT= 8
    -7: X=0.98100000 Y=0.78822000 Z=0.52336000
    -7: X=0.98100000 Y=0.21178000 Z=0.02336000
    -7: X=0.01900000 Y=0.78822000 Z=0.97664000
    O 5 NPT= 781 R0=0.00010000 RMT= 1.4900 Z= 8.0
    LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
        0.0000000 1.0000000 0.0000000
        0.0000000 0.0000000 1.0000000
```


$-2: X=0.80620000 \quad \mathrm{Y}=0.19380000 \quad \mathrm{Z}=0.50000000$
O 1 NPT= $781 \quad \mathrm{RO}=0.00010000 \mathrm{RMT}=1.7000 \mathrm{Z}: 8.0$
LOCAL ROT MATRIX: $0.0000000-0.70710680 .7071068$
0.00000000 .70710680 .7071068
$-1.00000000 .00000000 .0000000$
16 symmetry operations are auto-generated by the $\mathrm{P} 42 / \mathrm{mnm}$ group

List of k-points for band structure rendition of seifertite, stishovite, coesite and rutile

Seifertite:

GAMMA

$$
0
$$

| | 0 | 0 | 1 | 12 | 2.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 2 | 12 | 2.0 |
| | 0 | 0 | 3 | 12 | 2.0 |
| Z | 0 | 0 | 4 | 12 | 2.0 |
| | 0 | 0 | 5 | 12 | 2.0 |
| | 0 | 8 | 16 | 2.0 | |
| | 1 | 8 | 16 | 2.0 | |
| | 2 | 2 | 8 | 16 | 2.0 |

| 1089 | | 3 | 3 | 8 | 16 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1090 | | 4 | 4 | 8 | 16 | 2.0 |
| 1091 | | 5 | 5 | 8 | 16 | 2.0 |
| 1092 | | 6 | 6 | 8 | 16 | 2.0 |
| 1093 | | 7 | 7 | 8 | 16 | 2.0 |
| 1094 | R | 6 | 6 | 6 | 12 | 2.0 |
| 1095 | | 6 | 6 | 5 | 12 | 2.0 |
| 1096 | | 6 | 6 | 4 | 12 | 2.0 |
| 1097 | | 6 | 6 | 3 | 12 | 2.0 |
| 1098 | | 6 | 6 | 2 | 12 | 2.0 |
| 1099 | | 6 | 6 | 1 | 12 | 2.0 |
| 1100 | S | 8 | 8 | 0 | 16 | 2.0 |
| 1101 | | 7 | 7 | 0 | 16 | 2.0 |
| 1102 | | 6 | 6 | 0 | 16 | 2.0 |
| 1103 | | 5 | 5 | 0 | 16 | 2.0 |
| 1104 | | 4 | 4 | 0 | 16 | 2.0 |
| 1105 | | 3 | 3 | 0 | 16 | 2.0 |
| 1106 | | 2 | 2 | 0 | 16 | 2.0 |
| 1107 | | 1 | 1 | 0 | 16 | 2.0 |
| 1108 | GAMMA | 0 | 0 | 0 | 14 | 2.0 |
| 1109 | | 1 | 0 | 0 | 14 | 2.0 |

| 1110 | | 2 | 0 | 0 | 14 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1111 | | 3 | 0 | 0 | 14 | 2.0 |
| 1112 | | 4 | 0 | 0 | 14 | 2.0 |
| 1113 | | 5 | 0 | 0 | 14 | 2.0 |
| 1114 | | 6 | 0 | 0 | 14 | 2.0 |
| 1115 | X | 6 | 0 | 0 | 12 | 2.0 |
| 1116 | | 6 | 0 | 1 | 12 | 2.0 |
| 1117 | | 6 | 0 | 2 | 12 | 2.0 |
| 1118 | | 6 | 0 | 3 | 12 | 2.0 |
| 1119 | | 6 | 0 | 4 | 12 | 2.0 |
| 1120 | | 6 | 0 | 5 | 12 | 2.0 |
| 1121 | U | 7 | 0 | 7 | 14 | 2.0 |
| 1122 | | 6 | 0 | 7 | 14 | 2.0 |
| 1123 | | 5 | 0 | 7 | 14 | 2.0 |
| 1124 | | 4 | 0 | 7 | 14 | 2.0 |
| 1125 | | 3 | 0 | 7 | 14 | 2.0 |
| 1126 | | 2 | 0 | 7 | 14 | 2.0 |
| 1127 | | 1 | 0 | 7 | 14 | 2.0 |
| 1128 | Z | 0 | 0 | 7 | 14 | 2.0 |

1131

1132 Stishovite and Rutile:

| 1133 | GAMMA | 0 | 0 | 0 | 22 | 2.0-8.00 | 8.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1134 | | 0 | 0 | 1 | 22 | 2.0 | |
| 1135 | | 0 | 0 | 2 | 22 | 2.0 | |
| 1136 | | 0 | 0 | 3 | 22 | 2.0 | |
| 1137 | | 0 | 0 | 4 | 22 | 2.0 | |
| 1138 | LAMBDA | 0 | 0 | 5 | 22 | 2.0 | |
| 1139 | | 0 | 0 | 6 | 22 | 2.0 | |
| 1140 | | 0 | 0 | 7 | 22 | 2.0 | |
| 1141 | | 0 | 0 | 8 | 22 | 2.0 | |
| 1142 | | 0 | 0 | 9 | 22 | 2.0 | |
| 1143 | | 0 | 0 | 10 | 22 | 2.0 | |
| 1144 | Z | 0 | 0 | 10 | 20 | 2.0 | |
| 1145 | | 1 | 1 | 10 | 20 | 2.0 | |
| 1146 | | 2 | 2 | 10 | 20 | 2.0 | |
| 1147 | | 3 | 3 | 10 | 20 | 2.0 | |
| 1148 | | 4 | 4 | 10 | 20 | 2.0 | |
| 1149 | S | 5 | 5 | 10 | 20 | 2.0 | |
| 1150 | | 6 | 6 | 10 | 20 | 2.0 | |
| 1151 | | 7 | 7 | 10 | 20 | 2.0 | |

| 1152 | | 8 | 8 | 10 | 20 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1153 | | 9 | 9 | 10 | 20 | 2.0 |
| 1154 | A | 11 | 11 | 11 | 22 | 2.0 |
| 1155 | | 11 | 11 | 10 | 22 | 2.0 |
| 1156 | | 11 | 11 | 9 | 22 | 2.0 |
| 1157 | | 11 | 11 | 8 | 22 | 2.0 |
| 1158 | | 11 | 11 | 7 | 22 | 2.0 |
| 1159 | V | 11 | 11 | 6 | 22 | 2.0 |
| 1160 | | 11 | 11 | 5 | 22 | 2.0 |
| 1161 | | 11 | 11 | 4 | 22 | 2.0 |
| 1162 | | 11 | 11 | 3 | 22 | 2.0 |
| 1163 | | 11 | 11 | 2 | 22 | 2.0 |
| 1164 | | 11 | 11 | 1 | 22 | 2.0 |
| 1165 | M | 10 | 10 | 0 | 20 | 2.0 |
| 1166 | | 9 | 9 | 0 | 20 | 2.0 |
| 1167 | | 8 | 8 | 0 | 20 | 2.0 |
| 1168 | | 7 | 7 | 0 | 20 | 2.0 |
| 1169 | | 6 | 6 | 0 | 20 | 2.0 |
| 1170 | SIGMA | 5 | 5 | 0 | 20 | 2.0 |
| 1171 | | 4 | 4 | 0 | 20 | 2.0 |
| 1172 | | 3 | 3 | 0 | 20 | 2.0 |

| 1173 | | 2 | 2 | 0 | 20 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1174 | | 1 | 1 | 0 | 20 | 2.0 |
| 1175 | GAMMA | 0 | 0 | 0 | 14 | 2.0 |
| 1176 | | 1 | 0 | 0 | 14 | 2.0 |
| 1177 | | 2 | 0 | 0 | 14 | 2.0 |
| 1178 | | 3 | 0 | 0 | 14 | 2.0 |
| 1179 | DELTA | 4 | 0 | 0 | 14 | 2.0 |
| 1180 | | 5 | 0 | 0 | 14 | 2.0 |
| 1181 | | 6 | 0 | 0 | 14 | 2.0 |
| 1182 | X | 11 | 0 | 0 | 22 | 2.0 |
| 1183 | | 11 | 0 | 1 | 22 | 2.0 |
| 1184 | | 11 | 0 | 2 | 22 | 2.0 |
| 1185 | | 11 | 0 | 3 | 22 | 2.0 |
| 1186 | | 11 | 0 | 4 | 22 | 2.0 |
| 1187 | W | 11 | 0 | 5 | 22 | 2.0 |
| 1188 | | 11 | 0 | 6 | 22 | 2.0 |
| 1189 | | 11 | 0 | 7 | 22 | 2.0 |
| 1190 | | 11 | 0 | 8 | 22 | 2.0 |
| 1191 | | 11 | 0 | 9 | 22 | 2.0 |
| 1192 | | 11 | 0 | 10 | 22 | 2.0 |
| 1193 | R | 7 | 0 | 7 | 14 | 2.0 |

| 1194 | 6 | 0 | 7 | 14 | 2.0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1195 | 5 | 0 | 7 | 14 | 2.0 | |
| 1196 | 4 | 0 | 7 | 14 | 2.0 | |
| 1197 | U | 3 | 0 | 7 | 14 | 2.0 |
| 1198 | | 2 | 0 | 7 | 14 | 2.0 |
| 1199 | | 1 | 0 | 7 | 14 | 2.0 |
| 1200 | Z | 0 | 0 | 7 | 14 | 2.0 |

| 1205 K.1 | 0 | 0 | 0 | 3822 | $2.0-8.00$ | 8.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1206 | | 0 | 273 | 0 | 3822 | 2.0 |
| 1207 | | 0 | 546 | 0 | 3822 | 2.0 |
| 1208 | | 0 | 819 | 0 | 3822 | 2.0 |
| 1209 | | 0 | 1365 | 0 | 3822 | 2.0 |
| 1210 | | 0 | 1638 | 0 | 3822 | 2.0 |
| 1211 | | 4095 | 0 | 8190 | 2.0 | |
| 1212 | K.2 | | 183 | 4095 | 180 | 8190 |
| 1213 | | 366 | 4095 | 360 | 8190 | 2.0 |

Coesite:

| 1215 | | 549 | 4095 | 540 | 8190 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1216 | | 732 | 4095 | 720 | 8190 | 2.0 |
| 1217 | | 915 | 4095 | 900 | 8190 | 2.0 |
| 1218 | | 1098 | 4095 | 1080 | 8190 | 2.0 |
| 1219 | | 1281 | 4095 | 1260 | 8190 | 2.0 |
| 1220 | | 1464 | 4095 | 1440 | 8190 | 2.0 |
| 1221 | | 1647 | 4095 | 1620 | 8190 | 2.0 |
| 1222 | | 1830 | 4095 | 1800 | 8190 | 2.0 |
| 1223 | | 2013 | 4095 | 1980 | 8190 | 2.0 |
| 1224 | | 2196 | 4095 | 2160 | 8190 | 2.0 |
| 1225 | | 2379 | 4095 | 2340 | 8190 | 2.0 |
| 1226 | | 2562 | 4095 | 2520 | 8190 | 2.0 |
| 1227 | K. 3 | 1281 | 1911 | 1260 | 3822 | 2.0 |
| 1228 | | 1281 | 1638 | 1260 | 3822 | 2.0 |
| 1229 | | 1281 | 1365 | 1260 | 3822 | 2.0 |
| 1230 | | 1281 | 1092 | 1260 | 3822 | 2.0 |
| 1231 | | 1281 | 819 | 1260 | 3822 | 2.0 |
| 1232 | | 1281 | 546 | 1260 | 3822 | 2.0 |
| 1233 | | 1281 | 273 | 1260 | 3822 | 2.0 |
| 1234 | K. 4 | 2745 | 0 | 2700 | 8190 | 2.0 |
| 1235 | | 2562 | 0 | 2520 | 8190 | 2.0 |

| 1236 | | 2379 | 0 | 2340 | 8190 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1237 | | 2196 | 0 | 2160 | 8190 | 2.0 |
| 1238 | | 2013 | 0 | 1980 | 8190 | 2.0 |
| 1239 | | 1830 | 0 | 1800 | 8190 | 2.0 |
| 1240 | | 1647 | 0 | 1620 | 8190 | 2.0 |
| 1241 | | 1464 | 0 | 1440 | 8190 | 2.0 |
| 1242 | | 1281 | 0 | 1260 | 8190 | 2.0 |
| 1243 | | 1098 | 0 | 1080 | 8190 | 2.0 |
| 1244 | | 915 | 0 | 900 | 8190 | 2.0 |
| 1245 | | 732 | 0 | 720 | 8190 | 2.0 |
| 1246 | | 549 | 0 | 540 | 8190 | 2.0 |
| 1247 | | 366 | 0 | 360 | 8190 | 2.0 |
| 1248 | | 183 | 0 | 180 | 8190 | 2.0 |
| 1249 | K. 5 | 0 | 0 | 0 | 7098 | 2.0 |
| 1250 | | 273 | 0 | 0 | 7098 | 2.0 |
| 1251 | | 546 | 0 | 0 | 7098 | 2.0 |
| 1252 | | 819 | 0 | 0 | 7098 | 2.0 |
| 1253 | | 1092 | 0 | 0 | 7098 | 2.0 |
| 1254 | | 1365 | 0 | 0 | 7098 | 2.0 |
| 1255 | | 1638 | 0 | 0 | 7098 | 2.0 |
| 1256 | | 1911 | 0 | 0 | 7098 | 2.0 |

| 1257 | | 2184 | 0 | 0 | 7098 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1258 | | 2457 | 0 | 0 | 7098 | 2.0 |
| 1259 | | 2730 | 0 | 0 | 7098 | 2.0 |
| 1260 | | 3003 | 0 | 0 | 7098 | 2.0 |
| 1261 | | 3276 | 0 | 0 | 7098 | 2.0 |
| 1262 | K. 6 | 1911 | 0 | 0 | 3822 | 2.0 |
| 1263 | | 1911 | 273 | 0 | 3822 | 2.0 |
| 1264 | | 1911 | 546 | 0 | 3822 | 2.0 |
| 1265 | | 1911 | 819 | 0 | 3822 | 2.0 |
| 1266 | | 1911 | 1092 | 0 | 3822 | 2.0 |
| 1267 | | 1911 | 1365 | 0 | 3822 | 2.0 |
| 1268 | | 1911 | 1638 | 0 | 3822 | 2.0 |
| 1269 | K. 7 | 3549 | 3549 | 0 | 7098 | 2.0 |
| 1270 | | 3276 | 3549 | 0 | 7098 | 2.0 |
| 1271 | | 3003 | 3549 | 0 | 7098 | 2.0 |
| 1272 | | 2730 | 3549 | 0 | 7098 | 2.0 |
| 1273 | | 2457 | 3549 | 0 | 7098 | 2.0 |
| 1274 | | 2184 | 3549 | 0 | 7098 | 2.0 |
| 1275 | | 1911 | 3549 | 0 | 7098 | 2.0 |
| 1276 | | 1638 | 3549 | 0 | 7098 | 2.0 |
| 1277 | | 1365 | 3549 | 0 | 7098 | 2.0 |

 \(1092354907098 \quad 2.0\)
 \(819354907098 \quad 2.0\)
 \(546354907098 \quad 2.0\)
 \(273354907098 \quad 2.0\)
 K. 8
 03549
 07098
 2.0

APPENDIX 2 Comparison of band structures of α-quartz in the GW approximation
(A2-1) and using the mBJ potential with spin polarization and self-interaction
correction for the Si3d orbitals (A2-2). Experimental bandgap obtained by low-loss
measurement in EELS/TEM is 9.65 eV from Garvie et al. (2000).
A2-1: GW method from Chang et al. (2000):
Figure A2-1

Figure A2-1. Calculated quasiparticle band structure of α-quartz in the GW approximation.

A2-2. Present mBJ method:

Figure A2-2. Calculated band structure of α-quartz in the $\mathrm{mBJ} /$ spin-polarized/Si3d-FLL approximation.

The two approaches yield very similar band structures of α-quartz and a very good account for the bandgap. Experimental gap energy is $9.65 \mathrm{eV}, \Gamma \rightarrow \Gamma$ gap is 10.1 eV calculated by the GW approximation and 9.41 eV in the present work using the mBJ approximation.

APPENDIX 3 Partial DOS in the VBs of coesite, α-quartz, stishovite and seifertite.

Partial DOS graphs presented here reveal the causes of occurrence of intra-VB gap in silica polymorphs with tetrahedrally coordinated Si . Figure A3-1 shows conditions prevailing in coesite, Figure A3-2 those in α-quartz, Figure A3-3 in stishovite and Figure A3-4 in seifertite.

Common features of the two tetrahedral polymorphs coesite and α-quartz are: (a) low contributions of Si to the split-off upper portion of VB ; (b) significant contributions of Si to the split-off lower portion of VB; and (c) overlap of Si and O contributions in the lower VB indicating covalent Si-O bonding (Figures A3-1 and A3-2).

Figure A3-1

Figure A3-1 Partial VB DOS of Si and O contributions in coesite, showing a separation of ionic O 2 p band from covalent Si-O band across a 1.3 eV intrinsic gap.

Figure A3-2

Figure A3-2 Partial VB DOS of Si and O contributions in α-quartz, showing a separation of ionic O 2 p band from covalent $\mathrm{Si}-\mathrm{O}$ band across a 1.7 eV intrinsic gap.

Common features of the two octahedral polymorphs stishovite and seifertite entail continuous, predominantly O 2 p valence bands with small, progressively decreasing contributions of Si from the bottom to the top of the VB (Figures A3-3 and A3-4).

Figure A3-3

Figure A3-3 Partial VB DOS of Si and O contributions in stishovite, showing a continuous band dominated by O2p orbitals with small contribution of Si orbitals decreasing from the bottom to the top of VB.

Figure A3-4

Figure A3-4 Partial VB DOS of Si and O contributions in seifertite, showing features similar to those of the stishovite VB in Figure A3-3.

FIGURES

Figures are presented in the following separate files:
"Optical absorption anisotropy of wide gap silica polymorphs stishovite - AmMiner-Figures-Revision1.docx", and
"Optical absorption anisotropy of wide gap silica polymorphs stishovite - AmMiner-Figures-Revision1.pdf".

TABLES

Table 1 Experimentally determined properties of silica polymorphs investigated here and of selected reference materials

| SiO_{2}
 polymorph | Density
 gm/cc | Refractive
 index at $0.588 \mathrm{~nm}$ | Mohs
 scale
 hardness | Space group | Optical
 bandgap
 eV | Si coordination |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Seifertite ${ }^{\text {a,b }}$ | 4.294 | n.a. | >8 | 60 Pbcn | n.a. | $\mathrm{SiO}_{2,2,2}$
 [\sim octahedral] |
| Stishovite ${ }^{\text {c,d,e }}$ | 4.28-4.30 | $\begin{aligned} & 1.799-1.800 \\ & {\left[\mathrm{n}_{\omega}\right]} \\ & 1.826-1.845 \\ & {\left[\mathrm{n}_{\varepsilon}\right]} \end{aligned}$ | 9-10 | $\begin{aligned} & 136 \\ & \mathrm{P} 42 / \mathrm{mnm} \end{aligned}$ | $8.75-7.6$ | $\mathrm{SiO}_{4,2}$
 [~octahedral] |
| Coesite ${ }^{\text {f,g,e }}$ | 2.911 | $\begin{aligned} & \mathrm{n}_{\mathrm{x}}=1.594 \\ & \mathrm{n}_{\mathrm{y}}=1.595 \\ & \mathrm{n}_{\mathrm{z}}=1.599 \end{aligned}$ | 7.5 | $15 \mathrm{C} 2 / \mathrm{c}$ | 8.6 | SiO_{4}
 [~tetrahedral] |
| Cristobalite ${ }^{\text {n,i }}$ | 2.33 | $\begin{aligned} & 1.487\left[\mathrm{n}_{\omega}\right] \\ & 1.484\left[\mathrm{n}_{\varepsilon}\right] \end{aligned}$ | 6-7 | $92 \mathrm{P} 4_{1} 2_{1} 2$ $227 \mathrm{Fd}-3 \mathrm{~m}$ | n.a. | SiO_{4}
 [~tetrahedral] |
| Quartz ${ }^{\text {j }}$ | 2.65 - | 1.54426 | 7 | α-quartz: | 9.65 | SiO_{4} |

| | 2.66 | | | 152 P3 ${ }_{1} 21$ and 154 P3 21 β-quartz: $180 \mathrm{P}_{2} 22$ and 181 $\mathrm{P}_{4} 22$ | | [~tetrahedral] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MgSiO_{3}
 Ilmenite ${ }^{\mathrm{k}}$ | $2.4-2.7$ | 2.40-2.42 | 5-6 | 148 R-3 | n.a. | $\begin{aligned} & \mathrm{SiO}_{3,3} \\ & {[\sim \text { octahedral }]} \end{aligned}$ |
| Amorphous $\text { silica }{ }^{1, \mathrm{~m}}$ | 2.648 | 1.458 | n.a. | 1 P 1 | $8.0-9.3$ | SiO_{4}
 [\sim tetrahedral] |

${ }^{\mathrm{a}}$ Dera et al. (2002); ${ }^{\mathrm{b}}$ El Goresy et al. (2008); ${ }^{\mathrm{c}}$ Stishov and Popova (1961); ${ }^{\mathrm{d}}$ Chao et al. (1962); ${ }^{\mathrm{e}}$ Trukhin et al. (2004); ${ }^{\mathrm{f}}$ Coes (1953); ${ }^{\mathrm{g}}$ Smyth et al. (1987);
${ }^{\mathrm{h}}$ http://en.wikipedia.org/wiki/Cristobalite; ${ }^{\text {i }}$ Experimental bandgaps are nearly independent for various silica polymorphs where available from the literature. However, theoretical bandgaps span a range of some 2 eV , from 8 to 10 eV (Ramos et al. 2004, present work); ${ }^{\mathrm{j}}$ Garvie et al. (2000); ${ }^{\mathrm{k}}$ Horiuchi et al. (1982); ${ }^{1}$ Vella et al. (2011); ${ }^{\mathrm{m}}$ Weinberg et al. (1979).

1411 Table 2 Empirical bond-valence parameters $\boldsymbol{R}_{\boldsymbol{0}}$ and \boldsymbol{b}, bond strength \boldsymbol{S}, and bond covalence fraction f_{c}

| Mineral | \boldsymbol{R} (($)$ | $\boldsymbol{R}_{0}(\AA)$ | \boldsymbol{b} (() | S
 (v.u.from
 Eq.VI-1) | f_{c} (covalent fraction of M-O bond) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Seifertite | 1.74158 | 1.624 | 0.37 | 0.72776 | 0.32067 |
| Stishovite | 1.75682 | 1.624 | 0.37 | 0.69839 | 0.29972 |
| Rutile TiO_{2} | 1.94323 | 1.815 | 0.37 | 0.70711 | 0.28438 |
| Coesite ${ }^{\text {a }}$ | $1.59552{ }^{a}$ | 1.624 | 0.37 | 1.08001 | 0.61266 |
| Coesite ${ }^{\text {b }}$ | $1.60536{ }^{\text {b }}$ | 1.624 | 0.37 | 1.05167 | 0.58651 |
| α-Quartz | 1.60146 | 1.624 | 0.37 | 1.06281 | 0.59674 |

Table 3 Effective mass $\mathrm{m}_{\text {eff }}$ in seifertite, stishovite, coesite and rutile in units of electron mass $m_{e}=9.10938 \mathrm{e}-31 \mathrm{~kg}$.

| $m_{\text {eff }}$ | seifertite | stishovite | coesite | TiO_{2}
 rutile |
| :--- | :--- | :--- | :--- | :--- |
| CBM at Γ-point, z-direction | 0.434 | 0.433 | 0.550^{a} | 0.789 |
| CBM at Γ-point, x-direction | 0.452 | 0.541 | 0.553 | $0.923^{\text {b }}$ |
| VBM at Γ-point, z-direction | 5.551 | 1.823 | 4.549 | 3.737 |
| VBM at Γ-point, x-direction | 0.492 | 1.127 | 2.551 | 2.172 |
| Bandgap. eV | 7.49608 | 7.57373 | 8.52257 | 3.116^{c} |

${ }^{a} \mathrm{z}$-direction in coesite is approximate due to its monoclinic structure
${ }^{\mathrm{b}} \mathrm{M} \rightarrow \mathrm{A}$ direction
${ }^{c}$ Ti3d U $\mathrm{eff}=0.25$ was chosen as in Solovyev, Dederichs and Anisimov (1994)

Optical absorption anisotropy of high-density, wide-gap, high-hardness $\mathrm{SiO}_{\mathbf{2}}$ polymorphs seifertite, stishovite and coesite.

Kamil Klier ${ }^{\text {a }}$, Jeffery A. Spirko ${ }^{\text {b }}$ and Kai M. Landskron ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Lehigh University, E. Packer Ave, Bethlehem, PA 18015
${ }^{\mathrm{b}}$ Department of Physical and Environmental Sciences, Texas A\&M University-Corpus Christi, 6300 Ocean Dr, Unit 5802, Corpus Christi, TX 78414-58

FIGURES

Figure 1. Band-to-band transitions at the Γ-points of the BZ at the direct gaps of (a) seifertite (using Mulliken irreducible representation labels of the $\mathrm{D}_{2 \mathrm{~h}}$ group), (b) stishovite $\left(\mathrm{D}_{2 \mathrm{~h}}\right)$ and (c) coesite $\left(\mathrm{C}_{2 \mathrm{~h}}\right)$. Green (red) arrows mark electric dipole allowed (forbidden) transitions. Thick arrows represent transitions VBM ($\mathrm{E}_{\mathrm{F}}=0$) \rightarrow CBM which are allowed in seifertite, and forbidden in stishovite and coesite. The closely separated valence band levels in coesite are expanded for clarity. The symbol for the bottom of conduction band BCB is used interchangeably with CBM.

Figure 2. Band structure and optical absorption of seifertite
Left - Energy band structure in the momentum space. Symbols for special points of the Brillouin zone are given in caption to Figure A1-2 in Appendix 1. Sizes of heavier plotting are given in parentheses with O 2 p -orbitals emphasized (0.2). Character of the bottom of conduction band (BCB) is a mixture of Si s-orbitals and a symmetric combination of O p-orbitals to give the total state symmetry A_{g}. The top of the valence band (TVB) is an antisymmetric combination of O2p orbitals of total state symmetry $\mathrm{B}_{2 \mathrm{u}}$, giving rise to allowed TVB $\left(\mathrm{B}_{2 \mathrm{u}}\right) \rightarrow \mathrm{BCB}\left(\mathrm{A}_{\mathrm{g}}\right)$ transition.

Right - Optical absorption spectra along the principal crystallographic axes of the orthorhombic structure. Allowed lowest transition across the direct bandgap gives rise to a sharp band edge at 7.5 eV excited by the y - $\left(\mathrm{B}_{2 \mathrm{u}}\right)$ component of the light electric dipole.

Figure 3. Band structure and optical absorption of stishovite
Left - Energy band structure in the momentum space. Symbols for special points of the Brillouin zone are given in caption to Figure A1-4 in Appendix 1. Sizes of heavier plotting are given in parentheses with O2p-orbitals emphasized (0.2). Character of CBM is mainly Si s-orbitals (not emphasized) of total state symmetry A_{g} under the $D_{2 h}$ group. The VBM is a combination of $O 2 p$ orbitals to give total state symmetry $\mathrm{B}_{1 \mathrm{~g}}$ and the VBM $\left(\mathrm{B}_{1 \mathrm{~g}}\right) \rightarrow \mathrm{CBM}\left(\mathrm{A}_{\mathrm{g}}\right)$ transition is symmetry and parity forbidden. Details of splitting of O2p orbitals near VBM are indicated by arrows and symmetry labels. Transitions from $B_{3 u}, B_{2 u}$ and $B_{1 u}$ VB states to $\mathrm{A}_{\mathrm{g}}(\mathrm{CBM})$ are allowed by the $\mathrm{x}, \mathrm{y}-\left(\mathrm{B}_{3 \mathrm{u}}, \mathrm{B}_{2 \mathrm{u}}\right)$ and $\mathrm{z}-\left(\mathrm{B}_{1 \mathrm{u}}\right)$ components of electric dipole.

Right - Optical absorption spectra of stishovite along the principal crystallographic axes of the tetragonal structure showing a pre-edge absorption and a large anisotropy between equatorial (abs-xx = abs-yy) and apical (abs-zz) absorptions. Spectra of the isostructural rutile lacking such an anisotropy are shown for comparison.

Figure 4. Band structure and optical absorption of coesite.
Left - With O orbitals emphasized (0.4). Labels of the BZ special points are specified in Figure A1-6 in Appendix 1.

Right - Optical absorption spectra of coesite along the principal crystallographic axes of the monoclinic structure (Abs-xx, -yy, -zz) and off-diagonal Abs-xz.

Figure 5. Band structure of TiO_{2} rutile.
Left - with Ti3d orbitals emphasized;
Right - with O2p orbitals emphasized.
Symbols for special points of the BZ are given in caption to Figure A1-4 in
Appendix 1 and their layout is identical with that of the isostructural stishovite (Figure 3) for comparison.

Figure 6 Representation of the O 2 p - based orbitals of stishovite that give rise to the $\mathrm{B}_{1 \mathrm{~g}}$ state at the TVB.

Left: calculated MO density at the Γ-point to within 0.1 eV from the Fermi level, showing the p -character of the orbitals of six O ligands around the central Si atom (cf. Figure A1-3 of Appendix 1). Corresponding phases of the wavefunction are marked with + and - signs.

Center: Schematic representation of the $\mathrm{B}_{1 \mathrm{~g}}$ crystal orbital at the VBM. For a clear symmetry analysis, the x-axis is chosen as normal to the (110) plane (dashed outline) and the y-axis is placed in the (110) plane, i.e. in directions rotated about the crystallographic z-axis by 45°, while the z-axis coincides with the crystallographic z-direction of Figure 3 of Appendix 1. Phases of the equatorial $\mathrm{O} 2 \mathrm{p}_{\mathrm{x}}$ orbitals are color coded red (+) and blue (-). Atomic $\mathrm{O} 2 \mathrm{p}_{\mathrm{x}}$ orbitals form a 4-dimensional reducible representation Γ_{4} which is reduced, using projection operators of the $\mathrm{D}_{2 \mathrm{~h}}$ group, as $\Gamma_{4}=\mathrm{B}_{1 \mathrm{~g}} \oplus \mathrm{~B}_{1 \mathrm{u}} \oplus \mathrm{B}_{2 \mathrm{u}} \oplus \mathrm{B}_{3 \mathrm{u}}$. The $\mathrm{B}_{1 \mathrm{~g}}$ state is realized by the combination $\mid \mathrm{B}_{1 \mathrm{~g}}>=\mathrm{N}[|1>-|2>-|3>+| 4>$] as depicted in the center panel. Apical $\mathrm{O} 2 \mathrm{p}_{\mathrm{y}}$ orbitals on the x -axis (shown only in the left panel) are in antibonding relation to the equatorial set and conform to the $B_{1 g}$ symmetry.

Right: An overlap between equatorial orbitals $|1>+| 4>$, and $|2>+| 3>$, and a node between these two sets results in a weak π-bonding that is topologically equivalent to that in HOMO of cyclobutadiene. Thus the $\mathrm{B}_{1 \mathrm{~g}}$ symmetry of the O2p VBM originates from the planar rectangular cyclical structure of oxygen "ligands" to the Si atom.

Figure A1-1 Unit cell of seifertite. Values of primitive translations $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is nearly octahedral and that of O by Si is trigonal.

Figure A1-2 Brillouin zone of the orthorhombic lattice. Critical points chosen for the band structure representation are labeled as $\Gamma(0,0,0), \mathrm{Z}(0,0,1 / 2), \mathrm{R}(1 / 2,1 / 2,1 / 2), \mathrm{S}(1 / 2,1 / 2,0)$, $X(1 / 2,0,0), U(1 / 2,0,1 / 2)$. Lengths of the reciprocal vectors $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$ are in the ratio generated by the seifertite structure.

Figure A1-3 Unit cell of stishovite. Values of primitive translations $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is nearly octahedral and that of O by Si is trigonal.

Figure A1-4 Brillouin zone of the tetragonal lattice. Critical points chosen for the band structure representation are labeled as $\Gamma(0,0,0), \mathrm{Z}(0,0,1 / 2), \mathrm{A}(1 / 2,1 / 2,1 / 2), \mathrm{M}(1 / 2,1 / 2,0), \mathrm{X}$ $(1 / 2,0,0), \mathrm{R}(1 / 2,0,1 / 2)$. Intermediate points $\Lambda, \mathrm{S}, \mathrm{V}, \Sigma, \Delta, \mathrm{W}$ and U have coordinates specified in the klist_band for the tetragonal lattice. Lengths of the reciprocal vectors \mathbf{a}^{*}, $\mathbf{b}^{*}, \mathbf{c}^{*}$ are in the ratio yielded by the stishovite structure.

Figure A1-5 Unit cell of coesite as a stereo picture. Values of primitive translations a, b, \mathbf{c} in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions and fractional coordinates of Si and O are given in the text. The coordination of Si by O is tetrahedral and that of O by Si is two-fold. O atoms at $(0,0,0)$ and $(1 / 2,1 / 2,1 / 2)$ are linearly coordinated to the nearest two Si neighbors, a feature that has influence on distribution of levels in the valence band.

Figure A1-6 Brillouin zone of the monoclinic, nearly hexagonal lattice about the \mathbf{b}^{*} axis. Critical points chosen for the band structure representation are labeled as:
$\Gamma(0,0,0), \mathrm{K} 2(0,1 / 2,0), \mathrm{K} 3(0.335,1 / 2,0.33), \mathrm{K} 4(0.335,0,0.33), \mathrm{K} 5=\Gamma, \mathrm{K} 6(1 / 2,0,0), \mathrm{K} 7$ $(1 / 2,1 / 2,0), \mathrm{K} 8=\mathrm{K} 2$.
The corresponding labels for the idealized hexagonal lattice are:
$\Gamma \equiv[\mathrm{K} 1=\mathrm{K} 5], \mathrm{A} \equiv[\mathrm{K} 2=\mathrm{K} 8], \mathrm{H} \equiv \mathrm{K} 3, \mathrm{~K} \equiv \mathrm{~K} 4, \mathrm{M} \equiv \mathrm{K} 6$ and $\mathrm{L} \equiv \mathrm{K} 7$.
The lengths of and angles between the reciprocal vectors $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$ are in the ratio created by the coesite structure.

Figure A2-1. Calculated quasiparticle band structure of α-quartz in the GW approximation.

Figure A2-2. Calculated band structure of α-quartz in the $\mathrm{mBJ} /$ spin-polarized/Si3d-SIC approximation.

Figure A3-1. Partial VB DOS of Si and O contributions in coesite, showing a separation of ionic O 2 p band from covalent $\mathrm{Si}-\mathrm{O}$ band across a 1.3 eV intrinsic gap.

Figure A3-2. Partial VB DOS of Si and O contributions in α-quartz, showing a separation of ionic O 2 p band from covalent $\mathrm{Si}-\mathrm{O}$ band across a 1.7 eV intrinsic gap. Common features of the two tetrahedral polymorphs coesite and α-quartz are: (a) low contributions of Si to the split-off upper portion of VB ; (b) significant contributions of Si to the split-off lower portion of VB; and (c) overlap of Si and O contributions in the lower VB indicating covalent Si-O bonding.

Figure A3-3. Partial VB DOS of Si and O contributions in stishovite, showing a continuous band dominated by O2p orbitals with small contribution of Si orbitals decreasing from the bottom to the top of VB.

Figure A3-4. Partial VB DOS of Si and O contributions in seifertite, showing features similar to those of the stishovite VB in Figure A3-3.
Common features of the two octahedral polymorphs stishovite and seifertite entail continuous, predominantly O 2 p valence bands with small, progressively decreasing contributions of Si from the bottom to the top of the VB.

Optical absorption anisotropy of high-density, wide-gap, high-hardness SiO_{2} polymorphs seifertite, stishovite and coesite.

Kamil Klier ${ }^{\text {a }}$, Jeffery A. Spirko ${ }^{\text {b }}$, and Kai M. Landskron ${ }^{\text {a }}$

TABLES

Table 1 Experimentally determined properties of silica polymorphs and selected reference materials

| $\underset{\text { polymorph }}{\mathrm{SiO}_{2}}$ | Density (gm/cc) | Refractive index at 0.588 nm | Mohs scale hardness | Space group | Optical bandgap (eV) | Si coordination |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Seifertite ${ }^{\text {a,b }}$ | 4.294 | n.a. | >8 | 60 Pbcn | n.a. | $\underset{[\sim \text { octahedral }]}{\mathrm{SiO}_{2,2,2}}$ |
| Stishovite ${ }^{\text {c,d,e }}$ | 4.28-4.30 | $\begin{gathered} 1.799-1.800 \\ {\left[\mathrm{n}_{\omega}\right]} \\ 1.826-1.845 \\ {\left[\mathrm{n}_{\varepsilon}\right]} \\ \hline \end{gathered}$ | $9-10$ | $\begin{gathered} 136 \\ \mathrm{P} 42 / \mathrm{mnm} \end{gathered}$ | $8.75-7.6$ | $\underset{\text { [~octahedral] }}{\mathrm{SiO}_{4,2}}$ |
| Coesite ${ }^{\text {f.g,e }}$ | 2.911 | $\begin{aligned} & \mathrm{n}_{\mathrm{x}}=1.594 \\ & \mathrm{n}_{\mathrm{y}}=1.595 \\ & \mathrm{n}_{\mathrm{z}}=1.599 \end{aligned}$ | 7.5 | $15 \mathrm{C} 2 / \mathrm{c}$ | 8.6 | $\underset{\text { [~tetrahedral] }}{\mathrm{SiO}_{4}}$ |
| Cristobalite ${ }^{\text {n,i }}$ | 2.33 | $\begin{gathered} 1.487\left[\mathrm{n}_{\omega}\right] \\ 1.484\left[\mathrm{n}_{\varepsilon}\right] \end{gathered}$ | 6-7 | $\begin{gathered} 92 \mathrm{P}_{1} 2_{1} 2 \\ 227 \mathrm{Fd}-3 \mathrm{~m} \\ \hline \end{gathered}$ | n.a. | $\underset{\text { [~tetrahedral] }}{\mathrm{SiO}_{4}}$ |
| Quartz ${ }^{\text {j }}$ | $\begin{gathered} 2.65- \\ 2.66 \end{gathered}$ | 1.54426 | 7 | α-quartz:
 152 P3 ${ }_{1} 21$
 and 154
 P3 21
 β-quartz:
 $180 \mathrm{P}_{2} 22$
 and 181
 $\mathrm{P}_{4} 22$ | 9.65 | $\underset{\text { [~tetrahedral] }}{\mathrm{SiO}_{4}}$ |
| $\begin{gathered} \mathrm{MgSiO}_{3} \\ \text { IImenite }^{\mathrm{k}} \end{gathered}$ | 2.4-2.7 | $2.40-2.42$ | 5-6 | 148 R-3 | n.a. | $\underset{[\sim \text { octahedral] }}{\mathrm{SiO}_{3,3}}$ |
| Amorphous silica ${ }^{1, \mathrm{~m}}$ | 2.648 | 1.458 | n.a. | 1 P1 | $8.0-9.3$ | $\begin{gathered} \mathrm{SiO}_{4} \\ \text { [~tetrahedral] } \end{gathered}$ |

Notes: ${ }^{\text {a }}$ Dera et al. (2002). ${ }^{\mathrm{b}}$ El Goresy et al. (2008). ${ }^{\mathrm{c}}$ Stishov and Popova (1961). ${ }^{\text {d }}$ Chao et al. (1962). ${ }^{\mathrm{e}}$ Trukhin et al. (2004). ${ }^{\text {f }}$ Coes (1953). ${ }^{\text {g }}$ Smyth et al. (1987).
${ }^{\mathrm{h}}$ http://en.wikipedia.org/wiki/Cristobalite. ${ }^{\text {i }}$ Experimental bandgaps are nearly independent for various silica polymorphs where available from the literature. However, theoretical bandgaps span a range of some 2 eV , from 8 to 10 eV (Ramos et al. 2004, present work). ${ }^{\mathrm{j}}$ Garvie et al. (2000). ${ }^{\mathrm{k}}$ Horiuchi et al. (1982). ${ }^{1}$ Vella et al. (2011). ${ }^{\mathrm{m}}$ Weinberg et al. (1979).

Table 2 Empirical bond-valence parameters R_{0} and b, bond strength S, and bond covalence fraction f_{c}

| Mineral | $\mathbf{R}(\AA ́)$ | $\mathbf{R}_{\mathbf{0}}(\AA ́)$ | \mathbf{b} (Á) | \mathbf{S}
 (v.u.from
 Eq.VI-1) | $\mathbf{f}_{\mathbf{c}}$
 (covalent
 fraction of
 M-O bond) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Seifertite | 1.74158 | 1.624 | 0.37 | 0.72776 | 0.32067 |
| Stishovite | 1.75682 | 1.624 | 0.37 | 0.69839 | 0.29972 |
| ${\text { Rutile } \mathrm{TiO}_{2}}^{1.94323}$ | 1.815 | 0.37 | 0.70711 | 0.28438 | |
| Coesite a | 1.59552^{a} | 1.624 | 0.37 | 1.08001 | 0.61266 |
| Coesite b | 1.60536^{b} | 1.624 | 0.37 | 1.05167 | 0.58651 |
| α-Quartz | 1.60146 | 1.624 | 0.37 | 1.06281 | 0.59674 |

Notes: ${ }^{a}$ Shortest Si-O bond distance in coesite. ${ }^{b}$ Longest Si-O bond distance in coesite.
Table 3 Effective mass $m_{\text {eff }}$ in seifertite, stishovite, coesite and rutile in units of electron mass $\mathbf{m}_{\mathrm{e}}=9.10938 \mathrm{e}-31 \mathrm{~kg}$, and bandgap at the Γ-point

| $\mathbf{m}_{\text {eff }}$ | seifertite | stishovite | coesite | $\mathbf{T i O}_{2}$
 rutile |
| :---: | :---: | :---: | :---: | :---: |
| CBM at Γ-point, z-direction | 0.434 | 0.433 | 0.550^{a} | 0.789 |
| CBM at Γ-point, x-direction | 0.452 | 0.541 | 0.553 | 0.923^{b} |
| VBM at Γ-point, z-direction | 5.551 | 1.823 | 4.549 | 3.737 |
| VBM at Γ-point, x-direction | 0.492 | 1.127 | 2.551 | 2.172 |
| Bandgap (eV) ${ }^{\text {d }}$ | 7.49608 | 7.57373 | 8.52257 | 3.116^{c} |

Notes: ${ }^{\text {a }} \mathrm{z}$-direction in coesite is approximate due to its monoclinic structure. ${ }^{\mathrm{b}} \mathrm{M} \rightarrow \mathrm{A}$ direction. ${ }^{\mathrm{c}}$ Ti3d $\mathrm{U}_{\text {eff }}=0.25$ was chosen as in Solovyev, Dederichs and Anisimov (1994). ${ }^{\text {d }}$ Bandgap between valence band maximum (VBM) and conduction band minimum (CBM).

