1 2 3 4	Revision 3 correction date 08.05.2019 Cation ordering, valence states and symmetry breaking in the crystal- chemically complex mineral chevkinite-(Ce). Recrystallization, transformation and metamict states in chevkinite
5 6	MARCIN STACHOWICZ ^{1,2,*} , MARK D. WELCH ² , BOGUSŁAW BAGIŃSKI ¹ , PAVEL M.
7	KARTASHOV ³ , RAY MACDONALD ¹ , AND KRZYSZTOF WOŹNIAK ⁴
8	
9	¹ Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089 Warsaw, Poland.
10	² Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, England,
11	³ Institute of Ore Deposits, Russian Academy of Sciences, Moscow 109107, Russia
12	⁴ Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury
13	101,02-089 Warszawa, Poland.
14	
15	
16	ABSTRACT
17	Annealing is commonly used in the recrystallization of metamict minerals in an attempt to
18	reconstruct the original structure. Annealing at 750 °C of Nb-rich chevkinite-(Ce) from the
19	Biraya rare-metal deposit, Russia, resulted in the structural transformation $C2/m \rightarrow P2_1/a$,
20	which defines chevkinite crystal stability in different environments. This transformation
21	seems to be a rapid version of a naturally occurring process that possibly involves twinning of
22	the crystals. Nb-rich chevkinite-(Ce) occurs naturally as two polymorphs, one with the $C2/m$
23	space group and the other with $P2_1/a$. The latter is the stable form under ambient conditions.
24	There are some distinct differences in the values of the structural parameters, such as the
25	average <i>M</i> -O distances or site scattering values of particular sites for both space groups,
26	which can be associated with the redistribution of some lighter cations, mainly Mg ²⁺ , within

27

the crystal lattice. The use of complementary experimental techniques (electron probe

28	microanalysis, X-ray diffraction, and photoelectron spectroscopy) has delivered information
29	on the structure and transformation of a very complex, highly zoned and partially metamict
30	solid solution. It should be useful in determining the structure of any mineral where cation
31	disorder is present.
32	
33	Keywords: chevkinite, annealing, crystal structure, metamict, recrystallization
34	
35	INTRODUCTION
36	Chevkinite-group minerals (CGM), comprising twelve species, are increasingly being
37	recognised as accessory phases in a wide range of igneous and metamorphic rocks
38	(Macdonald and Belkin 2002; Vlach and Gualda 2007; Carlier and Lorand 2008; Belkin et al.
39	2009; Macdonald et al. 2009, 2012). The standard formula of CGM (Ito 1967),
40	$A_4BC_2D_2(Si_2O_7)_2O_8$, is often used for determining the sites occupied by particular cations.
41	Based on structural features CGM can be divided to two subgroups: chevkinite and perrierite.
42	The chevkinite type structure is shown in summary form in Figure 1. Together CO_6 and DO_6
43	octahedra form sheets parallel to (001). Between these sheets are BO_6 octahedra, linked to
44	neighbouring BO_6 and CO_6 octahedra by sharing corners with (Si ₂ O ₇) disilicate groups, and A
45	cations arranged in planar arrays with a Si(2)-centred tetrahedron inside each hexagonal array.
46	Due to the occurrence of CGM in chevkinite-type and perririte-type forms, there are also
47	discrepancies in the assignment of ions to particular B , C and D sites. Previous studies of
48	CGM have shown significant differences in the identification and names of unique sites of the
49	crystal structure (particularly the B , C and D sites). To clarify which site in the crystal
50	structure corresponds to a site from the empirical formula of Nb-rich chevkinite-(Ce)

51 determined by electron microprobe, a short graphical representation of the sites is presented in Figure 1. An alternative naming of M(1), M(2), M(3) and M(4), consistent with the 52 nomenclature proposed by Hawthorne et al. (1995) and corresponding to B, C, D(1) and D(2), 53 respectively, is given by Popov et al. (2001) and Sokolova et al. (2004). An exact definition of 54 the sites in the crystal lattice is essential for a proper comparison with data available in the 55 literature. An alternative description of the crystal structure of Fe-rich chevkinite-(Ce) was 56 proposed by (Yang et al. 2002, 2007) with the unit cell origin shifted by the vector $[0, 0, \frac{1}{2}]$. 57 58 Both descriptions are correct, but care must be taken when comparing the results in the literature. The coordinates $(\frac{1}{2}, 0, 0)$ correspond to the *B* site in Yang's et al. (2007) crystal 59 structure and to the D(1) in our description and those of Popov et al. (2001) and Sokolova et 60 61 al. (2004), who name it the M(3) site.

A concentration of radioactive elements often results in full or partial metamictization of the crystal structure (Hawthorne et al. 1991). This phenomenon has often been recognised for CGM (Sokolova et al. 2004), for which Th is a significant minor constituent. Annealing is often used to reconstruct a radiation-damaged crystal structure (Popov et al. 2001). Some areas of the studied samples of Nb-rich chevkinite-(Ce) are also metamict due to a significant concentration of Th (Stachowicz et al. 2019).

Thermal annealing can also cause the redistribution of metal cations between crystallographic sites. Rapid redistribution of cations on thermal annealing has been found in numerous minerals, such as amphibole (Reece et al. 2002; Welch et al. 2008, 2010; Zema et al. 2011) and olivine (Redfern et al. 1996) using X-ray and neutron diffraction. In these cases, progressive heating in 20 °C steps from 200-800 °C resulted in rapid redistribution of divalent cations (Mg²⁺, Mn²⁺, Fe²⁺) within an hour. Consequently, it is likely that some cation redistribution will occur in chevkinite annealed at *T* >600 °C for 24 hours.

75	Chevkinites are known to have vacancies at metal sites in the crystal structure, having
76	been reported for the A, B, C and D sites (Yang et al. 2002), but at the $C(M(2))$ site only,
77	varying from being minor (Popov et al. 2001; Sokolova et al. 2004) to the 50% vacancies at
78	this site recorded in the crystal structure of delhuyarite-(Ce); this level of vacancy is species-
79	defining (Holtstam et al. 2017).
80	There is also some uncertainty in the literature as to which space group(s) CGM belong
81	to. $P2_1/a$ was determined by Čech et al. (1983), Haggerty and Mariano (1983), Miyawaki et
82	al. (2002) and Xu et al. (2008). Space group $C2/m$ was proposed by Gottardi (1960), Yang et
83	al. (1991), Popov et al. (2001), Yang et al. (2002, 2012) and Liziero (2008), whereas
84	Miyajima et al. (2002) suggested that the structure of matsubaraite was in the pseudo- $C2/m$
85	group.
86	A sample of Nb-rich chevkinite-(Ce) from the Biraya rare-metal deposit, Russia, was
87	studied by Stachowicz et al. (2019) to determine its crystal structure and to evaluate the role
88	of Nb in the chevkinite group. Chevkinite from this locality is the most Nb-rich yet known.
89	Stachowicz et al. (2019) identified a new substitution mechanism, $2^{D}Ti^{4+} \rightarrow {}^{D}Nb^{5+} + {}^{D}Ti^{3+}$,
90	which, together with the substitution ${}^{C}Fe^{3+} + {}^{D}Ti^{4+} \rightarrow {}^{C}Fe^{2+} + {}^{D}Nb^{5+}$ leads to substantial Nb
91	enrichment. The present paper focuses on the nature of the $P2_1/a$ phase in Nb-rich chevkinite-
92	(Ce) from the same locality. On the basis of our new data, a possible relationship between the
93	$P2_1/a$ and $C2/m$ space groups is proposed.

- 94
- 95

SAMPLE AND ANALYTICAL METHODS

The Nb-rich chevkinite-(Ce) analysed here is from the Biraya rare-metal deposit, located in
the north of the Irkutsk district, Transbaikalia, Russia (57°52′51″N, 116°42′30″E). Nine single
crystals were examined by single-crystal X-ray diffraction. Mineral compositions in crystal 1

were determined by electron microprobe at the Inter-Institute Analytical Complex at IGMiP 99 Faculty of Geology, University of Warsaw, using a Cameca SX-100 microprobe equipped 100 101 with four wavelength analysers. The detailed results are given in a companion article 102 (Stachowicz et al., 2019). There is considerable compositional variation related to textural variations. Variation in the oscillatory zoned area is modest, e.g. 8.04-10.09 wt% Nb₂O₅. In 103 that zone, the average analytical total is 98.03 wt%; however, a notable feature of the other 104 zones is the low oxide totals, down to 88.41 wt%. Such low totals are commonly associated 105 106 with hydrothermal alteration, consistent in this case with the textural evidence that the lowtotal zones appear to be replacing the oscillatory zones. The partial metamictization of the Nb-107 rich chevkinite-(Ce) crystals was confirmed by the results of series of X-ray experiments on 108 109 natural and annealed crystals. The experimental section contains details of the annealing 110 procedure. An analysis of the valences of Ce, Ti and Fe, investigated by X-ray photoelectron spectroscopy (XPS) was also presented (Stachowicz et al., 2019). Cerium is present as Ce³⁺ 111 only, and iron as Fe^{2+} and Fe^{3+} in the ratio 1:1.84. Titanium is present in three valence states, 112 +4, +3, +2, with ratios of 5:5:2, respectively. The EPMA analysis of unaltered parts of crystal 113 114 1 gave the following empirical formula: ${}^{A}(Ca_{0.11}Na_{0.12}La_{1.30}Ce_{2.06}Pr_{0.16}Nd_{0.42})^{BCD}(Fe_{2.24}Mg_{0.22}Al_{0.15}Ti_{1.06}Nb_{0.98})(Si_{2.07}O_{7})_{2}O_{8}.$ 115

116

117

CRYSTAL STRUCTURE DETERMINATION

118 Experimental

119 A full Ewald sphere of reflections was collected to $\theta = 30^{\circ}$ for two crystals (1 and 6) using a

120 KUMA KM4CCD κ-axis diffractometer equipped with Opal CCD detector and graphite-

monochromated MoK α radiation. Another six crystals (2-5, 7, 8) from the same sample were

analysed on an Agilent SuperNova diffractometer, equipped with a Mo Kα micro-focus X-ray

123	source and an EOS CCD detector. Finally, a series of single-crystal XRD experiments on
124	crystal 9 was carried out with an Agilent XcaliburE diffractometer equipped with an EOS
125	detector and MoKa radiation source.
126	Details of investigation of natural crystals 1 and 2 are given in the complementary paper
127	(Stachowicz et al., 2019). Here, we present the results of the structural analysis of five
128	additional natural crystals (3, 6, 7, 8, 9) and four annealed crystals (1, 4, 5, 9). The annealing
129	of crystals 1, 4 and 5 was performed in a vacuum furnace at 750 °C, for 24 hours. The crystals
130	were cooled to room temperature within three hours. A series of single-crystal XRD
131	experiments on crystal 9 was carried out (i) on a natural, unheated crystal; (ii) after annealing
132	at 500 °C for 24 h; (iii) after annealing at 600 °C for 18 h; (iv) after annealing at 600 °C for a
133	further 24 h; (v) after annealing at 650 °C for 24 hours. Before each annealing cycle the
134	crystal was enclosed in an evacuated borax glass capsule.
135	All data sets were corrected for Lorentz and polarization effects. A numerical absorption
136	correction was applied in each case based upon crystal shape. Data reduction and analysis
137	were carried out with the program CrysalisPro® (Rigaku-Oxford Diffraction).
138	Crystal structures were solved by direct methods and refined using SHELXL (Sheldrick
139	2008) as implemented in Olex2 (Dolomanov et al. 2009) and WinGX (Farrugia 2012). The
140	refinements were based on F^2 for all reflections, except those with negative intensities.
141	Weighted R factors (wR) and all goodness-of-fit (S) values are based on F^2 . Conventional R
142	factors are based on F with F set to zero for negative F^2 . R factors based on F^2 are about twice
143	as large as those based on F . Scattering factors for neutral atoms were taken from the
144	International Tables for Crystallography Vol. C (Wilson 1992).
145	In order to obtain better geometry and ADPs (Sanjuan-Szklarz et al. 2016), higher-
146	resolution datasets were collected than recommended by the International Union of
147	Crystallography (IUCr). The highest residual electron density maxima (even up to 9.4 eÅ ⁻³ for
	6

crystal 2) are located *c.a.* 0.6-0.7 Å from the heavy *REE* atoms for all crystal structures. These 148 values can be reduced (4.8 $e^{A^{-3}}$ for crystal 2) when the resolution is decreased to 0.6 A^{-1} . (as 149 150 recommended by IUCr), consistent with the cause of the high residual being associated with termination ripples in the Fourier synthesis, rather than being due to incomplete modelling of 151 a contribution from non-bonded electrons or a split site. 152 In this study, the origin of the unit cell for all crystal structures was chosen such that the 153 B site corresponds to the Wyckoff 2d unique position for space group C2/m and to the 2b 154 155 position for space group $P2_1/a$. The unique site C refers to position 4e for both space groups. The D site refers to two independent Wyckoff positions: 2a, 2b for C2/m and 2a, 2c for $P2_1/a$. 156 Our choice is analogous to that used by Sokolova et al. (2004). 157

158 Crystal structure data

159 Emphasis is given to the transformations of crystal 1 for which complementary X-ray

160 datasets before and after annealing, and numerous electron probe microanalyzer (EPMA)

analyses were obtained. Subsequent X-ray experiments on the remaining crystals (2-9)

162 corroborate a general trend. The exact allocation of cations to crystallographic sites for

163 compositions determined by EPMA is hindered for several reasons. The empirical formula for

164 Nb-rich chevkinite-(Ce) crystal 1 given by Stachowicz et al. (2019)

165 ${}^{A}(Ca_{0.18}Sr_{0.13}Na_{0.16}La_{1.2}Ce_{2.02}Pr_{0.16}Nd_{0.42})^{BCD}(Fe_{1.91}Mg_{0.16}Al_{0.13}Ti_{1.22}Nb_{1.11})(Si_{1.99}O_{7})_{2}O_{8}$, is the

average of all microprobe analyses, and is not representative because the crystal is partially

167 metamict, due to its significant Th content. Partial recrystallization occurred during the

- annealing process, after which stronger scattering of X-rays by crystals 1 and 9 was observed.
- 169 Moreover, the refined site scattering values (ssv= electrons per site) of the A, B, C and D sites

170 changed. The transformation $C2/m \rightarrow P2_1/a$ was also observed. As described in the

171 Introduction, it is also likely that thermal annealing at 600-700 °C is involved in redistribution172 of some cations.

Initially, ssv were refined on the basis of the X-ray diffraction data. We found that an 173 identical allocation of cations in both the $P2_1/a$ and C2/m crystal structures is inconsistent 174 with the refined site occupancies: A, B, C and D ssv sum to different values in the natural 175 C2/m and transformed, annealed $P2_1/a$ crystal 1. We carried out several X-ray experiments on 176 177 both annealed and untreated natural crystals of Nb-rich chevkinite-(Ce) and found a clear correlation between the changes in the refined X-ray crystal structure parameters (Table 1) 178 179 and the temperature of annealing. The structural parameters for natural crystals 1, 6, 7, 8 and 9 listed in Table 1 are very 180 consistent. Volumes of the first coordination spheres of cations at the B, C and D sites are 181 similar for these (C2/m) crystals. BO₆ octahedra all have volumes of ~12 Å³. D(1) and D(2) 182 octahedra have equal volumes of ~11 Å³. After annealing, the volume of the BO_6 octahedron 183 increases markedly to 12.6 Å³, whereas the volumes of CO_6 , $D(1)O_6$ and $D(2)O_6$ octahedra 184 185 remain unchanged. However, ssv values change for all A, B, C and D, being least for the C site. Crystals 2 and 3 are also natural, but their crystal structure parameters are comparable to 186 those obtained for the annealed and transformed samples. The analysis of reflections (Figure 187 S1) also proved that the space group for this case is rather $P2_1/a$. 188

189

190

DETERMINATION OF SPACE GROUPS

191 Consequences of crystal annealing; decrease of symmetry

192 In order to determine the space group(s) in which CGM crystallize the same single crystal

- 193 fragment of Nb-rich chevkinite-(Ce) which was investigated using X-ray radiation
- 194 (Stachowicz et al., 2019) was annealed at 750 °C for 24 hours, and then cooled to room

195	temperature within 3 hours. A new set of XRD data was then collected on our single crystal
196	X-ray diffractometer. Quasi-precession images of the (1kl) reciprocal lattice layer (Figure 2)
197	reconstructed from the full data collection prove the presence of the transformation from
198	$C2/m$ space group to $P2_1/a$. Reflections violating $C2/m$ symmetry $(h + k = 2n + 1 \text{ for } hkl)$ are
199	shown inside the red rectangles in Figure 2. The reconstructed diffraction patterns for the
200	fourteen X-ray experiments on Nb-rich chevkinite-(Ce) crystals are given in Supplementary
201	Figure S1, together with information on $\langle I/\sigma(I) \rangle$ for all violators.
202	The natural crystals 2 and 3 also transformed to $P2_1/a$ symmetry and only these two
203	crystals exhibit a significant twinning out of all tested samples (1-9). It is, therefore, possible
204	that the mechanism of natural transformation involves twinning of the crystals.
205	Annealing of the Nb-rich chevkinite-(Ce) at 750°C caused a transition from space group
206	$C2/m$ to $P2_1/a$ and we have suggested that this transformation seems to be a rapid version of a
207	naturally occurring process (Stachowicz et al. 2019). Evidence from the natural rocks is
208	equivocal. Perrierite, which generally forms at higher temperatures than chevkinite
209	(Macdonald and Belkin 2002; Macdonald et al. 2019), commonly but not invariably
210	crystallizes in space group $P2_1/a$; Sr-Zr perrierite-(Ce), for example, has a $C2/m$ symmetry
211	(Stachowicz et al. 2014). Attempting to relate CGM space group type to temperature of
212	formation is hindered by the difficulties in estimating temperatures of the common host rocks,
213	such as metasomatites, skarns and pegmatites. Such information would be better sought using
214	phenocrysts in extrusive rocks for which temperatures have been estimated. A further
215	complication is that we have observed the reverse transformation from $P2_1/a$ to $C2/m$ in a
216	compositionally simpler perrierite from Nettuno, Italy, induced by pressures up to 6 GPa.
217	The Bärnighausen tree (Figure 3) served as a test, validating the transition by means of
218	Group Theory. It summarises a transition pathway and was constructed using the
219	WYCKSPLIT (Kroumova et al. 1998) software implemented into the Bilbao Crystallographic
	9

220	Server (Aroyo et al. 2006a, 2006b). The largest shift of atoms is expected for light atoms that
221	are released from a symmetry element (O(3) and O(4)). The rotation of the SiO_4 tetrahedron,
222	that contains $O(3)$ and $O(4)$ oxygen atoms, results in a change of the coordination of the $A(2)$
223	site (see Table 1). A detailed discussion of the Bärnighausen tree and the symmetry relations
224	in Nb-chevkinite-(Ce) is given in the Supplementary Data.

- 225
- 226

ASSIGNMENT OF POSITIONS FOR CATIONS

227 In order to determine which atoms occupy A, B, C and D sites, one can relate the values of the 228 ionic radii (Shannon 1976) to the volumes of the first coordination polyhedra of each site, which can be calculated from the X-ray crystal structure using the algorithm introduced by 229 Robinson et al. (1971). This approach may be useful especially in cases of a high variability 230 231 of elements occupying the same crystallographic sites in a mineral, which is the case for Nbrich chevkinite-(Ce). The volumes of octahedra were calculated in Platon software (Spek 232 2009) and the volumes of other polyhedra in Vesta software (Momma and Izumi 2011). The 233 refined (against the X-ray data) A, B, C and D site scattering values sum to significantly 234 different values for C2/m and $P2_1/a$ crystal structures. The MO_6 first coordination sphere 235 octahedra (especially the BO₆ octahedra) also differ significantly in volume (Table 1). 236 The A sites are occupied by REE, Ca and Na atoms. As is common in CGM, there is an 237 excess of elements in the A site. Sokolova et al. (2004) suggested the presence of small 238 239 amounts of Ca (0.05 atoms per formula unit; apfu) in the B site of chevkinite-(Ce) from the Khaldzan Buragtag alkali granite, Mongolia. 240 The BO_6 octahedron is the largest of all MO_6 octahedra in CGM. The ions having the 241

largest radii (except larger *REE* cations from the *A* sites) should be considered to occupy the *B*

site. The ssv values of 26 electrons for natural (C2/m) crystals 1,7, 8 suggest the predominant

occupancy of Fe^{2+} (ionic radius (i.r.) of 0.78 Å), which is in agreement with the literature. The 10

ssv values for crystals 6 and 9 suggest the possible occupation of elements heavier than Iron. 245 Following the suggestion of Sokolova et al. (2004), due to the excess of cations commonly 246 assigned to the A site, some can occupy also the B site of Nb-rich chevkinite-(Ce). Among 247 heavier elements, only Th could fit in to this site: Th-O bond length varies between 2.15-2.62 248 Å for crystal structures with Th- O_6 coordination octahedra (Serezhkina et al. 2017). Figure 4 249 presents the BO₆ coordination with atoms shown as thermal ellipsoids. Mixed occupancy can 250 251 be registered as a larger U_{iso} value and prolate/oblate anisotropic displacement ellipsoid. However, a positional disorder of a single atom species must also be considered. To reach the 252 ssv of 29 for crystal 9, 0.08 apfu of Th⁴⁺ in the B site is needed and 0.04 apfu to reach an ssv 253 of 27.6 for crystal 6. Crystal 9 was also much more metamict than other crystals (see 254 Supplementary Figure S1 with the weakest scattering of X-ray reflections, despite the longest 255 exposure time), so a larger concentration of Th is expected here. The mechanism of Th 256 incorporation into the *B* site may be the substitution: ${}^{B}Fe^{2+} + {}^{A}Ce^{3+} \rightarrow {}^{B}Th^{4+} + {}^{A}Na^{+}$. 257 With the transformation to a lower symmetry space group the volume of BO_6 increases on 258 the average by 0.6 Å³ and the ssy value drops by *ca*. 2 electrons. These results show that 259 heating induces a reorganisation or substitution of cations. The lighter Mg^{2+} (i.r. =0.72Å) ions 260 substitute for Th^{4+} or part of the Fe^{2+} . 261 The C site has the smallest volume of all MO_6 coordination octahedra (Table 1) for Nb-rich 262 chevkinite-(Ce) (for both structure types). It is occupied by Fe^{3+} (i.r.= 0.65 Å), Nb⁵⁺ (i.r.= 263 0.64 Å) and Al^{3+} (i.r.= 0.54 Å) ions. This site shows the smallest changes due to 264 transformation, both in CO₆ volume and ssv values. 265 The two D(1) and D(2) sites have identical DO_6 volumes, yet differ with ssv values of 20.7 266 and 24.2 in average, respectively, for crystals of C2/m symmetry. We assigned Ti³⁺ (i.r.= 0.67 267 Å), Ti⁴⁺ (i.r.= 0.60 Å), Nb⁵⁺ and Mg²⁺ into these sites. In the transformed crystals ($P2_1/a$ 268

symmetry), Mg²⁺ is absent from these sites which is reflected in the increase of ssv to 24.7
 11

270	and 26.8 in average, for $D(1)$ and $D(2)$ respectively. The DO_6 octahedra have the largest
271	volumes (our calculations) among all chevkinites of known crystal structure. We interpret this
272	as a structural indication of the presence of Ti^{3+} (C2/m and P2 ₁ /a) and Mg ²⁺ (C2/m) at the D
273	sites of the Nb-rich chevkinite-(Ce). The mechanism of Ti ⁴⁺ substitution in the D sites is also
274	proposed as: $2\text{Ti}^{4+} \rightarrow \text{Nb}^{5+} + \text{Ti}^{3+}$; $2\text{Ti}^{4+} + \text{O}^{2-} \rightarrow \text{Nb}^{5+} + \text{Mg}^{2+} + \text{OH}^{-} + \text{vac}$.
275	Niobium is distributed among the C and D sites. Its presence is shown in larger values of
276	ssv because it is masked by the presence of vacancies and lighter elements, Al^{3+} at the C and
277	Mg^{2+} at the <i>D</i> site. With the migration of Magnesium to the <i>B</i> site in the $P2_1/a$ crystal
278	structure the presence of Nb is revealed in the increasing values of ssv of the D sites.
279	
280	IMPLICATIONS
281	The recognition that the analysis of the systematic extinction of reflections forbidden in a
282	certain space group can be equivocal demands testing. Such a test, proposed here, is the
283	values of the volumes of BO_6 octahedra and atomic displacement parameters U_{eq} . A
284	convenient tool in the evaluation of indicators of the crystal symmetry is construction of the
285	Bärnighausen tree. The multidisciplinary crystal-chemical approach used here should be of
286	value in determining the structure of all minerals with cation disorder. This may be
287	particularly relevant to REE-bearing phases due to the increased use of REE in technological
288	applications and the accompanying interest in REE exploitation.
289	The possible existence of a new end member in CGM has been identified with the substitution
290	mechanism given for Ti^{3+} and Nb^{5+} in the D sites: ${}^{A}\text{Ce}_{4}{}^{B}\text{Fe}^{2+}{}^{C}(\text{Fe}^{3+})_{2}{}^{D}\text{Nb}^{5+}{}^{D}\text{Ti}^{3+}(\text{Si}_{2}\text{O}_{7})_{2}\text{O}_{8}$.
291	Geological significance
292	Nb-rich chevkinite-(Ce) is of igneous/hydrothermal origin. We can speculate that the
293	mineral was formed at relatively high temperature and then rapidly cooled. The cooling froze
294	the structure in space group $C2/m$ which is stable at high temperature but remains metastable
	12

295	at room temperature. It can be assumed that the metastable phase at room temperature would,
296	after a sufficiently long time, reorganise to a lower symmetry. Laboratory heating of the
297	sample delivered enough energy to overcome the kinetic barrier of the transition and enabled
298	the ordering of most of the atoms in the general positions of the unit cell. The energy supplied
299	to the system was not large enough to match the natural conditions for the formation of Nb-
300	rich chevkinite-(Ce) and that is why we were able to recognise the crystal structure
301	transformation.
302	
303	ACKNOWLEDGMENTS
304	We are very grateful to David Brown, an anonymous reviewer and Associate Editor
305	Alejandro Fernandez-Martinez for their very helpful comments on the manuscript, which
306	much improved its quality. The research for this paper was in part supported by the Polish
307	Ministry of Science and Higher Education within the Mobility Plus Fund award number
308	1301/MOB/IV/2015/0. Financial support was provided by Polish National Science Centre
309	NCN grant decision DEC-2011/03/B/ST10/05491. We thank the Department of Earth
310	Sciences, Natural History Museum, London, for hosting MS's year-long visit to work with
311	MDW.
312	
313	REFERENCES CITED
314	Aroyo, M.I., Perez-Mato, J.M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G.,
315	Kirov, A., and Wondratschek, H. (2006a) Bilbao Crystallographic Server: I. Databases
316	and crystallographic computing programs. Zeitschrift für Kristallographie, 221, 15–27.
317	Aroyo, M.I., Kirov, A., Capillas, C., Perez-Mato, J.M., and Wondratschek, H. (2006b) Bilbao
318	Crystallographic Server. II. Representations of crystallographic point groups and space

319	groups. Acta Crystallographica Section A Foundations of Crystallography, 62, 115-
320	128.
321	Bader, R.F.W. (1994) Atoms in Molecules: A Quantum Theory, 438 p. Clarendon Press.
322	Bader, R.F.W. (1998) A Bond Path: A Universal Indicator of Bonded Interactions. The
323	Journal of Physical Chemistry A, 102, 7314–7323.
324	Belkin, H.E., Macdonald, R., and Grew, E.S. (2009) Chevkinite-group minerals from
325	granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and
326	South India. Mineralogical Magazine, 73, 149–164.
327	Carlier, G., and Lorand, JP. (2008) Zr-rich accessory minerals (titanite, perrierite,
328	zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the
329	south Peruvian potassic province. Lithos, 104, 54–70.
330	Čech, F., Povondra, P., and Vrâna, S. (1983) Crystal chemistry of a chevkinite from Zambia.
331	Acta Universitatis Carolinae – Geologica, 181–193.
332	Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H. (2009)
333	OLEX2 : a complete structure solution, refinement and analysis program. Journal of
334	Applied Crystallography, 42, 339–341.
335	Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied
336	Crystallography, 45.
337	Gottardi, Y. (1960) The crystal structure of perrierite. The American Mineralogist, 45, 1–14.
338	Haggerty, S.E., and Mariano, A.N. (1983) Strontian-loparite and strontio-chevkinite: Two
339	new minerals in rheomorphic fenites from the Paraná Basin carbonatites, South
340	America. Contributions to Mineralogy and Petrology, 84, 365–381.
341	Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Spike, F.D., Gaba, R.,
342	Halden, N.M., Lumpkin, G.R., and Ewing, R.C. (1991) Alpha-decay damage in
343	titanite. American Mineralogist, 76, 370–396.

344	Hawthorne, F.C., Ungaretti, L., and Oberti, R. (1995) Site populations in minerals;
345	terminology and presentation of results of crystal-structure refinement. The Canadian
346	Mineralogist, 33, 907–911.
347	Holtstam, D., Bindi, L., Hålenius, U., and Andersson, U.B. (2017) Delhuyarite-(Ce) -
348	$Ce_4Mg(Fe^{3+}_2W)\Box(Si_2O_7)_2O_6(OH)_2$ – a new mineral of the chevkinite group, from the
349	Nya Bastnäs Fe-Cu-REE deposit, Sweden. European Journal of Mineralogy, 29, 897-
350	905.
351	Ito, J. (1967) A Study of Chevkinite and Perrierite. The American Mineralogist, 52, 1094–
352	1104.
353	Kroumova, E., Perez-Mato, J.M., and Aroyo, M.I. (1998) WYCKSPLIT: a computer program
354	for determination of the relations of Wyckoff positions for a group-subgroup pair.
355	Journal of Applied Crystallography, 31, 646–646.
356	Liziero, F. (2008) Studio Cristallochimico E Strutturale Di Chevkiniti-(Ce) Non
357	Metamittiche. Ph.D. thesis.
358	Macdonald, R., and Belkin, H.E. (2002) Compositional variation in minerals of the chevkinite
359	group. Mineralogical Magazine, 66, 1075–1098.
360	Macdonald, R., Belkin, H.E., Wall, F., and Bagiński, B. (2009) Compositional variation in the
361	chevkinite group: new data from igneous and metamorphic rocks. Mineralogical
362	Magazine, 73, 777–796.
363	Macdonald, R., Bagiński, B., Kartashov, P., Zozulya, D., and Dzierżanowski, P. (2012)
364	Chevkinite-group minerals from Russia and Mongolia: new compositional data from
365	metasomatites and ore deposits. Mineralogical Magazine, 76, 535-549.
366	Macdonald, R., Bagiński, B., Belkin, H.E., and Stachowicz, M. (2019) Composition,
367	paragenesis, and alteration of the chevkinite group of minerals. American
368	Mineralogist, 104, 348–369.

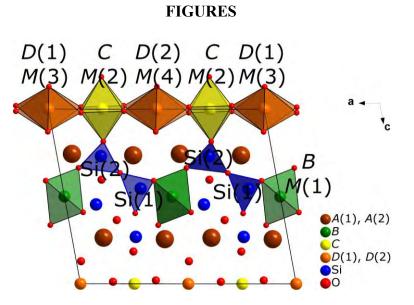
369	Miyajima, H., Miyawaki, R., Ito, K., Miyajima, H., Miyawaki, R., and Ito, K. (2002)
370	Matsubaraite, $Sr_4Ti_5(Si_2O_7)_2O_8$, a new mineral, the Sr-Ti analogue of perrierite in
371	jadeitite from the Itoigawa-Ohmi district, Niigata Prefecture, Japan. European Journal
372	of Mineralogy, 14, 1119–1128.
373	Miyawaki, R., Matsubara, S., and Miyajima, H. (2002) The crystal structure of rengeite,
374	Sr ₄ ZrTi ₄ (Si ₂ O ₇) ₂ O ₈ . Journal of Mineralogical and Petrological Sciences, 97, 7–12.
375	Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,
376	volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.
377	Nespolo, M. (2008) Does mathematical crystallography still have a role in the XXI century?
378	Acta Crystallographica Section A Foundations of Crystallography, 64, 96–111.
379	Popov, V.A., Pautov, L.A., Sokolova, E., Hawthorne, F.C., McCammon, C., and Bazhenova,
380	L.F. (2001) Polyakovite-(Ce),(REE, Ca) ₄ (Mg, Fe ²⁺)(Cr ³⁺ , Fe ³⁺) ₂ (Ti, Nb) ₂ Si ₄ O ₂₂ , a new
381	metamict mineral species from the Ilmen Mountains, southern Urals, Russia: mineral
382	description and crystal chemistry. The Canadian Mineralogist, 39, 1095–1104.
383	Redfern, S.A.T., Henderson, C.M.B., Wood, B.J., Harrison, R.J., and Knight, K.S. (1996)
384	Determination of olivine cooling rates from metal-cation ordering. Nature, 381, 407.
385	Reece, J.J., Redfern, S.A.T., Welch, M.D., Henderson, C.M.B., and McCammon, C.A. (2002)
386	Temperature-dependent Fe 2+ -Mn 2+ order-disorder behaviour in amphiboles.
387	Physics and Chemistry of Minerals, 29, 562–570.
388	Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic Elongation: A Quantitative
389	Measure of Distortion in Coordination Polyhedra. Science, 172, 567–570.
390	Sanjuan-Szklarz, W.F., Hoser, A.A., Gutmann, M., Madsen, A.Ø., and Woźniak, K. (2016)
391	Yes, one can obtain better quality structures from routine X-ray data collection. IUCrJ,
392	3, 61–70.

393	Serezhkina, L.B., Savchenkov, A.V., and Serezhkin, V.N. (2017) Stereochemistry of thorium
394	in oxygen-containing compounds. Russian Journal of Inorganic Chemistry, 62, 633-
395	638.
396	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
397	distances in halides and chalcogenides. Acta Crystallographica Section A, 32, 751-
398	767.
399	Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica Section A
400	Foundations of Crystallography, 64, 112–122.
401	Sokolova, E., Hawthorne, F.C., Ventura, G.D., and Kartashov, P.M. (2004) Chevkinite-(Ce):
402	Crystal Structure and the Effect of Moderate Radiation-Induced Damage on Site-
403	Occupancy Refinement. The Canadian Mineralogist, 42, 1013–1025.
404	Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica
405	Section D Biological Crystallography, 65, 148–155.
406	Stachowicz, M., Bagiński, B., Macdonald, R., Kartashov, P.M., Oziębło, A., and Wożniak, K.
407	(2014) Structure of Sr-Zr-bearing perrierite-(Ce) from the Burpala Massif, Russia.
408	Mineralogical Magazine, 78, 1647–1659.
409	Stachowicz, M., Bagiński, B., Welch, M.D., Kartashov, P.M., Macdonald, R., Balcerzak, J.,
410	Tyczkowski, J., and Woźniak, K. (2019) Cation ordering, valence states, and
411	symmetry breaking in the crystal-chemically complex mineral chevkinite-(Ce): X-ray
412	diffraction and photoelectron spectroscopy studies and mechanisms of Nb enrichment.
413	American Mineralogist, 104, 595–602.
414	Vlach, S.R.F., and Gualda, G.A.R. (2007) Allanite and chevkinite in A-type granites and
415	syenites of the Graciosa Province, southern Brazil. Lithos, 97, 98–121.
416	Welch, M.D., Reece, J.J., and Redfern, S.A.T. (2008) Rapid intracrystalline exchange of
417	octahedrally-coordinated divalent cations in amphiboles: an in situ high-temperature
	17

442	FIGURE CAPTIONS
441	
440	923–937.
439	cation ordering and dehydrogenation. Contributions to Mineralogy and Petrology, 163,
438	Zema, M., Welch, M.D., and Oberti, R. (2011) High-T behaviour of gedrite: thermoelasticity,
437	of Mineralogy, 24, 189–196.
436	group from Saima alkaline complex, Liaoning Province, NE China. European Journal
435	$(Sr,REE)_4Zr(Ti,Fe^{3+},Fe^{2+})_2Ti_2O_8(Si_2O_7)_2$, a new mineral species of the chevkinite
434	Yang, Z., Giester, G., Ding, K., and Tillmanns, E. (2012) Hezuolinite,
433	Earths, 25, 238–242.
432	Chevkinite-(Ce): Valence State and Site Occupation Proportions. Journal of Rare
431	Yang, Z., Li, H., Liu, M., and Franz, P. (2007) Crystal Chemistry of Iron in Non-Metamict
430	of natural Fe-rich chevkinite-(Ce). European Journal of Mineralogy, 14, 969–975.
429	Yang, Z., Fleck, M., Smith, M., Tao, K., Song, R., and Zhang, P. (2002) The crystal structure
428	University of Geosciences, 2, 75–78.
427	Yang, G. (1991) New investigation on the space group of chevkinite. Journal of China
426	analog at the C1 site of chevkinite subgroup. American Mineralogist, 93, 740-744.
425	Obo REE-Nb-Fe Mine, China: Both a true polymorph of perrierite-(Ce) and a titanic
424	Xu, J., Yang, G., Li, G., Wu, Z., and Shen, G. (2008) Dingdaohengite-(Ce) from the Bayan
423	chemical tables Vol. 3. International Union of Crystallography.
422	Wilson, A.J.C. (1992) International Tables for Crystallography: Mathematical, physical, and
421	anthophyllite. Physics and Chemistry of Minerals, 38, 321-334.
420	Welch, M.D., Cámara, F., and Oberti, R. (2010) Thermoelasticity and high-T behaviour of
419	^A K ^B (NaCa) ^C (Mg _{2.5} Ni _{2.5})Si ₈ O ₂₂ (OH) ₂ . Mineralogical Magazine, 72, 877–886.
418	neutron diffraction study of synthetic potassic richterite

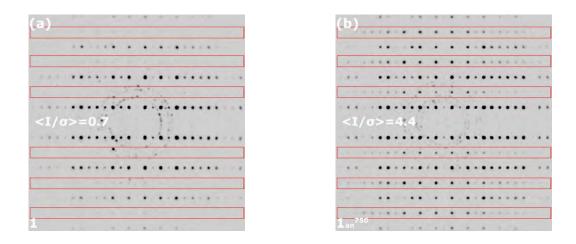
- **Figure 1.** Unit cell oriented along the **b** direction. The positions of the *MO*₆ coordination
- octahedra of B, C and D sites are in green, yellow and orange, respectively. M(1)-M(4) is an
- alternative naming of sites first proposed by Popov et al. (2001).
- 446 Figure 2. Comparison of precession images of (1kl) layers for (a) untreated crystal 1 in C2/m
- symmetry and (b) in $P2_1/a$ symmetry, after annealing at 750 °C. The reflection extinction rule
- 448 for *C* centring of the unit cell, h+k = 2n+1 for all (hkl) reflections, does not hold for the
- 449 annealed crystal (b).
- 450 Figure 3. The Bärnighausen tree indicates a transition from aristoptype C2/m to a hettotype
- 451 $P2_1/a$. Above the arrows are given the shifts of atoms in Å. Below the diagram are given the
- three oxygen atoms that with the transformation symmetry in aristotype correspond to the
- 453 O(1A), O(5A) and O(8A) atoms from the hettotype.
- 454 **Figure 4.** The *B*-O bonds in *B*O₆ coordination. The broken-off bond of 2.16 Å corresponds to
- 455 the extremal position of an O(3) atom.
- 456
- 457

TABLES


Table 1. The M-O bond distances and site scattering values (ssv) for A,B,C and D sites in Nb-rich chevkinite-(Ce), for crystals 1-9 – distances in Å, together with volumes (V in Å³) of the MO_x first coordination spheres. Crystal numbers are given in the second row with temperature of annealing as superscript.

C2/m	1	6	7	8	9	$P2_{1}/a$	9_{an}^{600}	9_{an2}^{600}	9_{an3}^{650}	2	3	4_{an}^{750}	5_{an}^{750}	1_{an}^{75}
A(1)						A(1)								
O(8) x2	2.491(5)	2.487(4)	2.495(3)	2.495(4)	2.489(5)	O(8A)	2.471(4)	2.467(4)	2.465(3)	2.472(6)	2.472(7)	2.441(2)	2.441(2)	2.463(3
						O(8)	2.490(4)	2.490(4)	2.500(3)	2.512(6)	2.524(7)	2.513(2)	2.515(2)	2.517(3
O(2)	2.496(6)	2.496(6)	2.499(5)	2.500(6)	2.517(9)	O(2)	2.496(4)	2.493(4)	2.489(3)	2.505(7)	2.503(8)	2.469(2)	2.481(2)	2.482(3
						O(1A)	2.500(4)	2.499(4)	2.483(4)	2.481(7)	2.471(7)	2.427(2)	2.454(2)	2.462(4
$O(1)_{x2}$	2.542(7)	2.553(5)	2.549(5)	2.544(6)	2.551(7)	O(1)	2.545(4)	2.546(4)	2.557(4)	2.553(7)	2.565(7)	2.564(2)	2.590(2)	2.563(4
$O(5)_{x2}$	2.560(6)	2.559(4)	2.560(4)	2.558(4)	2.560(5)	O(5)	2.573(4)	2.575(4)	2.578(3)	2.572(6)	2.575(6)	2.566(2)	2.574(2)	2.581(3
						O(5A)	2.574(4)	2.572(4)	2.580(4)	2.574(6)	2.574(7)	2.575(2)	2.585(2)	2.582(3
O(7)	2.810(6)	2.806(4)	2.813(4)	2.811(4)	2.800(7)	O (7)	2.817(3)	2.819(3)	2.828(3)	2.826(7)	2.834(7)	2.854(2)	2.839(2)	2.846(3
<m-o></m-o>	2.56(2)	2.56(2)	2.57(2)	2.56(2)	2.56(2)	<m-0></m-0>	2.56(2)	2.56(2)	2.56(1)	2.56(2)	2.56(2)	2.55(2)	2.56(6)	2.56(1
<u>VAO</u> 8	28.1	28.1	28.2	28.1	28.3	VAO_8	28.3	28.0	28.0	28.1	28.2	27.6	27.9	28.
$O(4)_{x2}$	3.189(3)	3.189(4)	3.197(3)	3.196(4)	3.199(5)	<u>O(4)</u>	3.144(6)	3.131(5)	3.092(5)	3.057(7)	3.018(8)	2.948(2)	2.919(3)	3.011(4
	~ /	~ /	~ /			<m-0></m-0>	2.62(2)	2.62(2)	2.62(1)	2.62(2)	2.62(2)	2.595(5)	2.600(6)	2.61(1
						VAO ₉	32.7	32.6	32.6	32.6	32.6	31.8	32.2	32.
						O(3)*	3.315(4)	3.313(4)	3.310(3)	3.32(1)	3.318(7)	3.251(2)	3.301(3)	3.319(3
<m-o></m-o>	2.69(2)	2.69(2)	2.69(2)	2.69(2)	2.69(2)	<m-0></m-0>	2.69(2)	2.69(2)	2.69(2)	2.69(2)	2.69(2)	2.66(2)	2.67(8)	2.68(2
VAO_{10}	37.8	37.8	37.9	37.8	38.0	VAO_{10}	38.0	38.4	38.4	38.4	38.4	37.5	37.9	38.
SSV	52.5	52.7	51.9	52.1	52.2	SSV	54.7	55.2	55.8	52.2	53.7	52.7	55.7	55.
A(2)						A(2)								
O(2)	2.454(7)	2.456(6)	2.450(5)	2.445(6)	2.469(9)	O(2)	2.438(4)	2.435(4)	2.434(3)	2.420(7)	2.423(8)	2.407(2)	2.435(2)	2.431(3
O(8) x2	2.499(5)	2.493(4)	2.499(3)	2.502(4)	2.492(5)	O(8)	2.485(4)	2.485(4)	2.477(3)	2.484(6)	2.482(7)	2.457(2)	2.454(2)	2.475(3
						O(8A)	2.526(4)	2.529(4)	2.545(3)	2.557(6)	2.565(7)	2.576(2)	2.571(2)	2.571(3
O(1) x2	2.703(7)	2.693(5)	2.682(5)	2.683(6)	2.698(7)	O(1)	2.626(4)	2.624(4)	2.612(4)	2.615(7)	2.599(7)	2.549(2)	2.576(2)	2.589(4
O(6)	2.632(6)	2.627(4)	2.637(4)	2.631(5)	2.634(7)	O(1A)	2.662(4)	2.658(4)	2.661(4)	2.663(7)	2.669(7)	2.673(2)	2.696(2)	2.663(4

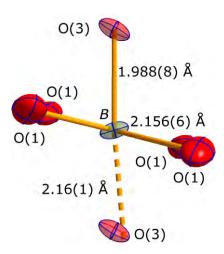
O(5) x2	2.605(5)	2.601(4)	2.605(4)	2.606(4)	2.611(5)	O(5A)	2.619(4)	2.615(4)	2.623(4)	2.628(6)	2.629(7)	2.613(2)	2.603(2)	2.636(3)
						O(5)	2.615(4)	2.610(4)	2.616(3)	2.613(6)	2.617(6)	2.620(2)	2.613(2)	2.625(3)
						O(6)	2.627(3)	2.624(3)	2.630(3)	2.624(7)	2.631(8)	2.624(2)	2.627(2)	2.637(3)
<m-0></m-0>	2.59(2)	2.58(2)	2.58(2)	2.58(2)	2.59(2)	<m-0></m-0>	2.57(2)	2.57(2)	2.57(1)	2.58(3)	2.58(3)	2.56(3)	2.57(6)	2.58(1)
<u>VAO</u> 8	28.2	28.5	28.5	28.5	28.8	VAO_8	28.1	28.1	28.1	28.2	28.2	27.7	27.9	28.2
O(3) x2	3.034(3)	3.030(2)	3.028(2)	3.027(2)	3.032(3)	O(3)	2.890(6)	2.871(5)	2.816(5)	2.803(7)	2.745(7)	2.644(2)	2.652(2)	2.716(4)
						<m-0></m-0>	2.61(3)	2.61(2)	2.60(2)	2.60(2)	2.60(2)	2.574(5)	2.580(6)	2.60(1)
						<u>VAO9</u>	33.0	32.8	32.8	32.9	32.8	32.1	32.4	32.7
						O(3)*	3.117(6)	3.135(5)	3.185(5)	3.211(9)	3.263(7)	3.308(2)	3.336(2)	3.275(4)
<m-0></m-0>	2.68(2)	2.67(2)	2.67(2)	2.67(2)	2.68(2)	<m-0></m-0>	2.66(2)	2.66(2)	2.66(2)	2.66(3)	2.66(3)	2.65(3)	2.66(7)	2.66(1)
VAO_{10}	38.8	38.6	38.6	38.6	38.8	VAO_{10}	38.2	38.1	38.2	38.3	38.3	37.5	37.9	38.2
SSV	50.2	51.0	50.2	50.4	51.3	SSV	53.5	53.9	54.8	51.6	52.9	50.8	55.2	54.1
В						В								
$O(3)_{x2}$	1.988(8)	1.982(7)	1.989(6)	1.988(7)	2.004(11)	$-0(3)_{x2}$	2.015(4)	2.012(3)	2.019(3)	2.010(8)	2.006(8)	2.016(2)	2.010(2)	2.026(3)
$O(1)_{x4}$	2.156(6)	2.151(6)	2.165(5)	2.167(6)	2.164(7)	$O(1)_{x2}$	2.214(4)	2.212(4)	2.213(4)	2.212(7)	2.213(7)	2.194(2)	2.184(2)	2.217(4)
- () 44			(-)			$O(1A)_{x^2}$	2.223(4)	2.216(4)	. ,	2.233(7)	2.229(7)	2.219(2)	2.211(2)	2.238(4)
<m-0></m-0>	2.10(2)	2.10(2)	2.11(2)	2.11(2)	2.11(3)	<m-0></m-0>	2.15(1)	2.15(1)	2.15(1)	2.15(2)	2.15(2)	2.143(5)	2.135(5)	2.16(1)
VBO ₆	12.0	11.9	12.0	12.0	12.1	VBO ₆	12.6	12.6	12.7	12.6	12.6	12.4	12.4	12.8
SSV	25.9	27.6	26.0	26.2	29.0	SSV	25.2	25.2	25.1	24.6	24.4	25.5	23.5	25.0
С						С								
$O(7)_{x^2}$	1.969(4)	1.968(3)	1.971(3)	1.972(4)	1.976(5)	O(7) [#]	1.974(4)	1.975(3)	1.976(3)	1.981(7)	1.972(6)	1.941(2)	1.949(2)	1.977(3)
$O(6)_{x2}$	1.978(4)	1.979(4)	1.980(3)	1.979(4)	1.989(5)	O(6) ^{\$}	1.987(4)	1.986(3)	1.987(3)	1.977(6)	1.983(6)	1.961(2)	1.962(2)	1.988(3)
O(0) X2	1.570(1)	1.575(1)	1.900(5)	1.575(1)	1.505(0)	O(7) [*]	1.980(4)	1.981(3)	1.983(3)	1.979(7)	1.980(6)	1.964(2)	1.975(2)	1.985(3)
						O(6) [*]	1.993(4)	1.995(3)	2.000(3)	1.994(6)	2.003(6)	1.985(2)	1.993(2)	2.005(3)
O(5) x2	2 017(4)	2.019(3)	2 019(3)	2.019(3)	2.036(4)	O(5)	2.031(4)	2.034(3)	2.034(3)	2.020(6)	2.028(6)	2.015(2)	2.028(2)	2.032(3)
O(0) x2	=.017(1)	=.017(3)	=.017(3)	=.017(3)	2.050(1)	O(5) O(5A)	2.031(1)	2.029(3)	2.029(3)	2.020(6)	2.020(0)	2.009(2)	2.020(2) 2.022(2)	2.029(3)
<m-0></m-0>	1 99(1)	1 999(9)	1.990(7)	1 990(9)	2.00(2)	<m-o></m-o>	2.020(3)	2.000(8)	2.002(8)	1.99(2)	2.00(2)	1.979(5)	1.988(5)	2.003(8)
	1.77(1)		1.770(7)	1.))())	2.00(2)		2.00(1)	2.000(0)	2.002(0)	1.77(2)	2.00(2)	1.7 (7)	1.900(0)	2.005(0)


V <i>C</i> O ₆	10.4	10.4	10.4	10.4	10.6	V CO ₆	10.6	10.6	10.6	10.5	10.6	10.3	10.4	10.6
SSV	24.4	24.2	24.2	24.4	24.1	SSV	23.8	24.0	24.1	22.7	23.2	21.4	22.6	23.7
D(1)						D(1)								
D(1)	0.010(4)	0.015(4)		2 00 (()	0,000(5)	D(1)	2 0 2 0 (1)		2 (22)	0.017(()		1.00((2))		0.000(0)
O(8) x4	2.013(4)	2.015(4)	2.008(3)	2.006(4)	2.028(5)		2.020(4)	2.020(3)	2.023(3)	2.017(6)	2.009(7)	1.986(2)	2.003(2)	2.022(3)
						$O(8A)_{x2}$	2.004(4)	2.005(3)	2.005(3)	1.995(6)	1.984(7)	1.964(2)	1.978(2)	2.002(3)
O(6) x2	2.043(5)	2.040(5)	2.038(4)	2.039(5)	2.039(7)	O(6) x2	2.027(3)	2.026(3)	2.026(3)	2.038(7)	2.021(7)	2.017(2)	2.028(2)	2.024(3)
<m-0></m-0>	2.02(2)	2.02(2)	2.018(9)	2.02(1)	2.03(2)	<m-0></m-0>	2.02(1)	2.017(8)	2.018(8)	2.02(2)	2.02(2)	1.989(5)	2.003(5)	2.016(8)
VDO ₆	11.0	11.0	10.9	10.9	11.1	VDO ₆	10.9	10.9	10.9	10.9	10.7	10.4	10.7	10.9
SSV	20.8	20.6	20.9	21.2	20.0	SSV	25.6	26.5	27.4	22.7	23.1	23.8	24.6	23.7
<i>D</i> (2)						D(2)								
$O(7)_{x2}$	2.039(5)	2.035(4)	2.032(4)	2.029(5)	2.041(7)	$O(7)_{x2}$	2.021(3)	2.018(3)	2.019(3)	2.020(6)	2.019(7)	1.984(2)	2.022(2)	2.017(3)
$O(8)_{x4}$	2.011(4)	2.013(4)	2.012(3)	2.008(4)	2.021(5)	$O(8)_{x2}$	2.017(4)	2.016(3)	2.019(3)	1.999(6)	1.985(7)	2.012(2)	1.991(2)	2.016(3)
$O(0)_{x4}$	2.011(7)	2.015(4)	2.012(3)	2.000(4)	2.021(3)		. ,			()				
						$O(8A)_{x2}$	2.030(4)	2.033(3)	2.036(3)	2.023(6)	2.026(7)	2.016(2)	2.029(2)	2.044(3)
<m-0></m-0>	2.02(2)	2.02(1)	2.019(9)	2.02(2)	2.03(2)	<m-0></m-0>	2.02(1)	2.022(8)	2.025(8)	2.01(2)	2.01(2)	2.003(5)	2.014(5)	2.026(8)
VDO ₆	11.0	11.0	10.9	10.9	11.1	VDO ₆	11.0	11.0	11.0	10.8	10.8	10.7	10.8	11.0
SSV # \$	24.5	24.3	24.1	24.3	23.7	SSV	27.0	27.9	28.5	26.0	25.6	24.4	24.9	30.4

[#]x,y,z; ^{\$}x,y,1+z; ^{*}3/2-x,-1/2+y,1-z

463

Figure 1. Unit cell oriented along the b direction. The positions of the MO_6 coordination octahedra of *B*, *C* and *D* sites are in green, yellow and orange, respectively. M(1)-M(4) is an alternative naming of sites first proposed by Popov et al. (2001).


469 Figure 2. Comparison of precession images of (1kl) layers for (a) untreated crystal 1 in C2/m symmetry and

- 470 (b) in $P2_1/a$ symmetry, after annealing at 750 °C. The reflection extinction rule for C centring of the unit
- 471 cell, h+k = 2n+1 for all (hkl) reflections, does not hold for the annealed crystal (b).

			_					
C2/m	<u></u>	P2 ₁ /c	c, -b, a	P2 ₁ /a				
	c, b, a ´	1,	c, -b, a	17				
			½, 0, ½					
A(1); 4i ; m		0.10	A	1); 4e ; 1				
0.64637(4) 0 0.2640			0.64521(2) 0.01290(
A(2); 4i ; m		0.14	A(2); 4e ; 1				
0.92902(4)00.2559	1(5)		0.93020(2)-	0.02110(5)0.26072(2)				
			[
<i>B</i> ; 2d ; 2/m		0.04	<i>B</i>	; 2b ; -1				
1/2 0 1/2				½ 0 ½				
C: 10: 1		0.04		· A o: 1				
C; 4e ; -1 ¾ ¼ 1		0.04		; 4e ; 1 0.2481(1)0.99998(7)				
/4 /4 1			01/02/2(0)	0.2401(1/0.55550(7)				
D(1); 2a ; 2/	m	0.03	ות הו	L); 2a ; -1				
100			→ <u>-</u> (-	100				
D(2); 2b ; 2/	m	0.01	D(2	2); 2c ; -1				
%00				1/2 0 0				
				-				
Si(1); 4i ; m		0.09		1); 4e ; 1				
0.8602(2)00.5455	(2)		0.85771(9)	0.0006(2)0.5470(1)				
c:/2). <i>di</i>		0.09	C :/	2 (1)				
Si(2); 4i ; m 0.7034(2)00.7312		0.05		2); <i>4e</i> ; 1 -0.0012(2)0.7314(1)				
	(-/)			1); 4e ; 1				
O(1); 8j 1		0.13		0.2145(7)0.5937(3)				
0.9275(5)-0.235(2)0.5	910(5)	0.40*	0(1	A); 4e ; 1				
		0.19*		0.2379(6)0.5944(3)				
O(2); 4i ; m		0.05	O(2); 4e ; 1				
0.8142(5)00.4039	(6)		0.8138(2)	0.0059(6)0.4035(3)				
- (-)		0.22						
O(3); 4i ; m		0.22	· ·	3); 4e ; 1				
0.5887(7)0.034(5)0.6	55(1)		0.5858(5)	0.0297(7)0.6697(3)				
O(4); 4i m		0.22	0(4); 4e ; 1				
0.7777(9)-0.034(4)0.6				0.0294(8)0.6285(3)				
		0.02		5); 4e ; 1				
O(5); 8j ; 1		0.03		0.2312(5) 0.8138(3)				
0.7268(4) 0.2346(8) 0.8	155(4)	0.12*	→ O(5	A); 4e ; 1				
[0.12*	0.7223(3)	0.2368(5)0.8138(3)				
O(6); 4i ; m		0.06		6); 4e ; 1				
0.8528(4)00.0197	(5)		0.8545(2)	0.0059(6)0.0239(3)				
0/7) #		0.00		7). 4 1				
O(7); 4i ; m 0.8477(4)0.5 0.9882		0.06		7); <i>4e</i> ; 1 0.5031(6)0.9879(3)				
0.0477(4)0.00.5087								
O(8); 8j ; 1		0.01		8); 4e ; 1 0.2492(6)0.1300(3)				
0.5217(3)-0.2495(8)0.1				BA); 4e ; 1				
		0.05#	2	0.2448(6)0.1306(3)				

472

Figure 3. The Bärnighausen (family) tree indicates a transition from aristoptype C2/m to a hettotype $P2_1/a$. Above the arrows are given the shifts of atoms in Å. Below the diagram are given the three oxygen atoms that with the transformation symmetry in aristotype correspond to the O(1A), O(5A) and O(8A) atoms from the hettotype.

477

- 478 Figure 4. The *B*-O bonds in *B*O₆ coordination. The broken-off bond of 2.16 Å corresponds to the extremal
- 479 position of an O(3) atom.