1 Revision 1

2	
3	Kegginite, Pb ₃ Ca ₃ [AsV ₁₂ O ₄₀ (VO)]·20H ₂ O, a new mineral with a novel ε-isomer of the
4	Keggin anion
5 6	ANTHONY R. KAMPF ^{1§} , JOHN M. HUGHES ² , BARBARA P. NASH ³ , AND JOE MARTY ⁴
7 8 9 10 11 12	 ¹Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, U.S.A. ²Department of Geology, University of Vermont, Burlington, VT 05405, U.S.A. ³Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A. ⁴5199 E. Silver Oak Road, Salt Lake City, UT 84108, U.S.A.
13	Abstract
14	Kegginite, Pb ₃ Ca ₃ [AsV ₁₂ O ₄₀ (VO)]·20H ₂ O, is a new mineral species from the Packrat mine, near
15	Gateway, Mesa County, Colorado, U.S.A. It is a secondary mineral found on asphaltum in a
16	montroseite- and corvusite-bearing sandstone. Other secondary minerals found in close
17	association with kegginite are ansermetite, gypsum, mesaite, and sherwoodite. Crystals of
18	kegginite are orangish-red simple hexagonal tablets. The streak is pinkish-orange, the luster is
19	vitreous, the Mohs hardness is about 2, the tenacity is brittle, fracture is irregular, cleavage is
20	good on $\{001\}$, and the calculated density is 2.69 g·cm ⁻³ . Kegginite is optically uniaxial (–) with
21	pleochroism: O orange-red and E red-orange; $E < O$. Electron microprobe analyses yielded the
22	empirical formula $Pb_{2.98}Ca_{2.39}Mg_{0.56}V_{13.05}As_{0.95}O_{61}H_{40.15}$. Kegginite is trigonal, $P\overline{3}$, with a
23	14.936(5), <i>c</i> 15.846(5) Å, <i>V</i> 3061(2) Å ³ , and <i>Z</i> = 2. The crystal structure of kegginite ($R_1 = 0.064$
24	for 1356 $F_0 > 4\sigma F$ reflections) contains a $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$ polyoxometalate cluster, which
25	is a mono-capped Keggin ε-isomer.

[§] Email: akampf@nhm.org

26	
27	Keywords: kegginite; new mineral species; polyoxometalate; Keggin anion ɛ-isomer; crystal
28	structure; Packrat mine, Colorado.
29	
30	INTRODUCTION
31	With the ability to control experimental variables and chemistry, millions of synthetic
32	compounds have been prepared in the laboratory, but, in contrast, in natural environments only
33	ca. 5,000 minerals have been characterized to date. Obviously, many compounds that have been
34	synthesized have not been found in nature, and many of these have properties that make them
35	useful in various chemical and industrial processes. One such group of compounds contains the
36	well-known Keggin polyoxometalate anion, which has the general formula $[XM_{12}O_{40}]^{n-}$, where X
37	is known as the heteroatom and M is known as the addenda atom; in the Keggin anion, a
38	tetrahedrally coordinated X atom is surrounded by 12 octahedra centered on M ions (Keggin
39	1934). Numerous Keggin polyoxometalate phases have been synthesized (generally under acidic
40	conditions), and various isomers and vacancy defect derivative structures are included in the
41	Keggin family of compounds. Research on Keggin compounds comprises a very large body of
42	literature because of the utility of Keggin compounds in catalytic reactions germane to industrial
43	processes (Song and Tsunashima 2012).
44	Few Keggin compounds have been found in nature. The first Keggin-compound mineral
45	was murataite, in which Keggin clusters are the fundamental building blocks of a framework

46 (Ercit and Hawthorne, 1995). Kampf et al. (2014) described ophirite, which contains a

- 47 heteropolytungstate tri-lacunary Keggin anion; the tri-lacunary modifier signifies the three
- 48 octahedral vacancies in the Keggin structure, yielding the $[Fe^{3+}W_9O_{34}]^{11-}$ tri-lacunary Keggin

10	
49	anion. The complex chemical environment in which ophirite occurs attests to the rarity of the
50	conditions of mineral genesis under which Keggin structures might be found in nature; ophirite
51	crystals occur where late acidic and oxidizing hydrothermal solutions, in the presence of pyrite
52	and calcium-rich hornfels, reacted with dolomite and scheelite to produce the rare phase. Both
53	murataite and ophirite contain the α -isomer of the Keggin anion. Kegginite, described herein, is
54	the third mineral to be described that contains a Keggin anion, and is the first to contain the ϵ -
55	isomer of the $[XM_{12}O_{40}]^{n-}$ Keggin polyoxometalate, in this case $[AsV_{12}O_{40}]^{15-}$.
56	The name kegginite is in recognition of the presence of the ϵ -isomer of the Keggin anion
57	as the basis of the structural unit in the mineral. It also recognizes J.F. Keggin who first
58	experimentally determined the structure of α -Keggin anions in 1934 (Keggin 1934). The new
59	mineral and name were approved by the Commission on New Minerals, Nomenclature and
60	Classification of the International Mineralogical Association (IMA 2015-114). Three cotype
61	specimens of kegginite are deposited in the collections of the Natural History Museum of Los
62	Angeles County, Los Angeles, California, USA, catalogue numbers 65636, 65637 and 65638.
63	
64	OCCURRENCE
65	Kegginite was found in the main tunnel level of the Packrat mine, near Gateway, Mesa
66	County, Colorado, USA (38°38'51.28"N 109°02'49.77"W). The Packrat mine is near the northern
67	end of the Uravan Mineral Belt, in which uranium and vanadium minerals occur together in
68	bedded or roll-front deposits in the sandstone of the Salt Wash member of the Jurassic Morrison
69	Formation (Carter and Gualtieri 1965; Shawe 2011). The original claims on the Packrat #1 and
70	#2 were filed in 1943, but mining apparently did not commence until the early 1950s. The mine
71	remained in operation until 1990 and consists of several miles of drifts and numerous stopes. The

mine site was reclaimed in 2002, but was reopened in 2007 for further exploration. It is currently
inactive. The samples of the new mineral were collected by one of the authors (JM) on May 3,
2013.

75 The mineral is very rare. It has been found very sparingly on only a few small specimens. 76 Kegginite is a secondary mineral found on asphaltum in a montroseite- and corvusite-bearing 77 sandstone. Other secondary minerals found in close association with kegginite are ansermetite, 78 gypsum, mesaite (Kampf et al. 2016), and sherwoodite. Other secondary minerals found in the 79 mine include andersonite, calcite, dickthomssenite, gatewayite (Kampf et al. 2015), hewettite, 80 hummerite, lasalite, magnesiopascoite, martyite, morrisonite (Kampf et al. 2015), munirite, 81 navajoite, packratite (Kampf et al. 2015), pascoite, pharmacolite, picropharmacolite, postite, 82 rossite/metarossite, rösslerite, selenium, uranopilite, vanarsite (Kampf et al. 2015) and other 83 potentially new minerals, currently under study. 84 The new mineral forms from the oxidation of montroseite-corvusite assemblages in a

85 moist environment. Mining operations have exposed unoxidized and oxidized phases. Under 86 ambient temperatures and generally oxidizing near-surface conditions, meteoric water reacts with 87 pyrite and an unknown As-bearing phase (perhaps arsenopyrite) to form aqueous solutions with 88 relatively low pH (cf. Evans and Garrels 1958). The various secondary vanadate phases that form 89 depend upon prevailing Eh-pH conditions and the presence of other cations (e.g., Na^+ , Ca^{2+} , Mn^{2+} , Pb²⁺). A detailed summary of the mineralogy, ore chemistry and conditions of mineral 90 91 genesis are given in Shawe (2011), which summarizes more than half a century of work on the 92 uranaium-vanadium deposits of the Colorado Plateau.

93

94

PHYSICAL AND OPTICAL PROPERTIES

95	Crystals of kegginite are orangish-red hexagonal tablets exhibiting the forms {100} and
96	{001}, up to about 0.1 mm in diameter (Figs. 1 and 2). The vitreous and transparent crystals have
97	a pinkish-orange streak. Kegginite is non-fluorescent in long- and short-wave ultraviolet light. It
98	has a Mohs hardness of about 2, brittle tenacity, irregular fracture, and good cleavage on {001}.
99	There is insufficient material available for density measurement; the calculated density is 2.69
100	$g \cdot cm^{-3}$ based on the empirical formula using the single-crystal cell parameters. The mineral is
101	insoluble in H ₂ O and soluble at room-temperature in dilute HCl. Kegginite is optically uniaxial (-
102). The very small number of crystrals, their small size and their dark color made it impossible to
103	obtain reliable measurements of the indices of refraction. The average index of refraction
104	predicted by the Gladstone-Dale relationship is 1.721 . The pleochroism is O orange-red and E
105	red-orange; $E < O$.
106	
106 107	CHEMICAL ANALYSIS
	CHEMICAL ANALYSIS Five analyses of kegginite from a single crystal were performed at the University of Utah
107	
107 108	Five analyses of kegginite from a single crystal were performed at the University of Utah
107 108 109	Five analyses of kegginite from a single crystal were performed at the University of Utah on a Cameca SX-50 electron microprobe with four wavelength-dispersive spectrometers
107 108 109 110	Five analyses of kegginite from a single crystal were performed at the University of Utah on a Cameca SX-50 electron microprobe with four wavelength-dispersive spectrometers operating with Probe for EPMA software. Analytical conditions were 15 keV accelerating
107 108 109 110 111	Five analyses of kegginite from a single crystal were performed at the University of Utah on a Cameca SX-50 electron microprobe with four wavelength-dispersive spectrometers operating with Probe for EPMA software. Analytical conditions were 15 keV accelerating voltage, 10 nA beam current and a beam diameter of 10 μ m. Counting times were 20 seconds on
107 108 109 110 111 112	Five analyses of kegginite from a single crystal were performed at the University of Utah on a Cameca SX-50 electron microprobe with four wavelength-dispersive spectrometers operating with Probe for EPMA software. Analytical conditions were 15 keV accelerating voltage, 10 nA beam current and a beam diameter of 10 µm. Counting times were 20 seconds on peak and 20 seconds on background for each element. Raw X-ray intensities were corrected for
107 108 109 110 111 112 113	Five analyses of kegginite from a single crystal were performed at the University of Utah on a Cameca SX-50 electron microprobe with four wavelength-dispersive spectrometers operating with Probe for EPMA software. Analytical conditions were 15 keV accelerating voltage, 10 nA beam current and a beam diameter of 10 μ m. Counting times were 20 seconds on peak and 20 seconds on background for each element. Raw X-ray intensities were corrected for matrix effects with a $\phi p(z)$ algorithm (Pouchou and Pichoir, 1991).
107 108 109 110 111 112 113 114	Five analyses of kegginite from a single crystal were performed at the University of Utah on a Cameca SX-50 electron microprobe with four wavelength-dispersive spectrometers operating with Probe for EPMA software. Analytical conditions were 15 keV accelerating voltage, 10 nA beam current and a beam diameter of 10 μ m. Counting times were 20 seconds on peak and 20 seconds on background for each element. Raw X-ray intensities were corrected for matrix effects with a $\phi p(z)$ algorithm (Pouchou and Pichoir, 1991). No damage from the electron beam was observed. However, as is typical of highly

118	Because insufficient material is available for a direct determination of H ₂ O, it has been calculated
119	based upon the structure determination. Analytical data are given in Table 1.
120	The empirical formula of kegginite (based on 61 O apfu) is
121	$Pb_{2.98}Ca_{2.39}Mg_{0.56}V_{13.05}As_{0.95}O_{61}H_{40.15}$. The simplified structural formula is
122	Pb ₃ Ca ₃ [(AsO ₄)V ₁₂ O ₃₃ (VO ₄)]·20H ₂ O, which requires PbO 26.83, CaO 6.74, V ₂ O ₅ 47.38, As ₂ O ₅
123	4.61, H ₂ O 14.44, total 100 wt%. The formula can be written as above to emphasize the vanadate
124	and arsenate tetrahedra, or as Pb ₃ Ca ₃ [AsV ₁₂ O ₄₀ (VO)]·20H ₂ O to emphasize the presence of the
125	Keggin anion.
126	
127	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
128	Powder and single-crystal X-ray diffraction data for kegginite were obtained on a Rigaku
129	R-Axis Rapid II curved imaging plate microdiffractometer using monochromatized MoK α
130	radiation. The powder pattern obtained was a good fit for that calculated from the structure;
131	however, because of the very small amount of material available, the observed peaks were not
132	sufficiently above background to provide data of good quality. Consequently, we report the
133	powder data calculated from the structure in Table 2.
134	The Rigaku Crystal Clear software package was used for processing the structure data,
135	including the application of numerical and empirical absorption corrections. The structure was
136	solved by direct methods using SIR2011 (Burla et al. 2012). SHELXL-2013 (Sheldrick 2008)
137	was used for the refinement of the structure. Kegginite crystals are small and diffract relatively
138	weakly because of their high H ₂ O content; consequently, data were limited to $2\theta < 40^{\circ}$. All As, V
139	and O sites in the structural unit refined to full occupancy, as did the Pb site in the interstitial
140	unit. All of these sites exhibit rather high, but not unreasonable, displacement parameters. The

141	other sites in the interstitial unit exhibit high displacement parameters and partial occupancies,
142	suggesting considerable disorder. The Ca site is split into two sites (Ca1 and Ca2) 1.53 Å apart.
143	The scattering powers of these sites were consistent with each site being half occupied by a
144	combination of Ca and Mg: Ca1 = Ca _{0.43} Mg _{0.07} ; Ca2 = Ca _{0.38} Mg _{0.12} . Not surprisingly, difference
145	Fourier did not reveal the locations of the hydrogen atoms. Data collection and refinement details
146	are given in Table 3, atom coordinates and displacement parameters in Table 4, and selected bond
147	distances and bond-valence sums in Table 5. The CIF file for kegginite is on deposit and
148	available as listed below. ¹
149	
150	DESCRIPTION OF THE STRUCTURE
151	The structure of kegginite (Figs. 3 and 4) consists of two distinct parts, a structural unit
151 152	The structure of kegginite (Figs. 3 and 4) consists of two distinct parts, a structural unit and an interstitial complex, as suggested by Schindler and Hawthorne (2001) for minerals with
152	and an interstitial complex, as suggested by Schindler and Hawthorne (2001) for minerals with
152 153	and an interstitial complex, as suggested by Schindler and Hawthorne (2001) for minerals with polymerized units of higher bond valence. The structural unit is a $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$
152 153 154	and an interstitial complex, as suggested by Schindler and Hawthorne (2001) for minerals with polymerized units of higher bond valence. The structural unit is a $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$ heteropolyanion composed of twelve distorted VO ₆ octahedra (distortion type 1+4+1, Schindler
152 153 154 155	and an interstitial complex, as suggested by Schindler and Hawthorne (2001) for minerals with polymerized units of higher bond valence. The structural unit is a $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$ heteropolyanion composed of twelve distorted VO ₆ octahedra (distortion type 1+4+1, Schindler et al. 2000) surrounding a central AsO ₄ (arsenate) tetrahedron and capped by a VO ₄ (vanadate)
152 153 154 155 156	and an interstitial complex, as suggested by Schindler and Hawthorne (2001) for minerals with polymerized units of higher bond valence. The structural unit is a $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$ heteropolyanion composed of twelve distorted VO ₆ octahedra (distortion type 1+4+1, Schindler et al. 2000) surrounding a central AsO ₄ (arsenate) tetrahedron and capped by a VO ₄ (vanadate) tetrahedron, which shares three of its four vertices with VO ₆ octahedra (Fig. 3). Without the

¹ Deposit items AM-17-xx1, AM-17-xx2 and AM-17-xx3 give anisotropic displacement parameters, observed and calculated structure factors, and CIF, respectively. Deposit items are available two ways: for paper copies contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. For an electronic copy visit the MSA web site at http://www.minsocam.org, go to the *American Mineralogist* Contents, find the table of contents for the specific volume/issue wanted, and then click on the deposit link there.

160 "cavities" in each of its 4 faces. The capping VO₄ tetrahedron is located over one of these161 cavities.

162	The interstitial unit has the formula $[Pb_3Ca_3 \cdot 20H_2O]^{12+}$, which exactly balances the charge
163	on the structural unit and confirms the 5+ charges on all V and As in the structural unit (Table 5).
164	The Pb site is located above each of the three remaining cavities in the mono-capped Keggin
165	anion. Pb is in lopsided 9 coordination, with six bonds, 3 short (2.28-2.33Å) and 3 long (3.29-
166	3.38Å), to O atoms in one mono-capped Keggin anion and 3 other long bonds (2.82-3.00Å) to an
167	adjacent mono-capped Keggin anion. A 10 th much longer Pb-O bond (3.62Å) is to the partially
168	occupied OW28a in the interstitial unit. The Pb-O bonds link the Keggin anions into a thick layer
169	parallel to {001}. The two half-occupied Ca sites in the interstitial unit do not have regular
170	coordinations. They are at reasonable distances for bonds to O sites in the Keggin anions and to
171	H ₂ O sites in the interstitial unit and thereby serve to link the layers in the [001] direction (bond
172	valences given in Table 5). However, the Ca sites surround the 3-fold axis and appear to be
173	missing a coordinating O site on that axis. Some residual electron density in this region could
174	represent highly disordered O sites, but none could be successfully refined.
175	A variety of capped Keggin anions have been synthesized and structurally characterized,
176	but to our knowledge, a mono-capped Keggin ϵ -isomer equivalent to the $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$
177	unit in kegginite has not been previously reported. Kegginite is not closely related to any other
178	mineral. Other minerals that contain Keggin-related polyoxometalate clusters include ophirite,
179	which has a trilacunary Keggin sandwich anion (Kampf et al. 2014), and murataite, in which
180	Keggin clusters are the fundamental building blocks of a framework (Ercit and Hawthorne 1995).
181	In both of these cases, the Keggin unit is the α isomer.
182	

183

IMPLICATIONS

184 Many complex polyoxometalate anions have been synthesized, and they have been shown 185 to have a remarkable array of technological and biochemical uses (cf. Cronin and Müller 2012; 186 Song and Tsunashima 2012). The most widely known heteropoly anion is the Keggin anion, for 187 which a very large body of literature exists because of its industrial utility. Capped Keggin 188 anions, in particular, have potential as building blocks for advanced materials or as components 189 for molecular devices (cf. Bakri et al. 2012). Until recently, minerals that contain the Keggin 190 anion were not known to occur, and kegginite is only the third discovered to date; it is the first 191 mineral containing a Keggin *\varepsilon*-isomer and appears to be the first phase, either natural or synthetic, containing a mono-capped $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$ Keggin ε -isomer. 192 193 The environment of secondary mineralgenesis at the Ophir Hill Consolidated mine in 194 Tooele County, Utah, consisting of late acidic and oxidizing hydrothermal solutions and the 195 presence of As, has recently yielded the tri-lacunary Keggin anion in ophirite, a tri-lacunary 196 Keggin structure with three octahedral vacancies in the $[XM_{12}O_{40}]^{n-}$ Keggin anion. The 197 occurrence of kegginite in a mine of the Uravan Mineral Belt, a different chemical environment 198 from ophirite (although similarly acidic and oxidizing), extends the natural conditions under 199 which Keggin anions can form, and suggests that other members of this class of compounds 200 occur naturally. It is worth noting that the decavanadate isopolyanion, $[V^{5+}_{10}O_{28}]^{6-}$, including its 201 202 protonated and mixed-valence variants, is the most common polyanion found in the secondary

203 mineral assemblages of the sandstone-hosted uranium-vanadium deposits of the Uravan Mineral
204 Belt, as well as in similar deposits worldwide. The decavanadate anion is known to be quite

stable in acidic and oxidizing aqueous solutions. The mineralization in the Packrat mine is

206	unusual for having local enrichment in As, which is atypical of deposits in the Uravan Mineral
207	Belt. This, coupled with intermediate oxidizing conditions, has resulted in the formation of four
208	recently described minerals (vanarsite, packratite, morrisonite, and gatewayite; Kampf et al.
209	2015) containing the novel mixed-valence $[As^{3+}V^{4+,5+}_{12}As^{5+}_{6}O_{51}]$ heteropolyanion. Kegginite
210	formed in the same general assemblage, but apparently under more oxidizing conditions, as it
211	contains the mono-capped $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$ Keggin ϵ -isomer, in which all As and V is 5+.
212	The presence of As in the system is crucial to the formation of these very rare polyanions,
213	although it might be conjectured that a phosphate analogue of kegginite could be formed if P^{5+}
214	rather than As^{5+} is present.
215	The occurrence of kegginite further demonstrates that rare natural environments of
216	mineral genesis can mimic laboratory conditions under which complex compounds can be
217	created, and suggests that the limits of mineral structure complexity will be extended as these
218	environments are explored. Furthermore, the fact that kegginite contains a mono-capped Keggin
219	anion not previously synthesized demonstrates the importance of new mineral discoveries in
220	providing insights into the development of potentially valuable technological materials
221	
222	ACKNOWLEDGEMENTS
223	Reviewers Michael Schindler and Henrik Friis are thanked for constructive comments,
224	which improved the manuscript. Editorial handling by Fernando Colombo is greatly appreciated.
225	This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences
226	Department of the Natural History Museum of Los Angeles County and by grant NSF-MRI
227	1039436 from the National Science Foundation to JMH. Jim Fisher, General Mine
228	Superintendent, Denison Mines, allowed us to obtain specimens for study.

229 230 REFERENCES 231 Bakri, R., Booth, A., Harle, G., Middleton, P.S., Wills, C., Clegg, W., Harrington, R.W., and 232 Errington, R.J. (2012) Rational addition of capping groups to the phosphomolybdate Keggin anion [PMo₁₂O₄₀]³⁻ by mild, non-aqueous reductive aggregation. Chemical Communications, 233 234 48, 2779-2781. Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta 235 236 Crystallographica, B47, 192-197. 237 Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., 238 Mallamo, M., Mazzone, A., Polidori, G., and Spagna, R. (2012) SIR2011: a new package for 239 crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357-240 361. Carter, W.D., and Gualtieri, J.L. (1965) Geology and uranium-vanadium deposits of the La Sal 241 242 quadrangle, San Juan County, Utah, and Montrose County, Colorado. United States 243 Geological Survey Professional Paper, 508. Cronin, L., and Müller, A. (2012) From serendipity to design of polyoxometalates at the 244 245 nanoscale, aesthetic beauty and applications. Chemical Society Reviews, 41, 7333-7334. 246 Ercit, T.S., and Hawthorne, F.C. (1995) Murataite, a UB₁₂ derivative structure with condensed 247 Keggin molecules. Canadian Mineralogist, 33, 1223-1229. 248 Evans, H.T., Jr., and Garrels, R.M. (1958) Thermodynamic equilibria of vanadium in aqueous 249 solution as applied to the interpretation of the Colorado Plateau ore deposits. Geochimica et 250 Cosmochimica Acta, 15, 131-149.

- 251 Kampf, A.R., Hughes, J.M., Nash, B.P., Wright, S.E., Rossman, G.R., and Marty, J. (2014)
- 252 Ophirite, $Ca_2Mg_4[Zn_2Mn^{3+}_2(H_2O)_2(Fe^{3+}W_9O_{34})_2]\cdot 46H_2O$, a new mineral with a
- heteropolytungstate tri-lacunary Keggin anion. American Mineralogist, 98, 1045-1051.
- 254 Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2015) Vanarsite, packratite, morrisonite,
- and gatewayite: four new minerals containing the $[As^{3+}V^{4+,5+}_{12}As^{5+}_{6}O_{51}]$ heteropolyanion, a
- 256 novel polyoxometalate cluster. The Canadian Mineralogist, 53, (in press).
- 257 Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2016) Mesaite, CaMn²⁺₅(V₂O₇)₃·12H₂O, a
- new vanadate mineral from the Packrat mine, near Gateway, Mesa County, Colorado, USA
- 259 Mineralogical Magazine, 80, (accepted for publication)
- 260 Keggin, J.F. (1934) The structure and formula of 12-phosphotungstic acid. Proceedings of the
- 261 Royal Society, A, 144, 75-100.
- 262 Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 263 microvolumes applying the model "PAP." In: Heinrich, K.F.J. and Newbury, D.E. (eds)
- 264 Electron Probe Quantitation. Plenum Press, New York, pp. 31-75.
- 265 Schindler, M., and Hawthorne, F.C. (2001): A bond-valence approach to the structure, chemistry,
- and paragenesis of hydroxyl-hydrated oxysalt minerals. I. Theory. The Canadian
- 267 Mineralogist, 39, 1225-1242.
- 268 Schindler, M., Hawthorne, F.C., and Baur, W.H. (2000) Crystal chemical aspects of vanadium:
- 269 Polyhedral geometries, characteristic bond valences, and polymerization of (VO*n*)
- polyhedral. Chemistry of Materials, 12, 1248-1259.
- 271 Shawe, D.R. (2011) Uranium-vanadium deposits of the Slick Rock district, Colorado. United
- 272 States Geological Survey Professional Paper, 576-F.
- 273 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.

- 274 Song, Y.-F., and Tsunashima, R. (2012) Recent advances on polyoxometalate-based molecular
- and composite materials. Chemical Society Reviews, 41, 7384-7402.

277	FIGURE CAPTIONS
278	
279	FIGURE 1. Kegginite crystal used in the structure study; FOV 0.2 mm across.
280	
281	FIGURE 2. Crystal drawing of kegginite; clinographic projection.
282	
283	FIGURE 3 . Mono-capped ε -isomer of the Keggin anion that is the $[As^{5+}V^{5+}_{12}O_{40}(VO)]^{12-}$
284	structural unit in kegginite.
285	
286	FIGURE 4. Structure of kegginite viewed down c.

289
TABLE 1. Analytical results for kegginite.

Constituent	Mean	Range	S.D.	Standard	Normalized		
PbO	28.12 26.98–29.2		1.05 Pb metal		26.82		
CaO	5.66	5.59-5.75	0.07	diopside	5.39		
	0.96	0.93-0.99	0.07	1	0.92		
MgO				diopside V motol			
V_2O_5	50.20	49.01-51.30	0.89	V metal	47.87		
As_2O_5	4.64	4.38-4.80	0.21	GaAs	4.42		
H_2O*	15.30				14.59		
Total 104.88 100.01							
*Based upon the crystal structure with $V + As = 14$ and $O = 61$ apfu.							

TABLE 2. Calculated powder X-ray diffraction data (d in Å) for kegginite.

-			-	_		-			-		
Ι	d	hkl	Ι	d	hkl	Ι	d	hkl	Ι	d	h k l
89	15.8460	001	9	3.0779	1 2-4	1	2.1661	2 3-5	2	1.7658	345
100	12.9350	100	5	2.9940	402	1	2.1562	226	2	1.7442	3 5-3
43	10.0204	101	10	2.9677	313	1	2.1361	601	2	1.7338	525
7	6.7554	1 1-1	18	2.9168	231	2	2.1268	316	3	1.7133	710
2	6.4675	200	2	2.8459	205	3	2.1078	4 1-5	2	1.7033	7 1-1
4	5.9879	021	2	2.8226	410	3	2.0803	244	1	1.6888	444
3	5.4344	1 1-2	7	2.7790	2 3-2	1	2.0713	250	2	1.6746	3 5-4
2	5.2820	003	7	2.7579	043	4	2.0538	3 4-2	1	1.6701	066
1	5.0102	022	8	2.6593	125	2	2.0040	1 5-4	1	1.6565	129
3	4.8890	210	1	2.6410	006	1	1.9960	603	2	1.6475	2 3-8
3	4.6717	121	1	2.5871	2 3-3	3	1.9726	3 4-3	1	1.6298	526
5	4.3124	1 1-3	2	2.5051	044	1	1.9575	161	1	1.5963	535
8	4.1606	122	2	2.4899	116	1	1.9356	4 2-5	1	1.5804	166
2	3.7872	032	1	2.4450	206	1	1.9283	5 2-3	1	1.5725	7 2-1
1	3.6345	221	1	2.4159	241	1	1.9144	3 1-7	1	1.5501	1 1 10
6	3.5879	123	1	2.3749	332	1	1.8936	604	1	1.5389	2 4-8
9	3.4990	3 1-1	1	2.3358	422	2	1.8736	344	1	1.5280	544
3	3.3777	2 2-2	2	2.3236	216	1	1.8545	407	1	1.5139	810
1	3.3401	303	1	2.2988	414	1	1.8481	056	2	1.5071	811
6	3.2681	3 1-2	1	2.2637	007	2	1.8354	351	1	1.4773	4 6-1
1	3.2337	400	1	2.2293	152	3	1.7996	352	1	1.4678	274
5	3.1684	401	1	2.2184	4 2-3	1	1.7825	065	1	1.4493	6 3-5
	011001		-		0	-	1.1020	000	-	111190	000

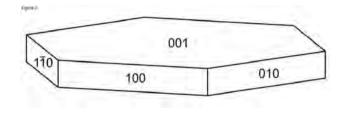
296	Diffractometer	Rigaku R-Axis Rapid II				
297	X-ray radiation / power	MoK α ($\lambda = 0.71075$ Å)/50 kV, 40 mA				
298	Temperature	293(2) K				
299	Structural Formula	$Pb_3(Ca_{2.43}Mg_{0.57})_{\Sigma 3.00}[AsV_{12}O_{40}(VO)] \cdot 19.62H_2O$				
300	Space group	P-3				
301	Unit cell dimensions	a = 14.936(5) Å				
302		c = 15.846(5) Å				
303	V	$3061(2) \text{ Å}^3$				
304	Ζ	2				
305	Density (for above formula)	2.690 g cm^{-3}				
306	Absorption coefficient	10.958 mm^{-1}				
307	F(000)	2315.3				
308	Crystal size	$110 \times 90 \times 10 \ \mu m$				
309	θ range	3.02 to 20.11°				
310	Index ranges	$-14 \le h \le 12, -12 \le k \le 14, -15 \le l \le 15$				
311	Refls collected / unique	$8481 / 1889; R_{\text{int}} = 0.112$				
312	Reflections with $F_0 > 4\sigma F$	1356				
313	Completeness to $\theta = 20.11^{\circ}$	97.5%				
314	Max. and min. transmission	0.958 and 0.725				
315	Refinement method	Full-matrix least-squares on F^2				
316	Parameters / restraints	257 / 0				
317	GoF	1.052				
318	Final R indices $[F_0 > 4\sigma F]$	$R_1 = 0.0640, wR_2 = 0.1498$				
319	<i>R</i> indices (all data)	$R_1 = 0.0951, wR_2 = 0.1676$				
320	Largest diff. peak / hole	$+1.58 / -1.27 e/A^{3}$				
321		$\overline{pF} = S = \{ \sum [w(F_o^2 - F_c^2)^2] / (n - p) \}^{1/2}. R_1 = \sum F_o - F_c / \sum F_o . wR_2 \}$				
322	$= \{\sum [w(F_2^2 - F_2^2)^2] / \sum [w(F_2^2)^2] \}^{1/2} \cdot w$	$v = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ where <i>a</i> is 0.0862, <i>b</i> is 43.2287				
323	and P is $[2F_c^2 + Max(F_o^2, 0)]/3$.					
324						
<i>34</i> r						

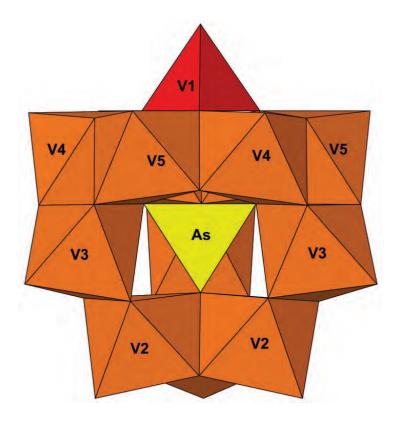
TABLE 3. Data collection and structure refinement details for kegginite.

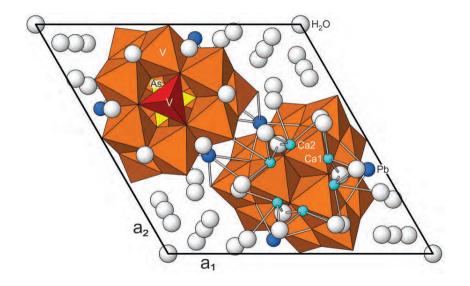
327 P	Pb	0.0(7(0))			$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
541 1		0.36763(8)	0.42910(8)	0.57446(7)	0.0374(5)	0.0352(8)	0.0320(8)	0.0463(8)	0.0025(5)	-0.0009(5)	0.0178(6)
328 (Ca1*	0.5844(15)	0.3976(17)	0.8921(10)	0.103(6)	0.102(15)	0.18(2)	0.060(11)	0.026(11)	0.007(10)	0.097(15)
329 (Ca2*	0.6989(15)	0.4760(17)	0.8796(11)	0.103(6)	0.100(16)	0.170(19)	0.065(12)	0.011(12)	0.009(10)	0.088(15)
330 A	As	0.3333	0.6667	0.6602(3)	0.0340(12)	0.0334(19)	0.0334(19)	0.035(3)	0.000	0.000	0.0167(9)
331 V	V1	0.3333	0.6667	0.8772(5)	0.054(2)	0.061(4)	0.061(4)	0.039(6)	0.000	0.000	0.0305(19)
332 V	V2	0.4682(3)	0.6884(3)	0.4627(3)	0.0319(12)	0.027(3)	0.031(3)	0.038(3)	0.001(2)	0.000(2)	0.015(2)
333 V	V3	0.5899(3)	0.6958(3)	0.6119(3)	0.0379(13)	0.037(3)	0.037(3)	0.038(3)	-0.004(2)	-0.008(2)	0.018(2)
334 V	V4	0.2383(4)	0.4258(4)	0.7773(3)	0.0463(14)	0.052(3)	0.051(3)	0.037(3)	0.011(2)	0.002(2)	0.027(3)
335 V	V5	0.0943(4)	0.5254(4)	0.7786(3)	0.0464(14)	0.045(3)	0.056(3)	0.043(3)	0.013(2)	0.016(2)	0.029(3)
336 (01	0.3333	0.6667	0.5551(18)	0.035(8)	0.018(10)	0.018(10)	0.07(2)	0.000	0.000	0.009(5)
337 (02	0.4487(12)	0.6819(12)	0.6959(10)	0.040(5)	0.039(11)	0.041(11)	0.044(12)	-0.007(9)	-0.011(9)	0.022(10)
338 (O3	0.3333	0.6667	0.9806(17)	0.053(9)	0.067(15)	0.067(15)	0.026(19)	0.000	0.000	0.033(7)
339 (O4	0.3492(13)	0.5615(12)	0.8432(10)	0.041(5)	0.049(12)	0.037(11)	0.038(12)	0.006(8)	0.008(9)	0.022(10)
340 (05	0.5468(11)	0.6968(12)	0.3877(10)	0.035(4)	0.025(10)	0.038(11)	0.043(11)	0.009(8)	0.019(8)	0.017(9)
341 (06	0.6914(12)	0.7057(13)	0.5686(10)	0.041(5)	0.026(10)	0.059(13)	0.044(11)	0.011(9)	-0.004(8)	0.026(10)
342 (07	0.2418(14)	0.3418(13)	0.8401(11)	0.053(5)	0.070(14)	0.049(12)	0.047(12)	0.013(10)	0.009(10)	0.034(11)
343 (08	0.0034(13)	0.5046(13)	0.8431(11)	0.053(5)	0.048(12)	0.048(12)	0.054(13)	0.011(9)	0.015(10)	0.018(10)
344 (09	0.4299(11)	0.7782(11)	0.4235(9)	0.029(4)	0.023(10)	0.030(10)	0.029(10)	0.001(8)	-0.005(7)	0.009(8)
345 (O10	0.5598(11)	0.7826(12)	0.5463(9)	0.032(4)	0.016(9)	0.037(11)	0.034(11)	-0.011(8)	-0.011(7)	0.007(8)
346 (011	0.4871(11)	0.5956(12)	0.5413(9)	0.028(4)	0.029(10)	0.040(11)	0.032(10)	-0.001(8)	-0.003(7)	0.030(9)
347 (012	0.1533(12)	0.3502(12)	0.6935(10)	0.037(4)	0.039(11)	0.028(10)	0.035(11)	0.012(8)	0.001(8)	0.009(9)
348 (013	0.0315(12)	0.4373(13)	0.6947(10)	0.044(5)	0.041(12)	0.052(12)	0.027(11)	0.006(9)	0.003(8)	0.014(10)
349 (O14	0.1427(13)	0.4513(12)	0.8316(11)	0.049(5)	0.043(12)	0.032(11)	0.062(13)	0.009(9)	0.017(9)	0.011(10)
350 0	015	0.3614(11)	0.4643(13)	0.7171(10)	0.039(5)	0.027(10)	0.050(12)	0.032(11)	-0.003(8)	-0.009(8)	0.014(9)
351 (OW1	0.631(2)	0.5270(19)	0.9945(14)	0.099(8)	0.14(2)	0.13(2)	0.058(16)	-0.004(14)	-0.008(14)	0.090(19)
352 0	OW2	0.6557(18)	0.477(2)	0.7401(13)	0.104(9)	0.093(18)	0.22(3)	0.044(14)	-0.033(16)	-0.010(12)	0.11(2)

TABLE 4. Atom coordinates and displacement parameters ($Å^2$) for kegginite.

353	OW3	0.8714(18)	0.591(2)	0.7953(19)	0.152(15)	0.065(17)	0.23(3)	0.17(3)	-0.15(3)	-0.030(17)	0.08(2)
354	OW4	0.431(3)	0.303(2)	0.9962(16)	0.149(12)	0.24(4)	0.14(3)	0.07(2)	0.007(17)	-0.03(2)	0.09(2)
355	OW5	0.0000	0.0000	0.766(4)	0.16(2)	0.14(3)	0.14(3)	0.20(6)	0.000	0.000	0.068(14)
356	OW6*	0.053(4)	-0.081(4)	0.675(3)	0.13(3)						
357	OW7a*	0.732(4)	0.668(4)	0.857(3)	0.11(3)						
358	OW7b*	0.763(7)	0.731(7)	0.771(7)	0.16(6)						
359	OW8a*	0.917(6)	0.766(6)	0.598(6)	0.15(5)						
360	OW8b*	0.918(5)	0.809(6)	0.527(6)	0.10(4)						


361 * Occupancies: Ca1: Ca_{0.43}Mg_{0.07}; Ca2: Ca_{0.38}Mg_{0.12}; OW6: 0.55(7); OW7a: 0.53(7); OW7b: 0.36(8); OW8a: 0.44(9); OW8b: 0.33(8).


365	Pb-	Distance	BVS	V2-	Distance	BVS		
366	011	2.282(15)	0.63	O5	1.631(15)	1.59		
367	O10	2.295(15)	0.61	09	1.811(15)	0.98		
368	015	2.333(16)	0.55	09	1.884(15)	0.80		
369	O5	2.816(15)	0.15	O10	1.920(15)	0.73		
370	O6	2.863(17)	0.13	011	1.986(15)	0.61		
371	O11	3.001(14)	0.09	01	2.378(18)	0.21		
372	Mean/Sum	2.598	2.16	Mean/Sum	1.935	4.92		
373								
374	Cal-	Distance	BVS	V3-	Distance	BVS		
375	OW1	2.35(3)	0.36	06	1.602(16)	1.72		
376	O8	2.58(2)	0.19	O10	1.881(16)	0.81		
377	OW4	2.60(4)	0.18	011	1.885(15)	0.80		
378	OW2	2.66(3)	0.15	O13	1.891(16)	0.79		
379	O3	2.77(3)	0.11	O12	1.899(16)	0.77		
380	OW3	2.78(4)	0.11	O2	2.413(17)	0.19		
381	Mean/Sum	• •	1.10	Mean/Sum	1.929	5.08		
382								
383	Ca2-	Distance	BVS	V4-	Distance	BVS		
384	OW2	2.31(3)	0.40	07	1.623(17)	1.63		
385	OW1	2.39(3)	0.32	O12	1.793(16)	1.03		
386	OW3	2.64(4)	0.16	O14	1.862(17)	0.85		
387	OW7A	2.68(6)	0.14	015	1.887(16)	0.80		
388	OW4	2.90(4)	0.08	O4	2.141(17)	0.40		
389	O3	2.94(3)	0.07	O2	2.307(16)	0.26		
390	Mean/Sum	2.643	1.17	Mean/Sum	1.936	4.97		
391								
392	As-	Distance	BVS	V5-	Distance	BVS		
393	01	1.66(3)	1.32	08	1.600(18)	1.73		
394	O2(x3)	1.718(16)	1.14	O13	1.773(17)	1.08		
395	Mean/Sum	1.704	4.74	O14	1.803(18)	1.00		
396				015	1.900(16)	0.77		
397	V1-	Distance	BVS	O4	2.089(17)	0.46		
398	O3	1.64(3)	1.56	O2	2.317(16)	0.25		
399	O4(x3)	1.785(16)	1.05	Mean/Sum	· · ·	5.29		
400	Mean/Sum	· · ·	4.71					
401	Bond valences are based on Brese and O'Keeffe (1991).							
				(/			


TABLE 5. Selected bond distances and bond valences for atoms in kegginite.
