American Mineralogist, Volume 85, pages 1816–1821, 2000

Elyite, Pb₄Cu(SO₄)O₂(OH)₄·H₂O: Crystal structure and new data

UWE KOLITSCH* AND GERALD GIESTER

Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria

ABSTRACT

The crystal structure of elyite, $Pb_4Cu(SO_4)O_2(OH)_4$ ·H₂O, a = 14.233(2), b = 11.532(1), c = 10.532(1)14.611(2) Å, $\beta = 100.45(1)^\circ$, V = 2358.4(5) Å³, Z = 8, was solved by direct methods and refined in space group $P2_1/c$ to R1 = 3.64% and wR2 = 5.10% for the 5861 independent reflections. Data were collected on a tiny untwinned crystal fragment with a four-circle diffractometer (MoK α radiation, CCD area detector). The structure contains eight unique Pb atoms, two isolated Cu atoms in planar fourfold-coordination (<Cu-O> = 1.933, 1.927 Å) and two isolated, almost ideal SO₄ tetrahedra. All anions coordinating Cu are OH groups. Two H₂O molecules are weakly bound to Pb atoms. The Pb atoms show highly variable coordinations due to variable stereochemical activities of the Pb²⁺ lone electron pairs. The connectivity of the structure is based on Pb-O polyhedra which are closely linked by common O ligands to form rod-like structure elements parallel to the b axis. The structure framework is held together by sharing ligands with CuO_4 squares and SO_4 tetrahedra. The CuO_4 squares can be considered as struts connecting the Pb-O rods along the c axis and, intermittently, along the a axis. A complex hydrogen bond system provides additional strengthening. The non-merohedral twinning parallel to {100} reported previously is explained by the presence of a pseudo-mirror plane in the structure. Comparisons are drawn with the structures of the related Pb-Cu-sulfates chenite, Pb₄Cu(SO₄)₂(OH)₆, and linarite, PbCu(SO₄)(OH)₂. The violet color of elyite and other Cu compounds might be related to the planar fourfold-coordination of Cu.