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Huazhong Shi3 • Qi Zhao1 • Hui-Ru Li1 • Sardar Ali Khan1 • Yin-Quan Wang4 •

Suo-Min Wang1 • Jin-Lin Zhang1,3,4

Received: 29 April 2016 / Revised: 5 December 2016 / Accepted: 14 December 2016
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Abstract The plant growth promoting rhizobacterium

(PGPR) strain Bacillus amyloliquefaciens GB03, an

important soil-borne bacterium, was shown to promote

growth and abiotic stress tolerance in Arabidopsis thaliana

as well as in some crop plants. This study aimed to evaluate

the effects of GB03 on salt tolerance in Codonopsis pilo-

sula, a traditional Chinese medicinal herb that is sensitive

to salinity. Twenty-day-old seedlings of C. pilosula were

either inoculated with GB03 or without it (as a control). At

the same time, plants were treated with NaCl (0, 50, 100, or

150 mM) for 40 days. Growth parameters, photosynthetic

indexes, malondialdehyde concentration, and leaf osmotic

potential were measured after treatments. The result indi-

cated that GB03 improved plant biomass of C. pilosula

under salt conditions and improved the photosynthetic

capacity by increasing net photosynthetic rate and stomatal

conductance and decreasing intercellular CO2

concentration under both 0 and 50 mM NaCl. The bac-

terium strain also decreased leaf osmotic potential and

peroxidation of membrane lipids that could help the plant

adapt to saline environments. This study provides insights

into the application of selected bacteria in the culture of

important Chinese herbal plants under mild salinity.

Keywords Bacillus amyloliquefaciens (GB03) �
Codonopsis pilosula � Salt tolerance � Photosynthesis �
Membrane lipid peroxidation

Abbreviations

TBA Thiobarbituric acid

MDA Malondialdehyde

LB Luria broth

PGPR Plant growth promoting rhizobacteria

VOC Volatile organic compounds

Ws Osmotic potential

Introduction

Soil salinity is a growing threat for agricultural produc-

tivity worldwide. It is a major abiotic stress, and fre-

quently one of the serious limiting factors for growing

crops (Zhu 2001; Zhang and Shi 2013). First, plants suffer

from ion imbalance and osmotic stress caused by high soil

salt concentration (Zhang et al. 2010b). Elevated soil salt

concentration also reduces the capability of plants to

absorb water and negatively affects plant growth by

increasing osmotic stress inducing stomatal closure, and

reducing leaf expansion and photosynthetic rate (Deinlein

et al. 2014; Rahnama et al. 2010). Consequently, salt

stress decreases crop yields and leads to continuous loss

of arable land. Thus, how to face and deal with the
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challenges that salinity brings is extremely important for

agricultural production under changing environmental

conditions.

The rhizosphere is a complex zone around roots, in

which metabolites from the soil, microorganisms, and roots

are inter-mixed (Paré et al. 2011). The microorganisms

include both deleterious and beneficial bacteria and fungi

that can impact hormone-mediated plant growth and dis-

ease susceptibility (Zhang et al. 2007; Ryu et al. 2004). In

addition, the identified role of PGPR in growth and resis-

tance to disease, inducible salt, and alkali resistance has

been reported (Dardanelli et al. 2008; Han et al. 2014;

Zhang et al. 2008a). Bacillus subtilis strain GB03, recently

renamed as B. amyloliquefaciens strain GB03, can be

introduced into the soil at the time of planting via seed

coating (Choi et al. 2014). GB03 emits a bouquet of

volatile metabolites, devoid of classic phytohormones, that

are capable of triggering plant growth promotion (Ryu

et al. 2003; Paré et al. 2005). These volatile organic

compounds (VOCs) were shown to activate differential

expression of approximately 600 transcripts related to

stress responses, hormone regulation, and other expressed

proteins (Ryu et al. 2003; Zhang et al. 2007). GB03 was

shown to increase the efficiency of light energy conversion

and photosynthesis rate in Arabidopsis (Zhang et al.

2008b), which could explain the growth promotion that is

observed. Recently, applied field studies utilizing GB03

have demonstrated elevated iron accumulation in cassava

(Freitas et al. 2015) and improved wheat (Zhang et al.

2014), white clover (Han et al. 2014), and Puccinellia

tenuiflora (Niu et al. 2016) tolerance to salinity. To probe

GB03-inducible salt tolerance in other glycophytes, a tra-

ditional medicinal plant was selected for the current work.

Codonopsis pilosula (Franch.) Nannf., a traditional

medicinal herb in China, Korea, and Japan, has many bio-

active components, such as polysaccharides, triterpenes,

phytosterols, sesquiterpenes, phenolic glycosides, alka-

loids, and essential amino acids for humans (Xin et al.

2012; Wang et al. 2013). The herbal tea prepared from the

roots of C. pilosula is prescribed to fortify the immune,

digestive, and hematopoietic systems in the traditional

Chinese medicines (Kim et al. 2014; Wang et al. 2013).

Nevertheless, C. pilosula is sensitive to saline conditions

(Kim et al. 2014).

Although strong evidence shows PGPR influence plant

performance and stress tolerance, their detailed effects on

salt tolerance of traditional Chinese herbal crops have not

been explored. Therefore, this study aimed to evaluate the

effects of GB03 on C. pilosula salt tolerance. The study

shows the potential application of beneficial bacterium

strains in cultivation of Chinese herbal plants under mild

salt conditions.

Materials and methods

Bacterial culture

Bacillus amyloliquefaciens strain GB03 was streaked onto

Luria broth (LB) agar plates and incubated under 28 �C
and dark for 24 h. Cells were then transferred to liquid LB

and cultured under 28 �C with 250 rpm to yield 109 colony

forming units (CFU) mL-1, as determined by optical

density and serial dilutions (Zhang et al. 2008a).

Plant growth and treatments

Codonopsis pilosula seeds were surface-sterilized (soaking

for 10 s in 75% (v/v) ethanol followed by 10 min in 5% (v/

v) sodium hypochlorite), and then seeds were rinsed with

sterile water for five times and stored at 4 �C in a refriger-

ator overnight. After germination on filter paper, seeds were

transferred to plugs (diameter 5 cm, depth 6 cm) on a tray

containing autoclave-sterilized commercial vermiculite–soil

mixture and watered with half-strength Hoagland solution

(5 mM KNO3, 1 mM NH4H2PO4, 0.5 mM Ca(NO3)2,

0.5 mM MgSO4, 60 lM Fe-citrate, 92 lM H3BO3, 18 lM

MnCl2�4H2O, 1.6 lM ZnSO4�7H2O, 0.6 lM CuSO4�5H2O,

and 0.7 lM (NH4)6Mo7O24�4H2O) every 3 days to keep the

soil water content at 60–70% (soil capacity). Each plug (one

plant, 20 days old) was inoculated directly with 1 mL bac-

terial suspension or liquid LB as a control into the vermi-

culite. At the same time, seedlings were watered with the

nutrient solution supplemented with 0, 50, 100, or 150 mM

NaCl as salt treatments that were continued every 6 days and

with water in the interval to keep the soil water content at

60–70% (Han et al. 2014). Plants were grown in a glass

house with additional illumination from metal halide and

high-pressure sodium lamps set to a 14/10 h for the light/-

dark cycle with a total light flux of 800 lmol m-2 s-1, an

average temperature of 28 ± 2 �C/23 ± 2 �C, and a relative

humidity of 70 ± 10%.

Plant biomass and physiological index

measurements

Sixty-day-old plants were harvested for plant growth and

physiological index measurements. First, net photosynthetic

rate, stomatal conductance, intercellular CO2 concentration,

and transpiration rate of the three largest mature leaves for

each plant (the average was calculated as one replication)

were measured using a photosynthetic system (GFS 3000,

ZQ-WALZ009; Walz, Effeltrich, Germany) in the green-

house from 09:30 am to 11:30 am. Growth conditions were:

photosynthetic available radiation of 800 lmol m-2 s-1

(saturated light intensity), relative humidity 65 ± 5%, leaf
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temperature 28 ± 2 �C, and CO2 concentration of

360 lmol mol-1 (Ma et al. 2012). Sixty-day-old plants were

removed from the pots, roots rinsed with water to remove

attached vermiculite, and shoot height and root length were

measured. Roots (after blotting with tissue paper) and shoots

were weighed fresh immediately and then oven-dried at

80 �C for 2 days for dry weight.

To probe oxidative stress, the biomarker malondialde-

hyde (MDA) was extracted and measured spectro-photo-

metrically using a thiobarbituric acid (TBA) protocol (Bao

et al. 2009; Han et al. 2014). Absorbance was detected at

450, 532, and 600 nm using a UV spectrophotometer (UV-

2102C, Unico Instrument Co., Ltd, Shanghai, China).

Leaf osmotic potential (Ws) was measured according to

Ma et al. (2012). Fresh leaves were frozen in liquid

nitrogen. Cell sap was collected by thawing slowly and

then Ws was measured using a cryoscopic osmometer

(Osmomat-030, Gonotec GmbH, Berlin, Germany) under

25 �C. The readings (mmol kg-1) were adopted to calcu-

late the solute potential (Ws) in MPa with the formula

Ws = -moles of solute 9 R 9 K; here, R = 0.008314

and K = 298.8 (Ma et al.2012).

Data analysis

Means of growth, physiological indexes, and photosyn-

thetic measurements were showed in figures with standard

deviation (n = 8). Statistical analyses, one-way ANOVA,

and Duncan’s multiple range tests were performed using

the software SPSS 17.0 (SPSS Inc, Chicago, IL, USA).

Fig. 1 Picture was taken on the day of measurement and harvest to

show the effects of inoculation with GB03 on growth of C. pilosula

plants under various concentrations of NaCl. Here, GB03 represents

Bacillus amyloliquefaciens GB03 suspension in LB and 0, 50, 100,

and 150 NaCl concentrations (mM)
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Fig. 2 Effects of GB03 inoculation on shoot height (a) and root

length (b) of C. pilosula under various concentrations of NaCl. Bars

with different letters indicate significant differences from the Duncan

test (P\ 0.05). Bars represent the mean values and error bars

represent the standard deviations from eight repetitions
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Results

Plant growth

Bacillus amyloliquefaciens GB03 promoted plant growth

of C. pilosula under various salt conditions (Fig. 1). Shoot

height increased significantly by 31.8, 35.4, 28.9, and

17.9% (P\ 0.05) under 0, 50, 100, and 150 mM NaCl

treatments, respectively, compared with corresponding

controls (Fig. 2a); GB03 significantly improved the length

of roots by 9, 12.4, 19.4, and 27.7% (P\ 0.05) with 50,

100, and 150 mM NaCl treatments, respectively (Fig. 2b).

GB03 improved plant biomass of C. pilosula under

various saline conditions. Shoot fresh weight increased

significantly by 26.2, 55.1, 34.9, and 46.9% (P\ 0.05)

with 0, 50, 100, and 150 mM NaCl treatments, respec-

tively, compared with corresponding controls (Fig. 3a).

Shoot dry weight increased significantly by 27.9, 37.8,

25.9, and 38.2% (P\ 0.05) with 0, 50, 100, and 150 mM

NaCl treatments, respectively, compared to corresponding

controls (Fig. 3b). GB03 improved root fresh weight sig-

nificantly by 66.0, 72.7, and 28.4% (P\ 0.05) with 0, 50,

and 150 mM NaCl, respectively, compared to corre-

sponding controls (Fig. 3c). Root dry weight increased by

117, 69.9, 31.0, and 37.9% with 0, 50, 100, and 150 mM

NaCl treatments, respectively, compared with correspond-

ing controls (Fig. 3d).

Photosynthetic parameters

GB03 enhanced net photosynthesis rate by 84 and 61%

(Fig. 4a), leaf stomatal conductance with GB03 treatment

higher by 190 and 97% (Fig. 4b), and GB03 leaf transpiration

rate higher by 70 and 58% (P\ 0.05) with 0 and 50 mM NaCl

treatments (Fig. 4d), respectively. Intercellular CO2 concen-

tration decreased with GB03 treatment by 39 and 45%

(P\ 0.05) with 0 and 50 mM NaCl, respectively (Fig. 4c).

MDA concentration

It is well known that soil salinity increases the level of

reactive oxygen species (ROS) in the leaves of plants, which

can be indicated by the concentration of malondialdehyde

(MDA), one of the main products of membrane lipid per-

oxidation (Yazici et al. 2007). GB03 reduced leaf MDA

concentration under various saline conditions. Compared

with control, GB03 significantly reduced leaf MDA con-

centration by 41.5% with 100 mM NaCl treatment, although

it had no significant effects on leaf MDA concentration with

0, 50, and 150 mM NaCl treatments (Fig. 5).
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Fig. 3 Effects of GB03 inoculation on plant growth of C. pilosula

under various concentrations of NaCl: a shoot fresh weight, b shoot

dry weight, c root fresh weight, and d root dry weight. Bars with

different letters indicate significant differences from the Duncan test

(P\ 0.05). Bars represent the mean values and error bars represent

the standard deviations from eight repetitions
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Leaf osmotic potential

Under lower salt concentration (0 and 50 mM NaCl),

compared with the controls, GB03 had no significant

effects on leaf osmotic potential of C. pilosula, although it

was decreased by 9.5 and 8.6%. Nevertheless, GB03

decreased leaf osmotic potential significantly by 28%

(P\ 0.05) with 100 mM NaCl treatment (Fig. 6).

Discussion

Plant growth-promoting rhizobacteria were shown to

enhance plant performance and increase stress tolerance for

Arabidopsis and a variety of traditional agricultural crops

(Lugtenberg and Kamilova 2013). The mechanism by

which GB03 increased growth in C. pilosula could be

proposed to be analogous to that found in Arabidopsis,

where GB03 increases cell expansion in shoots by regu-

lating auxin transport (Zhang et al. 2007). Furthermore,

Zhang et al. (2008a) and Niu et al. (2016) reported that

GB03 conferred growth promotion under salinity through

tissue-specifically regulating AtHKT1;1 in Arabidopsis,

and PtHKT1;5, PtHKT2;1, and PtSOS1 in Puccinellia

tenuiflora, respectively.

GB03-induced increases in photosynthesis and chloro-

phyll content in Arabidopsis are controlled by decreasing

glucose sensing and ABA levels (Zhang et al. 2008b).

Although GB03-induced iron and sulfur acquisition may

also augment growth in Arabidopsis (Zhang et al. 2009;

Aziz et al. 2016), as well as in C. pilosula, a direct role of

increases in these elements in the growth of either species

has yet to be established.

Soil salinity decreases plant photosynthetic rates caused

by elevated Na? inside plants (Zhang and Shi 2013). Net

photosynthetic rate, stomatal conductance, and intercellular

CO2 concentration, as important photosynthesis traits, are

closely related to photosynthetic capacity (Ma et al. 2012).

GB03 augmented photosynthetic capacity by enhancing

photosynthetic efficiency and chlorophyll content in Ara-

bidopsis (Zhang et al. 2008b). Here, we found that soil

inoculation with GB03 conferred an increased net photo-

synthetic rate, stomatal conductance, and decreased inter-

cellular CO2 concentration under both 0 and 50 mM NaCl.

Soil salinity increases the levels of reactive oxygen

species in plants (Zhang and Shi 2013). MDA, one of main

products of peroxidation of membrane lipids, was closely

linked to the degree of cell membrane damage (Yazici et al.

2007), and it could be adopted as a physiological indicator

for evaluation of plant stress tolerance (Luna et al. 2000).

Drought-tolerant Malus prunifolia had a better chloroplast

structure under drought stress with lower levels of H2O2

and MDA than drought-sensitive Malus hupehensis (Wang

et al. 2012). The decrease in MDA concentration recorded

in the PGPR-treated plants links management of lipid

peroxidation to better stress tolerance (Miao et al. 2010). In

current work, GB03 significantly decreased leaf MDA

concentration in C. pilosula under saline condition

(100 mM NaCl), but had no significant effects under 0, 50,

and 150 mM NaCl. We proposed that 0 and 50 mM NaCl

are not stressful for C. pilosula, but 150 mM NaCl dam-

aged cell membrane very seriously for both GB03 treat-

ment and control plants.

When plants suffer saline or drought conditions,

osmotic stress occurs rapidly (Munns and Tester 2008).

Plants could adapt to osmotic stress through physiological

and biochemical adjustments, like enhancing osmolytes

and antioxidant systems (Ma et al. 2012). To enhance

stress tolerances and reduce toxic effect of salinity, leaves

accumulate osmoprotectants and adjust their osmotic

potential (&leaf water potential) below that in apoplast

and soil to ensure continued absorption of water from the

soil (Janz and Polle 2012; Ma et al. 2012). GB03

enhanced Arabidopsis choline and glycine betaine syn-

thesis that associated with increased osmolyte content,

thus increased plant osmotic stress tolerance ability

(Zhang et al. 2010a). In current work, GB03 reduced leaf

osmotic potential significantly under salt stress condition

(100 mM NaCl).

In summary, the results presented in this work estab-

lished that soil inoculation of B. amyloliquefaciens strain

GB03 increases plant growth and biomass of the important

Chinese medicinal plant C. pilosula significantly under

various saline soil conditions. GB03 improved photosyn-

thesis under both 0 and 50 mM NaCl. GB03 also decreased

leaf osmotic potential and peroxidation of membrane

lipids. This study provides physiological evidence that

beneficial–bacterial inoculation of medicinal plants grown

in soils with moderate salt contamination can protect

against salt toxicity.
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