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ABSTRACT  

 

In this paper, we describe, implement, and validate a new method to decompose the Complex Cross Ambiguity Function 

(CCAF) of spoofed Global Navigation Satellite System (GNSS) signals into their constitutive components. The method is 

applicable to spoofing scenarios that can lead to Hazardous Misleading information (HMI) and are difficult to detect by other 

means, including previously proposed methods that rely on observation of the magnitude of the CCAF alone [1]. The method 

can identify spoofing in the presence of multipath and when the spoofing signal is power matched and offsets in code delay 

and Doppler frequency are relatively close to the true signal. Spoofing can be identified at an early stage within the receiver 

and there is no need for any additional hardware. 

 

INTRODUCTION    

 

Global Navigation Satellite Systems (GNSS) are used for Positioning, Navigation and Timing (PNT) worldwide and are vul-

nerable to Radio Frequency Interference (RFI) such as jamming and spoofing attacks. Jamming can deny access to GNSS 

service while spoofing can create false positioning and timing estimates that can lead to catastrophic results. This paper fo-

cuses on the detection of intentional RFI known as spoofing, a targeted attack where a malicious actor takes control of the 

victim’s position and/or time solution by broadcasting counterfeit GNSS signals [2]. Different methods have been proposed 

to detect spoofing, such as received power monitoring, signal quality monitoring (SQM), pseudorange residual checks, signal 

direction of arrival (DoA) estimation, inertial navigation system (INS) aiding, and others [3] [4]. Each of these methods have 



 

 

their own advantages and drawbacks.  CAF* monitoring approaches [5] can be used to detect spoofing but have disad-

vantages in environments with multipath and when the Doppler frequency and code phase of the received signal are closely 

aligned with the spoofed signal.  A sampled signal can be represented in the form of a complex number, 𝐼 (in-phase) and 𝑄 

(quadrature), as a function of code delay and Doppler offset.  In existing CAF monitoring concepts, a receiver performs a 

two-dimensional sweep to calculate the CAF by correlating the received signal with a locally generated carrier modulated by 

pseudorandom code for different possible code delay and Doppler pairs.  Spoofing is detectable when two peaks in the CAF 

are distinguishable in the search space. This could happen, for example, if a power matched spoofed signal does not accu-

rately align the Doppler and code phase with the true received signal. In practice, because detection using the CAF is not reli-

able under multipath and for spoofed signals close to the true ones, we instead propose exploit the full CCAF. We decompose 

the CCAF of the received signal into its contributing components—true, spoofed, and multipath—as defined by their signal 

amplitudes, Doppler frequencies, code delays, and carrier phases.  

In this paper, we introduce a method to decompose a CCAF made up of 𝑁 contributing signals by minimizing a least-squares 

cost function. The optimization problem is non-convex. To deal with the nonconvexity we implement a Particle Swarm Algo-

rithm (PSA). We show simulated results decomposing three different signals (true, spoofed, and multipath) into their respective 

defining parameters—signal amplitudes, Doppler frequencies, code delays, and carrier phases—for the ideal case without any 

noise and code cross correlations. We also show experimental results implementing the method in a software defined receiver 

in the presence of thermal noise and code cross-correlation (as well as multipath).  The new method is validated against publicly 

available spoofing datasets, including TEXBAT [6]. 

 

SIGNAL PROCESSING    

 

GNSS signals are transmitted in the form of radio waves with data modulated on them. Signal processing is an integral part of 

demodulating the data on the carrier waves. We process GNSS signals using a Software Defined Radio (SDR). The GPS L1 

signal is used in this work, but the method is generally applicable to all GNSS signals. 

  

GPS L1 Signal 

 

The GPS L1 Signal is transmitted at a frequency of 𝑓𝐿 = 1575.42 MHz (19 cm wavelength) from all satellites in the form of 

radio waves that are modulated with a pseudo-random (PRN) codes 𝑥(𝑡) at the rate of 1.023 Mega-chips per second (300 m 

chip length) to distinguish between different satellites, and then again modulated with Navigation Data 𝐷(𝑡) at the rate of 50 

bits per second. The modulation scheme used is Binary Phase Shift Keying (BPSK), where the 0s and 1s in a binary message 

are represented by two different phase states in the carrier signal. 

 
Figure 1.  The front end of a GPS receiver  

 
* In this paper, ‘CAF’ monitoring refers to the inspection of only the magnitude of the CCAF, which is typical of signal ac-

quisition algorithms and previously proposed spoofing monitoring methods. 



 

 

GPS Receiver Architecture 

 

As shown in Figure 1, the GPS signal is received at a receiver’s antenna with code delay 𝜏, Doppler 𝑓𝐷 , and carrier phase 𝜃. 

The signal is then amplified, passed through a band pass filter, and then down converted to an intermediate frequency 𝑓𝐼𝐹 by 

mixing with a locally generated mixing signal. It is then passed through a low pass filter to remove the high frequency compo-

nents. The advantage of converting the signal to an intermediate frequency is that it simplifies the subsequent stages, making 

filters easy to design and tune. The signal is then digitized and mixed again (in Figure 2) with two locally generated replicas of 

the carrier signal 𝑓𝐷̅, in-phase and quadrature, differing in phase by a quarter cycle, 𝜃̅ and 𝜃̅ + 𝜋 

2
. It is then passed through a 

low pass filter to remove the intermediate frequency, and finally mixed with a local replica of the PRN code with delay 𝜏̅.    

 
Figure 2.  GPS Receiver Architecture after signal is digitized 

In-phase and Quadrature Components 

 

The in-phase 𝐼 and quadrature 𝑄 components of an uncorrupted output signal (i.e., no spoofing or multipath) with amplitude 

√𝐶 are shown in Equations (1) and (2). When presented in complex form, as in Equation (3), the in-phase and quadrature 

components are the real and imaginary parts of the signal, respectively.  The coherent integration time 𝑇𝐶𝑂  can range from 1 to 

20 milliseconds, the upper limit to avoid integration across boundaries of a GPS data bit 𝐷(𝑡). Coherent integration is per-

formed to reduce the effects of thermal noise. 

 

𝐼(√𝐶, 𝜏, 𝜏̅, 𝑓𝐷, 𝑓𝐷̅ , 𝜃, 𝜃̅) =  
√𝐶

𝑇𝐶𝑂
 ∫ 𝑥(𝑡 − 𝜏)𝑥(𝑡 − 𝜏̅) cos(2𝜋(𝑓𝐷 − 𝑓𝐷̅)𝑡 + 𝜃 − 𝜃̅) 𝑑𝑡

𝑇𝐶𝑂

0

 (1) 

 

𝑄(√𝐶, 𝜏, 𝜏̅, 𝑓𝐷, 𝑓𝐷̅, 𝜃, 𝜃̅) =  
√𝐶

𝑇𝐶𝑂
 ∫ 𝑥(𝑡 − 𝜏)𝑥(𝑡 − 𝜏̅) sin(2𝜋(𝑓𝐷 − 𝑓𝐷̅)𝑡 + 𝜃 − 𝜃̅) 𝑑𝑡

𝑇𝐶𝑂

0

 (2) 

  

𝑆 = 𝐼 + 𝑖𝑄 (3) 

 

Performing the integrals in equations (1) and (2), equation (3) can be expressed as 

 

𝑆(√𝐶, 𝜏, 𝜏̅, 𝑓𝐷 , 𝑓𝐷̅, 𝜃, 𝜃̅) = √𝐶 𝑅(𝜏 − 𝜏̅) sinc(𝜋(𝑓𝐷 − 𝑓𝐷̅)𝑇𝐶𝑂) exp(𝑖𝜋((𝑓𝐷 − 𝑓𝐷̅)𝑇𝐶𝑂 + 𝜃 − 𝜃̅))  
(4) 



 

 

where+ 

𝑅(ξ) =  

{
 
 

 
 
ξ

𝑇𝑐
+ 1          − 𝑇𝑐 < ξ < 0

−ξ

𝑇𝑐
+ 1                0 < ξ < 𝑇𝑐

     0                   otherwise

 (5) 

and 𝑇𝑐 is the duration of a single chip.     

To simplify notation, we define 𝑎 ≜ √𝐶.  Summing 𝑁 component signals (𝑖 = 1,… , 𝑁), we have   

                

       𝑆𝑁(𝑔|𝜏̅, 𝑓𝐷̅, 𝜃̅) =  ∑ 𝑎𝑗 𝑅(𝜏𝑗 − 𝜏̅) sinc (𝜋(𝑓𝐷𝑗 − 𝑓𝐷̅)𝑇𝐶𝑂) exp (𝑖𝜋((𝑓𝐷𝑗 − 𝑓𝐷̅)𝑇𝐶𝑂 + 𝜃𝑗 − 𝜃̅))
3
𝑗=1          (6) 

 

where 𝑔 = (𝑎1, 𝜏1, 𝑓𝐷1 , 𝜃1, … , 𝑎𝑁 , 𝜏𝑁 , 𝑓𝐷𝑁, 𝜃𝑁).  For example, given the true satellite signal, a spoofed signal, and a single mul-

tipath signal, 𝑁 = 3. 

 

Complex Cross Ambiguity Function (CCAF) Measurement Space  

A Doppler frequency (𝑓𝐷̅) and code delay (𝜏̅) pair search sweep is done to correlate the incoming signal from satellites with a 

local replica. The measurement space is spanned by a two-dimensional grid across Doppler frequency 𝑓𝐷̅ and code delay 𝜏̅.  
The carrier phase is held constant across the gird at an arbitrary value (for example at 0 or the punctual value retrieved from 

the loop; the actual number used does not matter). Each measurement then corresponds to a complex value 𝑆𝑁(𝑔|𝜏̅, 𝑓𝐷̅), which 

is the CCAF. 

 

When spoofing and multipath are not present, the magnitude of CCAF (i.e., the CAF) is visualized in Figure 3. The total number 

of cells in the measurement space is equal to the number of code phase bins times the number of Doppler bins. 

 

 

 

 

 

 
Figure 3.  Complex Cross Ambiguity Function Search Space (left) and 3D search space with amplitude of CCAF (right) 

 
+ Strictly, Equation (6) is true only for infinite length random codes.  For finite length PRN codes like GPS L1 C/A, 𝑅(𝜉) will 

have additional small, but non-zero, values outside the domain 𝜉 ∈ (−𝑇𝑐 , 𝑇𝑐).  We ignore these for now, but will address their 

impacts later. 



 

 

When visualizing the CAF from the Doppler frequency point-of-view, the peak is represented by a sinc function with fre-

quency 1/𝑇𝐶𝑂; from the code delay view it is a triangle with base length of 2 chips.  See Figure 4. The coherent integration 

time affects the resolution of the Doppler frequency. It is generally preferred to have longer 𝑇𝐶𝑂  for noise reduction reasons, 

but this will also require narrower Doppler bins because the sinc function itself becomes narrower. The software defined ra-

dio allows flexibility to change the Doppler bin widths.  However, the code delay bins are determined by the sampling rate of 

the receiver. 

  
 

Figure 4.  Code Delay (left) at 0 chips correlation peak and Doppler Frequency (right) at 0 Hz represented by a sinc function  

Spoofing 

 

When spoofed signal is present and the code delays and Doppler frequencies of the signals are not closely aligned, two peaks 

are visible in the CAF, ‖𝑆2(𝑔|𝜏̅, 𝑓𝐷̅)‖, as shown in Figure 5 (left). The two peaks merge if the code delays and Doppler fre-

quencies are closely aligned, as shown in Figure 5 (right).  Our idea is to decompose the CCAF, 𝑆2(𝑔|𝜏̅, 𝑓𝐷̅), of mixed signals 

into their constitutive parameters. 

 

  
 

Figure 5.  Amplitude of CCAFs when code delay and Doppler frequency pair are far apart(left), Amplitude of CCAFs when code delay 

and Doppler frequency pair are closely aligned(right)   

 

PARTICLE SWARM DECOMPOSITION 

 

Stacking the measurements from the grid space (𝜏̅, 𝑓̅𝐷), the measurement model can be written as 



 

 

𝑧 = 𝑆𝑁(𝑔|𝜏̅,𝑓𝐷̅) + 𝜈 (7) 

 

where 𝜈 is the vector of measurement errors, including the effects of thermal noise and code cross-correlation. To decompose 

the 𝑁 signals, we seek to obtain an estimate of the parameter vector, 𝑔̂, that minimize the cost function 

 

𝐽 = ‖𝑧 − 𝑆𝑁(𝑔|𝜏̅, 𝑓𝐷̅)‖
2
 (8) 

 

Unfortunately, due to the structure of 𝑆𝑁  the cost function is non-convex, and a global minimum cannot be obtained by standard 

gradient-based methods. Instead, we use a Particle Swarm Optimization (PSO) algorithm that randomly generates a population 

of “particles,” which are actually candidate solutions. At each iteration the particles move in the 𝑁 dimensional space based on 

their own best past positions 𝑝𝑖  and entire population’s best past position 𝑏, as described in equations (9) and (10). When a 

particle finds a position that minimizes the cost function better than its previously stored best position, 𝑝𝑖  gets updated based 

on equation (11), and if that particle’s position is best among all other particles’ best past positions (i.e., minimizing the cost 

function), 𝑏 is updated based on equation (12) and it becomes the best global solution of the swarm.  The converged value of 

the vector 𝑏 is assigned to 𝑔̂. 

 

A simple PSO algorithm is described here.  Generate 𝑛 particles randomly with “position”  𝑥𝑖(𝑡) ∈ 𝑿 and “velocity”  𝑣𝑖(𝑡) ∈
𝑽 subject to upper and lower bounds.  For each particle 𝑖 = 1,… , 𝑛  

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (9) 

 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑏(𝑡) − 𝑥𝑖(𝑡)) (10) 

 

𝑝𝑖(𝑡 + 1) =  {
𝑝𝑖(𝑡)              𝐽(𝑝𝑖(𝑡)) ≤  𝐽(𝑥𝑖(𝑡 + 1)) 

𝑥𝑖(𝑡 + 1)      𝐽(𝑝𝑖(𝑡)) >  𝐽(𝑥𝑖(𝑡 + 1))
 (11) 

 

𝑏(𝑡 + 1) = max{𝐽(𝑝𝑖(𝑡)), 𝐽(𝑏(𝑡))} 

 
(12) 

where:  

𝑟1, 𝑟2 are the normally distributed random number with 𝛮(𝜇, 𝜎2) 
𝑤 is the inertia coefficient 

𝑐1, 𝑐2 are acceleration coefficients 

𝑝𝑖(𝑡) is the best local position of particle 𝑖 
𝑏(𝑡) is the best global position 

 

 
Figure 6.  Search mechanism of the particle swarm algorithm as particle position updates based on hyperparameters  

 

The PSO algorithm is applied to find 𝑔̂ = (𝑎̂1, 𝜏̂1, 𝑓𝐷1 , 𝜃̂1, … , 𝑎̂𝑁 , 𝜏̂𝑁 , 𝑓𝐷𝑁, 𝜃̂𝑁) that minimizes the cost function 𝐽 in equation (8).  

 



 

 

RESULTS 

 

To evaluate the capability of the PSO algorithm in decomposing the multiple signals given the measurements. We consider a 

CCAF comprised of 𝑁 = 3 signals (12 parameters to be estimated), first through simulation without thermal noise or code 

cross correlation effects, and then experimentally with those effects included.  

 

Simulated Results 

 

In Case 1, three signals—representing true, multipath, and spoofed—are not closed aligned in Doppler frequency, code delay 

and carrier phase in the measurement space. The PSO algorithm estimates the parameters, 𝑔̂, defining the three signals very 

closely to the true parameters, 𝑔,  as shown in the Case 1 Table (left). For purposes of visualization, the CCAF magnitude is 

shown in Case 1 Figure (right) where all three signals can be identified by three distinct peaks.  

 

CASE 1 True Parameters Output Parameters 

 𝒈 𝒈̂ 

𝒂𝟏 1.0 1 

𝝉𝟏 −0.5 −0.5 

𝒇𝑫𝟏 −60 −60 

𝜽𝟏 1.5707 1.5707 

   

𝒂𝟐 0.5 0.5 

𝝉𝟐 0.8 0.8 

𝒇𝑫𝟐 0 −1.85 × 10−16 

𝜽𝟐 0.7853 0.7853 

   

𝒂𝟑 0.9 0.9 

𝝉𝟑 0.1 0.1 

𝒇𝑫𝟑 56 56 

𝜽𝟑 0  7.06 × 10−17 
 

 

 

 
Case 1.  Table showing output parameters in comparison with input parameters (left); amplitude of CCAF is plotted with code delay and 

Doppler frequency for visualization of three signals far apart from each other in the measurement space (right) 

CASE 2 True Parameters Output Parameters 

 𝒈 𝒈̂ 

𝒂𝟏  1.0 0.9906 

𝝉𝟏  −0.1 −0.1006 

𝒇𝑫𝟏  −20 −19.9913 

𝜽𝟏  1.5707 1.5707 

   

𝒂𝟐  0.5 0.5071 

𝝉𝟐  0 −0.0006 

𝒇𝑫𝟐  −20 −20.0132 

𝜽𝟐  0.7853 0.7985 

   

𝒂𝟑  0.9 0.8999 

𝝉𝟑  0.1 0.0999 

𝒇𝑫𝟑  56 55.9966 

𝜽𝟑  0  0.0001 
 

 

 

 

Case 2.  Table showing output parameters in comparison with true parameters (left); amplitude of CCAF is plotted with code delay and 

Doppler frequency for visualization of three signals, two of them closely aligned while third signal is far in search space (right) 



 

 

In Case 2, three signals are used in which Doppler frequency and code delay pairs for two signals are tightly aligned and the 

third signal is relatively far away in the CCAF measurement space. The PSO algorithm decomposed the signals and output 

their respective parameters 𝑔̂ as shown in the Case 2 Table (left) and can be visualized in CCAF magnitude in Case 2 Figure 

(right). Note that the two tightly aligned signals are merged into a single peak is visible when only the CAF is used.  

 

In Case 3, the input CCAF comprised of only two signals while the PSO algorithm searches for three. This case is generated 

to evaluate the behavior of the algorithm in the scenario when there is no spoofing, only the true signal and multipath.  The 

algorithm still outputs three sets of signal parameters, the third having zero amplitude, implying that there are only two signals 

present as shown in the Case 3 Table (left). 

 

In Case 4, the input is CCAF comprised of only one signal, while PSO algorithm tries to minimize the cost function for a CCAF 

comprised of the three signals. As shown in the Case 4 Table (left), two of the signals estimated by the algorithm have zero 

amplitude, implying that there is only one signal present with its parameters as the output 𝑔̂.  

 

CASE 3 True Parameters Output Parameters 

 𝒈 𝒈̂ 

𝒂𝟏 1 1 

𝝉𝟏 −0.5 −0.5 

𝒇𝑫𝟏 −60 −60 

𝜽𝟏 1.5707 1.5707 

     
𝒂𝟐 0.5 0.5 

𝝉𝟐 0.8 0.8 

𝒇𝑫𝟐 0 5.20 × 10−16 

𝜽𝟐 0.7853 0.7853 

     
𝒂𝟑 0 0 

𝝉𝟑 0 −0.7064 

𝒇𝑫𝟑 0 64.0637 

𝜽𝟑 0 −0.4483 
 

 

 

 
Case 3.  Table showing output parameters in comparison with true parameters (left); amplitude of CCAF is plotted with code delay and 

Doppler frequency for visualization of two signals, two of them are present in search space while algorithm is searching for three (right) 

 

CASE 4 True Parameters Output Parameters 

 𝒈 𝒈̂ 

𝒂𝟏 1 1 
𝝉𝟏 −0.5 −0.5 
𝒇𝑫𝟏 −60 −60 

𝜽𝟏 1.5707 1.5707 
     
𝒂𝟐 0 0 
𝝉𝟐 0 −0.2137 
𝒇𝑫𝟐 0 −16.1011 

𝜽𝟐 0 −0.2913 
     
𝒂𝟑 0 0 
𝝉𝟑 0 −0.4034 
𝒇𝑫𝟑 0 −5.8490 

𝜽𝟑 0 0.5963 
 

 

 

 
Case 4.  Table showing output parameters in comparison with true parameters (left); amplitude of CCAF is plotted with code delay and 

Doppler frequency for visualization of one signal, one of them is present in search space while algorithm is searching for three (right) 



 

 

Sensitivity Analysis 

 

The pseudorandom (PRN) codes for the GPS L1 signal are transmitted at 1023 chips (one code length) per millisecond, while 

GNSS receivers sample at a faster rate. The ability of the algorithm to decompose two signals closely aligned in code phase is 

therefore dependent on the sampling rate. To analyze this, we choose the TEXBAT sampling rate of 25 MHz. There are 25000 

samples per code, and one chip contains 24 samples. The code delay measurement space ranges from of −5 to 5 chips with bin 

size of 1023/25000 = 0.0409 and Doppler ranges from −4500 Hz to 4500 Hz with bin size of 20 Hz. We consider a simple 

scenario with two CCAFs starting far enough apart in code delay that the two peaks are easy to visualize the magnitude of the 

CCAF, as shown in Figure 7 (left). Then the code delay of one CCAF is held constant at 0 chips and we vary the second CCAF 

in code delay from −1.8414 to 0 with a step size of 0.2046 chips. When code delays for both signals are close in alignment, 

only one magnitude peak is visible—see Figure 7 (right).  

 

 

  
 
Figure 7.  Amplitude of CCAF when difference in code delay between signals is 2.046 (left); amplitude of CCAF when difference in code 

delay between signals is 0.2046 (right) 

The true parameters are shown in Table 4, while the output parameters’ decomposition results for each code delay gap shown 

in Table 5. Until the code delays for the signals merge, the PSO algorithm is able to decompose each CCAF into its respective 

output parameters precisely. In each case, the candidate solution population is 1000 and each runs through 100 iterations. 

 

 True Parameters (𝒈) 

𝒂𝟏 1 

𝝉𝟏 0 

𝒇𝑫𝟏 0 

𝜽𝟏 1.5707 

   

𝒂𝟐 0.8 

𝝉𝟐 −1.8414 to 0 with step size of 0.2046 

𝒇𝑫𝟐 0 

𝜽𝟐 0.7853 

 
Table 1. True Parameters (𝑔) for Sensitivity Analysis 

The decompositions of the CCAF into its component parameter vectors are shown in Table 5, as code delay gap between the 

two signals closes in from left to right. When the signals are perfectly aligned in code delay in the CCAF evaluation space, 

there may be only one signal detected (see far right column in red) and the amplitude of the signal would depend on the relative 

carrier phases of the two signals. If both the Doppler frequency and code delays for the two signals are in perfect alignment, 

there is no spoofing as the navigation solution for spoofed signal is same as the true signal. However, as soon as the spoofer 

tries to pull away, the CCAF would again be correctly decomposed.  



 

 

 
 

Table 2.  Output parameter vectors 𝑔̂ as the code delay gap between two signals decreases left to right with a step size of 0.2046 chips 

TEXBAT Dataset 

 

We have shown the capability of the PSO algorithm to decompose a CCAF made up of 𝑁 = 3 contributing signals and output 

the parameters vector 𝑔̂ without any noise or code cross-correlation present. To test the algorithm on a real scenario, we have 

taken an instant in the TEXBAT dataset that includes thermal noise and cross correlations. The measurement space consists of 

1023 chips that are distributed over 25000 samples, i.e., code delay bins, with Doppler frequency ranging from −4500 Hz to 

4500 Hz with bin size of 10 Hz. This can be seen in the figure in Case 5 (right), where only one signal is present. The PSO 

algorithm searches for two signals, while the input CCAF has only one prominent signal present. As shown in the Case 5 Table, 

the algorithm detects the signal parameters very near to the true parameters. The other signal detected by the algorithm with 

amplitude of 0.2949 is a cross correlated peak in the measurement space. 

 

 

 

CASE 5 True Parameters Output Parameters 

 𝒈 𝒈̂ 

𝒂𝟏 0 0.2949 
𝝉𝟏  0 646.0539 
𝒇𝑫𝟏  0 2897.7250 

𝜽𝟏  0 0.8678 
    
𝒂𝟐  1.0 1.0060 
𝝉𝟐 771.2917 771.3741 
𝒇𝑫𝟐  468 471.2761 

𝜽𝟐 0 0.2455 
 

 
 

Case 5.  Table showing output parameters in comparison with true parameters (left); amplitude of CCAF is plotted with code 

delay and Doppler frequency for visualization of 1 signal in TEXBAT dataset (right) 

 

Spoofing Detection Monitor 

 

Under normal circumstances, when spoofing is not present, the decomposed true signals will be geometrically consistent 

across all visible satellites, but the decomposed multipath signals will not be. However, if spoofed signals are introduced, 

they will also be consistent across satellites. In this case, two independent decomposed signal sets (true and spoofed) will 

both be geometrically consistent across satellites. Our proposed basis for spoofing detection is then an ‘inverse’ Receiver 

𝝉 GAP 1.8414 1.6368 1.4322 1.2276 1.023 0.8184 0.6138 0.4092 0.2046 0 

           

𝒂𝟏 1 1 1 1 1 1 1 1.0000 1.0122 1.4774 

𝝉𝟏 -1.31E-17 -2.71E-17 -2.30E-17 3.32E-17 -4.56E-18 -3.66E-17 -1.27E-16 2.17E-06 0.0015 -0.0002 

𝒇𝑫𝟏 6.67E-23 3.00E-17 -4.67E-22 2.63E-16 6.45E-23 -7.64E-16 1.50E-13 3.78E-05 0.0143 -10.8423 

𝜽𝟏 1.5707 1.5707 1.5707 1.5707 1.5707 1.5707 1.5707 1.5707 1.5659 1.2596 

           

𝒂𝟐 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7999 0.7881 0.1899 

𝝉𝟐 -1.8414 -1.6368 -1.4322 -1.2276 -1.023 -0.8184 -0.6138 -0.4092 -0.2061 -0.0017 

𝒇𝑫𝟐 -7.68E-16 -1.16E-15 -1.50E-17 -5.10E-16 -9.75E-16 -3.56E-16 -3.37E-13 -0.0001 0.0533 84.8491 

𝜽𝟐 0.7853 0.7853 0.7853 0.7853 0.7853 0.7853 0.7853 0.7853 0.7783 0.9467 



 

 

Autonomous Integrity Monitoring (RAIM) mechanism, where the existence of more than one decomposed signal set passing 

a RAIM test indicates spoofing is present. Figure 8 shows the complete process flow.  

 

 

Figure 8.  Flowchart for the spoofing detection mechanism  

 

CONCLUSION 

 

In this paper, we developed a method for GNSS spoofing detection by decomposing the Complex Cross Ambiguity (CCAF) 

function into its contributing signals. We have demonstrated the performance of the algorithm via simulation in a noise and 

cross-correlation free environment for difficult cases where the algorithm searches for a greater number of signals than are 

actually present in the CCAF measurement space. We performed a sensitivity analysis to investigate the effect of receiver 

sampling rate on the algorithm’s ability to accurately decompose the CCAF.  We then showed the decomposition of an actual 

signal using the publicly available benchmarked spoofing dataset TEXBAT.  Finally, we proposed a new, post-decomposition 

detection and isolation algorithm based on inverse RAIM. 
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