
The NetBSD Operating system
NetBSD is a free, secure, and highly portable Unix-like Open Source operating system available for many
platforms, from large-scale server systems to powerful desktop systems to handheld and embedded devices. Its
clean design and advanced features make it excellent in both production and research environments, and the
source code is freely available under a business-friendly license.

NetBSD is developed and supported by a large and vivid international community. Many applications are easily
available through pkgsrc, the NetBSD Packages Collection.

NetBSD focuses on clean design and well architected solutions. Because of this NetBSD may support certain
'exciting' features later than other systems, but as time progresses the NetBSD codebase is getting even stronger
and easier to manage, while other systems that value features over code quality are finding increasing problems
with code management and conflicts.

During the development cycle of the NetBSD 5 release, major work was done to improve SMP support; most of
the kernel subsystems were modified to be MP safe and use the fine-grained locking approach.
New synchronization primitives were implemented and scheduler activations was replaced with a 1:1 threading
model in February 2007. A scalable M2 thread scheduler was implemented, though the old 4.4BSD scheduler is
still provided as an option. Threaded software interrupts were implemented to improve synchronization. The virtual
memory system, memory allocator and trap handling were made MP safe. The file system framework, including
the VFS and major file systems were modified to be MP safe.
Since April, 2008 the only subsystems running with a giant lock are the network protocols and most device drivers.

NetBSD Embedded Systems

CPU Port

alpha alpha

arm acorn26 acorn32 cats evbarm hpcarm
iyonix netwinder shark zaurus

hppa hp700

i386 i386 xen

m68010 sun2

m68k amiga atari cesfic hp300 luna68k mac68k
mvme68k news68k next68k sun3 x68k

mipseb evbmips ews4800mips mipsco newsmips
sbmips sgimips

mipsel algor arc cobalt evbmips hpcmips
playstation2 max sbmips

powerpc amigappc bebox evbppc ibmnws macppc
mvmeppc ofppc prep rs6000 sandpoint

sh3eb evbsh3 mmeye

sh3el dreamcast evbsh3 landisk hpcsh

sparc sparc

sparc64 sparc64

vax vax

x86_64 amd64 xen

The NetBSD Operating System is the most portable OS in the world, and many of the supported hardware
platforms are suited for embedded applications.

The NetBSD multi-platform operating system supports a wide number of different platforms, many of which can
and are already being used in embedded applications. Among the more popular processor families for embedded
systems are MIPS, PowerPC, ARM, Xscale and Super-H.

NetBSD Architectures

Property lists

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST
1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>app</key>
 <array>
 <dict>
 <key>app_path</key>
 <string>/usr/sbin/ntpd</string>
 <key>appmod_config</key>
 <array>
 <dict>
 <key>auth_mod</key>
 <string>auth_hash</string>
 <key>auth_mod_data</key>
 <string></string>
 </dict>
 <dict>
 <key>auth_mod</key>
 <string>auth_gid</string>
 <key>auth_mod_data</key>
 <integer>1682</integer>
 </dict>
 </array>
 </dict>

 </array>
 </dict>
</plist>

Property lists organize data into named values and lists of values
using several object types.
These types give you the means to produce data that is meaningfully
structured, transportable, storable, and accessible, but still as efficient
as possible.
Property lists are frequently used by applications running on both Mac
OS X, iPhone OS and NetBSD.
The property-list programming interfaces for Cocoa and Core
Foundation allow you to convert hierarchically structured combinations
of these basic types of objects to and from standard XML. You can
save the XML data to disk and later use it to reconstruct the original
objects.

ARM CPU based Beagleboard

ARM CPU based Toaster running NetBSD

Hitachi Super-h CPU based hp Jornada 680 running NetBSD

ARM CPU based Sidekick phone running on NetBSD

IBM POWERPC CPU based board running on NetBSD

ThecusNas running NetBSD

Codian IP VCR 2200 Series enterprise class routers running NetBSD

NetBSD Devices

Force10 enterprise class routers running NetBSD

Proplib library
Proplib library is used for managing property lists defined in Mac OS
X documentation. It is clean room reimplementation of property list
managing library in the Mac OS X.

The Proplib library was design with multi-thread safeness in mind
and it is using mutexes, atomic operations and Read Write lock for it
own synchronization. The prolib library have is API which can be
used to send receive property list with ioctl routines in kernel/
userspace programs. There are many drivers which encapsulates
data into property lists during ioctl communication with kernel e.g.
envsys(8), dm(8) and many others.

struct _prop_object_type {
uint32_t pot_type;
_prop_object_free_rv_t

 (*pot_free)(prop_stack_t, prop_object_t *);
void (*pot_emergency_free)(prop_object_t);
bool (*pot_extern)(struct _prop_object_externalize_context *,

 void *);
_prop_object_equals_rv_t
 (*pot_equals)(prop_object_t, prop_object_t,

void **, void **,
prop_object_t *, prop_object_t *);

void (*pot_equals_finish)(prop_object_t, prop_object_t);
void (*pot_lock)(void);
void (*pot_unlock)(void);

};

prop_object_type definition with lock/unlock routines added

Dictionaries use global red black tree to store keys. It can be referenced from tree.
Proplib number objects uses red-black tree fro storing values, too. When number or
dictionary entry is released reference counter is dropped. When reference counter is
zero dictionary key or number is removed from red-black tree and freed.

The Proplib library in NetBSD contains race condition vulnerability which can be
exploited by calling prop_dictionary_create/prop_number_create and
prop_object_release routines.
Race condition was located in a handling of external references of entries in a red-
black tree used by dictionary/number.

Race condition bug

There is another bug in proplib library. During converting xml form to
binary representation it was possible to crash proplib by using non-
existing entry names.

All NetBSD releases with proplib library included was vulnerable to
this bug, and it's successful exploitation will lead to Local DoS attack
made by arbitrary user. To be able to exploit this bug user must have
chance to sent badly formatted plist file to kernel through
device-driver which uses proplib as a communication channel.
Vulnerable device-drivers are dm(8), envsys(8), drvctl(8).

Vulnerable NetBSD version are NetBSD-4.0, NetBSD-4.0.1,
NetBSD-4.1 and not released yet NetBSD-5.

Internalization bug
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//
EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>app</key>
 <number>1</number>
 </dict>
</plist>

