Peking University

Extending nuclear landscape with high-K isomers

Furong Xu

NCNP 2011, Stockholm, 13-17 June 2011

- I. Introduction for isomerism
- **II. Configuration-constrained PES Model**
- III. High-K isomerism
 - 1) Along drip lines
 - 2) In superheavy nuclei
 - 3) High-K fission isomers
 - 4) In superdeformation
- **IV. Summary**

I. Introduction for isomerism

From: P. Walker, G. Dracoulis, Nature 399 (1999) 35

High-K isomerism

	\mathbf{J}^{π}	T _{1/2}	E _x (KeV)
¹⁷⁸ Hf	16+	31 y	2400
¹⁸⁰ Ta	1+	8.15 h	g.s.
9	9-	>10 ¹⁵ y	75

angular momentum has both magnitude and direction!

From: P.M. Walker

[M.B. Smith et al., Phys. Rev. C68(2003)031302(R)]

TRUIMF 8π data

II. The configuration-constrained PES Model

Three important factors which affect the calculations of high-K states:

- 1. spacing of single-particle levels;
- 2. effect from shape polarization (adiabatic-blocking is necessary!)
- 3. right pairing strengths

In adiabatic blocking, identify s.p. orbits using $\Omega[N, n_z, \Lambda]$

Deformed Woods-Saxon Potential

$$E = E_{LD} + \delta E_{shell}$$
 E_{LD} is independent on blocking

$$\delta E_{shell} = E_{LN} - \tilde{E}_{Strut}$$

BCS calculation can be collapsed in weak pairing case. The Lipkin-Nogami pairing can avoid this problem.

$$E_{\rm LN} = \sum_{j=1}^{S} e_{k_j} + \sum_{k \neq k_j} 2V_k^2 e_k - \frac{\Delta^2}{G} - G\sum_{k \neq k_j} V_k^4 + G\frac{N-S}{2} - 4\lambda_2 \sum_{k \neq k_j} (U_k V_k)^2, \qquad (1)$$

with

$$N - S = \sum_{k \neq k_j} 2V_k^2,$$
 (2)

✓ Woods-Saxon potential provides s.p. levels

✓ Configuration-constrained PES can include the effect from

shape polarization of unpaired orbits.

✓ Right pairing strength is crucial for energy calculations of isomers

Mean-field effect on odd-even mass difference

Satula, Dobaczewski, Nazarewicz, PRL 81, 3599 (1998)

Xu, Wyss, Walker, PRC 60, 051301(R) (1999)

Mean-field effect (due to double degeneracy of s.p. levels):

FIG. 1. Obtained mean-field and blocking effects ($\delta = \delta_{\rm MF} + \delta_{\rm block}$) as a function of nucleon number. The upper panel is for neutrons (ν) and the lower panel is for protons (π). Note that the δ values are negative.

Xu, Wyss, Walker, PRC60, 051301(R) (1999)

Shape polarization Xu, Walker, Wyss, PRC59, 731 (1999)

E^{cal}=<u>2230</u> keV; E^{expt} =<u>2217</u> keV A.M. Bruce *et al.*, PRC55, 620 (1997)

Dracoulis et al., PRC60, 014303(1999)

Fig. 2. Comparison of experimental (full line) and calculated (dashed line) isomer energies for ¹⁹⁰Os, ¹⁹²Os and ¹⁹⁰W. Experimental half-lives are indicated.

II. Calculations of high-K states 1. Along drip lines

Nuclei near drip lines have extremely short lifetimes!

Xu, Walker, Wyss, PRC 59(1999)731

Krolas et al., PRC 65 (2002) 031303

 $\beta_2 = 0.24 (3)$

Observed isomers in odd-odd nuclei along proton-rich border

Liu, Xu, Wyss, Walker, PRC 76, 034313 (2007)

Isomers in neutron-rich nuclei, experimentally observed yet

High-spin limit in neutron-rich nuclei

Long lived isomers predicted

Xu, Walker, Wyss, PRC 62 (2000) 014301

2. High-k isomerism in SHE

- Superheavy decays by <u>α emissions</u> or/and spontaneous fissions.
- Multi-qp excitations decrease α-particle preformation and increase the height and width of fission barrier, and hence increase the stability of SHE.
- α-particle preformation reduced in odd and odd-odd nuclei,
 J.K. Poggenburk *et al.*, Phys. Rev. 181, 1697 (1969).
- Fission probability in odd-odd and odd nuclei is reduced,
 S. Bjornholm & J.E. Lynn, Rev. Mod. Phys. 52(1980)725.

Unpaired nucleons increase the height and width of the fission barrier

Xu, Zhao, Wyss, Walker, PRL92 (2004) 252501

Even-odd difference in half-lives for fissions from the second well in actinides

Bjornholm & Lynn Rev. Mod. Phys. 52(1980)725

a decays observed from high-K isomers, Hofmann et al., EPJA 10, 5 (2001)

Xu, Zhao, Wyss, Walker, PRL 92, 252501 (2004)

Figure 3 | Proposed level scheme of ²⁵⁴No. The 266 ms 8⁻ isomer is

Z=100~110

Collection of experimentally observed yet isomers in SHE

3. High-K fission isomers in actinides

Deformation space in calculations: β_2 , β_3 , β_4 , β_5

Nucl. Phys. A 199(1973)504

Two-qp high-K shape isomers in the 2nd well

~ 1 MeV higher than the shape isomer

Transuranium region

Odd-odd nuclei

	Longer lived	l/high spin		Shorter lived/low spin			
	T _{1/2}	Ιπ	E _x	T _{1/2}	Ιπ	E _x	
²³⁶ Np	$\begin{array}{c} 115 \times 10^{3} \\ y \end{array}$	(6 ⁻)	?	22.5 h	1 ⁽⁻⁾	?	
²⁴⁴ Am	10.1 h	(6 ⁻)	g.s.	~26 m	1-	69 KeV	
²⁴⁸ Bk	>9 y	(6+, 8-)	?	23.7 h	1 ⁽⁻⁾	?	
²⁵⁴ Es	275.5 d	(7+)	g.s.	39.3 h	2+	78 KeV	
²⁴⁸ Md	55 d	(8 ⁻)	?	43 m	(1 ⁻)	?	

Higher spin -- longer life Lower spin -- shorter life

FIG. 4: Representative PESs for the shape isomeric (top left), $K^{\pi} = 8^+ \{\nu 11/2[615] \otimes 5/2[862]\}$ (top middle) and $K^{\pi} = 8^- \{\pi 9/2[514] \otimes 7/2[633]\}$ (top right) states of ²³⁶Pu as well as shape isomeric (bottom left), $K^{\pi} = 7^- \{\nu 5/2[862] \otimes 9/2[734]\}$ (bottom middle) and $K^{\pi} = 10^- \{\nu 11/2[615] \otimes 9/2[734]\}$ (bottom right) states of ²⁴²Cm.

1	Nuclei	K^{π}	Configurations	β_2	β_4	Δ_n (keV)	$\Delta_p(\text{keV})$	$E_x^{\text{cal.}}(\text{keV})$	$E_x^{\text{expt.}}(\text{keV})$	$T_{1/2}$
-	^{238}U	0+	Shape Isomer	0.62	0.029	610	840	2383	2557.9	298 ns
		7-	ν { 9/2[734], 5/2[622]}	0.61	0.022	428	840	3258	< 3558	> 1 ns
Exportmontal spins and		7-	ν { 5/2[862], 9/2[734]}	0.63	0.037	417	853	3344		
Experimental spins and		10^{-}	$\nu\{11/2[615], 9/2[734]\}$	0.62	0.036	423	851	3486		
		8+	$\nu\{11/2[615], 5/2[862]\}$	0.62	0.043	430	852	3563		
namiting have not been know		6-	π { 5/2[523], 7/2[633]}	0.62	0.033	574	630	3899		
parties have not been know		8-	π { 9/2[514], 7/2[633]}	0.62	0.037	573	630	3907		
		7+	π { 9/2[514], 5/2[523]}	0.63	0.042	574	638	4032		
1	²³⁶ Pu	0+	Shape Isomer	0.63	0.045	600	830	2252	≈ 3000	37 ps
		8+	$\nu\{11/2[615], 5/2[862]\}$	0.63	0.053	459	841	3671	4000	34 ns
		8-	π { 9/2[514], 7/2[633]}	0.64	0.056	596	621	3833		
		7+	π { 9/2[514], 5/2[523]}	0.64	0.060	596	627	3951		
		6-	π { 5/2[523], 7/2[633]}	0.64	0.055	597	628	3958		
1	²³⁸ Pu	0+	Shape Isomer	0.63	0.038	610	830	2249	≈ 2400	0.6 ns
		8+	ν {11/2[615], 5/2[862]}	0.62	0.048	425	839	3120	≈ 3500	6.0 ns
		7-	ν { 5/2[862], 9/2[734]}	0.64	0.042	528	833	3299		
Calculations can predict		10^{-}	$\nu\{11/2[615], 9/2[734]\}$	0.62	0.034	448	831	3363		
Calculations can predict		8-	π { 9/2[514], 7/2[633]}	0.64	0.048	584	620	3868		
		6-	π { 5/2[523], 7/2[633]}	0.64	0.045	582	626	3982		
configurations (spins and		7+	π { 9/2[514], 5/2[523]}	0.64	0.051	586	627	4010		
configurations (spins and	²⁴² Pu	0+	Shape Isomer	0.63	0.016	570	820	2341	≈ 2200	3.5 ns
		8-	ν { 9/2[734],7/2[624]}	0.62	0.013	420	813	3473	< 3200	28 ns
namitian) and anamaion		7-	ν { 9/2[734], 5/2[622]}	0.63	0.026	417	826	3484		
partnes) and energies.		6+	ν { 5/2[622],7/2[624]}	0.62	0.013	427	812	3587		,
		7-	ν { 5/2[862], 9/2[734]}	0.61	0.025	427	823	3595		
		10-	$\nu\{11/2[615], 9/2[734]\}$	0.65	0.037	453	831	3964		
		8-	π { 9/2[514], 7/2[633]}	0.64	0.033	579	618	4120		
		6- -	π { 5/2[523], 7/2[633]}	0.64	0.027	576	120	4188		
9	40~	7+	π { 9/2[514], 5/2[523]}	0.65	0.036	58.0	626	4288	0000	10
-	Cm	0+	Shape Isomer	0.64	0.080	630	790	1729	≈ 2000	10 ps
		8.	$\nu\{11/2[615], 5/2[862]\}$	0.64	0.046	423	707	2602	≈ 3000	55 ns
		10-	ν { 5/2[002], 9/2[734]	0.64	0.042	524	797	2714		
2	42Cm	10 0 ⁺	$\nu\{11/2[6151-72[734]\}$	0.64	0.032	445	791	2041	1000	40 pc
T 110 (1 14)	Cm	7-	uf 5/2[862] 0/2[794]]	0.64	0.025	418	704	2728	~ 2800	40 ps 0.18 ms
Longer lifetimes with		10-	ν { $3/2[002], 3/2[734]}$	0.65	0.035	410	787	2726	≈ 2000	0.10 IIIS
(abore 172) develo is a mariane		8+	$\nu_1 11/2[010], s/2[104]]$	0.64	0.038	431	704	3034		
"snape+K" double isomerism		7-	$\nu \int 0/2[734] - 5/2[622] $	0.61	0.030	431	707	3049		
2	44Cm	0+	Shape Isomer	0.65	0.016	570	770	1947	≈ 2200	< 5 ps
	om	7-	ν { 9/2[734], 5/2[622]}	0.64	0.025	419	786	3082	≈ 3500	> 100 ns
		8-	ν { 9/2[734], 7/2[624]}	0.64	0.013	419	778	3153		
		6+	$\nu\{5/2[622],7/2[624]\}$	0.62	0.015	426	784	3364		
		7-	ν { 5/2[862].9/2[734]}	0.62	0.026	430	797	3404		
		10-	ν {11/2[615], 9/2[734]}	0.66	0.034	453	789	3462		
_			r / r 1/-/-r11							

4. Prediction of high-K states in superdeformation

Summary

High-K isomers increase the stability of unstable nuclei,

and hence extend the landscape of nuclei.

- 1. Along drip lines;
- 2. In superheavy;
- **3.** Fission from the second well in actinides

4. In superdeformation in A~190.

Collaborators:

R. Wyss (KTH, Sweden)

P. Walker (Univ. Surrey, UK)

H.L. Liu (Texas A&M-Commerce)

Y. Shi, Y. Gao... (Peking Univ.)

Thank you

Stockholm, 16 June 2011