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par Catherine GOLDSTEIN

Résumé. Axel Thue en contexte.
Les travaux d’Axel Thue, en particulier son célèbre article “Über
Annäherungswerte algebraischer Zahlen”, sont d’ordinaire décrits
comme des joyaux isolés dans les mathématiques de leur temps.
Je montre ici qu’il est nécessaire de distinguer entre l’isolement
personnel de Thue et les caractéristiques de sa pratique mathé-
matique. Après une brève présentation de la biographie d’Axel
Thue, je contextualise certains aspects de son travail (en parti-
culier la conversion d’expressions sur des nombres en expressions
sur des polynômes) à la lumière de son éducation mathématique
spécifique et de l’état de l’art en approximation diophantienne au
tournant du vingtième siècle.

Abstract. Axel Thue’s works, in particular his celebrated pa-
per, “Über Annäherungswerte algebraischer Zahlen,” are usually
perceived as solitary gems in the mathematics of their time. I argue
here that it is important to distinguish between his personal iso-
lation and the characteristics of his mathematical practice. While
sketching out Axel Thue’s biography, I shall contextualize some
features of his work (in particular the conversion from expressions
on numbers to expressions on polynomials) with respect to his
mathematical education, as well as to the state-of-the-art Dio-
phantine analysis and rational approximation at the turn of the
twentieth century.

When the first (and until now only) volume of his Selected Papers was
published in 1977, 55 years after his death, “Thue’s name [was] known
mostly for his theorem on diophantine approximation and on diophantine
equations,” written “when he was well in his forties and when he had been
away from the centers of mathematics for over a decade,” [38, p. 919].
Thue’s predilection for publishing mostly in Norwegian journals may have
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been a factor in the restricted knowledge of his work among his contem-
poraries. Among the 35 bibliographical entries reproduced in his Selected
Papers, 24 were written in German, but published in a Danish or a Norwe-
gian journal, mostly in Arkiv for Mathematik og Naturvidenskab or in the
Memoirs of the Kristiana Society of Sciences, Skrifter utgit av Videnskaps-
selskapet i Kristiania; 9 were written in Norwegian,1 also for Norwegian
journals, including three entitled “Mindre meddelelser (Minor communica-
tions),” grouping together resp. 3, 6 and 8 short contributions. Only 2 of
his articles were published outside Scandinavia, in German, in the famous
Berlin-based Journal für die reine und angewandte Mathematik: Thue’s cel-
ebrated 1909 paper on the approximation of algebraic numbers, [55], which
will be described later in detail, and a related work one year later.2

But all his biographers insist on Thue’s isolation and, as a cause or as a
consequence, on his originality and mathematical independence. “Thue was
a man who would begin at the beginning and construct everything until
the end,” writes Karl Egil Aubert in a paper on Diophantine equations
in Norway [2, p. 155]. Exactly in the same direction, one might mention
Vilhelm Bjerknes’s description3: “[Thue] never progressed very far with the
reading of a mathematical work before he jettisoned it in order to rebuild its
whole intellectual construction according to his own ideas.” In particular,
while Sophus Lie, probably the most famous Norwegian mathematician in
Thue’s youth, was, in part, his mentor, the lack of influence on Thue of Lie’s
program, and more generally of Lie himself is always underscored. Again,
in Aubert’s words, “Lie would not affect Thue in any appreciable degree.
[Thue] was not a man to be a subordinate [. . . ] and to provide only a small
and rather ordinary addition to another man’s work.”

With regard to number theory, this image has been reinforced by Carl
Ludwig Siegel’s magisterial reappropriation of Thue’s results, [46] and [47,
48]. As Siegel explained, [48, pp. xxx-xxxi], he became aware of Thue’s
proof that the equation xn − dyn = 1, for a fixed exponent n > 2, and d
an integer, has only finitely many integral solutions, through a remark of
Issai Schur after a talk during Siegel’s third semester at Berlin university
(winter semester 1916–17). “When I tried then to read [Thue’s article],”
Siegel went on, “I soon ended in confusion because of the numerous letters
c, k, θ, ω, m, n, a, s, the deeper meaning of which seemed enigmatic to
me. In order to be able to understand a bit more, though, I changed the
ordering of the lemmas, introduced new symbols too, and among them,

1Or, more precisely, in the language close to Danish used then by the Norwegian urban elite,
officialized as Riksmål, then Bokmål after Thue’s death.

2A longer list of Thue’s articles, given in [36, pp. 46-49], includes 11 more articles in Norwegian
and 2 more in German, all published in Scandinavian journals, see Figure 0.1.

3It is reproduced in English in the introduction to Thue’s Selected Mathematical Papers, [57,
p. xxiii].
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more by chance than by any deliberate thought, was a parameter which
does not occur in Thue’s paper, and which, to my amazement, provided a
sharpening of the approximation theorem.”4 Siegel thus offered a new and
larger vista on Thue’s work, which certainly contributed in bringing it into
the mainstream, but also blurred some recurrent characteristics of Thue’s
approach. The main objective of the present paper is to reconstitute some
of these and to inscribe them in the context of other pieces of mathematics
which informed Thue’s views on number theory and rational approximation.

Années Articles in 
Norwegian

Articles in 
German

1884 1
1885 4
1886
1887
1888 1
1889 1
1890
1891 1
1892
1893 1
1894
1895
1896 2
1897 1
1898
1899
1900
1901
1902 2
1903 2
1904
1905
1906 1
1907
1908 1 2
1909 2
1910 6
1911 5
1912 1 4
1913
1914 2
1915 1
1916 2
1917 1 2
1918 1
1919
1920 1
1921
1922

Axel Thue’s articles per year
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Figure 0.1.

1. Axel Thue and Elling Holst

Axel Thue’s biography is quite straightforward.5 In a nutshell: born on
February 19, 1863, he studied mathematics and natural sciences in Norway
(mainly in Kristiania).6 At the end of the 1880s, he went abroad for the
then-usual study trip to one of the most prominent scientific countries of
the time, namely Germany. In 1892 he obtained a position as Assistant
Professor at the Royal Frederick University in Kristiania (Det Kongelige
Frederiks Universitet, the former name of the present day University of

4[48, pp. xxx-xxxi]: “Als ich dann diese zu lesen versuchte, kam ich bald in Verwirrung durch
die vielen Buchstaben c, k, θ, ω, m, n, a, s, deren tiefere Bedeutung mir rätselhaft schien. Um
nun doch etwas mehr verstehen zu können, änderte ich die Anordnung der Hilfssätze, führte auch
neue Symbole ein, und unter diesen war dann, weniger durch geordnetes Denken als durch Zufall,
noch ein bei Thue nicht aufgetretener Parameter, der zu meiner Verwunderung eine Verschärfung
des Approximationsatzes ergab.” Despite Schur’s lack of interest in this result and the Great War,
which sent Siegel, a conscientious objector, to a psychiatric institute, this work would become
Siegel’s 1920 doctoral thesis under Edmund Landau, [46]; it would also play an important role
in Siegel’s contact with André Weil, [59].

5I am essentially reproducing here the first paragraph of the introduction of [57] by Viggo
Brun.

6Kristiania (spelled Christiania, after King Christian IV, until 1877) recovered an old name,
Oslo, only in 1925, after Thue’s death.
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Oslo). Two years later, he was elected to the Norwegian Academy of Sci-
ence and Letters in Kristiania, married, became Professor of Mechanics in
a technical college7 in Trondheim and a member of the Trondheim Acad-
emy of Science and Letters. In 1903, he returned to the Royal Frederick
University, this time as Professor of Applied Mechanics. From 1916 on, he
was also associate editor of Acta mathematica, the journal created in 1882
by Gösta Mittag-Leffler as an international central organ in order to bring
“Nordic” (that is, Scandinavian) mathematicians into the mainstream of
mathematics.8 During his life-time, Thue published 48 articles, about half
of them between 1908 and 1912, see Figures 0.1 and 1.1; and despite the
title of his chairs, and his life-long interest in physics, only 5 of these arti-
cles concern mechanics, against 9 in projective geometry and 21 in number
theory.9 He died on March 7, 1922, at the University Hospital in Kristiania.

Years Number Theory Algebra Analysis Synthetic 
Geometry

Combinatorics Mechanics

1884 1
1885 4
1886
1887
1888 1
1889 1
1890
1891 1
1892
1893 1
1894
1895
1896 1 1
1897 1
1898
1899
1900
1901
1902 1 1
1903 1 1
1904
1905
1906 1
1907
1908 3
1909 1 1
1910 2 3 1
1911 4 1
1912 1 2 2
1913
1914 2
1915 1
1916 2
1917 3
1918 1
1919
1920 1

Axel Thue’s articles by topic
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Figure 1.1.

Tønsberg, Thue’s home town, is situated in the Oslofjord, about a hun-
dred kilometers from Oslo. We possess a particularly evocative testimony
about Tønsberg and its environment at the end of the nineteenth century,
because the celebrated painter Edvard Munch, born only a few months af-
ter Thue, in December 1863, bought a summerhouse in Årgårdstrand, at
ten kilometers north of Tønsberg. He painted in the region several of his
masterpieces, including Der Schrei der Natur (The Scream), the Melankoli
(Melancholy) series or, of course, Fire piker i Åsgårdstrand, Four Girls in

7Later becoming Trondheim Technical University.
8On this issue, see [49, 58]. Thue himself never published in Acta mathematica.
9The classification is mainly that of the Jahrbuch über die Fortschritte der Mathematik, which

reviewed 40 different articles by Thue; I have retained only the main classification when several
are proposed, and have added a classification for the 8 other articles by analogy (typically a
particular case of a more general statement which did receive a review and thus a classification).
For the sake of readability, in Figure 1.1, a handful of articles classified under different headings
such as “series” or ‘calculus” have been grouped together under the heading ”analysis.”
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Figure 1.2. Melankoli, Edvar Munch, c.1892.

Åsgårdstrand. After a few years in Tønsberg, Thue was sent to Kristiana,
more specifically to the Aars og Voss Skole (the Aars-Voss School). This
private school was founded by two educational specialists, Jacob Jonathan
Aars and Peter Voss, in the very year Thue was born, and, besides the
classical curriculum, offered its students the real curriculum, that is, with
an emphasis on mathematics and science instead of on Latin. By the end
of the century, it was a very successful high school and a model in Norway,
[1], [5]. Several important Norwegian scientists of Thue’s generation were
also students at the Aars-Voss School: the pole explorer and Nobel Peace
Prize winner Fridtjof Nansen, born in 1861; the linguist Paul Boding, born
in 1865 ; the physicist Kristian Birkeland, a specialist on Aurora Borealis,
born in 1867, etc. And Thue’s attachment to the Aars-Voss school can be
traced down to at least 1912 when he contributed to the Festskrift of the
school a paper on a theme dear to him, the principle of virtual velocities.

However, the most decisive asset of the school for Thue was a teacher,
Elling Holst. In most biographies of Thue, Holst appears principally through
an anecdote: he authored a booklet, Om Poncelets betydning for Geome-
trien (“On Poncelet’s significance for geometries”), the title of which,
mistyped or misread as Pendelets betydning for Geometrien (“On the sig-
nificance of the pendulum for geometries”) attracted the attention of the
then physics-oriented Thue and finally turned him toward mathematics,
[50, pp. 33–34]. The booklet received the Kronprinz Gold Medal in 1878.
However, its author’s influence on Thue’s life extends far beyond a simple
misprint.
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Figure 1.3. Portrait of Elling Holst by Frederik Klem.
©Norsk Folkemuseum.
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Elling Holst (1849–1915) is known through Norway because of his col-
lections of Norvegian nursery rhymes, Norsk billedbog for børn (Norwegian
picture books for children), published in 1888, 1890 and 1903. But he was
first a trained mathematician, a student and protege of Sophus Lie; he
studied with Felix Klein in Germany and took mathematical trips to Paris,
Copenhagen, London. He defended a Ph D thesis on projective geometry
(thus the title of the booklet) and first obtained a position in the Aars-
Voss school, as well as a research stipend from the University of Kristiania;
he was then appointed to a technical college and finally became Associate
Professor at the University. Moreover, in 1886, Holst also launched a very
influential mathematics seminar in Kristiania, apparently close to the Ger-
man model.10 Thue presented there about fifteen talks in the 1880s, in
particular on the irrationality and the transcendence of e and π—unaware
that Joseph Liouville had already discovered this extension, he even wrote
in 1889 an article on the non-quadratic nature of e2, following Liouville
analogous result for e itself.11

According to A. Stubhaug, “[Elling Holst] was highly valued as a lecturer,
and several famous mathematicians who began to study the subject at this
time (Axel Thue, Kristian Birkeland, Carl Størmer, Richard Birkeland,
etc), mention him later as an important source of inspiration.”12 Holst’s
own work, as well as his textbooks, was mostly centered on geometry. This
is also the main topic of Thue’s first mathematical writings, published in
the 1880s. This orientation could also come from Lie’s course on projective
plane geometry, during the autumn 1884, for which Thue wrote up the
lecture notes, [51, pp. 315-316], or more generally from the debates on
the “new geometry” (including non-Euclidean geometry) in the preceding
generation.

However, Holst also wrote a book on a quite different topic during this
period: Om høiere arithmetiske rækker. Samt nogle af de almindeligst forek-
ommende konvergerende rækker med indledende sætninger om den hele

10See the letter to Holst translated in [57, p. xx]. On the (official) organization of German
seminars, see in particular [39, 40].

11As is well-known, Liouville gave in 1844 the first proof that there exist transcendental num-
bers, that is, numbers which are not solutions of an algebraic equation with integral coefficients,
see subsection (3.1). New proofs of irrationality or non-quadraticity appeared as by-products of
such work, since irrational (resp. non-quadratic) numbers are those which are not solutions of an
algebraic equation of degree 1 (resp. degree 2) with integral coefficients. Charles Hermite’s 1873
proof of the transcendence of e and the analogous result for π by Ferdinand von Lindemann in
1882 put these questions on the front stage in the 1880s.

12Han blei høgt verdsett som førelesar, og fleire seinare kjende matematikarar (Axel Thue,
Kristian Birkeland, Carl Størmer, Richard Birkeland m.fl.) som begynte å studere faget i denne
tida, nemner han som ei viktig inspirasjonskjelde, [52]. The biographical information here on
Holst comes from this article. On Holst’s relation to Lie, see [51, pp. 235-236, 240, 275-276, 330,
420-427]; on Holst’s relation to Størmer, see [18, sec. 2.5]; on Holst’s relation to K. Birkeland,
see [17, p. 19-22]. Holst’s pedagogical views are examined in [51, pp. 420-427].
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funktion (“On higher arithmetical series as well as the most common con-
verging series, with an introduction on the entire function”), [28]. Intended
for advanced high school students,13 the 56-page booklet followed the re-
quirement of the school program, while seeking “to achieve the greatest
possible rigor with the simplest possible means.”14 These constraints, and
the small number of pages, make the content quite unusual indeed at the
time: the difference between algebraic and transcendental functions was
explained on page 3, with basic examples, the (Euclidean) division of poly-
nomials on page 8, the method of indeterminate coefficients on pages 12
and 13, binomial coefficients on page 20. The fourth part, devoted to arith-
metical series, introduced, in particular, finite differences to compute the
sums of the values of arithmetical functions on integers (f.i. the sum of the

cubes,
n∑
0
x3 = [n(n+ 1)

1 · 2 ]2, page 28). At the end, Holst provided criteria

for a series to converge and applied them to a variety of examples, both
numerical (“to compute 5√8 with 5 decimals”) and theoretical (the study
of the exponential function).

Several features of the book are quite remarkable. Analysis appears here
mostly as the domain that deals with infinite processes (much more than,
say, continuity) as they branch off directly from arithmetic and algebra:
operations on integers are transposed into analogous operations on polyno-
mials; numbers, polynomials, series are steps in a common approach; recip-
rocally, as the title shows, arithmetical series are at the core of the study,
as objects joining arithmetic, algebra and analysis. Moreover, compared to
standard elementary textbooks on analysis, geometrical representations are
totally missing: there is no discussion of the relation between curves and
functions, nor any graphical discussion of functions.15

It is now instructive to compare the contents of this booklet to Thue’s
articles. To give one example, all the more interesting because it comes from
a slightly later date and touches upon Thue’s new, independent research

13The school program was defined through certain portions of specific textbooks. Holst’s book
completed the 1860 Lærebog i arithmetik og algebraens elementer (“Textbook in arithmetik
and algebra elements”) by Ole Jacob Broch, which began with the addition of integers and
ended with logarithms and sequences. Broch, an influential figure of Norwegian mathematics
and politics, described his textbook as preparing for the examen artium (an equivalent of the
French baccalauréat, this exam, prepared in high schools, was compulsory for entrance at the
university) and for the examen philosophicum (propedeutic years at the university). According
to [1, p. 172], Holst’s book was an important part of the curriculum of the last year of high
school, in the real, that is scientific, section, at the beginning of the twentieth century. On the
educational system and its stakes in nineteenth-century Norway, see [1, 5], and [51, ch. IV, V].

14at opnaa størst mulig stringens ved de simplest mulige midler, [28, Forord].
15Progressions and logarithms, mostly in the perspective of computations, were a classical

extension of elementary algebra in high school, but not arithmetical functions nor finite differ-
ences. To appreciate the contrast with other European textbooks in the teaching of analysis, see
[41]; for the specific case of France, the high school programs are given in [3].
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Figure 1.4. Om høiere arithmetiske rækker, by Elling Holst

interests, namely number theory, let us look at Thue’s “Bevis for Fermats og
Wilsons sætninger,” (“proof of Fermat’s and Wilson’s theorems”) published
in 1893, [53]. Noting that the binomial coefficient

(n
p

)
, for n a prime number

and p an integer, n > p, is divisible by n, Thue first deduces that, for any
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integer a
an − (a− 1)n = nk + 1

(a− 1)n − (a− 2)n = nh+ 1
· · · · · · · · ·

(a− (a− 1))n − (a− a)n = 1
for certain integers k, h, etc. By adding all the lines, he then obtains :
an = nR + a, for a certain integer R. This shows that n should divide
an− a, thus an−1− 1 if n and a are relatively prime; this is Fermat’s Little
Theorem.

As for Wilson’s theorem, Thue uses the successive finite differences of
the polynomial F (x) = xn:

∆1F (x) = F (x+ 1)− F (x) = nxn−1 + · · · ,

∆2F (x) = ∆1F (x+ 1)−∆1F (x) = n(n− 1)xn−2 + · · · , · · · ,∆nF (x) = n!
A linear combination of these equalities, for n = p− 1 and x = 0, provides
Thue with the equation:

−∆p−1F (0) = 1− (−∆1F (1) + ∆2F (1)− · · · −∆p−2F (1)).
Fermat’s Little Theorem then allows him to conclude that (p− 1)! + 1 is a
multiple of p, which is Wilson’s theorem.

Elementary as they are, these proofs clearly display a proximity to Holst’s
privileged tools, something that we find again in other writings of Thue.
Polynomials and (formal) series are put at the core of number-theoretical
proofs, as well as their paraphernalia: finite differences, binomial coeffi-
cients, multiplication of series, etc.

2. Wanderjahre: The German trip

Elling Holst had remained in close contact with Sophus Lie when the
latter left Norway for Germany in 1886. This link operated in particular
to provide young promising Norwegian scientists with an opportunity to
travel to Germany and to complete—or even acquire—there their scientific
culture. Besides Thue, the meteorologist Vilhelm Bjerknes, the future spe-
cialists in insurance mathematics Alf Guldberg and Arnfinn Palmstrøm,
the educator and politician Anton Alexander, etc., studied science abroad
during the 1890s. Where exactly to go in Germany was a matter of de-
tailed discussion; while Berlin and Göttingen were the two obvious choices
at the time, Bjerknes went to Bonn for several years to become the as-
sistant of Heinrich Hertz, and Leipzig was promoted by Lie as soon as he
obtained Felix Klein’s former position there. Concerning Thue in particu-
lar, Lie wrote to Holst: “I have advised Axel Thue to apply for a traveling
scholarship this winter. Thue has shown in a series of original investigations
that he has many of the qualifications needed to become an outstanding
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mathematician. [. . . ]. Yet, I still have a definite impression that his mathe-
matical knowledge does not do justice to his gifts and his enthusiasm. It is
for that reason that I consider it to be absolutely necessary for him to go
abroad. [. . . ] I am applying to you in this matter because Thue is first and
foremost your pupil, and I am certain that you nourish a lively interest in
his development as a mathematician. I therefore beg you to do all you can
to obtain a traveling scholarship for Thue immediately,” [57, p. xvii]. He
added: “I would be reluctant to send him to Göttingen. [. . . ] Guldberg and
Bjerknes are there, on my advice. It would be too unequal if Thue were to
go there too. In Berlin, according to all testimony, there is not much to do.
On several occasions, young mathematicians have left Berlin and come to
me,” [51, p. 399].

Thue thus went to Leipzig in the summer of 1889 with a grant, but the
stay was not very fruitful: after a strong start with private lessons from Lie,
the latter left Leipzig for several weeks, during which time Thue fell severely
ill and could not work any more. Then Lie became depressed and had to
leave. This certainly justified what is to be found in Thue’s biographies:
while the Leipzig stay at first stimulated Thue’s own research, he did not
receive any decisive influence from Lie (especially because what Lie wanted
were co-workers on his own program). However, Thue obtained a grant for
a second German stay, from the spring of 1890 to the summer of 1891,
and this time went to Berlin. There he attended a series of courses from
Leopold Kronecker, Lazarus Fuchs, Hermann von Helmholtz and Georg
Hettner, and, moreover, participated in the animated social life of Berlin
mathematicians.16 Helmholtz’s course, more than the others, seems to have
captured Thue’s imagination, because of its connection with infinity and
the problem of space. However, it is worth noticing that some of the other
themes discussed in Berlin were close to Thue’s former and later work: Het-
tner offered, for instance, a course on e and π, that is, on the various proofs
of their transcendence developed in the wake of Hermite’s and Lindemann’s
achievements.17

As for Kronecker, he gave his last course during the autumn of 1891—he
died at the end of December—when Thue had just returned to Norway. But
Thue attended two courses given by Kronecker. On June 20, he explained to
Holst: “During the first semester, [Palmstrøm] and I attended Kronecker’s
lectures on the theory of algebraic equations. He is remarkable for his great
depth and thoroughness, but has the bad habit in the fire of his enthusiasm

16A letter from Thue to Holst, translated into English in [57, p. xix-xx], provides some vivid
comments on these courses, as well as on a ball at Fuchs’s home. Thue also attended the mathe-
matical seminar of the University and gave some talks at the meetings of the Berlin Mathematical
Society.

17We recall that Thue has explained the topic in Holst’s mathematical seminar and written
a small article in connection to this; he was not particularly impressed by Hettner’s course, nor
by Fuchs’s one for that matter,[57, p.xx].
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Figure 2.1. Title page of L. Kronecker’s course. Fonds
Hensel, Bibliothèques de l’université de Strasbourg.

to relate definitions and other absolutely essential information altogether
too rapidly. One can thus too easily miss the point. He is an extremely
likeable man, but prefers to do all the talking himself, and at considerable
length. [. . . ] Kronecker gives quite extraordinarily lively lectures and he
understands how to make things palatable and one has a strong recurrent
feeling that he enjoys what he serves up.”18

What Kronecker served to Thue and his other students during the Win-
tersemester 1890–1891 is known in detail through the carefully handwritten

18I det förste semester hörte vi P. og jeg Kroneckers forelæsninger over de algebraiske
ligningers theori. Han udmarker sig ved stor dybde og grundighed, men har den slemme vane i
begeistringens ild at udtale definitioner og andre absolut nödvendige oplysninger altfor fort. Man
gaar jo da so let glip af meningen. Han er en saare elskværdig mand, men vil helst tale selv og
da lange. [. . . ] Kronecker har et ganske overordentlig livligt foredrag og forstaar at gjöre tingen
smagelig og man föler at han selv nyder, hvad han serverer.
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lecture notes kept in the Fonds Kurt Hensel of the University of Strasbourg
which digitized them in 2012,[29].19 In this case, we do not know the name
of the writer (usually a student). The manuscript is composed of 420 pages,
to which are added a table of contents and a few notes, totaling 666 digitized
pages. After a first lecture on the history of algebra following Kronecker, the
course includes treatments of quadratic and cubic equations, Sturm’s the-
orem on the number and localization of real roots of equations, Lagrange’s
interpolation formula, resultants of polynomials, the fundamental theorem
of algebra, Gauss’s and Abel’s works on, respectively, cyclotomic equations
and solvable equations and a taste of Galois theory, all this presented from
Kronecker’s own point of view.20

Because of his well-known attacks on Georg Cantor on the one hand
and Karl Weierstrass on the other, Kronecker is usually presented as a
(dictatorial) intuitionist avant la lettre. His claims that all mathematics
should be built only upon natural numbers through finite procedures are
much more commented on than his actual mathematical work—in which
elliptic functions and algebraic equations are blended with number theory.
However, recent historiography has articulated Kronecker’s priorities and
his mathematical work in much more detail: it has shown how Kronecker
aimed at taking “refuge in the safe haven of actual mathematics,” in his
own words, through an emphasis on concrete computations and formulas.21
Although there is no way we can speak of a Kroneckerian influence on Thue,
in the sense that Thue would have adopted Kronecker’s program or frame-
work, it is still interesting to understand to what kind of mathematics Thue
was exposed. One aspect is the role of approximation, including classical
results on real roots. For Kronecker, approximation was a major link be-
tween theoretical mathematics and science at large, a conception of which
Thue, motivated as he was by questions in physics and technology, would
probably not have been ignorant. It is also coherent with the proofs Thue
had studied concerning irrationality and transcendence; continued fractions
and their algebraic analogues appear there as key objects and these tools—
which were also ways of thinking about the problems—were explained at
length in Kronecker’s course. Another aspect is the emphasis on polynomi-
als. Kronecker’s project was to subsume arithmetic, algebra and analysis
itself into a higher “generalized arithmetic”: this arithmetic operates in
rationality domains, that is quotients of the ring of polynomials in several
indeterminates Z[X1, X2, · · · , Xn] and the study of algebraic numbers, that

19We do not have the notes of the 1891 lecture on definite integrals, but older lectures from
Kronecker on the same subject are also available, which I shall not discuss here.

20On the variegated development of Galois theory after Galois, see [19]. On Kronecker’s
perspective on Galois theory, see [16].

21See [16, p.11]. Harold Edwards has devoted several articles to a detailed analysis of Kro-
necker’s algorithmic perspective, see [12, 13, 14, 16]. On Kronecker’s conception of numbers, in
particular his last lectures, see [7, 6].
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Figure 2.2. Extract of a letter from A. Thue to E. Holst,
June 20, 1891, Archives Axel Thue. With the kind permis-
sion of NTNU University Library, Dora Library, Trondheim.

is, roots of polynomials, is done via rationality domains modulo such poly-
nomials. The “safe haven” of Kronecker, as illustrated in his 1890 course
as well as in his important 1882 paper “Grundzüge einer arithmetischen
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Theorie der algebraischen Grössen,” was based on extensive computations
on polynomials.22

As explained above, Thue returned to Norway during the summer of 1891
and spent a few years as Assistant Professor in Kristiania, before leaving for
a professorship in the Technical College of Trondheim, where he remained
until 1903. Thue described his years in Trondheim as unpleasant and spent
in mathematical isolation; he published very little during this time, but it
gave him the opportunity to develop his own project on approximation and
algebraic numbers, and perhaps most of the material he published after
his recruitment as full professor in Kristiania, on Diophantine equations,
rational approximation or sequences of signs, [57, p. xxi]. I shall now focus
on his celebrated work on diophantine approximation, and, in particular,
on the features in it which illustrate Thue’s proximity with some of the
mathematics just described.

3. Thue’s paper on the approximation of algebraic numbers

Thue’s paper, “Über Annäherungswerte algebraischer Zahlen” (“On ap-
proximate values of algebraic numbers”) was published in 1909 in the Berlin
Journal für die reine und angewandte Mathematik, known as Crelle’s Jour-
nal, although the editor-in-chief was by then Kurt Hensel. Without any
introduction or contextualization of any kind, it began with the statement
of a main theorem, “Theorem I”:

Theorem 1. Let ρ be a positive root of an entire function of degree r with
integral coefficients. The relation

0 <| qρ− p |< c

q
r
2 +k

where c and k are any given positive quantities, does not have infinitely
many solutions in positive integers p, q.

The paper then contained a 19 page proof, based on two lemmas, and
three different applications. A crucial point of Theorem I is the power r

2 ,
half of the degree of the algebraic number ρ—or r

2 + 1, if one divides the
two sides by q, according to what is now the standard presentation. As
it is well-known, this power was improved as 2

√
r by the work of Siegel,

revisiting Thue’s paper in [44, 45], then by several other authors, before
Klaus Roth’s better (in fact best) result in 1955, with 1 instead of r

2 : for
any positive real number k, 0 <| ρ − p

q |<
1

q2+k has only finitely many
solutions (p, q) with relatively prime integers p and q.

22See [12, p. 133–134], for instance, for an illuminating explanation of Kronecker’s concept
of a splitting field, and [15] for a convincing attempt to develop this “haven” in a constructive,
Kroneckerian manner.
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Figure 3.1. First page of Thue’s 1909 article, displaying
Theorem I

3.1. Approximation before Thue. In his articles, Siegel conjectured
what would be the best result to expect. But he also launched what would
be the standard chronology of Thue-type results, more or less reduced be-
fore Thue’s paper to Liouville’s result of 1844.23 Approximation issues were
in fact rather prominent in certain number-theoretical circles at the end of
the nineteenth century, and it is useful to briefly survey those which Thue
knew well, in order to better understand some techniques and ideas readily
available to him.

Liouville’s communications to the French Academy of Sciences in 1844,
[32, 33], which he reproduced in a 1851 article in his own Journal de ma-
thématiques pures et appliquées, [34], contain the oldest known proof of
transcendence. Liouville’s argument relies on the continued fraction expan-
sion of a real number, ρ,

23See for instance Edmund Landau’s Vorlesungen, [30, vol. 3, pp. 37–65].



Thue in context 325

ρ = [a0, a1, . . . , ak, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
and on its main properties. The reduced fractions pk

qk
= [a0, a1, . . . , ak] give

the best rational approximations to the real number ρ. One has

pk
qk
− pk−1
qk−1

= (−1)k−1

qkqk−1
.

Moreover if ρk is the complete quotient of order k, that is, the real number
satisfying ρ = [a0, a1, . . . , ak−1, ρk], then

ρ = pkρk + pk−1
qkρk + qk−1

from which one deduces that

(3.1) | ρ− pk
qk
|= 1

qk(qkρk + qk−1) .

As the qk and the ρk are greater than 1, qkρk + qk−1 is greater than qk
and thus Equation (3.1) shows that for every real number ρ, there exists
infinitely many rational numbers p

q such that | ρq−p |< 1
q , or, | ρ−

p
q |<

1
q2 .

Now let ρ be an algebraic number, that is, the root of an algebraic equa-
tion f of degree r with integral coefficients; one can assume that f is irre-
ducible, in particular has no rational roots. Then

f(x) = a(x− ρ)(x− x1) · · · (x− xr−1),

where the xi are the other roots of f . In his 1844 papers, Liouville remarks
that, for any rational number p

q ,

(3.2)
f(pq )
p
q − ρ

= a(p
q
− x1)(p

q
− x2) · · · (p

q
− xr−1).

On the one hand, | qrf(pq ) | is an integer, which is not 0 because f
has no rational root, and thus is equal to or greater than 1. On the other
hand, when the fractions p

q are successively the reduced fractions pk
qk

of the
continued fraction expansion of ρ, they approximate ρ, thus are closer and
closer to ρ and the differences | pkqk−xi | are bounded. Liouville deduced from
Equation (3.2) that there is a real C such that | ρ− pk

qk
|≥ C

qr
k
. Equation (3.1)

thus provides him with an upper bound C ′qk−2
k for the ρk, and a fortiori for

their integral parts, which are the coefficients ak of the continued fraction
expansion of ρ. Liouville then explained how to construct a transcendental
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number by allowing the coefficients ak of its continued fraction expansion
to increase beyond this bound.24

Although Liouville’s article contains indeed a Thue-like result, with the
exponent r instead of r

2 + 1, it is perhaps not the only point of departure
to contextualize Thue’s work. Two years earlier, on April 14, 1842, Peter
Gustav Lejeune-Dirichlet presented to the Berlin Academy of Sciences some
results on the values of linear forms for integers. He began with the remark
that the theory of continued fractions shows that for any real number ρ, and
for infinitely many integers p, q, the value at x = p, y = q of the linear form
x−ρy is less than 1

y (this is Equation (3.1) above). The aim of his communi-
cation was to generalize this statement to linear forms with real coefficients
in any finite number of variables: instead of the argument based on contin-
ued fractions, he used what is now called the pigeonhole principle.25 Then,
Dirichlet applied it to show that certain families of Diophantine equations
have infinitely many solutions—like the theory of continued fractions was
used to solve Pell-Fermat equations.

Such results were well known a few years later to the young Charles
Hermite—close to Liouville and very well informed about German mathe-
matics— when he reinvested the issue of rational approximation through
quadratic forms. For a real number A, Hermite introduced a family of pos-
itive definite binary quadratic forms f∆, indexed by real positive numbers
∆, such that

f∆(x, y) = (x−Ay)2 + y2

∆ .

According to classical results on forms on integral values, there exist in
this case two integers m and n such that

f∆(x, y) ≤ 2√
3
√

∆
,

from which Hermite easily deduced that | A− m
n |≤

c
n2 , for a constant c. He

also explained the law of formation of the integers (m,n) when ∆ increases
from 0 to ∞, in connection with the development as a continued fraction
of the real number A. Hermite also extended his result to simultaneous

24A variant relying on what Liouville calls a theorem of Lagrange—the intermediate value
theorem—is given in the first note, [32]. The case where r = 1, and hence the continued fraction
of ρ is finite is discussed in [34], as well as the extension of the procedure to complex numbers.

25See [10]. The principle is that if one puts a collection of strictly more than M discrete
objects in M holes or boxes, two objects at least will share the same hole. Dirichlet used it
here (without any specific name) to distribute certain fractions in intervals of a given length.
Although such arguments had appeared earlier, it is from Dirichlet’s papers that the explicit use
of the pigeonhole principle in number theory, in particular as a substitute for continued fractions,
developed in the nineteenth century.
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rational approximations of a finite number of real numbers, again via the
study of minima of appropriate quadratic forms.26

However, Hermite later provided another and more celebrated general-
ization of his statement on approximation: his proof of the transcendence
of e. Hermite’s 1873 series of notes in the Comptes rendus de l’Académie
des sciences, “On the exponential function,” indeed began exactly where
his work on rational approximation had ended: instead of generalizing the
theory of (ordinary) continued fractions “one can propose,” he writes, “a
similar generalization of the theory of algebraic continued fractions, while
searching for approximate expressions of functions by rational fractions, in
such a way that the series expansions in increasing powers of the variable
coincide up to a fixed power, ” [26, vol. 3, p. 150].

Hermite’s original proof indeed relied upon transposition of ideas and ex-
pressions from rational numbers to rational functions, considered as series.
Moreover, Hermite’s works taken as a whole stressed a path for approxima-
tion going from numbers (that is, zero-degree polynomials!) to first-degree
polynomials to general polynomials, and finally to series.27 Here again,
polynomials, with concrete, often very long computations, were at the core
of Hermite’s mathematical activities, in particular with respect to approx-
imation issues.

That Thue, back in Norway, was still involved in such issues, as he was
before, is well documented. In a letter to Holst from August 1902, Thue
wrote for instance: “Nevertheless I have in my deathly solitude, where no
one is interested in my stuff, produced significantly even more and better
things than in the past. Thus I have developed a theory, accordingly to
which I partly arrive at Hermite’s and Lindemann’s results for e and π.
The reason why I have not published the stuff I have in stock partly lies in
the fact that I may push my investigations further forward and would like
first see a proper conclusion to them.”28

26Hermite elaborated his results for several real numbers from 1847 onwards, in a series of
letters to Carl Gustav Jacob Jacobi, which were only published in 1850, [26, vol. 1, p. 106]. For
two numbers A and B, for instance, he used the quadratic ternary form (x−Az)2+(y−Bz)2+ z2

∆
and obtained rational numbers m′

m
, m

′′

m
, such that both | m

′

m
−A | and | m

′′

m
−B | are less than

2
√

2
4√27

1
|m
√
|m||

, that is, simultanous approximations of A and B by rational numbers with the same

denominatorm and an error of order less thanm
3
2 . The existence of minima of binary and ternary

quadratic forms (with integral coefficients) on integral values is implicit in Carl Friedrich Gauss’s
Disquisitiones arithmeticae, but Hermite extended Gauss’s proof to forms with real coefficients
and any finite number of variables, see [22]. The case of a single number A, mentioned in the
third letter, [26, vol. 1, p. 140], is the one put forward by Émile Picard in his preface to Hermite’s
works, [26, vol. 1, p. xi].

27We point out, in this direction, Hermite’s proof of the irrationality of e which can be
described as a first-degree version of his transcendence proof of 1873, see [26, vol. 3, p. 154].

28This is quoted in [43, p. 143]: Ikke desto mindre har jeg i min drepende ensomhet, hvor ingen
interesserer seg for mine ting, likevel produsert betydelig mer og bedre ting enn før i tiden. Jeg
har således utviklet en teori, etter hvilken jeg blant annet kommer til Hermites og Lindemanns
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3.2. The first lemma: replacing numbers by polynomials. Thue’s
proof relied on two lemmas. The first one begins with a modus operandi
presenting a striking analogy with what we have met above. Thue replaces
the expression he is studying, | qρ−p |, with ρ an algebraic number of degree
r > 2 and p, q integers, by the same expression, but with polynomials with
integral coefficients in the place of integers: | Q(x)ρ−P (x) |. He works then
in Z[x, ρ], adjusting P and Q so that the expression provides a high-degree
factor (ρ − x)n. That is, he explains first how to provide approximations
by rational functions, with a control on the degrees of their numerator and
denominator polynomials and the size of their coefficients. More precisely:

Lemma 1. Let ρ be a root of an irreducible polynomial F with integral
coefficients and degree r > 2. Also let θ be an arbitrary chosen quantity
> 2

r and n a positive integer such that

2
r − 2 −

θ

n− 1 > ω

where ω is an arbitrary positive magnitude < 2
r−2 . Finally, let m be the

positive integer that satisfies the relation:

(3.3) m ≤ (r − 2
2 + 1

θ
)(n− 1) < m+ 1.

Then one can always find polynomials f(x), P (x) and Q(x), with integral
coefficients and independent of the choice of the root ρ, and also positive
magnitudes S and T , depending only on F , θ and ω, such that
(3.4)
ρQ(x)−P (x) = (ρ− x)n · [f1(x)ρr−1 + f2(x)ρr−2 + · · ·+ fr−1(x)ρ+ fr(x)],

where the degree of each f is not greater than m, the degree of P and Q not
greater than m+n, the absolute value of each coefficient of the functions f
is smaller than Tn, and the absolute value of each coefficient of P and Q
is smaller than Sn.

We notice that, when θ and ω, chosen arbitrarily as indicated, are de-
termined, the conditions only impose a minoration on n; the lemma thus
provides a family of rational functions P (x)

Q(x) indexed by n. Reciprocally,
however, for n determined, one can always construct polynomials satisfy-
ing Equation (3.4); in particular, for n > 1, one can find adequate θ and
ω. Of course, the trivial identity, ρ − x = (ρ − x) · 1, will correspond to
P (x) = x, Q(x) = 1, f1(x) = fr−1(x) = 0, fr(x) = 1 for n = 1.

resultater om e og π. Grunnen til at jeg ikke har offentliggjort de ting jeg har liggende på lager,
ligger dels deri, at jeg kan føre undersøkelsene lengre frem og gjerne først vil se en ordentlig
avslutning på dem. Thue added also that he was not sure how new his resultats were, which
made him uncomfortable and paralyzed his imagination.
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3.3. An example : F (x) = x3 − ax − b, a, b rational numbers, F
irreducible. One year before the publication of his 1909 paper in Crelle,
Thue published explicit computations for a family of examples, [54] (other
examples are handled in his papers of this period): the case where ρ is a
root of an irreducible cubic polynomial F (x) = x3− ax− b. In this case, he
proved that for any positive integer I, there exist polynomials PI(x) and
QI(x), of degrees less than 3I + 1, and RI(x), of degree less than I, such
that

ρPI(x)−QI(x) = (x− ρ)2I+1RI(x).
In other words, such polynomials satisfy Equation (3.4), for r = 3, n =
2I + 1 and m = I.

To give a concrete flavor to the lemma, here are the polynomials given
by Thue in the case I = 2 (thus n = 5).

P2(x) = 81abx7 + (378b2 + 70a3)x6 + 567a2bx5 + (945ab2 + 70a4)x4

+ (175a3b+ 945b3)x3 + (378a2b2 − 14a5)x2 + (189ab3 − 7a4b)x
+ (2a6 − 29a3b2 + 135b4)

Q2(x) = (16a3 + 135b2)x7 + 378a2bx6 + (945ab2 + 112a4)x5+
+ (945b3 + 490a3b)x4 + 945a2b2x3 + (756ab3 + 14a4b)x2+
+ (378b4 + 7a3b2)x+ (27a2b3 − 2a5b)

R2(x) = [405abx+ 110a3 − 135b2]ρ2 + [81abx2 − (10a3 + 297b2)x
− 108a2b]ρ− [(16a3 + 135b2)x2 + 378a2bx+ (112a4 − 270ab2)].

As required in the statement of the lemma 1, the degree of the polynomials
P2(x) and Q2(x) is equal to m+ n , here 7; that of f1, f2, f3 is less than or
equal to m = 2.

3.4. Proof of lemma 1 (sketch). For reasons of space, we shall only
explain the main steps of Thue’s original proof of the lemma.29

First of all, for i = 0, · · · , r−1, Thue develops ρi(ρ−x)n in Z[x][ρ], using
of course the fact that F (ρ) = 0, and thus that ρr (and the higher powers
of ρ) are linear combinations with integral coefficients of 1, ρ, · · · , ρr−1.
That is, he proves, that for i = 0, · · · , r − 1, and j = 1, · · · r − 1, there
exist polynomials B(i)

j of degree n, with integral coefficients bounded by a

29As mentioned above, Thue gave concrete constructions of the polynomials of Lemma 1 for
specific cases in various papers; he also devoted a whole paper to this issue, [56].
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quantity Tn0 , where T0 depends only on the coefficients of F , such that

(3.5) ρi(ρ− x)n = B
(i)
1 (x)ρr−1 +B

(i)
2 (x)ρr−2 + · · ·+B

(i)
r−1(x)ρ+B(i)

r (x).

Thue considers then general expressions analogous to those in the right-
hand part of Equation (3.5) above; that is, polynomials U(x) such that

U(x) = C1(x)ρr−1 + · · ·+ Cr−1(x)ρ+ Cr(x)

where the polynomials C are of degree ≤ m and have integral coefficients
bounded by an integer s. He notes that there are finitely many: each coeffi-
cient of the Ci(x) lies between −s and s, thus can take only a finite number
of values, and there is a finite number, (m + 1)r, of such coefficients, thus
only M = (2s+ 1)(m+1)r possible polynomials.

Now, the (finitely many) expressions

(ρ− x)nU(x) = G1(x)ρr−1 +G2(x)ρr−2 + · · ·+Gr(x)

are such that the degrees of the G are less than n+m and their coefficients
are bounded by a quantity N .

What is wanted to get (3.4) is to insure that in one of these expressions
(ρ− x)nU(x) at least, no terms in ρr−1, · · · , ρ3, ρ2 appear.

To do this, Thue applies the pigeonhole principle. He cuts the interval
[-N, N] into h subintervals of length 2N

h . If

h(m+n+1)(r−2) < M = (2s+ 1)(m+1)r,

at least two polynomials, U1 and U2, provide corresponding G1, G2, . . . ,
Gr−2, whose coefficients lie in the same interval.

Then, if one also chooses h > 2N , the coefficients of ρr, ρr−1, . . . , ρ2 in
the expression of (ρ − x)n(U1 − U2) vanish, which concludes the proof of
(3.4), with U = U1−U2. It is to be noted that Thue devoted several papers
to variants, explicit versions and generalizations of his first Lemma; he also
announced in a footnote, [55, p. 292] that the lemma can be extended to
polynomials with algebraic coefficients, as well as to polynomials in several
variables.

3.5. The second lemma. The second step in Thue’s proof is to construct
two distinct rational approximations of ρ, with bounded denominator. More
precisely,

Lemma 2. Let F , ρ, r, ω, n be as in the first lemma. We now assume
that ρ is real, θ > 2 and that p and q are two integers such that q > 0 and
| ρq − p |< 1. One can then always find integers A0, B0, A1, B1 such that

A0
B0
6= A1
B1
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| ρBi −Ai |<
∣∣∣ [(ρq − p)(1− 2

θ
)Cq( r−2

2 + 1
θ

)
]n−1 ∣∣∣

| Bi |< Dn−1q[( r2 + 1
θ

(n−1)+1)]

for i= 0 and 1, where C and D are two positive magnitudes, independent
of n, p, q, and dependent only on θ, ω, and on the coefficients of F (x).

The A and B are provided by special values of the derivatives of polyno-
mials P and Q, given by the first lemma. More precisely, if ρQ(x)−P (x) =
(ρ− x)nR(x),
P (x)Q′(x)− P ′(x)Q(x) = (ρ− x)n−1 [(ρ− x)(R′(x)Q(x)

−R(x)Q′(x))− nR(x)Q(x)].
Since the left-hand side has rational coefficients, and the irreducible poly-
nomial F is (up to a constant) the minimal polynomial of ρ, the right-hand
side is necessarily divisible by Fn−1(x). Thus P (x)Q′(x) − P ′(x)Q(x) =
Fn−1W (x), where the degree γ of the polynomial W is less than 2

θ (n− 1).
Now it is not possible that the successive µ-th derivatives of Fn−1W (x),

evaluated at a fraction p
q , all vanish for 0 ≤ µ ≤ γ, as this would require a

factor (x− p
q )γ+1 in Fn−1W (x), and thus in W (x). This shows that at least

one of the expressions P (a)(x)Q(b)(x)−P (b)(x)Q(a)(x), with 0 ≤ a, b ≤ γ+1,
does not vanish for x = p

q .
Thue now defines

A = qn+m−δ

δ! P (δ)(p
q

), B = qn+m−δ

δ! Q(δ)(p
q

)

and chooses A0, B0, resp. A1, B1, as the A,B corresponding respectively
to δ = a and δ = b. The choice of a and b shows that the corresponding
fractions A0

B0
and A1

B1
are distinct.

The proof of the properties of A and B announced in Lemma 2 then
comes from the relation

ρQ(δ) − P (δ) = dδ

dxδ
[(ρ− x)nR(x)] = (−1)n(x− ρ)n−δ[· · · ]

and from the fact that the
R(δ)(pq )qm−δ

δ! are bounded.

3.6. Proving Thue’s Theorem (sketch). With these two lemmas, Thue
proved his main theorem (Theorem I) as follows.

If the theorem were false, one could find (infinitely many) integers p0,
p1, q0, q1, with q1 > q0 > 0, such that, for i = 0, 1

qiρ− pi = εi

qhi
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with |εi| < c and h > r
2 .

For q0 and q1
q0

large enough, Thue then shows how to construct θ, ω and
n satisfying the conditions of Lemma 2 and such that:

log q1 + log 2
[(1− 2

θ )h− ( r−2
2 + 1

θ )] log q0 − logE
< n− 1 < h log q1 − log 2Cq0

( r2 + 1
θ ) log q0 + logD

for appropriate constants D and E (independent of n, p0, q0).
With this choice, and A, B as in Lemma 2, the integer p1B− q1A would

be strictly smaller than 1, and thus would be 0. This implies that p1
q1

= A
B .

But as two different choices of A
B are possible, this cannot be the case.

Thue’s main theorem is proved.

4. Applications to Diophantine Equations

Thue added three applications (Theorems II, III, IV) to his main theo-
rem. The first one transfers the improvement obtained by Thue in the ra-
tional approximation of a real algebraic number to Liouville’s result on the
growth of its continued-fraction expansion. The second application estab-
lishes by Lemma 2 a link between a rational approximation of ρ in q r2 +1+k

and one in q
r

2(k+1) +1+h, for any k and h fixed—the case where k = r
2−1, dis-

tinguished by Thue, suggesting perhaps that he was aiming at a Roth-like
improvement of his theorem. The third application is the most celebrated,
in particular because of its future impact on the study of points with inte-
gral coordinates on affine algebraic curves; as pointed out, the principle of
the method itself was known earlier and used on several occasions by other
authors, [35, p. 341].

4.1. Integral solutions. This is Thue’s Theorem IV in [55]:

Theorem 2. The equation U(p, q) = c, where c is a given constant, and U
a homogeneous polynomial with integral coefficients, does not have infinitely
many solutions in positive integers p and q, when the degree of U is greater
than 2.

Thue proved in fact that, for any polynomial F of degree r with integral
coefficients, the relation 0 < |qrF (pq )| < cqh, for a constant c and a real
h < r−2

2 , has only finitely many solutions.
He uses for this the factorization of F (x), F (x) = a(x− ρ1) · · · (x− ρr),

as in Liouville’s proof, which Thue mentions explicitly at this point. Thue
then deduces from the assumption 0 < |qrF (pq )| < cqh that for one of the ρ
at least, |p−qρ| < c

1
r q

h
r . For the other ρi, one has p−ρiq = p−ρq+(ρ−ρi)q,

hence |p− qρi| > −c
1
r q

h
r + bq > dq, for a certain d.

Thus |p− qρ| < cqh

|a|dr−1qr−1 <
f

q
r
2 +k , and the main theorem applies.
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Figure 3.2. Manuscript of A. Thue’s “Om en general i
store hele tal uløsbar ligning,” published in 1908.
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4.2. And yet more results. In the following years, Thue adapted his
theorem to a variety of Diophantine applications. He proved for instance,
[57, pp. 561–573], that if a, b, c, d, are integers, a 6= 0, b2 − 4ac 6= 0, d 6= 0,
the Diophantine equation

ay2 + by + c = dxn

with n an integer > 3, has only finitely many solutions.
He also extended Theorem IV by replacing the constant c by a polyno-

mial: if P (x, y) and Q(x, y) are two homogeneous polynomials with integral
coefficients, of degree p and q, such that p > 2, p > q and P is irreducible,
then the equation P (x, y) = Q(x, y) has only finitely many pairs of integral
solutions (x, y). Again, if R(x) is a polynomial of degree r, p > q > r and
p < q + r, the equation P (x, y) + Q(x, y) + R(x, y) = 0 has only finitely
many solutions (x, y) with x and y relatively prime integers. In addition, he
explored a number of equations closely related to Fermat’s equation, such
as xn + (x + k)n = yn, and axn − byn = k, with n > 2 and k a positive
integer.30 Other applications are described in [44].

5. Coda

As mentioned earlier, Schur hinted at Thue’s results after a talk, stress-
ing the difference between the Pell-Fermat equation, x2− dy2 = 1, with its
infinitely many solutions, and the higher-degree analogues, xn − dyn = 1,
for n > 2, which have only finitely many solutions as a consequence of
Thue’s theorem—the very hint which launched Siegel’s interest in the topic,
[48, 27]. But this was not an isolated occurence. Despite the difficulties in
mathematical communication during World War I, several authors in the
1920s integrated Thue’s work into their own: for Diophantine equations, Ed-
mond Maillet, already mentioned, Trygve Nagell, Louis Mordell,31 among
others; Georg Pólya on prime divisors of the values of polynomials at in-
tegers, who already in 1917 described Thue’s results as ”well-known and
important,”[37]; Jean Favard in 1929 on the diameter of the set of conju-
gates of an algebraic numbers, [31], etc.

On the other hand, I have tried to show that Thue inherited not only
questions, but also a number of practices from his predecessors and teachers

30See in particular [57, pp.358–362, 565–573]. Several of Thue’s articles, and the manuscripts
left by him, display his ongoing interest in Fermat’s Last Theorem. In his obituary of Siegel,
Edmund Hlawka even suggested that this interest had triggered his work on rational approxi-
mation, [27]. As we have seen above, Thue himself mentioned to Holst a global project including
transcendence results.

31According to John Cassels, Mordell’s research on integral solutions using Thue’s theorem
led him finally to his celebrated theorem that rational points on curves of genus 1 are finitely
generated, see [9]. It was through Mordell and Davenport that Freeman Dyson was informed of
Siegel’s result and worked out his own 1947 improvement—even, if according to him, his failure to
prove the best approximation convinced him to become a physicist instead of a mathematician,
see [11, p. 7–8, p. 75-80].
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—practices which occur recurrently in his own work. Dirichlet’s pigeonhole
principle appears not only in Thue’s 1909 paper on rational approximation,
but also for instance, in the proof of his Remainder Theorem.32 Polynomials
as arithmetical tools are a key to many of Thue’s papers, starting with
his first communications of the 1890s, and, more specifically, the idea of
substituting polynomials for integers, which appears in his 1909 theorem
as well as in his later work on Fermat’s equation, for instance.

Reconstructing parts of Thue’s mathematical environment does not lead
of course to diminish his originality or the importance of his work. My pur-
pose here was to give some alternative perspectives to a story which too
often reduces the development of number theory at the turn of the twen-
tieth century to that of algebraic number fields, and thus pictures Thue,
and in some respects Siegel as well, as completely marginal.33 Although
Thue’s personal feeling of isolation at certain times, and his predilection
for independent work, are not to be doubted, it does not mean that his
mathematics did not engage the interest of his contemporaries.
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