
This is Google's cache of http://www.ibm.com/developerworks/linux/library/l-glpk1/. It is a snapshot of the
page as it appeared on 20 Jan 2010 10:10:04 GMT. The current page could have changed in the
meantime. Learn more

Text-only versionThese search terms are highlighted: gnu mathprog ibm These terms only appear in
links pointing to this page: tutorial

The GNU Linear Programming Kit, Part 1:
Introduction to linear optimization
Find the best solutions to complex numeric problems
Rodrigo Ceron (rceron@br.ibm.com), Staff Software Engineer, IBM, Software Group
Summary: The GNU Linear Programming Kit is a powerful, proven tool for solving numeric
problems with multiple constraints. This article introduces GLPK, the glpsol client utility, and the
GNU MathProg language to solve the problem of optimizing the operations for Giapetto's
Woodcarving, Inc., a fictional toy manufacturer.
Date: 08 Aug 2006
Level: Intermediate
Activity: 12281 views
Comments:
Introduction

"Linear programming is a tool for solving optimization problems. In 1947, George
Dantzig developed an efficient method, the simplex algorithm, for solving linear
programming problems. Since the development of the simplex algorithm, linear
programming has been used to solve optimization problems in industries as diverse as
banking, education, forestry, petroleum, and trucking. In a survey of Fortune 500 firms,
85% of the respondents said they had used linear programming."

From Operations Research: Applications and Algorithms, 4th Edition, by Wayne L.
Winston (Thomson, 2004); see Resources below for a link.

Many tools are available to solve linear programming problems. The proprietary tools are well
known, but many members of the open source community may not know about the free GLPK tool.
The first in a series of three articles that show GLPK's capabilities and usage, this article briefly
describes GLPK and then demonstrates and applies the GNU MathProg Language in GLPK.
If you are just starting with operations research theory and want to learn how to model and solve
linear problems, this article is a good guide.
The GNU Linear Programming Kit
The GNU Linear Programming Kit (GLPK) is a library of routines that use well-known operations
research algorithms to solve linear problems. The routines implement the simplex, branch and

Page 1 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

bound, primal-dual interior point, and many other algorithms. Check the GLPK manual included
with the GLPK download to find out more. (To download the GLPK, see the Resources section for a
link to the GLPK page on gnu.org.)
GLPK is not a program -- it can't be run and has no main() function. Instead, clients feed the
problem data to the algorithmic routines through the GLPK API and receive results back. GLPK has
a default client, the glpsol program, that interfaces with this API. Usually, a program like glpsol is
called a solver rather than a client, so you'll see this nomenclature from here forward.

The GNU MathProg modeling language
The GNU MathProg modeling language is nice and simple for declaring linear problems. In
general, a problem declaration consists of:
� Problem decision variables.
� An objective (target) function. Note that objective is a noun, not an adjective. The name is
standard in operations research theory.

� Problem constraints.
� Problem parameters (data).

Let's start with a simple two-variable example: Giapetto's Woodcarving, Inc.

Giapetto's Woodcarving Inc.
This problem is from Operations Research:
Giapetto's Woodcarving Inc. manufactures two types of wooden toys: soldiers and trains. A soldier
sells for $27 and uses $10 worth of raw materials. Each soldier that is manufactured increases
Giapetto's variable labor and overhead costs by $14. A train sells for $21 and uses $9 worth of raw
materials. Each train built increases Giapetto's variable labor and overhead costs by $10. The
manufacture of wooden soldiers and trains requires two types of skilled labor: carpentry and
finishing. A soldier requires 2 hours of finishing labor and 1 hour of carpentry labor. A train
requires 1 hour of finishing and 1 hour of carpentry labor. Each week, Giapetto can obtain all the
needed raw material but only 100 finishing hours and 80 carpentry hours. Demand for trains is
unlimited, but at most 40 soldier are bought each week. Giapetto wants to maximize weekly profits
(revenues - costs).
To summarize the important information and assumptions about this problem:
1. There are two types of wooden toys: soldiers and trains.
2. A soldier sells for $27, uses $10 worth of raw materials, and increases variable labor and

overhead costs by $14.
3. A train sells for $21, uses $9 worth of raw materials, and increases variable labor and overhead

costs by $10.
4. A soldier requires 2 hours of finishing labor and 1 hour of carpentry labor.
5. A train requires 1 hour of finishing labor and 1 hour of carpentry labor.
6. At most, 100 finishing hours and 80 carpentry hours are available weekly.
7. The weekly demand for trains is unlimited, while, at most, 40 soldiers will be sold.

The goal is to find the numbers of soldiers and trains that will maximize the weekly profit.

Page 2 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

Modeling
To model a linear problem, the decision variables are established first, since they will change with
each iteration of the simplex algorithm and determine the value of the objective function and, hence,
the optimal solution. In Giapetto's shop, the objective function is the profit, which is a function of the
amount of soldiers and trains produced each week. Therefore, the two decision variables in this
problem are:
� x1: Number of soldiers produced each week

� x2: Number of trains produced each week

Once the decision variables are known, the objective function of this problem is simply the revenue
minus the costs for each toy, as a function of x1 and x2.

Note that the profit depends linearly on x1 and x2 -- this is a linear problem.

It may seem at first glance that the profit can be maximized by simply increasing x1 and x2. Well, if
life were that easy, let's start manufacturing trains and soldiers and move to the Caribbean!
Unfortunately, there are restrictions that limit the decision variables that may be selected (or else the
model is very likely to be wrong).
Recall the assumptions made for this problem. The first three determined the decision variables and
the objective function. The fourth and sixth assumption say that finishing the soldiers requires time
for carpentry and finishing. The limitation here is that Giapetto doesn't have infinite carpentry and
finishing hours. That's a constraint! Let's analyze it to clarify.
One soldier requires 2 hours of finishing labor, and Giapetto has at most 100 hours of finishing labor
per week, so he can't produce more than 50 soldiers per week. Similarly, the carpentry hours
constraint makes it impossible to produce more than 80 soldiers weekly. Note here that the first
constraint is stricter than the second. The first constraint is effectively a subset of the second, thus
the second constraint is redundant.
The previous paragraph shows how to model optimization problems, but it's an incomplete analysis
because all the necessary variables were not considered. It's not the complete solution of the Giapetto
problem. So how should the problem be approached?
Start by analyzing the limiting factors first in order to find the constraints. First, what constrains the
finishing hours? Since both soldiers and trains require finishing time, both need to be taken into
account. Suppose that 10 soldiers and 20 trains were built. The amount of finishing hours needed for
that would be 10 times 2 hours (for soldiers) plus 20 times 1 hour (for trains), for a total of 40 hours
of finishing labor. The general constraint in terms of the decision variables is:

There are many (x1,x2) pairs that satisfy this inequality, so this does not determine the best
combination for Giapetto's shop.

Page 3 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

Now that the constraint for the finishing hours is ready, the carpentry hours constraint is found in the
same way to be:

Great! There's only one more constraint for this problem. Remember the weekly demand for
soldiers? According to the problem description, there can be at most 40 soldiers produced each
week:

The demand for trains is unlimited, so no constraint can be written for it. The model is finished and
consists of the equations:

Note the last constraint. It ensures that the values of the decision variables will always be positive.
The problem does not state this explicitly, but it's still important (and obvious).
Now GLPK can solve the model (since GLPK is good at solving linear optimization problems).

A little bit of theory
Let's check the problem's solution space. With two decision variables, it has two dimensions.

Figure 1. Giapetto's unbounded universe

Page 4 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

The (x1,x2) solutions outside the first quadrant (where all values are positive) have already been
discarded. Note, however, that this solution space is still infinite (that would be a situation in which
I'd move to the Caribbean!)
As the constraints were written, this unlimited solution space gained boundaries. With inequality 6,
above, the result is more interesting.

Figure 2. Giapetto's universe considering the finishing constraint

The solution space contains all the possible (x1,x2) solutions in the first quadrant that satisfy the

Page 5 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

finishing hours constraint.
After inequality 7, the result set shrinks.

Figure 3. Giapetto's universe considering the finishing and carpentry constraints

Note that the solution space is smaller. This means that even fewer (x1,x2) solutions are in it. After
inequality 8, the result is even smaller.

Figure 4. Giapetto's feasible region

Page 6 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

The solution space gets smaller still. The solution space that satisfies all the constraints is called the
feasible region. Figure 4 shows the feasible region for Giapetto's shop. Any (x1,x2) pair that falls
into that region is a potential solution to the problem.
The question now is: which one maximizes Giapetto's profit?

Using GLPK to solve the model
GLPK is an excellent tool to solve that question. The mathematical formulation of Giapetto's
problem needs to be written with the GNU MathProg language. The key items to declare are:
� The decision variables
� The objective function
� The constraints
� The problem data set

The following code shows how to solve Giapetto's problem with MathProg. The line numbers in
this code are not part of the code itself. They have been added only for the sake of making references
to the code.

Listing 1. First solution to Giapetto's problem: giapetto.sol
 1 #
 2 # Giapetto's problem
 3 #
 4 # This finds the optimal solution for maximizing Giapetto's profit
 5 #
 6
 7 /* Decision variables */
 8 var x1 >=0; /* soldier */
 9 var x2 >=0; /* train */

Page 7 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

Lines 1 through 5 are comments. # anywhere on a line begins a comment to the end of the line. C-
style comments can also be used, as shown on line 7. They even work in the middle of a declaration.
The first MathProg step is to declare the decision variables. Lines 8 and 9 declare x1 and x2. A
decision variable declaration begins with the keyword var. To simplify sign constraints (check
inequality 9), MathProg allows a >= 0 constraint in the decision variable declaration, as seen on
lines 8 and 9. Every sentence in GNU MathProg must end with a semicolon (;). Recall that x1
represents soldier numbers and x2 represents train numbers. These variables could have been
called soldiers and trains, but that would confuse the mathematicians in the audience.
Line 12 declares the target (objective) function. Linear problems can be either maximized or
minimized. Remember, Giapetto's mathematical model is a maximization problem, so the keyword
maximize is appropriate instead of the opposite keyword, minimize. The objective function is
named z and equals 3x1 + 2x2. Note that:

� The colon (:) character separates the name of the objective function and its definition.
� The asterisk (*) character denotes multiplication and, similarly, the plus (+), minus (-), and
forward slash (/) characters denote addition, subtraction, and division as you'd expect.

Lines 15, 16, and 17 define the constraints. Although s.t. is not required at the beginning of the line
to declare a constraint, it improves the readability of the code.
The three Giapetto constraints have been labeled Finishing, Carpentry, and Demand. Each of them is
declared as in the mathematical model. The symbols <= and >= express the inequalities. Don't forget
the ; at the end of each declaration.
Every GNU MathProg file must end with end;, as seen on line 19.
Now, glpsol can use this file as input. But wait a minute; where's the data section of this problem?
Well, this problem is so simple that the problem data is directly included in the objective function
and constraints declarations as the coefficients of the decision variables in the declarations. For
example, in the objective function, the coefficients 3 and 1 are part of the problem's data set. When I
rewrite this problem using a data set, it will become clear how it works; for now, don't worry about
it.
It's good practice to use the .mod extension for MathProg input files and redirect the solution to a
file with the extension .sol. This is not a requirement -- you can use any file name and extension
you like. Giapetto's MathProg file for this example will be giapetto.mod, and the output will be in
giapetto.sol. Now, run glpsol in your favorite console:
glpsol -m giapetto.mod -o giapetto.sol
This command line uses two glpsol options:

10
11 /* Objective function */
12 maximize z: 3*x1 + 2*x2;
13
14 /* Constraints */
15 s.t. Finishing : 2*x1 + x2 <= 100;
16 s.t. Carpentry : x1 + x2 <= 80;
17 s.t. Demand : x1 <= 40;
18
19 end;

Page 8 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

� The -m option tells glpsol that the input is written in GNU MathProg.
� The -o option tells glpsol to send its output to giapetto.sol.

The solution report will be in giapetto.sol, but some information about the time and memory
GLPK consumed is shown on the system's standard output:

Listing 2. Output from glpsol

The report shows that glpsol reads the model, calls a GLPK API function to generate the objective
function, then calls another API function to generate the constraints. After the model has been
generated, glpsol explains briefly how the problem was handled internally by GLPK. At the end,
there's information about the solution and the resources used by GLPK to solve it, and the solution is
noted to be optimal.
Great, but what are the actual optimal values for the decision variables? They are in the
giapetto.sol file:

Listing 3. The solution to Giapetto's problem: giapetto.sol

ceron@curly ~ $ glpsol -m giapetto.mod -o giapetto.sol
Reading model section from giapetto.real.mod...
19 lines were read
Generating z...
Generating Finishing...
Generating Carpentry...
Generating Demand...
Model has been successfully generated
lpx_simplex: original LP has 4 rows, 2 columns, 7 non-zeros
lpx_simplex: presolved LP has 2 rows, 2 columns, 4 non-zeros
lpx_adv_basis: size of triangular part = 2
* 0: objval = 0.000000000e+00 infeas = 0.000000000e+00 (0)
* 2: objval = 1.400000000e+02 infeas = 0.000000000e+00 (0)
OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1M (151326 bytes)
lpx_print_sol: writing LP problem solution to `giapetto.sol'...

Problem: giapetto
Rows: 4
Columns: 2
Non-zeros: 7
Status: OPTIMAL
Objective: z = 180 (MAXimum)

 No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 z B 180
 2 Finishing NU 100 100 1
 3 Carpentry NU 80 80 1
 4 Demand B 20 40

 No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 x1 B 20 0
 2 x2 B 60 0

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0

Page 9 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

The solution is divided into four sections:
� Information about the problem and the optimal value of the objective function
� Precise information about the status of the objective function and about the constraints
� Precise information about the optimal values for the decision variables
� Information about the optimality conditions, if any

For this particular problem, we see that the solution is OPTIMAL and that Giapetto's maximum weekly
profit is $180.
The Finishing constraint's status is NU (the St column). NU means that there's a non-basic variable on
the upper bound for that constraint. If you know some operation research theory, build the simplex
tableau and check it out. If you don't, here's a a brief practical explanation.
Whenever a constraint reaches its upper or lower boundary, it's called a bounded constraint. A
bounded constraint prevents the objective function from reaching a better value. Think of it as a
volume knob, for example, that can't be turned any further. When that occurs, glpsol shows the status
of the constraint as either NU or NL (for upper and lower boundary respectively), and it also shows the
value of the marginal, also known as the shadow price. The marginal is the value by which the
objective function would improve if the constraint were relaxed by one unit (if the volume knob
could turn a little more). Note that the improvement depends on whether the goal is to minimize or
maximize the target function. For instance, in Giapetto's problem, which seeks maximization, the
marginal value 1 means that the objective function would increase by 1 if we could have one more
hour of finishing labor (we know it's one more hour and not one less, because the finishing hours
constraint is an upper boundary).
The carpentry and soldier demand constraints are similar. For the carpentry constraint, note that it's
also an upper boundary. Therefore, a relaxation of one unit in that constraint (an increment of one
hour) would make the objective function's optimal value become better by the marginal value 1 and
become 181.
The soldier demand, however, is not bounded, thus its state is B, and a relaxation in it will not change
the objective function's optimal value.
Try relaxing the value of each bounded constraint one at a time, solve the modified problem, and see
what happens to the optimal value of the objective function. Also check that changing the value of
unbounded constraints won't make any difference to the solution, as expected.
Finally, glpsol's report shows the values for the decision variables: x1 = 20 and x2 = 60. This tells
Giapetto that he should produce 20 soldiers and 60 trains to maximize his weekly profit.

 High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

KKT.DE: max.abs.err. = 0.00e+00 on column 0
 max.rel.err. = 0.00e+00 on column 0
 High quality

KKT.DB: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

End of output

Page 10 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

Giapetto's problem was very small. You may be wondering, in a problem with many more decision
variables and constraints, would you have to declare each variable and each constraint separately?
And what if you wanted to adjust the data of the problem, such as the selling price of a soldier? Do
you have to make changes everywhere this value appears? The next section discusses that.

Using model and data sections in Giapetto's problem
MathProg models normally have a model section and a data section, sometimes in two different
files. Thus, glpsol can solve a model with different data sets easily, to check what the solution would
be with this new data. The following listing states Giapetto's problem in a much more elegant way:

Listing 4. Giapetto's problem with a model and a data section: giapetto2.mod
 1 #
 2 # Giapetto's problem
 3 #
 4 # This finds the optimal solution for maximizing Giapetto's profit
 5 #
 6
 7 /* Set of toys */
 8 set TOY;
 9
10 /* Parameters */
11 param Finishing_hours {i in TOY};
12 param Carpentry_hours {i in TOY};
13 param Demand_toys {i in TOY};
14 param Profit_toys {i in TOY};
15
16 /* Decision variables */
17 var x {i in TOY} >=0;
18
19 /* Objective function */
20 maximize z: sum{i in TOY} Profit_toys[i]*x[i];
21
22 /* Constraints */
23 s.t. Fin_hours : sum{i in TOY} Finishing_hours[i]*x[i] <= 100;
24 s.t. Carp_hours : sum{i in TOY} Carpentry_hours[i]*x[i] <= 80;
25 s.t. Dem {i in TOY} : x[i] <= Demand_toys[i];
26
27
28 data;
29 /* data section */
30
31 set TOY := soldier train;
32
33 param Finishing_hours:=
34 soldier 2
35 train 1;
36
37 param Carpentry_hours:=
38 soldier 1
39 train 1;
40
41 param Demand_toys:=
42 soldier 40
43 train 6.02E+23;
44
45 param Profit_toys:=
46 soldier 3

Page 11 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

Rather than two separate files, the problem is stated in a single file with a modeling section (lines 1
through 27) and a data section (lines 28 through 49).
Line 8 defines a SET. A SET is a universe of elements. For example, if I declare mathematically xi,
for all i in {1;2;3;4}, I'm saying that x is an array that ranges from 1 to 4, and therefore we
have x1, x2, x3, x4. In this case, {1;2;3;4} is the set. So, in Giapetto's problem, there's a set called
TOY. Where are the actual values of this set? In the data section of the file. Check line 31. It defines
the TOY set to contain soldier and train. Wow, the set is not a numerical range. How can that be?
GLPK handles this in an interesting way. You'll see how to use this in a few moments. For now, get
used to the syntax for SET declarations in the data section:
set label := value1 value2 ... valueN ;
Lines 11, 12, and 13 define the parameters of the problem. There are three: Finishing_hours,
Carpentry_hours, and Demand_toys. These parameters make up the problem's data matrix and are
used to calculate the constraints, as you'll see later.
Take the Finishing_hours parameter as an example. It's defined on the TOY set, so each kind of toy
in the TOY set will have a value for Finishing_hours. Remember that each soldier requires 2 hours
of finishing work, and each train requires 1 hour of finishing work. Check lines 33, 34, and 35 now.
There is the definition of the finishing hours for each kind of toy. Essentially, those lines declare that
Finishing_hours[soldier]=2 and that Finishing_hours[train]=1. Finishing_hours is,
therefore, a matrix with 1 row and 2 columns.
Carpentry hours and demand parameters are declared similarly. Note that the demand for trains is
unlimited, so a very large value is the upper bound on line 43. Does that value seem fa-mole-iar to
you?
Line 17 declares a variable, x, for every i in TOY (resulting in x[soldier] and x[train]), and
constrains them to be greater than or equal to zero. Once you have sets, it's pretty easy to declare
variables, isn't it?
Line 20 declares the objective (target) function as the maximization of z, which is the total profit for
every kind of toy (there are two: trains and soldiers). With soldiers, for example, the profit is the
number of soldiers times the profit per soldier.
The constraints on lines 23, 24, and 25 are declared in a similar way. Take the finishing hours
constraint as an example: it's the total of the finishing hours per kind of toy, times the number of that
kind of toy produced, for the two types of toys (trains and soldiers), and it must be less than or equal
to 100. Similarly, the total carpentry hours must be less than or equal to 80.
The demand constraint is a little bit different than the previous two, because it's defined for each
kind of toy, not as a total for all toy types. Therefore, we need two of them, one for trains and one for
soldiers, as you can see on line 25. Note that the index variable ({i in TOY}) comes before the :.
This tells GLPK to create a constraint for each toy type in TOY, and the equation that will rule each
constraint will be what comes after the :. In this case, GLPK will create
Dem[soldier] : x[soldier] <= Demand[soldier]
Dem[train] : x[train] <= Demand[train]

47 train 2;
48
49 end;

Page 12 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

Solving this new model must yield the same results:

Listing 5. The solution to Giapetto's problem with a data section: giapetto2.sol

Note how the constraints and the decision variables are now named after the TOY set, which looks
clean and organized. Very good. You have maximized Giapetto's profit!

Conclusion
You've seen how to formulate a simple, two-variable linear problem. Then you saw how to use a
simple MathProg program to solve it using sets, parameters, constraints, decision variables, and an
objective (target) function. The program used summation over sets and a parameters data section.
Finally, you learned how to interpret the results of a maximization problem.
The next installment in this three-article series will show you how to make the most out of a bad diet.

Problem: giapetto2
Rows: 5
Columns: 2
Non-zeros: 8
Status: OPTIMAL
Objective: z = 180 (MAXimum)

 No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 z B 180
 2 Fin_hours NU 100 100 1
 3 Carp_hours NU 80 80 1
 4 Dem[soldier] B 20 40
 5 Dem[train] B 60 6.02e+23

 No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 x[soldier] B 20 0
 2 x[train] B 60 0

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

KKT.DE: max.abs.err. = 0.00e+00 on column 0
 max.rel.err. = 0.00e+00 on column 0
 High quality

KKT.DB: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

End of output

Page 13 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

Download

Information about download methods

Resources
Learn
� The problems in this article are taken with permission from Operations Research:
Applications and Algorithms, 4th Edition, by Wayne L. Winston (Thomson, 2004).

� The online documentation for GLPK gives more information about GLPK, how to get the
software, and how to join the GLPK community.

� Check out the Wikipedia entry for GLPK.

� Subscribe to the GLPK help mailing list or bug reports mailing list.

� In the developerWorks Linux zone, find more resources for Linux developers.

� Stay current with developerWorks technical events and Webcasts.

Get products and technologies
� With IBM trial software, available for download directly from developerWorks, build your
next development project on Linux.

Discuss
� Check out developerWorks blogs and get involved in the developerWorks community.

About the author

Rodrigo Ceron Ferreira de Castro is a Staff Software Engineer at the IBM Linux Technology Center.
He graduated from the State University of Campinas (UNICAMP) in 2004. He received the State
Engineering Institute prize and the Engineering Council Certification of Honor when he graduated.
He's given speeches in open source conferences in Brazil and other countries.
Trademarks | My developerWorks terms and conditions

Description Name Size Download method
Solutions to the problem solutions.zip 1KB HTTP

Page 14 of 14The GNU Linear Programming Kit, Part 1: Introduction to linear optimization

2010-01-28http://66.102.9.132/search?q=cache:SJ8vLwwNC8oJ:www.ibm.com/developerworks/...

