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The GNU Linear Programming Kit, Part 1: 
Introduction to linear optimization 
Find the best solutions to complex numeric problems 
Rodrigo Ceron (rceron@br.ibm.com), Staff Software Engineer, IBM, Software Group 
Summary:  The GNU Linear Programming Kit is a powerful, proven tool for solving numeric 
problems with multiple constraints. This article introduces GLPK, the glpsol client utility, and the 
GNU MathProg language to solve the problem of optimizing the operations for Giapetto's 
Woodcarving, Inc., a fictional toy manufacturer. 
Date:  08 Aug 2006  
Level:  Intermediate  
Activity:  12281 views  
Comments:     
Introduction  

"Linear programming is a tool for solving optimization problems. In 1947, George 
Dantzig developed an efficient method, the simplex algorithm, for solving linear 
programming problems. Since the development of the simplex algorithm, linear 
programming has been used to solve optimization problems in industries as diverse as 
banking, education, forestry, petroleum, and trucking. In a survey of Fortune 500 firms, 
85% of the respondents said they had used linear programming."  
 
From Operations Research: Applications and Algorithms, 4th Edition, by Wayne L. 
Winston (Thomson, 2004); see Resources below for a link.  

Many tools are available to solve linear programming problems. The proprietary tools are well 
known, but many members of the open source community may not know about the free GLPK tool.  
The first in a series of three articles that show GLPK's capabilities and usage, this article briefly 
describes GLPK and then demonstrates and applies the GNU MathProg Language in GLPK.  
If you are just starting with operations research theory and want to learn how to model and solve 
linear problems, this article is a good guide.  
The GNU Linear Programming Kit 
The GNU Linear Programming Kit (GLPK) is a library of routines that use well-known operations 
research algorithms to solve linear problems. The routines implement the simplex, branch and 
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bound, primal-dual interior point, and many other algorithms. Check the GLPK manual included 
with the GLPK download to find out more. (To download the GLPK, see the Resources section for a 
link to the GLPK page on gnu.org.)  
GLPK is not a program -- it can't be run and has no main() function. Instead, clients feed the 
problem data to the algorithmic routines through the GLPK API and receive results back. GLPK has 
a default client, the glpsol program, that interfaces with this API. Usually, a program like glpsol is 
called a solver rather than a client, so you'll see this nomenclature from here forward.  

The GNU MathProg modeling language 
The GNU MathProg modeling language is nice and simple for declaring linear problems. In 
general, a problem declaration consists of: 
� Problem decision variables. 
� An objective (target) function. Note that objective is a noun, not an adjective. The name is 
standard in operations research theory. 

� Problem constraints. 
� Problem parameters (data). 

Let's start with a simple two-variable example: Giapetto's Woodcarving, Inc.  

Giapetto's Woodcarving Inc. 
This problem is from Operations Research:  
Giapetto's Woodcarving Inc. manufactures two types of wooden toys: soldiers and trains. A soldier 
sells for $27 and uses $10 worth of raw materials. Each soldier that is manufactured increases 
Giapetto's variable labor and overhead costs by $14. A train sells for $21 and uses $9 worth of raw 
materials. Each train built increases Giapetto's variable labor and overhead costs by $10. The 
manufacture of wooden soldiers and trains requires two types of skilled labor: carpentry and 
finishing. A soldier requires 2 hours of finishing labor and 1 hour of carpentry labor. A train 
requires 1 hour of finishing and 1 hour of carpentry labor. Each week, Giapetto can obtain all the 
needed raw material but only 100 finishing hours and 80 carpentry hours. Demand for trains is 
unlimited, but at most 40 soldier are bought each week. Giapetto wants to maximize weekly profits 
(revenues - costs). 
To summarize the important information and assumptions about this problem:  
1. There are two types of wooden toys: soldiers and trains.  
2. A soldier sells for $27, uses $10 worth of raw materials, and increases variable labor and 

overhead costs by $14.  
3. A train sells for $21, uses $9 worth of raw materials, and increases variable labor and overhead 

costs by $10.  
4. A soldier requires 2 hours of finishing labor and 1 hour of carpentry labor.  
5. A train requires 1 hour of finishing labor and 1 hour of carpentry labor.  
6. At most, 100 finishing hours and 80 carpentry hours are available weekly.  
7. The weekly demand for trains is unlimited, while, at most, 40 soldiers will be sold.  

The goal is to find the numbers of soldiers and trains that will maximize the weekly profit.  
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Modeling 
To model a linear problem, the decision variables are established first, since they will change with 
each iteration of the simplex algorithm and determine the value of the objective function and, hence, 
the optimal solution. In Giapetto's shop, the objective function is the profit, which is a function of the 
amount of soldiers and trains produced each week. Therefore, the two decision variables in this 
problem are: 
� x1: Number of soldiers produced each week 

 

� x2: Number of trains produced each week  

Once the decision variables are known, the objective function of this problem is simply the revenue 
minus the costs for each toy, as a function of x1 and x2.  

 
 
 
Note that the profit depends linearly on x1 and x2 -- this is a linear problem.  

It may seem at first glance that the profit can be maximized by simply increasing x1 and x2. Well, if 
life were that easy, let's start manufacturing trains and soldiers and move to the Caribbean! 
Unfortunately, there are restrictions that limit the decision variables that may be selected (or else the 
model is very likely to be wrong).  
Recall the assumptions made for this problem. The first three determined the decision variables and 
the objective function. The fourth and sixth assumption say that finishing the soldiers requires time 
for carpentry and finishing. The limitation here is that Giapetto doesn't have infinite carpentry and 
finishing hours. That's a constraint! Let's analyze it to clarify.  
One soldier requires 2 hours of finishing labor, and Giapetto has at most 100 hours of finishing labor 
per week, so he can't produce more than 50 soldiers per week. Similarly, the carpentry hours 
constraint makes it impossible to produce more than 80 soldiers weekly. Note here that the first 
constraint is stricter than the second. The first constraint is effectively a subset of the second, thus 
the second constraint is redundant.  
The previous paragraph shows how to model optimization problems, but it's an incomplete analysis 
because all the necessary variables were not considered. It's not the complete solution of the Giapetto 
problem. So how should the problem be approached?  
Start by analyzing the limiting factors first in order to find the constraints. First, what constrains the 
finishing hours? Since both soldiers and trains require finishing time, both need to be taken into 
account. Suppose that 10 soldiers and 20 trains were built. The amount of finishing hours needed for 
that would be 10 times 2 hours (for soldiers) plus 20 times 1 hour (for trains), for a total of 40 hours 
of finishing labor. The general constraint in terms of the decision variables is:  
 
 
 
There are many (x1,x2) pairs that satisfy this inequality, so this does not determine the best 
combination for Giapetto's shop.  
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Now that the constraint for the finishing hours is ready, the carpentry hours constraint is found in the 
same way to be:  
 
 
 
Great! There's only one more constraint for this problem. Remember the weekly demand for 
soldiers? According to the problem description, there can be at most 40 soldiers produced each 
week:  
 
 
 
The demand for trains is unlimited, so no constraint can be written for it. The model is finished and 
consists of the equations:  
 
 
 
 
 
 
 
 
 
 
 
Note the last constraint. It ensures that the values of the decision variables will always be positive. 
The problem does not state this explicitly, but it's still important (and obvious).  
Now GLPK can solve the model (since GLPK is good at solving linear optimization problems).  

A little bit of theory 
Let's check the problem's solution space. With two decision variables, it has two dimensions. 
 
Figure 1. Giapetto's unbounded universe 
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The (x1,x2) solutions outside the first quadrant (where all values are positive) have already been 
discarded. Note, however, that this solution space is still infinite (that would be a situation in which 
I'd move to the Caribbean!)  
As the constraints were written, this unlimited solution space gained boundaries. With inequality 6, 
above, the result is more interesting. 
 
Figure 2. Giapetto's universe considering the finishing constraint 

 
The solution space contains all the possible (x1,x2) solutions in the first quadrant that satisfy the 
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finishing hours constraint.  
After inequality 7, the result set shrinks. 
 
Figure 3. Giapetto's universe considering the finishing and carpentry constraints 

 
Note that the solution space is smaller. This means that even fewer (x1,x2) solutions are in it. After 
inequality 8, the result is even smaller. 
 
Figure 4. Giapetto's feasible region 
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The solution space gets smaller still. The solution space that satisfies all the constraints is called the 
feasible region. Figure 4 shows the feasible region for Giapetto's shop. Any (x1,x2) pair that falls 
into that region is a potential solution to the problem. 
The question now is: which one maximizes Giapetto's profit?  

Using GLPK to solve the model 
GLPK is an excellent tool to solve that question. The mathematical formulation of Giapetto's 
problem needs to be written with the GNU MathProg language. The key items to declare are: 
� The decision variables  
� The objective function  
� The constraints  
� The problem data set  

The following code shows how to solve Giapetto's problem with MathProg. The line numbers in 
this code are not part of the code itself. They have been added only for the sake of making references 
to the code.  
 
Listing 1. First solution to Giapetto's problem: giapetto.sol 
 1  # 
 2  # Giapetto's problem 
 3  # 
 4  # This finds the optimal solution for maximizing Giapetto's profit 
 5  # 
 6 
 7  /* Decision variables */ 
 8  var x1 >=0;  /* soldier */ 
 9  var x2 >=0;  /* train */ 
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Lines 1 through 5 are comments. # anywhere on a line begins a comment to the end of the line. C-
style comments can also be used, as shown on line 7. They even work in the middle of a declaration.  
The first MathProg step is to declare the decision variables. Lines 8 and 9 declare x1 and x2. A 
decision variable declaration begins with the keyword var. To simplify sign constraints (check 
inequality 9), MathProg allows a >= 0 constraint in the decision variable declaration, as seen on 
lines 8 and 9. Every sentence in GNU MathProg must end with a semicolon (;). Recall that x1 
represents soldier numbers and x2 represents train numbers. These variables could have been 
called soldiers and trains, but that would confuse the mathematicians in the audience.  
Line 12 declares the target (objective) function. Linear problems can be either maximized or 
minimized. Remember, Giapetto's mathematical model is a maximization problem, so the keyword 
maximize is appropriate instead of the opposite keyword, minimize. The objective function is 
named z and equals 3x1 + 2x2. Note that: 

� The colon (:) character separates the name of the objective function and its definition.  
� The asterisk (*) character denotes multiplication and, similarly, the plus (+), minus (-), and 
forward slash (/) characters denote addition, subtraction, and division as you'd expect.  

Lines 15, 16, and 17 define the constraints. Although s.t. is not required at the beginning of the line 
to declare a constraint, it improves the readability of the code.  
The three Giapetto constraints have been labeled Finishing, Carpentry, and Demand. Each of them is 
declared as in the mathematical model. The symbols <= and >= express the inequalities. Don't forget 
the ; at the end of each declaration.  
Every GNU MathProg file must end with end;, as seen on line 19.  
Now, glpsol can use this file as input. But wait a minute; where's the data section of this problem? 
Well, this problem is so simple that the problem data is directly included in the objective function 
and constraints declarations as the coefficients of the decision variables in the declarations. For 
example, in the objective function, the coefficients 3 and 1 are part of the problem's data set. When I 
rewrite this problem using a data set, it will become clear how it works; for now, don't worry about 
it.  
It's good practice to use the .mod extension for MathProg input files and redirect the solution to a 
file with the extension .sol. This is not a requirement -- you can use any file name and extension 
you like. Giapetto's MathProg file for this example will be giapetto.mod, and the output will be in 
giapetto.sol. Now, run glpsol in your favorite console:  
glpsol -m giapetto.mod -o giapetto.sol 
This command line uses two glpsol options: 

10 
11  /* Objective function */ 
12  maximize z: 3*x1 + 2*x2; 
13 
14  /* Constraints */ 
15  s.t. Finishing : 2*x1 + x2 <= 100; 
16  s.t. Carpentry : x1 + x2 <= 80; 
17  s.t. Demand    : x1 <= 40; 
18 
19  end; 
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� The -m option tells glpsol that the input is written in GNU MathProg.  
� The -o option tells glpsol to send its output to giapetto.sol.  

The solution report will be in giapetto.sol, but some information about the time and memory 
GLPK consumed is shown on the system's standard output:  
 
Listing 2. Output from glpsol  

 
The report shows that glpsol reads the model, calls a GLPK API function to generate the objective 
function, then calls another API function to generate the constraints. After the model has been 
generated, glpsol explains briefly how the problem was handled internally by GLPK. At the end, 
there's information about the solution and the resources used by GLPK to solve it, and the solution is 
noted to be optimal.  
Great, but what are the actual optimal values for the decision variables? They are in the 
giapetto.sol file:  
 
Listing 3. The solution to Giapetto's problem: giapetto.sol 

ceron@curly ~ $ glpsol -m giapetto.mod -o giapetto.sol 
Reading model section from giapetto.real.mod... 
19 lines were read 
Generating z... 
Generating Finishing... 
Generating Carpentry... 
Generating Demand... 
Model has been successfully generated 
lpx_simplex: original LP has 4 rows, 2 columns, 7 non-zeros 
lpx_simplex: presolved LP has 2 rows, 2 columns, 4 non-zeros 
lpx_adv_basis: size of triangular part = 2 
*     0:   objval =   0.000000000e+00   infeas =   0.000000000e+00 (0) 
*     2:   objval =   1.400000000e+02   infeas =   0.000000000e+00 (0) 
OPTIMAL SOLUTION FOUND 
Time used:   0.0 secs 
Memory used: 0.1M (151326 bytes) 
lpx_print_sol: writing LP problem solution to `giapetto.sol'... 

Problem:    giapetto 
Rows:       4 
Columns:    2 
Non-zeros:  7 
Status:     OPTIMAL 
Objective:  z = 180 (MAXimum) 
 
   No.   Row name   St   Activity     Lower bound   Upper bound    Marginal 
------ ------------ -- ------------- ------------- ------------- ------------- 
     1 z            B            180 
     2 Finishing    NU           100                         100             1 
     3 Carpentry    NU            80                          80             1 
     4 Demand       B             20                          40 
 
   No. Column name  St   Activity     Lower bound   Upper bound    Marginal 
------ ------------ -- ------------- ------------- ------------- ------------- 
     1 x1           B             20             0 
     2 x2           B             60             0 
 
Karush-Kuhn-Tucker optimality conditions: 
 
KKT.PE: max.abs.err. = 0.00e+00 on row 0 
        max.rel.err. = 0.00e+00 on row 0 
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The solution is divided into four sections: 
� Information about the problem and the optimal value of the objective function  
� Precise information about the status of the objective function and about the constraints  
� Precise information about the optimal values for the decision variables  
� Information about the optimality conditions, if any  

For this particular problem, we see that the solution is OPTIMAL and that Giapetto's maximum weekly 
profit is $180.  
The Finishing constraint's status is NU (the St column). NU means that there's a non-basic variable on 
the upper bound for that constraint. If you know some operation research theory, build the simplex 
tableau and check it out. If you don't, here's a a brief practical explanation.  
Whenever a constraint reaches its upper or lower boundary, it's called a bounded constraint. A 
bounded constraint prevents the objective function from reaching a better value. Think of it as a 
volume knob, for example, that can't be turned any further. When that occurs, glpsol shows the status 
of the constraint as either NU or NL (for upper and lower boundary respectively), and it also shows the 
value of the marginal, also known as the shadow price. The marginal is the value by which the 
objective function would improve if the constraint were relaxed by one unit (if the volume knob 
could turn a little more). Note that the improvement depends on whether the goal is to minimize or 
maximize the target function. For instance, in Giapetto's problem, which seeks maximization, the 
marginal value 1 means that the objective function would increase by 1 if we could have one more 
hour of finishing labor (we know it's one more hour and not one less, because the finishing hours 
constraint is an upper boundary).  
The carpentry and soldier demand constraints are similar. For the carpentry constraint, note that it's 
also an upper boundary. Therefore, a relaxation of one unit in that constraint (an increment of one 
hour) would make the objective function's optimal value become better by the marginal value 1 and 
become 181.  
The soldier demand, however, is not bounded, thus its state is B, and a relaxation in it will not change 
the objective function's optimal value.  
Try relaxing the value of each bounded constraint one at a time, solve the modified problem, and see 
what happens to the optimal value of the objective function. Also check that changing the value of 
unbounded constraints won't make any difference to the solution, as expected.  
Finally, glpsol's report shows the values for the decision variables: x1 = 20 and x2 = 60. This tells 
Giapetto that he should produce 20 soldiers and 60 trains to maximize his weekly profit.  

        High quality 
 
KKT.PB: max.abs.err. = 0.00e+00 on row 0 
        max.rel.err. = 0.00e+00 on row 0 
        High quality 
 
KKT.DE: max.abs.err. = 0.00e+00 on column 0 
        max.rel.err. = 0.00e+00 on column 0 
        High quality 
 
KKT.DB: max.abs.err. = 0.00e+00 on row 0 
        max.rel.err. = 0.00e+00 on row 0 
        High quality 
 
End of output 
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Giapetto's problem was very small. You may be wondering, in a problem with many more decision 
variables and constraints, would you have to declare each variable and each constraint separately? 
And what if you wanted to adjust the data of the problem, such as the selling price of a soldier? Do 
you have to make changes everywhere this value appears? The next section discusses that.  

Using model and data sections in Giapetto's problem 
MathProg models normally have a model section and a data section, sometimes in two different 
files. Thus, glpsol can solve a model with different data sets easily, to check what the solution would 
be with this new data. The following listing states Giapetto's problem in a much more elegant way:  
 
Listing 4. Giapetto's problem with a model and a data section: giapetto2.mod 
 1      # 
 2      # Giapetto's problem 
 3      # 
 4      # This finds the optimal solution for maximizing Giapetto's profit 
 5      # 
 6 
 7      /* Set of toys */ 
 8      set TOY; 
 9 
10      /* Parameters */ 
11      param Finishing_hours {i in TOY}; 
12      param Carpentry_hours {i in TOY}; 
13      param Demand_toys     {i in TOY}; 
14      param Profit_toys     {i in TOY}; 
15 
16      /* Decision variables */ 
17      var x {i in TOY} >=0; 
18 
19      /* Objective function */ 
20      maximize z: sum{i in TOY} Profit_toys[i]*x[i]; 
21 
22      /* Constraints */ 
23      s.t. Fin_hours : sum{i in TOY} Finishing_hours[i]*x[i] <= 100; 
24      s.t. Carp_hours : sum{i in TOY} Carpentry_hours[i]*x[i] <= 80; 
25      s.t. Dem {i in TOY} : x[i] <= Demand_toys[i]; 
26 
27 
28      data; 
29      /* data  section */ 
30 
31      set TOY := soldier train; 
32 
33      param Finishing_hours:= 
34      soldier         2 
35      train           1; 
36 
37      param Carpentry_hours:= 
38      soldier         1 
39      train           1; 
40 
41      param Demand_toys:= 
42      soldier        40 
43      train    6.02E+23; 
44 
45      param Profit_toys:= 
46      soldier         3 
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Rather than two separate files, the problem is stated in a single file with a modeling section (lines 1 
through 27) and a data section (lines 28 through 49).  
Line 8 defines a SET. A SET is a universe of elements. For example, if I declare mathematically xi, 
for all i in {1;2;3;4}, I'm saying that x is an array that ranges from 1 to 4, and therefore we 
have x1, x2, x3, x4. In this case, {1;2;3;4} is the set. So, in Giapetto's problem, there's a set called 
TOY. Where are the actual values of this set? In the data section of the file. Check line 31. It defines 
the TOY set to contain soldier and train. Wow, the set is not a numerical range. How can that be? 
GLPK handles this in an interesting way. You'll see how to use this in a few moments. For now, get 
used to the syntax for SET declarations in the data section:  
set label := value1 value2 ... valueN ; 
Lines 11, 12, and 13 define the parameters of the problem. There are three: Finishing_hours, 
Carpentry_hours, and Demand_toys. These parameters make up the problem's data matrix and are 
used to calculate the constraints, as you'll see later.  
Take the Finishing_hours parameter as an example. It's defined on the TOY set, so each kind of toy 
in the TOY set will have a value for Finishing_hours. Remember that each soldier requires 2 hours 
of finishing work, and each train requires 1 hour of finishing work. Check lines 33, 34, and 35 now. 
There is the definition of the finishing hours for each kind of toy. Essentially, those lines declare that 
Finishing_hours[soldier]=2 and that Finishing_hours[train]=1. Finishing_hours is, 
therefore, a matrix with 1 row and 2 columns.  
Carpentry hours and demand parameters are declared similarly. Note that the demand for trains is 
unlimited, so a very large value is the upper bound on line 43. Does that value seem fa-mole-iar to 
you?  
Line 17 declares a variable, x, for every i in TOY (resulting in x[soldier] and x[train]), and 
constrains them to be greater than or equal to zero. Once you have sets, it's pretty easy to declare 
variables, isn't it?  
Line 20 declares the objective (target) function as the maximization of z, which is the total profit for 
every kind of toy (there are two: trains and soldiers). With soldiers, for example, the profit is the 
number of soldiers times the profit per soldier.  
The constraints on lines 23, 24, and 25 are declared in a similar way. Take the finishing hours 
constraint as an example: it's the total of the finishing hours per kind of toy, times the number of that 
kind of toy produced, for the two types of toys (trains and soldiers), and it must be less than or equal 
to 100. Similarly, the total carpentry hours must be less than or equal to 80.  
The demand constraint is a little bit different than the previous two, because it's defined for each 
kind of toy, not as a total for all toy types. Therefore, we need two of them, one for trains and one for 
soldiers, as you can see on line 25. Note that the index variable ( {i in TOY} ) comes before the :. 
This tells GLPK to create a constraint for each toy type in TOY, and the equation that will rule each 
constraint will be what comes after the :. In this case, GLPK will create  
Dem[soldier] : x[soldier] <= Demand[soldier] 
Dem[train] : x[train] <= Demand[train] 

47      train           2; 
48 
49      end; 
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Solving this new model must yield the same results:  
 
Listing 5. The solution to Giapetto's problem with a data section: giapetto2.sol 

 
Note how the constraints and the decision variables are now named after the TOY set, which looks 
clean and organized. Very good. You have maximized Giapetto's profit!  

Conclusion  
You've seen how to formulate a simple, two-variable linear problem. Then you saw how to use a 
simple MathProg program to solve it using sets, parameters, constraints, decision variables, and an 
objective (target) function. The program used summation over sets and a parameters data section. 
Finally, you learned how to interpret the results of a maximization problem. 
The next installment in this three-article series will show you how to make the most out of a bad diet. 
 

Problem:    giapetto2 
Rows:       5 
Columns:    2 
Non-zeros:  8 
Status:     OPTIMAL 
Objective:  z = 180 (MAXimum) 
 
   No.   Row name   St   Activity     Lower bound   Upper bound    Marginal 
------ ------------ -- ------------- ------------- ------------- ------------- 
     1 z            B            180 
     2 Fin_hours    NU           100                         100             1 
     3 Carp_hours   NU            80                          80             1 
     4 Dem[soldier] B             20                          40 
     5 Dem[train]   B             60                    6.02e+23 
 
   No. Column name  St   Activity     Lower bound   Upper bound    Marginal 
------ ------------ -- ------------- ------------- ------------- ------------- 
     1 x[soldier]   B             20             0 
     2 x[train]     B             60             0 
 
Karush-Kuhn-Tucker optimality conditions: 
 
KKT.PE: max.abs.err. = 0.00e+00 on row 0 
        max.rel.err. = 0.00e+00 on row 0 
        High quality 
 
KKT.PB: max.abs.err. = 0.00e+00 on row 0 
        max.rel.err. = 0.00e+00 on row 0 
        High quality 
 
KKT.DE: max.abs.err. = 0.00e+00 on column 0 
        max.rel.err. = 0.00e+00 on column 0 
        High quality 
 
KKT.DB: max.abs.err. = 0.00e+00 on row 0 
        max.rel.err. = 0.00e+00 on row 0 
        High quality 
 
End of output 
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Download 

Information about download methods 
 
Resources 
Learn 
� The problems in this article are taken with permission from Operations Research: 
Applications and Algorithms, 4th Edition, by Wayne L. Winston (Thomson, 2004).  
 

� The online documentation for GLPK gives more information about GLPK, how to get the 
software, and how to join the GLPK community.  
 

� Check out the Wikipedia entry for GLPK.  
 

� Subscribe to the GLPK help mailing list or bug reports mailing list.  
 

� In the developerWorks Linux zone, find more resources for Linux developers.  
 

� Stay current with developerWorks technical events and Webcasts.  
 

Get products and technologies 
� With IBM trial software, available for download directly from developerWorks, build your 
next development project on Linux.  
 

Discuss 
� Check out developerWorks blogs and get involved in the developerWorks community.  
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