#### POLYPOID DISEASES OF THE GASTROINTESTINAL TRACT

R3 Pornchai Achatsachat

#### Introduction

- Polyps: any masses that project into the lumen of the gastrointestinal tract
- True intestinal polyps: epithelial origin
- Juvenile polyp: isolated polyp in children
- **Polyposis**: multiple polyps
- Polyposis syndrome: genetically related disease with features including
  - Multiple polyps in the gastrointestinal tract
  - Heritability within a family
  - An increased lifetime risk of developing a related cancer in the gastrointestinal tract or in other organ systems

#### **TABLE 93-1**

**Classification of Polyposis Syndromes** 

#### Classification

Adenomatous polyposis syndromes

Hamartomatous polyposis syndromes

- 1. Familial adenomatous polyposis (FAP)
- 2. Gardner syndrome
- 3. Turcot syndrome
- 1. Juvenile polyposis
- 2. Cowden disease
- 3. Peutz-Jeghers syndrome

#### Introduction

- Polyps are common during childhood (1% of preschool and school-aged children)
- Most frequent cause of rectal bleeding in toddlers and preschoolers aged 2 to 5 years of age
- Juvenile polyps are most common (80%) and are followed by lymphoid polyps (15%)
- Adenomatous polyps occur in less than 3% of all children with polyps

# Juvenile Polyps

| Classification of Juvenile polyps (Jass's and Sachatello's) |                    |                                                |                                                       |
|-------------------------------------------------------------|--------------------|------------------------------------------------|-------------------------------------------------------|
| Isolated Juvenile<br>Polyps (nonmalignant)                  | < 5 polyps         | Without a family history of juvenile polyposis | Confined to the colon                                 |
| Juvenile Polyposis syndromes (malignant potential)          |                    |                                                |                                                       |
| Diffuse Juvenile<br>Polyposis of infancy                    | < 6 months         | Widespread polyposis of entire GI tract        |                                                       |
| Diffuse Juvenile<br>Polyposis                               | 6 months - 5 years | Multiple polyps<br>throughout the GI tract     | Mostly in the stomach,<br>distal colon, and<br>rectum |
| Juvenile Polyposis Coli                                     | 5-15 years         | Multiple juvenile polyps                       | Confined to the distal colon and rectum               |

## Isolated Juvenile Polyps

# Pathology

Etiology

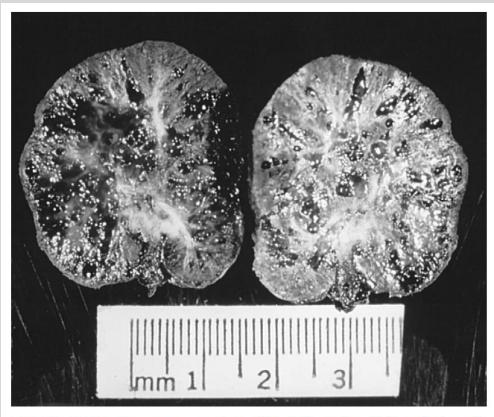
Incidence

**Clinical presentation** 

Treatment

## Isolated Juvenile Polyps: Pathology

- Known as retention, inflammatory or cystic polyps
- 80% of polyps in children
- Generally considered hamartomas or a malformation
  - Normal colonic tissue arranged in a haphazard manner

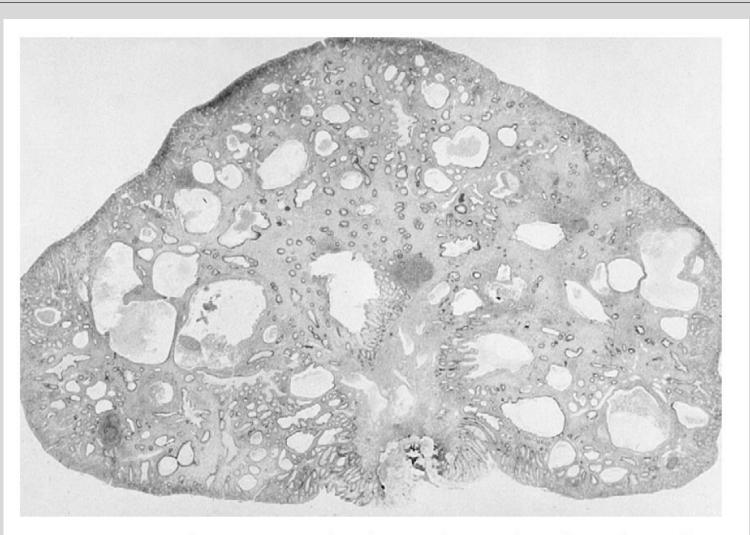

## Isolated Juvenile Polyps: Pathology

#### • Gross

- Typical: glistening, smooth, spherical, reddish head
- Diameter: 2 mm to several centimeters
- $\circ$  Often have an ulcerated surface ightarrow rectal bleeding
- Cross section: cystic spaces filled with mucus
- Typically attached by a long, narrow stalk covered by colonic mucosa
  - This stalk predisposes the polyp to torsion



FIGURE 93-1 Typical juvenile polyp with its stalk attached.

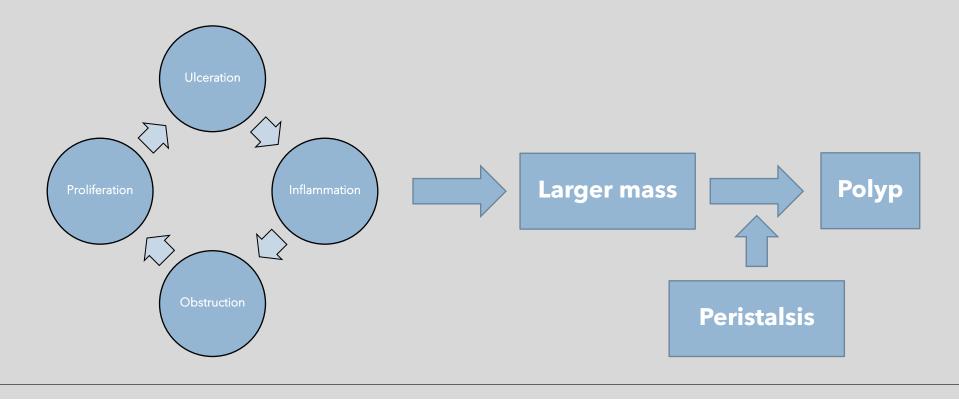



**FIGURE 93-2** Gross cross section of juvenile polyp with typical cystic "lakes" filled with mucus.

# Isolated Juvenile Polyps: Pathology

#### • Microscopic

- Surface: single layer of colonic epithelium
  - Often ulcerated or replaced with granulation tissue
  - Inflammation  $\rightarrow$  reactive hyperplasia (can mimic dysplasia or adenomatous changes)
- Body: dilated or cystic epithelial tubules that are lined by normal colonic epithelium
  - Tubules and cystic lakes are embedded in a lamina propria and an abundant, loose, vascular, and fibrous stroma
  - The stroma is usually heavily infiltrated with neutrophils, eosinophils, lymphocytes, and monocytes
- Mitotic figures: rare
  - No increased risk for developing colorectal cancer




**FIGURE 93-3** Photomicrograph of typical juvenile polyp. The surface shows a smooth, flattened, colonic epithelium. Large tubular and cystic lakes are present, embedded in an abundant, loose stoma.

# Isolated Juvenile Polyps: Etiology

• Unknown: hereditary, genetic, hamartomatous malformation, inflammation

• Structural rearrangement of the mucosa secondary to an inflammatory process



## Isolated Juvenile Polyps: Incidence

• Unknown, approximately 1% of all preschool children

- Mostly first decade of life
- Peak incidence: 3-5 years of age
- $\circ\,$  Solitary in 50% of cases, with the remainder having 2 to 10 polyps

• Location

- Rectum or sigmoid colon: 40%
- Proximal colon: 60%

#### Isolated Juvenile Polyps: Clinical presentation

#### • Bleeding (93%)

• Bright red streaks of blood over the surface of the stool

- $\circ$  Autoamputate ightarrow spontaneous cessation
- Abdominal pain (10%)
  - Caused by traction on the polyp from peristaltic activity
- $\circ$  Prolapse of the polyp (4%)

#### Isolated Juvenile Polyps: Clinical presentation

- Differential diagnosis (rectal bleeding in toddlers through children)
  - Anal fissures and rectal prolapse: physical examination
  - Meckel diverticulum or duplication of the intestine
    - More substantial blood loss
    - Blood usually commingles with the stool
  - Intussusception: worse abdominal pain
  - Inflammatory bowel disease: diarrhea
  - Henoch-Schonlein purpura

## Isolated Juvenile Polyps: Treatment

#### Increased risk of malignancy

- Shift of juvenile polyps to the more proximal colon
- Juvenile polyposis (>5 polyps)
- Polyps in the rectum can be easily removed during anoscopy
- Pancolonoscopy in a well-prepared bowel
- Children with juvenile polyposis and adenomatous changes are more likely to have right-sided polyps
- All polyps should be removed and undergo histologic evaluation

## Polyposis Syndromes

#### **TABLE 93-1**

**Classification of Polyposis Syndromes** 

Classification

Adenomatous polyposis syndromes

Hamartomatous polyposis syndromes

- 1. Familial adenomatous polyposis (FAP)
- 2. Gardner syndrome
- 3. Turcot syndrome
- 1. Juvenile polyposis
- 2. Cowden disease
- 3. Peutz-Jeghers syndrome

#### Adenomatous Polyposis Syndromes

Familial adenomatous polyposis (FAP)

Gardner syndrome

Turcot syndrome

## Adenomatous Polyposis Syndromes

#### **TABLE 93-2 Extracolonic Features in Familial Adenomatous Polyposis** Cancer (Lifetime Risk) Other Lesions Duodenal (1%-5%) CHRPE Pancreatic (2%) Nasopharyngeal angiofibromas Thyroid (2%) Osteomas Brain (medulloblastoma) (<1%) Radiopaque jaw lesions Dental abnormalities Hepatoblastoma (0.7% of children < 5 yr old) Lipomas, fibromas, epidermoid cysts Desmoid tumors Gastric adenomas/fundic gland polyps Duodenal, jejunal, ileal adenomas

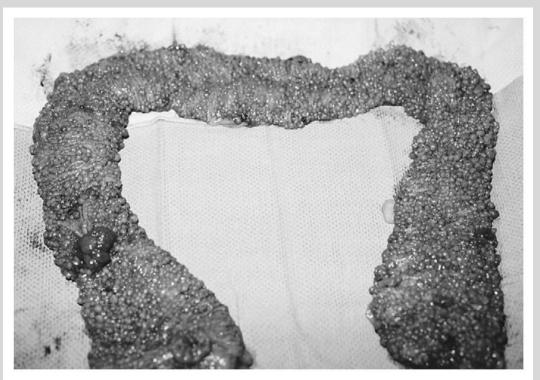
CHRPE, congenital hypertrophy of the retinal pigment epithelium. Modified from Cruz-Correa M, Giardello FM: Diagnosis and management of hereditary colon cancer. Gasroenterol Clin North Am 2002;31:537-549.

## Familial Adenomatous Polyposis (FAP)

# Pathology

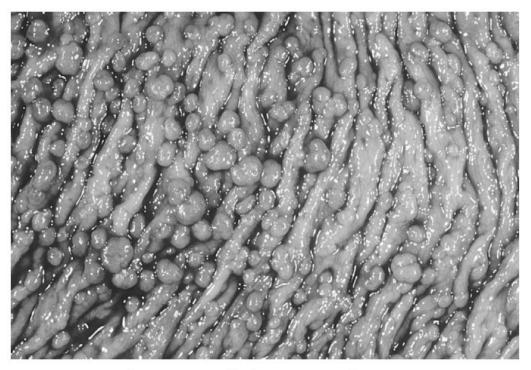
Etiology

Clinical presentation


Treatment

Follow-up

## Familial Adenomatous Polyposis (FAP)


- Hundreds to thousands of adenomatous polyps in the colon
- $\circ$  By 15 years of age 50% of those that carry the FAP gene will have polyps
- The lifetime risk for developing a colorectal cancer is 100%
  - Average age for developing an adenoma: 16 years
  - Average age for developing a colorectal cancer: 39 years

- FAP is defined as the presence of at least 100 visible adenomatous polyps in the large intestine
- Hallmark: Colorectal polyps
  - Sparse type: hundreds of polyps
  - **Profuse type**: thousands of polyps
    - Tend to develop adenocarcinoma at an earlier age



**FIGURE 93-4** Gross specimen of the total colon in a patient with familial adenomatous polyposis demonstrating thousands of adenomatous polyps. Note the large adenoma in the ascending portion of the colon.

- Polyps are typically scattered throughout the colon >> sigmoidoscopy
  - Size: 1-2 mm in diameter
  - Pedunculated polyps can be 1 cm in diameter or larger
  - Duodenoscopy: biopsy of normal-appearing duodenal mucosa may reveal microscopic adenomas



**FIGURE 93-5** Close-up view of colonic mucosa demonstrating a "carpet" of small 1- to 2-mm adenomas in a patient with familial adenomatous polyposis.

 Adenomatous polyps result from a neoplastic transformation of at least one epithelial cell that is in the proliferative portion of a crypt

- **Dysplasia**: atypical morphologic characteristics, with nuclear enlargement and stratification
- Carcinoma in situ: extension into the basement membrane
- Microscopically invasive: extend beyond the basement membrane
- Metastasis: invades through the muscularis mucosa into the submucosa

• Small intestinal mucosa can also be involved with adenomatous polyps

- Frequently found around the orifice of the common bile duct
- Variable in size, often microscopic, involve only a few crypts
- Adenocarcinoma of the duodenal papilla and periampullary regions 2.9%

#### • Gastric polyps

- Usually benign polyps of the fundic gland
- Result from cystic dilation of specialized gastric glands
- No evidence that neoplastic transformation

# FAP: Etiology

- Incidence: 1/6000 1/12,000 births
- Autosomal dominant trait with 10% of new mutations
- Mutation in the APC gene on the long arm of chromosome 5
  - $\circ$  Gene deletion  $\rightarrow$  the probability of cancer by 25 years of age is 90%
- TP53 gene on chromosome 17p
- Deleted colorectal cancer gene (DCC) on chromosome 18q

## FAP: Clinical Presentation

• Most frequently identified in early adolescence

- Most patients are asymptomatic
  - 90% are identified by routine surveillance
- Increased frequency of defecation
- Rectal bleeding
- Anemia
- Abdominal pain

#### FAP: Clinical Presentation

- Diagnosis: sigmoidoscopy, occasionally by air contrast barium enema
- Confirm diagnosis: Biopsy of at least 10 polyps
- In some patients, most of the polyps will be located in the proximal colon
- Gastric polyps: up to 50%
  - Only 6%: adenomatous
- Duodenal polyps
  - Less often than in the stomach
  - $\circ$  Much more likely to be adenomatous ightarrow upper endoscopy

• The average age for developing cancer is 39

- 7% developing cancer by age 20
- 15% developing cancer by age 25
- Most patients who present with symptomatic polyps already have a malignant condition
  - Colectomy is recommended at any age, if the child is symptomatic

 Total abdominal colectomy with an ileorectal anastomosis and continued surveillance of the retained rectum

Immediate post-operative complications

- Prolonged ileus (7%)
- Anastomotic breakdown (2%),
- Bleeding (<1%)
- Frequency of defecation at late follow-up: 3 stools/day
- Nighttime soiling <10%</li>
- Normal continence 72%
- Subsequent treatment for their rectal polyps 44%

 Total abdominal colectomy with an ileorectal anastomosis and continued surveillance of the retained rectum

- Sigmoidoscopy: every 3 to 6 months
- Fulguration of any polyps greater than 5mm in diameter
- 10% developed carcinoma in their rectal stump
- Cumulative risk for rectal cancer
  - $\circ~10\%$  at 50 years of age
  - $\circ~29\%$  at 60 years of age

• Total colectomy with a rectal mucosectomy and an ileoanal pouch procedure

- The J pouch is the preferred technique because of simplicity of construction and sparsity of complications
- Larger reservoirs allow less frequent defecation but tend to be associated with more frequent bouts of inflammation of the reservoir ("pouchitis")
- Frequency of defecation: 3.3-7.2 stools/day (average 5.8 stools/day)
- Pouchitis 23%
- Pelvic sepsis 8%

## FAP: Other Treatments

- $\circ$  Vitamin C
- Sulindac
- Dietary fiber
- Calcium

## FAP: Follow-up

- EGD and sigmoidoscopy: annually
- Duodenal polyps: remove by endoscopic snaring or by open duodenotomy
- More aggressive intervention
  - Size larger than 1 cm in diameter
  - Rapid growth
  - Polyp induration
  - Severe dysplasia
  - Villous change
- Incidence of duodenal cancer: 1-5%

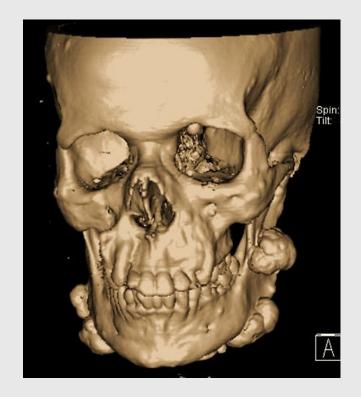
## Gardner syndrome

- Colonic familial adenomatous polyposis
- Multiple osteomas, fibromas, and epidermoid cysts

Gardner's Syndrome (...think of a garden!) Multiple pre-malignant colonic polyps with soft tissue & boney tumours. Associated with mutation to the APC gene. Commonly presents in the 20's with bloody diarrhoea. Benign bone **Epidermoid cysts** exostoses Autosomal dominant (Benign cysts, similar to sebacous cysts) - mandible skull (...think domino!) - occuring on the and sinuses head and neck.. Fibromas (benign tumours composed of fibrous connective tissue) - neck, armpits and groins. Black spots Dermoid tumours on fundoscopy (Contains skin & hair follicles) can occur in abdominal - useful for early incisions! detection! Neurofibromas (Benign nerve sheath tumours Often presents with Multiple bloody diarrhoea! premalignant colon polyps

www.PicturingMedicine.com

© 2010 John Kenneth Dickson


# Gardner syndrome

#### • Autosomal dominant

• The natural history and treatment of the colonic polyps is the same as FAP

#### • Osteomas:

- Skull
- $\circ\,$  Facial bones
- Abnormal dentition with impaction and early tooth decay and supernumerary teeth
- Sebaceous cysts: legs > face > scalp > arms
- $\circ\,$  Lipomas and fibromas



### Gardner syndrome

• Periampullary cancer: more prevalent than FAP

Desmoid tumors of the abdominal wall and mesentery of the small intestine: 20%
 Leading cause of death in those who have undergone a prophylactic colectomy
 All stages of fibrous dysplasia including fibrosarcoma have been seen
 Most appear after surgery, usually within 6 to 30 months

### Gardner syndrome

#### $\circ\,$ Desmoid tumors of the abdominal wall

- Many of them remain static or even regress over several years
- Growing or reach 10 cm in diameter
  - Complete local excision is met with a recurrence rate of less than 10%

#### Intraabdominal desmoid tumors

- Difficulty in resecting
- Several drugs have been tried: steroids, antiestrogen agents, NSAIDS

## Turcot syndrome

- Colonic familial adenomatous polyposis
- Intracranial brain tumors
  (glioblastoma and medulloblastoma)
- Ependymomas
- Carcinoma of the thyroid (usually papillary in origin)



### Hamartomatous Polyposis Syndrome



Overgrowth of cells that are native to the area Not considered to have malignant potential

### Juvenile Polyposis Syndrome

Diffuse juvenile polyposis of infancy

Diffuse juvenile polyposis

Juvenile polyposis coli

# Diffuse juvenile polyposis of infancy

#### • Within the first few months of life

- Usually without any family history
- Presenting signs
  - Diarrhea
  - Rectal bleeding
  - Intussusception
  - Protein-losing enteropathy
  - Macrocephaly
  - $\circ\,$  Clubbing of fingers and toes
  - Hypotonia

# Diffuse juvenile polyposis of infancy

#### • Treatment: usually aggressive

- Total parenteral nutrition
- Intestinal rest
- Portions of the intestine with the most polyps are removed
- Despite appropriate treatment, this disease is almost universally fatal
  - Only 2 of 12 patients are reported as surviving beyond 2 years of age

# Diffuse juvenile polyposis

- Usually 6 months to 5 years of age
- Presenting signs
  - Mild rectal bleeding and prolapse
  - Protein-losing enteropathy
  - Intussusception
  - Malnutrition
- Polyps associated with diffuse polyposis are found throughout the bowel, most often in the stomach, distal colon, and rectum
- Treatment: endoscopic polypectomies and segmental bowel resection
- Usually do well, although the need for recurrent therapy is common

### Juvenile polyposis coli

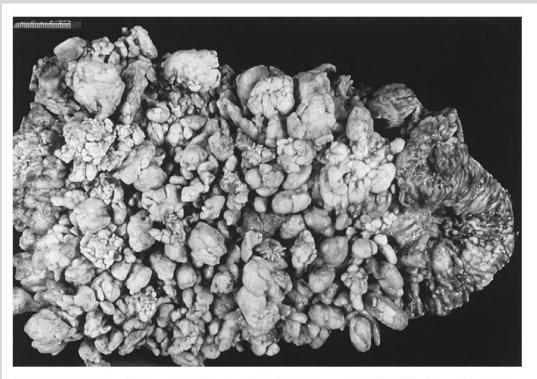
#### • 5 and 15 years of age

#### • Presenting signs

- Bleeding of bright red blood from the rectum
- Anemia
- Rectal prolapse
- Polyps are usually limited to the distal colon and rectum
- $\circ$  50% have a family history  $\rightarrow$  autosomal dominant

# Juvenile polyposis coli

- Associated congenital defects
  - Cleft palate
  - Malrotation
  - Polydactyly
  - Abnormalities of the heart and cranium


# Juvenile Polyposis Syndrome: Pathology

- $\circ$  Family history  $\rightarrow$  juvenile polyposis syndrome
- Approximately 50 to 100 colorectal polyps
- Diffuse juvenile polyposis of infancy and diffuse juvenile polyposis
  Also have polyps in the stomach, small intestine, or both
- Long-term surveillance due to the high risk of carcinoma (17%) occurring at an early age

# Juvenile Polyposis Syndrome: Pathology

#### • Gross appearance

- Same as isolated juvenile polyps
- 20% of the polyps present grossly as a multilobular mass resembling a cluster of polyps attached to a stalk



**FIGURE 93-6** Gross specimen of colon in a patient with juvenile polyposis syndrome. Note small adenomas and multilobular clusters of polyps attached to stalks.

# Juvenile Polyposis Syndrome: Pathology

#### • Histologic appearance

- More epithelium with a villous or papillary configuration
- Epithelial dysplasia can occur in juvenile polyps and in coexisting adenomas found in conjunction with juvenile polyps
- Carcinoma in situ has been found
- Lobular polyps have a higher propensity for more severe dysplasia (47%) than the nonlobular polyps (10%)
- Cumulative risk for cancer by age 60 is 68%

# Juvenile Polyposis Syndrome: Treatment

- Long-term follow-up of patients and their family members
- Some advocate prophylactic colectomy and rectal mucosectomy with endorectal ileal pull-through as a primary treatment
- Others recommend regular screening (every 2 years) with colonoscopy and random biopsy and subsequent colectomy if severe dysplasia, rapid polyp formation, or bleeding occurs
- The approach to patients with juvenile polyposis should be similar to that taken for patients with familial adenomatous polyposis

### Peutz-Jegher Syndrome

- Pathology
- Etiology/Incidence
- Clinical presentation
- Treatment



# Peutz-Jegher Syndrome: Pathology

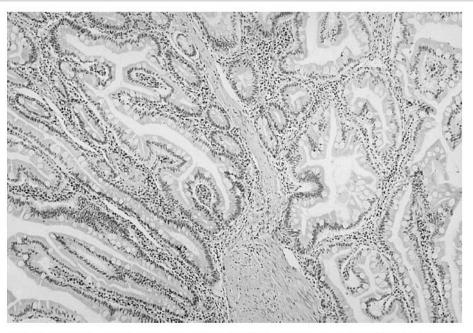
#### • Melanotic spots

- Brown to black
- Lips, mouth, Buccal mucosa
- Hands, feet, nasal mucosa, conjunctivae, rectum
- Usually present at infancy
- Usually fade at puberty

# Peutz-Jegher Syndrome: Pathology

• Polyps: anywhere from the stomach to the rectum

- Small intestine (55%)
- Stomach and duodenum (30%)
- Colon and rectum (15%)


#### • Gross

- Few millimeters to several centimeters
- Smooth, firm, pedunculated lesions that are lobulated

# Peutz-Jegher Syndrome: Pathology

#### • Histologic

- Hamartomas of the muscularis mucosa
- Strands of smooth muscle fibers that divide the polyp into sectors
- Adenomas can occur concurrently with Peutz-Jeghers polyps



**FIGURE 93-7** Photomicrograph of a Peutz-Jeghers polyp demonstrating a hamartomatous alteration of the muscularis mucosa. Smooth muscle fibers divide the polyp into sectors.

## Peutz-Jegher Syndrome: Etiology/Incidence

- Rare, equal sex distribution
- All ethnic groups
- Autosomal dominant, some develop de novo
- In Peutz-Jeghers-affected individuals many (but not all) have a mutation of a novel serine/threonine kinase (LKB1 or STK11) with loss of kinase activity

### Peutz-Jegher Syndrome: Clinical Presentation

#### • Screening programs

#### • If no family history

- Crampy abdominal pain related to transient intussusception of a polyp
- Anemia resulting from occult blood loss
- Malignant conditions
- 30% of patients present with signs and symptoms in the first 10 years of life
- $\circ~50\%$  presenting with signs and symptoms by 20 years of age

### Peutz-Jegher Syndrome: Clinical Presentation

- Malignant changes in hamartomatous polyps have been commonly reported
- Separate adenomatous and carcinomatous changes in hamartomas have also been reported
- 22% developed cancer
- Relative risk for death
  - Gastrointestinal cancer alone: 13X
  - All cancers: 9X
- $\circ$  The chance of dying from cancer by the age of 60 is approximately 50%

### Peutz-Jegher Syndrome: Clinical Presentation

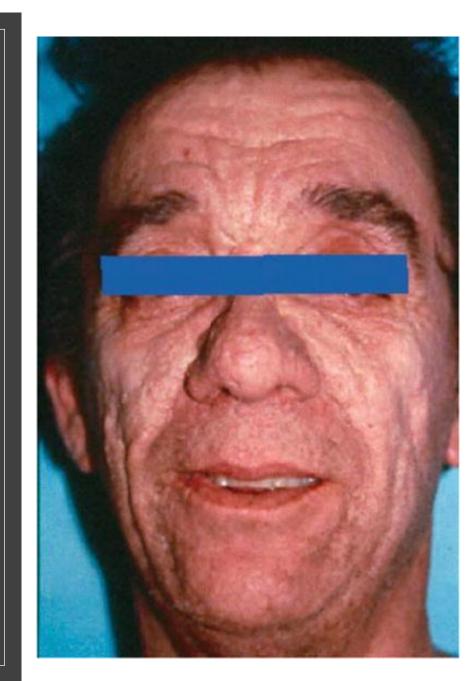
#### • Extraintestinal tumors

- Ovarian: cystadenomas, granulosa cell tumors, sex-cord tumors
- Cervical: adenocarcinoma, usually associated with ovarian tumor
- Testicular:
  - $\circ$  Sertoli cell tumors ightarrow gynecomastia
  - Malignant potential  $\rightarrow$  orchiectomy
- Breast
- Thyroid
- Bile duct
- Pancreatic
- Gallbladder

# Peutz-Jegher Syndrome: Treatment

- Peutz-Jeghers syndrome should be suspected in any child who presents with colicky abdominal pain or occult anemia and melanotic pigmented spots
- Management protocol: annual evaluations:
  - (1) symptoms related to polyps
  - (2) blood count to detect anemia caused by blood loss,
  - (3) breast and pelvic examinations with cervical smears and pelvic ultrasonography in girls
  - (4) testicular examination with ultrasonography in boys
  - (5) pancreatic ultrasonography

# Peutz-Jegher Syndrome: Treatment


- Esophagogastroduodenoscopy and colonoscopy: biennial
- Small intestine contrast studies: biennial
- Magnetic resonance imaging (MRI): surveillance modality for small intestinal screening
- **Mammography** is recommended at 25, 30, 35, and 38 years of age, biennially until 50 years of age, and then annually

# Peutz-Jegher Syndrome: Treatment

- All polyps larger than 5 mm found at endoscopy should be removed
- Laparotomy with intraoperative enteroscopy is recommended for removal of all small bowel polyps greater than 15 mm in diameter
- Any intestinal or extraintestinal tumors should be treated aggressively
- Dying by the age of 60 is close to 60% compared with 25% in an age-matched general population

### Cowden disease

- Autosomal dominant
- Multiple hamartomas that affects all three of the germ layers
- Increased risk of developing breast, thyroid, and endometrial neoplasias
- Dermatologic lesions: 80%
  - Facial trichilemmomas
  - Acral keratoses
  - Papillomatous papules
  - Mucosal lesions



### Cowden disease

- Other major but not necessarily pathognomonic criteria
  - Breast carcinoma
  - Thyroid carcinoma
  - Macrocephaly
  - Endometrial carcinoma
- Gastrointestinal polyposis: 35%
  - Typically juvenile polyps without any increased risk of developing a gastrointestinal cancer

# Nonepithelial Polyps

#### • Lymphoid polyps

- Pathology
- Incidence
- Clinical presentation
- Treatment

# Lymphoid Polyps: Pathology

- Few millimeters to 3 centimeters in diameter
- Usually sessile in form
- Caused by elevation of hyperplastic submucosa lymphoid aggregates
  Believed to be caused by nonspecific infections of childhood
- The overlying mucosa often becomes ulcerated → volcano-like appearance
  Leads to occult blood loss

# Lymphoid Polyps: Incidence

- Tend to develop in young children within the first few years of life as a result of exposure to new bacteria and viruses
- The peak incidence is at 4 years of age and significantly diminishes by 5 years of age

# Lymphoid Polyps: Clinical Presentation

#### • Anemia

- Rectal bleeding
- Diagnostic methods: colonoscopy, air contrast barium enema, or both
- Small elevations of otherwise-normal mucosa are seen on endoscopy, and biopsy will confirm the diagnosis
- Histologic evaluation reveals lymphoid aggregates with large germinal follicles

# Lymphoid Polyps: Treatment

- Benign, self-limiting, tend to regress spontaneously
- Once a histologic diagnosis is made, expectant measures substantial uncontrolled bleeding and intussusception

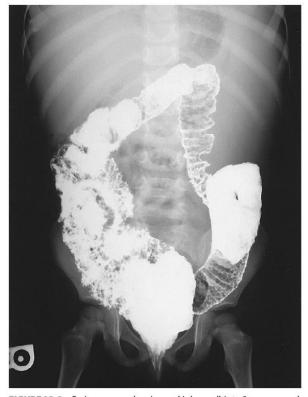
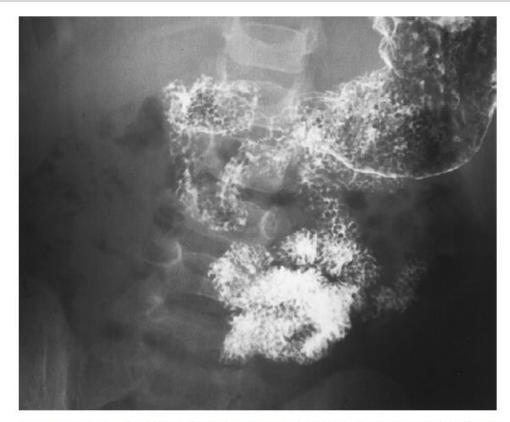
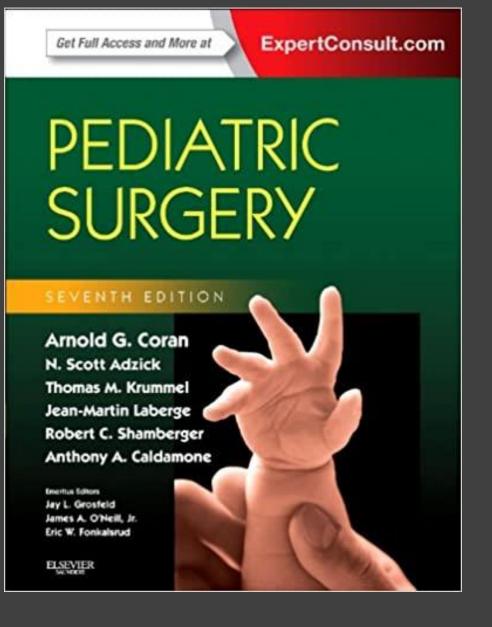





FIGURE 93-8 Barium enema showing multiple, small 1- to 2-mm mucosal nodules throughout the entire colon and terminal ileum. The central umbilication within these nodules seen on this postevacuation film is diagnostic of diffuse lymphoid hyperplasia.



**FIGURE 93-9** An upper gastrointestinal series showing diffuse lymphoid hyperplasia throughout the stomach and small intestine.

### REFERENCE

