
  

Catastrophic Error CancellationCatastrophic Error Cancellation

● Single calculation can accumulate big error

● Examples:

– c = a + b, with a >> b

– c = a – b, with a ~ b



  

Catastrophic Error CancellationCatastrophic Error Cancellation

● To see how this creeps in “c = a – b”, consider

– a = x.xxx xxxx xxxx1ssssss, where “x”, “s”, and “t” in [0-9]

– b = x.xxx xxxx xxxx0tttttt

● In general ssssss-tttttt is not equal to uuuuuu



  

Quadratic FormulaQuadratic Formula

● The equation

● has the roots

● Consider the equation

● The exact roots (to 11 decimal places) are

– x1 = 54.318158995, and x2 = 0.0018410049576

ax2 + bx+ c = 0

x2 ¡ 54:32x+ 0:1 = 0

x =
¡b§

p
b2 ¡ 4ac
2a



  

4 digit floats4 digit floats

● Assume that we could only use 4 significant digits

● This leads to

– x1
4
 = 54.30 and x2

4
=0 (which is completely wrong)

p
b2 ¡ 4ac =

p
(¡54:32)2 ¡ 0:40000

=
p
2951¡ 0:4000

=
p
2951

= 54:32



  

If we rationalize the formulaeIf we rationalize the formulae

● Consider

● Similarly

x1 =
2c

¡b¡
p
b2 ¡ 4ac

x2 =
2c

¡b+
p
b2 ¡ 4ac

x1 =
¡b+

p
b2 ¡ 4ac
2a

Ã
¡b¡

p
b2 ¡ 4ac

¡b¡
p
b2 ¡ 4ac

!



  

4 digit floats4 digit floats

● For the same old example with these new formulae,

● But x1 goes to infinity!!!

x2;4 =
0:2000

54:32 + 54:32
=
0:2000

108:6
= 0:001842



  

Algorithmic SolutionAlgorithmic Solution

● Evaluate

● Roots to the quadratic

q = ¡1
2

h
b+ sign(b)

p
b2 ¡ 4ac

i

x1 =
q

a
; x2 =

c

q

+1 or -1



  

Truncation ErrorTruncation Error

● When we approximate an infinite series by chopping it

● Taylor series expansion of f(x) around x=a

● Applied to sine near x=0

● Consider truncating after 1 term

sin(x) = x¡ x
3

3!
+
x5

5!
+ :::

f(x) = f(a) +
f 0(a)

1!
(x¡ a) + f

00(a)

2!
(x¡ a)2 + f

(3)(a)

3!
(x¡ a)3 + ¢ ¢ ¢



  

Truncation ErrorTruncation Error

● Absolute Error

● Relative Error

Eabs = x¡ sin(x) =
x3

3!
¡ x

5

5!
+ ¢ ¢ ¢

Erel =
x¡ sin(x)
sin(x)

=
x

sin(x)
¡ 1



  

Truncation ErrorTruncation Error



  

Truncation ErrorTruncation Error

● Depends on the number of terms included

● As h increases, truncation error increases

f(x) = Pn(x) +O

µ
(x¡ a)n+1
n+ 1!

¶
h



  

Round-off and Truncation ErrorsRound-off and Truncation Errors

● In many cases, round-off and truncation errors interact

● Consider finite differencing

● More accurate

f 0(x) = lim
h!0

f(x+ h)¡ f(x)
h

f 0c(x) =
f(x+ h)¡ f(x¡ h)

2h



  

Let's look at an exampleLet's look at an example

● So lets look at an example where f(x) is the CDF of the 
normal distribution,

● consider centered difference formula,

● and look at what happens as h is varied

f(x) =
1

2

h
1 + erf

³ xp
2

´i

f 0c(x) =
f(x+ h)¡ f(x¡ h)

2h



  

ExampleExample

● h = 10-12, 10-13



  

ExampleExample

● h = 10-14

some noise



  

ExampleExample

● h = 10-15, 10-16, 10-17

whoa!!!



  

What just happened?What just happened?

● Short answer

– We hit machine precision

● Long answer

– IEEE “double” standard (64 bit) has 52 bit mantissa (+1 for sign)

–  can represent upto 2-52 ~ 10-16 or only 16 decimal digits

– as we approach h = 10-16, we hit this limit relentlessly

● So small is not necessarily good

● In fact, there is more bizarre stuff!

– we know the derivative of this function analytically

– we can look for the absolute error



  

Example continuedExample continued

● Compare absolute error (y-axis)

it actually seems 
to get better as h 
is increased!



  

Example continuedExample continued

● The story continues

note y axis is 
stretched out



  

Example continuedExample continued

● Until finally, “commonsense” prevails

h = 10-5 is the best 
choice? who would 
have thought?



  

SummarySummary

● At very low h we hit finite-precision/round-off issues

● But why does the story stay the same far away from 
that limit?

– 10-5 and 10-16 are far apart!

● We looked at a particular f(x), but the story is the 
essentially the same for other functions

● Two important sources of error

– Truncation error: (increases with increasing h)

– Roundoff error: (increases with decreasing h)



  

Another exampleAnother example

● Forward difference formula (not centered)

● To get derivatives of f(x) = exp(x)

location of minima 
is different, but 
story is the same!



  

Cancellation ErrorCancellation Error

● Taylor series

f(x+ h) = f(x) + hf 0(x) +
f"(x)

2!
h2 +

f 000(x)

3!
h3 + :::

f(x¡ h) = f(x)¡ hf 0(x) + f"(x)
2!

h2 ¡ f
000(x)

3!
h3 + :::

f(x+ h)¡ f(x¡ h) = 2hf 0(x) + 2f
000

(x)

3!
h3 + :::

f(x+ h)¡ f(x¡ h)
2h

= f 0(x) +
f
000

(x)

3!
h2 + :::

gets larger as h increases



  

Cancellation ErrorCancellation Error

● As h decreases   gets small

– catastophic cancellation error

● Consider a crude way of getting a handle on 
cancellation error

● Due to finite number of significant digits

– If accuracy of the order of machine precision

– If 5 significant decimal places

f(x+ h)¡ f(x¡ h)

¹f(x) = f(x) + ®(x)f(x)
measured actual

relative accuracy
“effect of discarded digits”

random variable

j®(x)j » 2¡53

j®(x)j » 10¡5



  

Cancellation ErrorCancellation Error

● Therefore,

● Crudely,

● Thus, Df is dominated by the relative error term

– sets up the optimization problem

¹f(x+ h) ¡ ¹f(x ¡ h) = f(x+ h)¡ f(x¡ h) +
®(x+ h)f(x+ h)¡ ®(x¡ h)f(x¡ h)

¹f(x+ h)¡ ¹f(x¡ h) ¼ f(x+ h)¡ f(x¡ h) + ®(x)f(x)

when h is small these differences are also small



  

Optimal “h”Optimal “h”

● Want to minimize truncation and cancellation error

● Start from

● Setting

● Yields

f(x+ h)¡ f(x¡ h)
2h

¼ f 0(x) + f
000

(x)

3!
h2 +

®(x)f(x)

2h

want to minimize this with respect to h

d

dh

"
f
000

(x)

3!
h2 +

®(x)f(x)

2h

#
= 0

h =

µ
3®f

f
000

¶1=3


