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Abstract
The dynamics of the full, dissipative, Fermi accelerator model is shown to
exhibit crisis events as the damping coefficient is varied. The investigation,
based on analysis of a two-dimensional nonlinear map, has also led to a
numerical determination of the basin of attraction for its chaotic attractor.

PACS numbers: 05.45.−a, 45.50.Dd

A major challenge in the investigation of nonlinear systems is that of explaining/predicting
the often unexpected phenomena that they exhibit. A closely related goal is to characterize
their dynamical properties. Chaotic behaviour appears quite frequently in such systems,
both in the presence and the absence of dissipation [1–3]. For the dissipative case, the
area-contracting property leads to time evolution of initial conditions towards a range of
different asymptotic behaviours, e.g. fixed points, limit cycles (sometimes of high order) as
well as chaotic attractors. There also exist systems with more than one chaotic attractor [4]
where interest frequently centres on determination of the basins of attraction for each chaotic
attractor, whose boundaries can be either continuous or fractal. Particular cases can also be
observed where the asymptotic behaviour wanders in an erratic way but is not characterized
by a positive Lyapunov exponent (the commonest tool for classification of the behaviour as
chaotic) [5]. For the non-dissipative case, the characteristic structure of Hamiltonian systems
is observed, often with a mixed phase space structure is commonly present in the sense that
Kolmogorov–Arnol’d–Moser (KAM) islands exist, together with invariant spanning curves
separating different portions of the phase space and chaotic seas [6–9]. The tools developed
to study both the dissipative and non-dissipative cases are widely applicable in many different
fields of physics, including astrophysics, plasma physics, fluids, accelerators and planetary
motion.

In this letter, we revisit the classical problem of the bouncing ball, a model originally
proposed by Enrico Fermi [10] in an attempt to describe the acceleration of cosmic rays. It
provides a mechanism through which charged particles can be accelerated by collisions with
moving magnetic field structures. The model was later modified and studied in different
variants. The Fermi–Ulam approach [11] considers the dynamics of a classical particle
bouncing between two rigid walls, one of which is fixed and the other moves in time. The
main result for periodic oscillation is that the phase space presents KAM islands surrounded
by a chaotic sea. Unlimited energy growth (i.e. the condition for observing Fermi acceleration)
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is not, however, observed because the phase space exhibits a set of invariant spanning curves.
An alternative version of this model proposed by Pustylnikov [12], often referred to as a
bouncer [13], consists of a classical particle falling in a constant gravitational field, on a
moving platform. Its most important property is that, in contradistinction to the Fermi–Ulam
model, depending on both the initial conditions and control parameters, there could be no
bound to the energy gained by the bouncing particle. The distinctive difference between the
models was later clarified by Lichtenberg et al [14]. The corresponding quantum versions of
both the bouncer and Fermi–Ulam models have also been studied [15–19]. Recently, we have
proposed a hybrid version of these two models [20]. It considers the motion of a classical
particle in a gravitational field, with the motion confined between two rigid walls, one of which
is fixed while the other one moves in time. We showed that our model recovers the well-
known Fermi–Ulam model results in the limit of zero external field and shows properties of
the bouncer model for intense gravitational field. Within a certain range of control parameters,
however, we found that properties that are individually characteristic of either the Fermi–Ulam
or bouncer models can come together and coexist in their hybrid.

We now consider here a classical particle in the Fermi–Ulam model suffering an inelastic
collision with the fixed wall, and we analyse the full model rather than the simplified system
that is commonly considered where the so-called successive collisions are ignored (see
[21–23] for previous results in the simplified and dissipative version of the model). We will
show, however, that the model is area contracting only in relation to non-successive collision;
in contrast, the map describing successive collisions retains the area-preserving property
(because collisions with the moving wall are elastic in the moving frame of reference). We
also show that dissipation destroys the mixed phase space structure seen in the non-dissipative
case. We observe a chaotic attractor, characterized by a positive Lyapunov exponent and,
of particular interest, we identify and characterize a crisis event [24, 25] for this version of
the problem. In addition, the basin of attraction for the chaotic attractor is located and the
manifold branches obtained.

The model thus consists of a classical particle confined to move between two rigid walls
in the absence of gravitational or other fields. One wall is fixed at x = l and the other
moves according to the equation xw(t) = ε′ cos(ωt), where ε′ and ω are, respectively, the
amplitude and angular frequency of the motion. We assume that collisions with the moving
wall are perfectly elastic in the frame of reference of the moving wall, but that those with the
fixed wall are inelastic. In a collision with the fixed wall, the particle’s velocity is inverted
but, in addition, it is also reduced by a factor depending on the coefficient of restitution α

which assumes a value in the interval α ∈ [0, 1]: α = 1, corresponding to perfect elasticity,
obviously leads to recovery of all the results of the non-dissipative case; α = 0 corresponds
to the completely inelastic case where a single collision with the wall is enough to terminate
the particle’s dynamics. Our interest relates to cases lying between these two limits.

In constructing a map to describe the dynamics of this model, it is convenient to use
dimensionless variables. We define that Vn = vn/(ωl), ε = ε′/l and measure time in terms of
the number of oscillations of the moving wall, i.e. φn = ωt . Starting with the initial conditions
(Vn, φn), with the particle’s initial position given by xp(φn) = ε cos(φn), the map describing
the model dynamics is

T :

{
Vn+1 = V ∗

n − 2ε sin(φn+1)

φn+1 = φn + �Tn mod(2π)

where the expressions to be used for V ∗
n and �Tn depend on which kind of collision occurs.

For successive collisions, the expressions are V ∗
n = −Vn and �Tn = φc. The phase φc is

obtained as the smallest solution of the equation G(φc) = 0 for φc ∈ (0, 2π ]. The physical
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interpretation of G(φc) = 0 is equivalent to having the condition xp = xw, i.e. the position of
the particle is the same as the position of the moving wall, which obviously corresponds to a
collision. The function G(φ) is given by

G(φ) = ε cos(φn + φ) − ε cos(φn) − Vnφ. (1)

If the function G(φ) does not have a root in the interval φ ∈ (0, 2π ], thus we can conclude that
the particle leaves the collision zone without suffering a successive collision. The collision
zone is defined as the interval x ∈ [−ε, ε]. The Jacobian matrix for successive collisions
yields a determinant given by

Det J = Vn + ε sin(φn)

Vn+1 + ε sin(φn+1)
.

This result shows that the mapping preserves the measure of phase space dµ = (V +
ε sin(φ)) dV dφ; it is the same as the measure obtained for the breathing circle billiard [26].
Note that the results for a diametrical orbit in such a billiard necessarily recovers the results of
the Fermi–Ulam model itself. For the case of non-successive collisions, the expressions are
given by V ∗

n = αVn and �Tn = φr + φl + φc where the auxiliary terms take the form

φr = 1 − ε cos(φn)

Vn

, φl = 1 − ε

αVn

.

The term φr indicates the time spent by the particle in travelling towards the fixed wall, while
φl gives the time the particle spends before reaching the collision zone after suffering an
inelastic collision with the fixed wall. Finally, the term φc is obtained numerically as the
smallest solution of the equation F(φc) = 0 where the function F(φ) is given by

F(φ) = ε cos(φn + φr + φl + φ) − ε + αVnφ. (2)

Equation (2) is obtained in the attempt to meet the condition xp = xw. The Jacobian matrix
for this case yields the determinant

Det J = α2 Vn + ε sin(φn)

Vn+1 + ε sin(φn+1)
,

which obviously implies that area preservation is observed only if α = 1.
The expression −2ε sin(φn+1) (see the map T) is obtained by conservation of energy and

momentum in the reference frame of the moving wall at the instant of impact, for which it is
instantaneously at rest.

Figure 1 shows the stable and unstable manifolds for a hyperbolic fixed point (also called
as saddle) given by

V = 2ε

α − 1
sin(φ), φ = −arcos

[
ε − β

√
β2 + ε2 − 1

ε2 + β2

]
(3)

with β = 4πεα/(α2 − 1) in this version of the dissipative Fermi–Ulam model. Figure 1(a)
shows the results for α = 0.93 and ε = 0.04. The two branches of the unstable manifold
evolve as follows: the upward branch generates the attracting fixed point while the downward
branch generates the chaotic attractor. The two branches of the stable manifold establish
boundaries for both the chaotic and fixed point attractors (the details of the corresponding
basin boundaries are shown in figure 2(b)). Increasing the value of the control parameter α,
which is equivalent to reducing the strength of the dissipation, causes a homoclinic orbit to
be generated at α ≈ 0.936 24 . . . . Since the two branches of the stable manifold establish the
edges of the basin boundaries, the generation of the homoclinic orbit also results in a collision
of the chaotic attractor with the border of its basin boundary. Such a collision is often called a
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Figure 1. Stable and unstable manifolds for the dissipative Fermi–Ulam model with ε = 0.04:
(a) for α = 0.93, just before the crisis and (b) for α = 0.9375, just after the crisis. The saddle is
indicated by an S. Note that in (b), unlike (a), the manifolds cross.

boundary crisis [24, 25, 27]. Simultaneously, the chaotic attractor and its basin of attraction
are destroyed. Figure 1(b) shows the stable and unstable manifolds for the control parameters
ε = 0.04 and α = 0.9375 immediately after the boundary crisis. The birth of the homoclinic
orbit is clearly evident.

The chaotic attractor is shown in figure 2(a). The control parameters used in constructing
the figure were ε = 0.04, α = 0.936 24. The asymptotic positive Lyapunov exponent,
obtained via a triangularization algorithm [28], is given by λ = 1.7743 ± 0.0005. We used an
ensemble of ten different initial conditions randomly chosen in the basin of attraction of the
chaotic attractor. Each initial condition was evolved through up to 108 iterations. The error
represents the standard deviation of the ten samples. It is interesting to note that the lower
bound of the chaotic attractor has a simple physical interpretation. It is, in fact, limited by
the velocity of the moving wall, i.e. Vw = dxw/dφ = −ε sin(φ): the line generated by Vw is
shown in the figure. The attracting fixed point is indicated by a × in figure 2(a). The basins of
attraction for both the chaotic and fixed point attractors are shown in figure 2(b) for the same
parameters as used in figure 2(a). We set a range for the initial conditions as V ∈ [−ε, 0.6]
and φ ∈ [0, 2π ]. We thus divide both windows of V and φ in 200 parts each, leading then to
a total of 4 × 104 initial conditions. Each initial condition was iterated up to nx = 5 × 105

iterations, which is quite enough to disregard transient effects for the particular combination
of control parameters used. The basins of attraction of the chaotic and fixed point attractors
are shown in black and grey, respectively. The border of the boundary is obtained by iteration
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Figure 2. (a) The chaotic attractor and the coexisting attracting fixed point for the parameters
ε = 0.04 and α = 0.936 24. (b) Their corresponding basin boundaries. The basin boundary of the
chaotic attractor is shown in black, while that of the attracting fixed point is in grey. The border
was obtained as the stable manifolds of the fixed point given by equation (3).

of the stable manifolds of the fixed point given by equation (3). Immediately after the birth
of the homoclinic orbit, and the destruction of the chaotic attractor and its basin, some initial
conditions may lead to very long transients before the attracting fixed point is reached, even
compared to nx = 5 × 105. For such initial conditions, we therefore extend the simulation to
nx = 1 × 107 or longer in order to guarantee convergence to the attracting fixed point. Other
periodic attracting orbits could in principle also exist in this version of the model. We therefore
stress that for the control parameters used in figure 2, for the range of V and φ considered and
for the steps used in the basin boundary construction, no such orbits were observed: if they
exist their basins of attraction must be very small.

In summary, we have studied a dissipative version of the well-known Fermi–Ulam model.
It considers inelastic collisions with the fixed wall while assuming elastic collisions with the
moving wall. We find that, depending on the type of collision, the mapping may show either
area preservation or area contraction. We show that crisis events arise as a function of the
magnitude of the coefficient of restitution. Basin boundaries were obtained for both the chaotic
and fixed point attractors.
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