New Material for the Study of Evolution

A Series of Primitive Rhinoceros Skulls (Trigonias) from the Lower Oligocene of Colorado

By

WILLIAM K. GREGORY and HYROLD J, COOK

INTRODUCTION

While engaged in the mearch for fossils in Weld County, Colorzado, late in the sumimer of 1919, Mesors Philip Reinheimer, Chief Preparator of the Departurent of Baheontology, and H, D. Boyes lecated a promising fossal lieh. The following benson. 11920, Director J. D, Jiggins sent Mesars, Philip Reibbeimer, Frank Howland and Harvey Marknan 011 a prospecting trip in the atme general region. Starting in near the Duvis nuch, west of Pawnee Buttes, collecting was begon in that area; then camp was moved eastward and work fiually resumatl it the area above mentiones. While excavating was in progresy here, it sscond fossilifernis deprasit was lowated a short distance nway, it it higher level. This proved to lee an extraordinarily rich deposit, and one of the mose impartast prohistoric bone-beds ever discovered.

Since that time parties from The Colonado Maseum of Natural His. tory have worked the deposit extensively but as yet its limits are not folly determinod. It is certhin, however, that it estends over a considerable area and fortouately is coveryd with a sufficient thickness of solid material to grotect it from the effeots of the elements, erosion, aecidental damage and randalims.

This deposit is in the Lower Chadron formation, which lies uneonformably epon the oxidized surface of the Pierre shales, in the same relationship tas is observed in the expisures of those formations around the south ensl of the Blark Nills aplift in Sonth Dakota and Nebraskn, The evidence appears to he condnaive that the depusit was once the location of a machy water-lusle, ur slough, since the matrix is devoid of grit and excavatiou reveals a clearly defined floor und abrupt margins, In this ancient mud-hole are assombled a great number of Trigonias skeletons, numerons others of Titanotheren (Symborodon) and Entelotonts (Apohaotherime), and a smaller represpntation of lesar ereaturns, including birt remains, It is not unlikely that other skeletons will be nneovered as the work of excavating progresses. The rhiniceroses, however, far ontomoler the uther animale The abumdanee of thuse Oligocone rhinnexemss is in fuct comparable to the condition foumd in the early Minwne beits of the Apute Springs fosil quacries at Agate, Nebraska, and throngh the efforts of parties from The Colorido Musemm of Naturil History, a large collection of akulle is aysilable for study.

All but one (or prosihly two) of the rhinoceroses so far found in this ancient mud-hole appear to bo referable to the genus Tisigoning

[^0]Laese, a relatively primitive trae rhinecerres disthupuislied by the retentian nt a raduesd essine broth and three ingisurs in the opper juw,

Very wide differenos, not only in the form of the ekull. length of the premaxillary rostrom, chatreter of the incisors and canimes, bnt especialls in the patkerns of the gpper premolare, arn found in the series of ylouls already prepared. Indesd if the series were less oomplete, were the sprecimens frven different localities ar borisons, ano! had we chanced ulso to find mily the estremes of variukine, we slumid bive felt no haritation, according to widoly sccepted standurde in palenatology, in desoribing at least saven "new species" representing possibly thwe diffovat genera; bat these extrone difforences are bridged over by numerons intexgrodigg conditimes ant combinations of charanters, so that ove soon teets the impression, on the non Land, that the Weld Comty series revents in higldy plastic evendition of the rhinoveres pupulatines fewn which nataral selection might accentuate and stabilize the differeners in the promolars as us to pive rine to the different "species" alrendy known from the nest higher borizon': on the other hand, thut extonave bylowisism butween formerly distinet mees was actively going in. A study of the conparptive measarements of them series revpala the fact that, with rygurd to cortain ousasureneents, the readings do rat tent for runform to the symmetriral curve of flectuating variations but that they trail to govep themiselves
 protated as jodicating the presence in the popelation studied of guore thun is shigle fairly homogeneons nace in other words, the hybridism of widely different bereditary stribs. White we thas incline to the hypotienis of extensire hybridism between originally distind races, for the saloe of comvmienow in thescribing and ataloguing the material we nevertheless designate the varions gronpis of inilivilanls as variants or "syweis" ralieing full well that these termes in this instaner, and peetonos in many otbars, merely sigmify a definahin sut of chanwtons in certain individnals.
 angle locality mad borizon is unnmal and a brief review of the zeology uf the region may le useful, te if means of acoounting for sturh at condi-tion- In eastern Well County, Colorado, the Chadron represents the finst stage of the series nf non-murine deposits. Prion to that time, for in mknewn period, slow deondation anil ervsine had bees groug ne over an area vast of the Rocky Mountains extending from Moutann and then Dakotas to Colonado and Kinsas, but we bave mo ctler record there of the griat hiatus of time, and changess Iretween the close of the Pierre of the Cretacemas perionl and the Chadron. We do kuow, bowever, that there were large land arvas a short distance to the went and pmobably to the north. Fustleer, we know that mammalian life wes anmodant in those mgions priar to Oligocesu times. With the deqsesition of the Chudron claye and the cnataquait extension of anitahle lahhitat, it is easily within the reatro of pmimbility torassume that estensions of ranues oceurned. With these movenenis in jungivess, juerbans from more or lese distant and provionsly ishated locylitios, animuls molatively chese in reliatimahip lout growe agart im slivergent chamatons might very readily have rsome in sontact thiroggh asacity of food, water. or other pirols-

[^1]lomatioal catame Oroming in sach an enviroment would be a legical axpestation, hat mufortimately the spries so far reooverol is hamlly large enough to bee exsmined fir indiestions of Membelian inheritance aconeling tor the metheris of geneticasts.

In studying the Colorzulo neries of Trigontios we lad the ulvantage of having before us tbe then umablinhud mannecript of the article by H. E. Wood, 2nd, of "Some Rarly Tertiary Khinoceveses und Flyracodonts ${ }^{\prime \prime \prime}$. which enabled us to conpare our specimens with the varions

We aleo desire to mention the fuct that the bighly important matarial notiond in the presenit communication has been discovered und made bown through the scientific aedor of the Director, Mr. J. D. Figgins, lacked ley the libenality of Mr. S. N. Micher, the patron of the expeetition that diennereal the great freail puarcy in Weld Connty,

Tlun writares are imfehted to Dirwotos 1. D. Fipgins for valuable angenslioms, and to Mr. Harvey Markman for drawings of figures and charte, und for painstaking ywoof reading and checking of manuscript and stati. I'votograplas by Mr. Mbert C. Rogers.

Tripumian was wotablishiond and deserileef ly Dr. F, A. Lacan? on material from the Lawer T'ifonitherium Leds in Sonth Dakota, then tvpe ypucies heing 7. mancwi. Later, in 1901, Dr. J. B. Hateher amplified
 $\mathrm{P} 4 /, \mathrm{Mr}^{1 / 5}$ None of the upper molare are drictly molariform. Bkull much elongated ind very large in comparison with the sixe of the skeleton. Misns tatradacty," All of the complete akulls so for foum in this quirry have this dental formula, of which of couree the striking Peature, in empmarism with all later rhinnenisis, is the retention it the three incinars ami the ranime alanve, and moly slightly greater seduetion in the lawer jaw. In all the unmerms forvfeet sef far found in the Weld Chaty quarry the manas is aill telmductyl and we have bo rehson to question at this time that thie in the cane in all Trigenias in that quarry. But it is in the development and constriction of the premolars that we find the grvat diversity and divergenoy in type aroong the above-listed elarartens. This stivergence pons all the way from a much more primitive construction then that found in 7 , wahurne th amplete melarization of all the premulare nitvanced as fuer as the coudition frumd in the Upper Oligocene foras of the genus Comaymes, a great divensity of type is alon suen in many clorracters of the krall und juws but it is the intention to limit the present sotes end compurisons chiefly to the dentition.

RELATIONS OF THE DECIDUOUS AND PERMANENT TEETH. HOMOLOGIES OF THE ADULTT INCISORS

The material available ranges from examples in which all of the milk teeth ime present, with 3 / barely fuctional, to dentitions representing astranoesl agm It is thervefore nsefil in illustrating the abocrsoion ot both she deciftuses and premanent teeth. An itenc of mind iatenent is the timiluge of evidence which proves that the prominent lower pror-

[^2]cumbent tooth is the second incisor ($I / 2$). In a number of specimens a single alveolus is present back of the large incisor, as described by Lucas and Hatcher, but in a young example, No. 1027, two well-developed alveoli are present immediately back of $1 / x$, which in its permanent form had but lately appeared through the bone. Further, the size and position of these alveoli suggest that the tooth generally present is the vestigial canine and that the third lower incisor was the first to be lost by the Rhinocerotide. The second lower tooth to be lost, as their evolution proceeded, was the lower canine, and lastly $I^{3} / 1$, leaving $I^{1} / 2$ as the only survivors from the Miocene to Recent rhinoceroses. While the material is not sufficiently complete to warrant final conclasions regarding the order in which the upper incisors are obtained and lost, they consist of deciduons and permanent series, Di, $2 / 2$ being no larger in the juvenile stage than Di. $1 / 3^{2}$

Fig. i. illuatating the order in which the incisor and canine teeth are lost through evolutibary reduction in varioas species of Trigoaias and Caenopus. 1, firnt tooth se be lost. 2, secsad tooth to be lost. 3. third tooth to be last.

Not Jess interesting is the history of P^{1} /. This tooth varies greatly in size, form and development. In some instances it is large and distinctly triangular, or it may be quite elongated and slender. Again, it may be decidedly rounded. The convolutions of the cutting surface range from a primitive type to perfect molarization. The interest attached to this condition is emphasized in view of the evidence that this tooth is not replaced.

From both superficial appearances and dissections the milk teeth are acquired in the following order, reading left to right:

[^3]

Piz. 2, IIfustrating the order in which the deciduows Aentition is cut in Triponias, as determised Irosis Colorado Nusears of Nataral Hiatory apecimens. Dp^{\prime} and Dp^{\prime}, and Dp and Dp', art cut prectically simutraneousty, in pairs.

Not infrequently P^{1} / is absent in skulls of advanced age. More often they are greatly reduced through wear but neither in varying ages nor through dissection is there revealed the slightest evidence of a second or "permanent" $\mathbf{P}^{1} /$. Premolar $^{1 /}$ then must apparently be considered in the light of a more or less permanent "milk" tooth and here it may be noted that it appears to be the rule that where $\mathrm{P}^{2} /$ is molarized, $\mathrm{P}^{1} /$ is also of that form, and the reverse, with a single exception in the case of T. taglori.

Mig. 2. I日ustrating the order in which the permasent destition is cot in Tricasias, as determised from Colorado Meseum of Navural History speciment.

VARIATION IN UPPER PREMOLARS

The stages in the trusiformation of $\mathrm{P}^{2} /$ may be summarized as follows:

Stage 1. Skull F (884). (Plate III, A.) Protoloph of P:/ harely comberterl with anterointernal sille of paracone. Tetartocone well developed, connected with denterocone by narrow isthmas (left) or broadty (right). Central fussette not open medially. Metaloph incomplete, suall, directed forward, not connected with tetartocone.

Stage 2. Sknll H (807). (Plate 111, 13.) Protolopli of $\mathrm{P}^{\text {r/ } / \text { barely }}$ if at all comnected with anterointernal side of paracone. Denterocone broadly connected with tetartocone Itence central fossette not open medially. Metaloph in middle of tooth directed backward. connected with tetartucone.

Fig. 4. Second right ngper premolars of Triconias. showing range of variations in crown patieras frem premolarifertin to molariform.

Stage \%. Skull K (1029). (Plate V, A.) Protoloph of P2/barely converted with anterointernal side of paracone. Tetartocone well developerl (larger than deuterncone), mearly separated from denterscone. Central foesette just opening medially. Metaloph small, incomplete, barely connected with the tetartocone, beginuing to be directed backward.

Stage 4. Skall IJ (886). (Plate V, B.) Protoloph of $\mathrm{P}^{1 /}$ well connected with anterointernal side of paracone. Tetartocone equal to (right) or larger than (left) deuterocone. Central fossette blocked medially by the slight contact between tetartocone and deuterocone. Metaloplr complete, connected broadly with tetartncone, directed backwari.

Stage J_{4} Skull D (414). (Plate VI, A.) Protoloph of $\mathrm{P}^{2} /$ well connected with anterointernal side of paracone. Tooth mone elongate

Fig. 3. Third and fourth mapar premalars af Trigoniay showing range of variation.
anteroposteriorly. Tetartocone large, separated from deiterocone. Central fossette valley opening medially by a narrow fissire. Metaloph complete, large, clirected lyackwand,

Stage 6, Skull G (sis). (Plate VI, B,) Metalophlarge, directed lackwanl. Central fomette broadly (right) or narrowly (left) opening medially.

The third and fourth premolars show divergent stages in the process of transformation, from the very simple connlition exemplified in T. "secuados" (Skull F), in which the metaloph is small and still commected with the deuterocone to the almost molariform P"/ of ? C. "premitis" (Skull E), and in the opposite direction to the abortive metaloph of T. taytori (Skull K).

The thind and fourth premolars also reveal certain variable cospss as follows:
(A) Posterine crista: a loop from posterointernal base of metacome on $\mathrm{I}^{\prime \prime}$ uf Skull F^{\prime}. Same but larger on $\mathrm{P}^{3} /$ of Skull J. (Plate V, B.)
(B) Hyportyle: lomated in posterior fosutte. (a) connected with cingulam on left P4/ in Skull J, (b) free from cinguloni on right.
(C) Tetartoconule: just external to strall tetartocone on Pa^{3} / left. in Skull F. (Plate III, A.)

CONSPECTUS OF VARIANTS AND SPECIES

1. Trigonios oshorni var, figginsi. Type, Sknll II (s97), Colo, Mus Nat. Hist. (Plate III, B.) Pms, fgree with skull B (below) except in the following characters:
(3a) Medifossette closed both medially and posteromedially;
(4) Metaloph $\mathrm{P}^{2} /$ connected with tetartocone.

1a. Trigonins nstorni "figginsi," Referred skull B (422).
(1) All premolars premolariform.
(2) Protoloph of $\mathrm{P}^{2} /$ separated from ectoloph, protocone prominent.
(3) Tetartocone of P^{1} / not separated from denterocone; (3a) Medifossette elosed medially, open posteromedially; (3b) Metaloph of $\mathrm{P}^{3} /$ not, or imperfectly, molariform, connected with anterior base of tritocone.
(4) Metaloph of $\mathrm{P}^{2} /$ separated from tetartocone.
(5) Metaloph (metaconule) of $\mathrm{P}^{\mathrm{B}} / \mathrm{P}^{6}$, small or moderate.
(6) Metaloph (metaconule) of $\mathrm{P}^{3} /$ separated from tetartocone.
(7) Metaloph (metaconule) of $\mathrm{P}^{3} /$ separated from denterocone.
(8) Metaloph (metaconule) of P^{i} / separated from tetartocone.
(9) Metaloph (metaconule) of $\mathrm{P}^{1} /$ separated from denterocone.
(10) No hypostyle (- metacrista) on $\mathrm{P}^{4} /, \mathrm{P}^{4} /$.
(11) Internal cingulum broad or moderate on $\mathrm{P}^{2} /, \mathrm{P}^{2} /, \mathrm{P}^{4} /$.
(12) Tetartocone of $\mathrm{P} / /$ molerately developed, united with deaterocone.
(13) Pmx. long.
(14) Upper incisors and canines well spaced.
(15) Skull long.
(16) Skull shallow vertically.
(17) Occiput inclinell backward.
(18) Zygomata not pitching sharply slownward,

1b. Trrigonias osbormi "figginsi" Referred skull C (881), Colos. Mus. Nat. Hist. (Plate 1V, B.) Pms as in figginsi except in the following chantucters:
(3a) Medifosette closed both medially and posteromedially.
(3b) Metaloph of $\mathrm{P}^{2} /$ submolariform.
(4) Metaloph of $\mathrm{P}^{2} /$ joinel to tetartocone.
(5) Metaloph of $\mathrm{P}^{3} / \mathrm{P}^{\mathrm{W}} /$, very small.
(10) Distinct "hypostyles" oin $\mathrm{P}^{3} /, \mathrm{P}_{2} /$,
(2) Protoloph with puorly sleveloped denterncone.
2. Trigonias oshorni car, secwulus, Type. Sknll F (884), Colo, Mus, Nat. Hist. (Plate III, A.) Pms ${ }^{2 /} /{ }^{2 /} /{ }^{4}$ agree with T. figginxi except in the following characters:
(3) Tetartocone of $\mathrm{P}^{2} /$ left, nearly soparated from temtterocone; tetartorone of $\mathrm{P}^{T} /$ right, Inrandly connectes) with alenterocone.
(3a) Medifossette of P^{2} / left, nearly open medially by notch letween tetartorme and denterocone.
(7) Metaluph of $\mathrm{Pr} /$ traching denterocone
(9) Metaloph of $\mathrm{P}^{\prime} /$ touching denterocone.
(10) Metacrista on P^{4} / (right and left) (connected with medial bass of tritncone and more correctly regarded as a "metacrista" than as a hypostyle).
The tetarticone on $\mathrm{P} /$, appears to be further differentiated from the deuterocone than in figginsi type
There is an extra cnsp on $\mathrm{P}^{2} /$ left, hetween the tetartocone and the posterior lamd of the metaloph.

The dentition of T. sermalus conforms closely to the meassurenents and pattern of T', oxforvi, but differs in the presence of a strongly developed metacrista. In premelar charactens, it tends to conmect figginsi und toylori. The secrmalus sknll is much narrower than figginsi and much longer than tayfori, and shows certain characters tending toward each of these forms.
3. Trigomier Kypeostylus. Type, Skull J (886), Colo. Mus, Nat. llist. (Plate V, B.) Premolar characters as in precopei except:
(1) $\mathrm{P}^{2} /$ slightly less molariform.
(3) Tetarturone of Pr/ Laroly separated from denterocone; (3a) Medifossette barely opening medially through the narrow fissure between the tetartocone and the denterocone.
(5) Metaloph of P4/forming a short, wide, projecting lobe medially.
(7) Metaloph of $\mathrm{P}^{1 /}$ separated from denterocone.
(10) Very large lypostyle on $\mathrm{P}^{3} /, \mathrm{P}^{4} /$.

> ("near the line to "cellsi". Wood.)
4. Trigonias taylark, Type, Skull K (1029), Colo. Mus, Nat. Hist. (Plate $\bar{V}, \mathbf{A}_{\text {. }}$) Differs from figginsi in the following characters:
(2) Protoloph of $\mathrm{P}^{2} /$ joining anteromedial base of protocone.
(3) Tetartocone of $\mathrm{P}^{2} /$ nearly separated from deuterocone.
(8a) Medifossette of $\mathrm{P}^{3} /$ beginning to open medially, through noteh between deuterocone and tetartocone; (3a') Medifossette nearly closed posteromedially through slight junction of metaloph and tetartocone.
(अ) Metaloph of $\mathrm{P}^{\mathbf{y}} /$ submolariform.
(4) Metaloph of $\mathrm{P}^{2} /$ touching tetartocone.
(5) Metaloph of $\mathrm{P}^{3} /, \mathrm{P}^{6} /$, very small, abortive.
(11) Internal cingulum reduced opposite deuterocone on $\mathrm{P}^{3} /, \mathrm{P}^{3} /, \mathrm{P}^{4} /$.
(12) Tetartocone of $\mathrm{P}^{3} /, \mathrm{P}^{4} /$, abortive.

The most striking feature of the premelars is the abortive development of the metaloph and the equally pror development of the tetartionene on $\mathrm{P} /, \mathrm{P} / /$
(13) Pmx. very short.
(14) Upper incisors and canines large, crowded.
(15) Skull short and wide.
(16) Skull deep vertically.
(17) Occiput vertical.
(18) Zygomata pitching sharply downward.
5. Trigonias precopui, Type, Skull D (414), Colo, Mus, Nat. Ilist (Plate VI, A.)
(1) $\mathrm{P}^{2} /$ almost molariform.
(2) Protoloph of $\mathrm{P}=/$ joined to anteromedial base of protocone (paracone).
(3) Tetartocone of $\mathrm{P}_{2} /$ completely separated from denterocone: (3a) Medifossette open medially by cleft between tetartocone and denterocone, clased pesteromedially; (Sb) Metaloph of $\mathrm{P}^{2} /$ completely molariform, broadly convected with anteromedial base of tritocone.
(4) Metaloph of $\mathrm{P}^{3} /$ Inroully comected with large tetartocone.
(5) Metaloph of $\mathrm{P}^{\mathrm{m}} /, \mathrm{P} /$, woderate.
(6) Metaloph of $\mathrm{P}^{2} /$ separated from tetartocone.
(7) Metaloph of $\mathrm{P}^{3 /} /$ torching denterocone.
(8) Metaloph of $\mathrm{P} / /$ separated from tetartocones.
(9) Metaloph of $\mathrm{P}^{2 \prime} /$ tonching denterocone on right P^{4}, separated on left $\mathrm{P} /$ /.
(10) No bypostyle on $\mathrm{P}^{3} /, \mathrm{P}^{1} /$.
(11) Internal riugulum moderate on $\mathrm{P}^{2} /, \mathrm{P}^{\mathrm{n}} /, \mathrm{P} /$.
(12) Tetartacone of $\mathrm{P} / /$ moderately developerl, united with deaterveone.
6. Trigonias preoccilentalis. Type, Skull G (578), Colo, Mus, Nat. Hist. (Plate VI, B.) Differs from procopei as follows:
(1) $\mathrm{P}^{2} /$ fully molariform.
(3) Tetartocone of $\mathrm{P}^{2} /$ widely (right) or narrowly (left) separated from denteroome.
(5) Metaloph of $\mathrm{P}^{3 /}$ /relatively large.
(6) Metaloph of $\mathrm{P}^{2} /$ apparently joined to tetartocone.
(8) Metaloph of P/ joined to tetartocone.
(11) Internal cingulum reduced opposite tetarfocone on $\mathrm{P}^{2} /, \mathrm{P}^{2} /, \mathrm{P}^{4} /$.
T. preoccidentalis has the most advanced $\mathrm{P}^{2} /$ of all of the Colorado Musenm of Natural Histary series: its P4/ is distinetly more advanced than in any of the other variants except "premitis."
7. I Oonopus premitis. Type, Skull E (1025), Colo. Mus, Nat. Hist. (Plate IV, A.)
(1) $\mathrm{P}^{2} /$ less molariform than in T. precopei.
(2) Protoloph of $\mathrm{P}^{2} /$ broadly joined to the internal base of the protocone ($=$ paracone).
(3) Tetartocone of $\mathrm{P}^{3} /$ not completely separated from deuterocone: (3a) Medifossette closed medially; (3b) Metaloph of $\mathrm{P}^{2} /$ incompletely molariform; broadly connected with anteromedial base of tritocone.
(4) Metaloph of $\mathrm{P}^{3} /$ broadly connected with tetartocone.
(5) Metaloph of $\mathrm{P}^{2} /, \mathrm{P}^{4} /$, well developed.
(i) Metaloph of $\mathrm{P}^{1} /$ joining tetartocone.
(7) Metaloph of $\mathrm{P}^{3 /}$ / separated from deuterocone.
(8) Metaloph of $\mathrm{P}^{4} /$ large, backwardly directed, broadly joined to tetartocone.
(9) Metaloph of $\mathrm{P}^{4} /$ separated from deuterocone; (9a) Medifossette of P4/ opening medially; (9b) Tritooone (metacone) rib on ectoloph very convex and prominent.
(10) No hypostyle.
(11) Internal cingulum reduced opposite tetartocone on $\mathrm{P}^{2} /, \mathrm{P}^{2} /, \mathrm{P}^{4} /$.
(12) Tetartocone of $\mathrm{P}^{3} /$ relatively large, barely tonching desterocone.
Remarks P C. premitis is relatively very advanced in $\mathrm{P}^{4} /$. less so in $\mathrm{P}^{2} /$.
Owing to the ahsence of the front of the maxillar and the premaxilla, it is impossible to say definitely that this skull is not Canopus. However, it is extremely probable that if the premaxillae were present, they would show the presence of the teeth which would place it in the gents 7 rigosiak.

UPPER MOLARS

The molare of all variants so far found in the quarry are not strikingly different, but conform rather closely to one type of very simple teeth, with anly slight complications started. This generally consists of a pourly developed antecrochet and in some cases the barest suggestion of the crochet. This condition is most noticeable in $\mathrm{M}^{1} /$ and less so in $\mathrm{M}^{2} /, \mathbf{M}^{3} /$ in all cases consists of a simple ectoloph and protoloph. The metaloph of $\mathrm{M}^{2} /$ tends to be shorter in Trigomios than in Crenopve, comparing the varions described forms and those noder stady. This makes the transverse diameter at the protoloph in Trigoniars noticeably greater than the transverse diameter of the same tooth through its metaloph; or mure strictly at the paracone, whernas in Conopue they are more nearly the same, making a quadrate tooth.

TRIGONIAS OSBORNI Lucas

T. OSBORNI qaF. FIGGINSI

 (Plates I, III, B,) A complete skull. All the pernunent ebeek teeth ars in place and M' is alrendy well worn. The diagnostic charncters of the premolars are given lelow; The molars conform to the Trigonias type.

Diagonetie Chavanters - III premolars premolarifurm; $\mathrm{P}^{\text {b }} /$ with
 1"/ with suall metaliph not ernuseched with teptarturcune: mealifisartto

The paratype, No. $\mathbf{4 2}$, Colorado Museum, is a bearly complete skull abial lower jows of an almons matire individial, with all permanent pre-
 and slightly worn- $\mathbf{P}^{\prime \prime}$ / is fully develogeal and juot ruoning into fall
 lattor boug romoved from one kide to show flot pattern of the folly formed tooth below, which wat neturly ready to becrow functional. The premolars of this form are more primitive than in any Trigonian yet fouml. They are extremely simple teeth, consinting of the usual retoloph. a stroingly ilevelopeal postoloph, mail a thin, shart metaloph, merely saggestive of the ilevelogment ta follow, aml sitnated alminst ivatrally in the teeth. $P^{3} /$ Len the tetartocone and deuteromene oearly mpally ileveloped and uniting in is strong crest, the protolopb. In P'/ and $P^{\prime \prime}$ the prota. loph is progrearively less developed in the region of the tetartocone, with no indentation fonmed in the enamel to indicate the separation of the loph into two slistinet cones, as had already developed in $1^{33} /$. The meetalugh is these teeth is the lesast ileveloperl and mons primitive of those fousd in any lowown Otjpwese rhinserns, A heary cingolun estenith in 14 eurve around the inside of all three of thene promalate fern one end of the ectoloph to the other. Dnt no extermal cimpulum is presont.

The comparisom (Table V) indicates that although int Noginat
 somprarative measuresurnts do not diverges sufficiently to warnant specific esparation froes the evilenow of measurements abone, The definition of T. unhorsil sidopted ly Woul completely eovers the sharactern of Figyias/ in the premolare and molars.

The supposest difference in the longer face of T. andarni may well rest on the marked distortion of Hatcher's neotype. According to Wood the masal incinion of γ, oshonvi ond vertiodly atiove the posterion part of $\mathrm{P}^{\prime \prime} /$; the same is true in Highimai typo. The supponed differences in the peenulars may lae dow th the estremen old age of the nestype lignowd ly Hatelure, Howe for the prosent we may ergand foypinai as a variant of 7 . cuburni.

Troxeff has recently described (The American Jemensl of Sriences Yol. 1I, July 1921) ail 1pper Olizocelie fjectios mader the name of
 appoars tor be a Alived stiecomar to pqyiani, and in the light of present

line of ascent, but in a parallel flyylum and prubably a grood species with foll specifie valise.

TRIGONIAS OSBORNI var. SECUNDUS

Type. Nu. 884 (Sknli F), Colorado Musetm of Natural History. (Plate III, A.) A nearly conplete skull, with exception of occipnt.

Diagnostic churactors-All premolars premolariform: $\mathrm{P}^{2} /$ with suall metaloph not, or harely, connectel with tetartnone $\ddagger \mathrm{P}^{3} / \mathrm{P} / \mathrm{P}^{2} /$ with naull metaloph touching denterooune; hypostyle variable on $\mathrm{P}^{i} /, \mathrm{P}^{i} / ; \mathrm{P}^{1} /$ compressel, premolariform; $\mathbf{P}^{\prime \prime} /$ to $\mathrm{M}^{1} /$, 180 mus, ; $\mathbf{P}^{\prime \prime} /$ to $\mathrm{P} /$, Bq ;

Skull loug anil mulerntely slender, with forg thin namis und long prebuxille, with posterior incisore relatively sanall, apread well apart, and nearly functionless. Zygomatic arches sloping, not square-shonsdered. Geners 1 proportionar of skull mioh less lmachyrephatic and anghlar than in T. taglos and noms nearly like the typieal T. wsharal; lont its promolar charasters lemil to mennect it with loghlaris. Thugeh the oceiput. is largely restured, it wan evilently narrow, and of the bockwardsloping type.

TRIGONLAS HYPOSTYLUS, ope, nov.

Type, No. 886 (Skull J), Colo. Mus Nat Hist, (Plate V, IL.) A complete skall, somewhat crustrel, Init uot ladly distartenl. Sluil bemul and llathened, with relatively straight top. Oeciput very low, short and realocad in sizas- cosling almond vertically or slightly unterior to bock of condyles. Zygonsatio arelies wide and bow-shaped, in a sweoping curve. Nasals roodentely long, ending above tip of premaxille. $1^{1} / \mathrm{I}^{1} /$ and cunine small, welf spaces and fuctionless.

Diagnostic Characters,-12/ submolariform, with large metaloph Imodlly somuerted with tha large thtartuconn: modifesette barely open, ing medially: PM/_ Py/ with small metaloph, sut, or luit slighty connected with denterrexme; laggo hypostyles; $\mathrm{F}^{\prime \prime} /$ more molariform, with lagge metaloph lownady consected with largo tetartocone and incipient protehoph-fleuterocone, well symarated from metaloph-tetarticone: $\mathbf{P}^{1} /$ to $\mathrm{M}^{1} / 181 \mathrm{~mm}$; $\mathrm{P}^{\mathrm{P}} /$ to $\mathrm{P} /$ / $84 ; \mathrm{M}^{2} /$ to $\mathrm{M}^{2} /, 102 ; \mathrm{pmx}$, to occipital condyle, 474.
T. hypontylen differs widely from the preending species in the astvanced characters of the premolars. In over-all measorements (Tables I, II) it apprivaches in the wee hand, T, asborni, and on the other, T. precopmet, but differs frum the formar in the advanced stage of $\mathrm{P} / \mathrm{and}$ in the strong developanent of the hypostyles: from the later in detailed dimensions und in the less indvanced stage of the premolary.

TRIGONIAS PRECOPEL, ap. nov.

Type, No. 414 (Skull D), Colo. Mus, Nat. Hist. (Plate VI, A.) A complete adult sdoll, lacking only the inchoos and canines, for which alveoli ary pirvent.

Diagnastic Charaeters-- $\mathrm{P}^{3} /$ sahmalariform; $\mathrm{P}^{\mathrm{P}} /$, $\mathrm{P} /$, with modurate metsluph harsly if at afl conuected with denterocone: menlifomatte neacly or yuile clowed mediully; mi hypostyles: Pr apparently pro-
 pilal condyle. 451.

Premolar $1 /$ samall, almest vestighal. $\mathrm{P}^{7} /$ is completely molarized, with protoloph and metaloph eppally and almost identicully developed. In I^{3} / the protoloph is stronply and henvily developed. The deuterocone is large and situated nearly centinally in relation to the unteroposterior diamoter of the tooth, making the ourtine of the tooth more nearly trigonal than quadrate, as in $\mathrm{P}^{2} \%$. The totarfocone is connectesi with the deuteromes fut is a nearly independent smaller cone, crowiled inter the proservinternal sarface of the toeth, so that it interrupts the eingulam at that point. The metaloph is 1 thin Hupular crest, connected barrowly at its tip with the protoloph on the internal face of the deuterocone.

The constriction of $\mathrm{P} /$ / is pesentially the eme at that of $\mathrm{P}^{3} / \mathrm{bot}$ with stailler and hos imlependently developed totartocmus A strong cingolum is alevelapeal amosel the whole interasi side of all thess premolars. With the exeeption io $P /$, which appsars to lase a great deal of individual variation ion Trigondas, in hkutls otherwise very similar the promolar-motar dentition of this species is so nearly identical to that found in Comopur (Kubhyrowdon) copen that no one secing only these teeth, would hesitate a moment to call it that kperies. But when we reash the otrongly developed canitue and three functional incisors, we rvalize that we have a condition idenally ty uifying what might be expecteal in the direct aurestor of Comupus (Suhhyrvendon) roperi,

In ecetain respecte this form wrulls $T_{\text {s }}$, ushervi socundon, the chief difference buing the mow progressive $I^{2} /$ and the abennce of a metacrista on $\mathrm{P}^{4} /$. An objection to its being truly ancestril to Subhyracodon copai lies in ith larger sixe.

TRIGONLAS PREOCCIDENTALIS, sp. nav.

Type, No. 8ik, (Skull G). Colo. Mist Nist. Hist. (Plate VI, B.) A complete adalt shall lactring mily the incisoro and mee canine, with entire premasilla and alsendi for misoing teeth.
 loph, directed lackward and connectel with tetartocome; the latter still consected with dettervoone ion us partly to block the medial exit of the medifosette; $\mathrm{P}^{3} /$ very promessive with amall distinct protoloph and
 to $\mathrm{S}^{3} /, 117$: pmes. to onépital cmilyle, 470.

The whule griming serivs of Eneth in this species, from $\mathbf{P} /$ to $\mathrm{M}^{3} /$, is sn musely hilestizal with three of Cimanpun (Swhhyrucoilon) aevidentuliv, figured by Ondwan in Fig. 5. Plate SIII, of hes memaner on "The Exdinet Rhimocemse" (180n), that were only these teetly premerved is the specimen at band, anyone would without husitation refer tbem to that species. They are -trikiugly alike from one end of the series to the other. The most notionable difference is that the molars ure relatively largor thum in T. promeridentolin in relation to the premolars. But, as in the case nt T. percencis, we finil a arvat aliference again in the front beth, all throe invisars ami the wanime laing grosent, instead of mily the
 Eteal ancustor of the Upper Ofiguvpae milactyl C. merilentorlin in a botraductyl Lowar Olipoonie Trigusions, wo far as twith pharacters may

[^4]bo suncerned. As these have been corrsidered dependable by all jaleontulogista, they are taken ass \& busis for the present differentiation and deariptions. When complotely associated skeletal materials are prepured for stady, comparismo of them will prove illuminatiog to many problemas, as preliminary examinations now matie utavinus. Au objewtion to this species as being trily uncestrial to Subhyruradan ancidenkate Jies is its larger size.

THIGONIAS TAYLOR1, sp, mev.'

Type, No. 1020 (Sknil K), Coln, Mus. Nut, Hist. (Plates II, V, A.) A complecs slall anil jawenf a folly wilult animol, with teeth in myanced weur and premesillue cumplete buit with the first upper incions alsent.

Diagnostie Chururtars,- $\mathbf{1}^{2 /} /$ more or lesm transitional; with narcow metaloph jus tonching tetartocone: $\mathrm{P}^{3} / \mathrm{F} /$, with absircive metaloph, widely suparated from dentericome anil telartosme, the latier small; Dypostyle ahenent on all premolars: P^{F} /very wide; $\mathrm{P}^{2} /$ wider, but pro-
 fimas. to oncipital cumile, tha.

In some ways this is the must remarkable skull so far found in the Weld County saries. Whlitu all other known Trigonioss sknils, it is short, wide and deep, beachyonphatic in type, with a number of marked peecalfarities when oompareal with the other described frous, or with uny skulls so far found. As we are limiting the discussim in this paper to a comparism of the teethc moly a few of the masy striking feutures will be boted; hat those given alove as $t o$ the dental patearn, while different, woold not in thenswhes sugrest the degres of differences that actually exis. The genaral conformution of the skull in atrongly suggestive of ia type that could lase led m redily to such a hater development as we find in Penvcerva in the late Miocene and Lawer Pliocene. The Lack of the sull is very mush elevated but the opciput enda unterior to the condyles, wherean in the other sles-riled spercine it extends lackwurd, is most typer to a very marlaed degres. The whole hasiecranial region is crowded and the exterual auditary mentus is marly cloned below; the wide and slendee weinital condyles are, of the outside, slightly overlapped by the purnexipital procusaes of the exrocipital; these, in cimm, ly the postglowid processes, whioh are peculiatly vide, ingular and backwird-sloping. The xygonatic arches have the same type of sharp ellow-angulation that is son marken in Proverns. One of the mest striking feathres is the development of a rwnarkable pair of hesvy rugnes lombis in the frontal aver the orbits, quite uulike the rudimentary binto develogmant in uther knows Oligrwene Khinncerotider, eifoer in position or in size. The masals curye rather slarply downward, extesiding over a pair of ruggel premaxillw, thick and short, with the threo incisors und canines crowded together; ull functional teeth, more compmente to the condition found in horses than in rhinocerosesal This crowding is so marked that $\mathrm{I}^{2} /$ nol $\mathrm{P} /$ ane lath foriad transversely in the jaw. The posterior elgo of the socond incisor tarms outward, while the anterior ealge of the third tarms oot. Unfortanataly, the first upper incisor is alsent wu brith sidis, but from the alyeoli it is obvines that they were relatively smaller thar is usmi io Trigenias. This, together with the

[^5]| GRAPH 1. | VARIABILITY OF SKULL MEASUREMENTS AND INDICES RELATIVE inCivibual age of skull ingicated or scoutnce of LETTES |
| :---: | :---: |
| LENgTt of sout To or garmaxili to conore (i) taiser | |
| BREADTK OF SKULL aCROSS TYGONKTA
 | |
| index
 BGCATM TO LOESTH OF BKAL
 (A) table: | |
| LENGTH OF SXULL the or shats.totir or ocop cont at Thes | |
| PREMAXLLAEY LENGTH
 (4) table | |
| LENGTH OF TOOTH ROW
 (6) Tacti | |
| NDEX
 To soin towath
 (6) Tect: | |
| LENGTH OF MOLAR ROW Mrarisct (t) Tast | |
| LENGTH OF PPEMOLAR ROW FR NCL in TMRI | |

Data taken from Table I (pp. 20-21),
See page 28 for explanatioa of craphes.
 T. precopeli; (E) TCaeaopus premitis; (F) T. ouberni var. secundus; (G) T. preoccidentalis: (H) T, osborai var. Egginsi typet (K) T. tayloci.
 to a primitive condition, ull nf these feeth showing marhed and heavy wear.

The xyponnutic urches rise considerably above the top of the amall lorainose at their pooterior tips Premolar two nears complete molarizations, with the denturneote and tetartiseme distinet; the metaloph still slightly mane slemiler than the protoloph and just Ineooming connected with the tetateneane, a stenetoral stage sut shown in other types illas-
 extending around the whole inner wide of the tooth, broadly expunded ne the denteroconic. There is so kankestion of the tetartocone und the wearinge erent ends conflaently with the singulum on the posterior side of the tooth, near the midhle, thansveratly. The ertoloph is wide and heavy and the metaloght very short lut relatively wifle. P^{PH} / is almost identical in pattern for Phy Imt sery pincheal and rowiled and ewrelated with tho rexeseively slunt face, wh that its trausvere sliameter areatly exceeds the anteroyusterine masurwarat, M/is relatively small and crowided. The molar patterns are closely comparable to thone of the other species.

The lower juw is remarkably cmrved and heary and the coronoml process actually curved forward over the molans at an angle of 15 degrees. a vharacter correlated with the extromely limolyonphalie skial. The incisirs, both upper and lower, and the canines in this sknll are mueh hasarier than represented in the other typus desarited.

F CEENOPUS PREMITIS, sp, nov.

Trie. No. 1025 (Skull E), Cale Mus Nat. Hist. (Plate IV, A.)
Diagoustic Characters- B^{32} / submolariform but with large metaloph partly directed forward and connected throngh tetartocone with denterocome; $\mathrm{P}^{2 /}$ submolariform, mach ast in $\mathrm{P} / \not / \mathrm{P} /$ wery progrvesive with well formel, larkwarily dimetel metaloph-tetartocone and anteropos-
 sive; size extrenely small: $\mathrm{P}^{\prime \prime} /$ to $\mathrm{M} / 27 \mathrm{n}$ mom; $\mathrm{P}^{1} /$ to $\mathrm{P} /$ / $80 ; \mathrm{M} /$ to M $4 / 38$,

This skull has the most advanced molarixation of the premolars so for found in any Trigosios. In characters they are very close to Comopex witt in and the type in the sanallest form yot found of Trvigonaser, as well as the mond advancest. Then griming teeth are of far moere biniform size than in any of the nther T'vigemian types with which we lave to deal fonen this quarry, all of the nthers san far foused, regariless of typu or stewture of teech, laving noticeably lorge molors ind premolars that taper in size more rapidly from the molars forward. In this type the protoloph and metaloph tre of newrly equat sixe and are parallel min [3/ but comnected between the denteroome atul tetartoone. The saine description loods for $\mathrm{P} /$, save that the metaloph is slightly reduced in sixe lint almast indepenalent from and paralled to the protoloph. The differnoce hetwres the tevth of Conargwa premiltis and those of its siceawsare in the preve C'enapus, after which it is mamed, is again very slight und, as in the casas of the lasa two described species, Jargee differsures are appperent in the skulls of sll these forms. Se with T, prenopei and T. proceidentalin this specien is larger than its bupposed smocesone (Woor).

TABLE I
COMPARATIVE MEASUREMENTS OF THE COLORADO MUSEUM SERIES OF TRIGONIAS SKULIS'
1027 (A)

(1)	Length of skull, premaxilia to condyle incl......	465	208	463	488	248
(2)	Breadth of skull across zygomata. 157	258		228		
(A)	Index of breadth, $\frac{\text { breadth } \times 100}{\text { length }}$	55		49		
(3)	Length, tip nasals to tip ocelpital erest......... 410	483	460	470	485	477
(4)	Premaxillary length, measured to alveolus of $\mathrm{P}^{\prime \prime}$	85		92	80	
(5)	Premaxilla, length, to canine sutare............	51		49	47	
	Pr-M ${ }^{1}$ est. .	178		185	189	184
(6)		200		205	201	205
(B)		43		44	41	
(7)		90	93	95	91	99
(\%)	pxpr est...	65		75	70	69
(8)	$\mathrm{M} \cdot \mathrm{MP}^{\prime}$	113		117	115	117
(C)	Index $\frac{\mathrm{P}^{4}-\mathrm{P}^{4} \times 100}{}$	79		81	79	77
(c)	p^{4} a.p. (antero-posterior) $\mathrm{M}^{\text {M }}$. 21	22	18	20	21	
(10)	P^{1} tr. (trangverse) 16	18	15	19	15	19
(D)	P^{m} Index $\frac{\mathrm{tr} . \times 100}{\mathrm{D}}$. 76	81	83	85	71	90
(11)	P^{4} a. p......	20	20	19	20	20
(12)	P^{4} tr.	28	27	27	29	12
(E)	$P^{\prime \prime}$ ind. ${ }^{\text {tr. } \times 100}$	140	135	142	145	160
(13)	p^{s} a. p.......	23	22	23	23	22
(14)	$\mathrm{P}^{\text {tr }}$ tr.	37	32	34	35	39
(F)	P^{4} ind $\frac{\text { tr }}{} \times 100$	160	145	148	152	177
(15)	p^{4} a. p.a. ${ }^{\text {a }}$	25	25	25	25	26
(16)	$\mathrm{p}^{4} \mathrm{tr}$.	41	37	36	38	45
(G)	P^{4} ind. $\frac{\text { tr. } \times 100}{}$	164	148	144	158	173
(17)		34	31	35	s0	33
(18)		44	39	44	40	59
(H)	MP^{1} ind. $\frac{\mathrm{tr}, \times 100}{}$. 116	129	125	125	183	151
(19)	MP a. p..	41	35	38	40	41
(20)	$\mathrm{M}^{1} \mathrm{tr}$.	50	45	49	48	
(I)	M^{3} Ind. $\frac{\text { tr. } \times 100}{}$	122	128	129	120	129 r
(21)	$\mathrm{m}^{\mathrm{i}} \mathrm{a}, \mathrm{p} .+\ldots .$.	38		37	41	42
(22)	$\mathrm{M}^{\mathbf{1}} \mathbf{t r}$.	49		44	46	48
(J)	M^{2} Ind. tr. $\times 100$	129		119	112	114

[^6]the degrees of wear of the cheek teeth.

summary

The wide variation in premolar patterns and in mensarrementes amoug the Colorado Mumum of Natural History sorines of Trigomiar indicates tlai at the time of deperition of the Titanotherinm lieds in the Weld County lacality there were already at least seven definable stages of premolar evolution:
(1) Trigomion oxhami var. Agginai' (Skulle H, C. B) ; all pimmolarn premolariform; $\mathrm{P}^{3} /$ with small metaloph tasolly connested with wrll itereloned tefartocone; Pb/, PI/ with small metalogh not enmeeted with tetartornue + medifnosette opening posteromedially; hypostyle press

 to occipital condyle, 465 .
(9) Trigonion oblorní var, segundier (Sknll F) : all premolars pomoliriform; p^{2} / with small metaloph not or harely connected with, tetartoome; $\mathrm{P} /, \mathrm{P} /$ with stinall metaloph tonching dewternenne; hypnstyle sarinble on $\mathrm{P}^{\prime} /, \mathrm{P}^{\prime} / ; \mathrm{P}^{\prime} /$ compreseat, premeloriforut; $\mathrm{P}^{\prime} /$ to $\mathrm{M} /$,

(青) Trigonias inyportylus (Skull J): $1^{\text {b }} /$ submolariform, with large metaloph boadly conimeted with the large cotartoconie, medifosotte harely njening nuelially; $\mathrm{P} / / \mathrm{P}^{1} / 4$ with small metaloph, not or but alightly ononeeted with denternecme; large hypostyles; $P^{\prime} /$ more aulariform, with large metaloph beoudty connacted with laryo tetartasome and imipient protaloph-denterocune, well sopsrated from metaloph-
 eccipital condyle, 474.
 with moderate metalopht burvly if at all conseoted with denterncone: medifessette nearly or quite clinasi medisily; no bypostyles; $\mathbf{P}^{2} /$ appar-
 105 ; phux. to oocipital condyle, 451.
(5) Trigonias prencrifeatalia (Skull G); $\mathrm{P}^{\mathrm{n}} /$ molariform: $\mathrm{P}^{3 /}$, P4/, with larger nutaloph, directed backwanl and comuected with tetartooone; the latter still connected with leutemosme so as partly to hock the meelial esit of the medifusette; P//very progivesive with small distinct

(6) Trigonian laylori (5 kull K): \mathbf{P}) more or less transitiousI; with narrow metuleph just touching tetartocone; $\mathrm{P} /$, $\mathrm{P} /$, with abortive metaloph, widely separated from deuterionne and tetartoones, the latter small: hypnotyle alsent in all promolars; $\mathbf{P} /$ very wide; \mathbf{P} / wider but
 prose to mexipital condyle, 415 ,
(7) I Conagrus premitia (Skull E) \& P^{7} / sabmolariform, hid with large metaloph partly directed forward und combected through tetartacone with denterocone: T^{3} /submolariform. much an in $\mathrm{p}^{2} /$; P^{H} / very progressive with well formed, hackwardly directed metaloph-tetartocone and anterngosterinrly elongate ectoloph; no bypentylen; th? Wide,

Data taken from Table I (pp. 20-21),
See page 28 for explanation of graphs.
Key to principal skullsi (B) T , osbormi var. figriasi; (C) T, ashorni var. figrinai; (D) T. precopei; (E) ?Carsopus premirisi (F) T. osborni var, ancundus? (G) T. preoccidentalis; (H) T. ouboeni var. Egginsi typt; (K) T. taplori.

GRAPH 3. FREQUENCY CURVES OF PRINCIPAL MEASUREMENTS OF TABLE iI

LENGTH OF PPEMAXILLA mGasurid 09 TMite :	
WOTH ACROSS POST. onsital phocesses (3) tasue 1	
WDOT ACMOSS Lackrual TüBectis (iI) TARLE II	
WIDTH ACROSS OCCPUT 0h Thate :	
WIDTH ACROSS POST. TYMPANIC PFOCESSES (14) Tase a	
WIOTH OF PALATE screck morsis (in tagle	
nbex PLATE WODN TO LENGTH OF footh more puncl. (a) taile:	
FACE LOMFELACR TUR TO TIP PNE (13) Taner :	
-ceanum LENGTL LaCR TUE: TO OOC cona (06) TABLE	

See page 28 for explanation of graphs.
Key to principal skulls: (B) T, auboval var, Ggeiasif (C) T. oaborai war figimsi? (D) T. Precopeif: (E) ?Cannopus premitis: ${ }^{(F)} T$. asborni var. secundus: (G) T. presceidebtalis: (H) T. ondorni var. figeinasi type: (K) T. taylori.

TABLE II

COMPARATIVE MEASUREMENTS OF THE COLORADO MUSEUM SERIES OF TRIGONTAS SKVLLS

$\begin{aligned} & 3 \\ & \frac{3}{4} \end{aligned}$									$\begin{aligned} & 3 \\ & \frac{3}{3} \\ & 2 \end{aligned}$	$\begin{aligned} & x 5 \\ & 35 \\ & 32 \\ & 46 \\ & 4 \end{aligned}$			
	51		49	47		49	50	49	39	45	54	43	
	29	32	41	25		21	23	37	35	21	35	38	
	6		6	1		4	5	4	4	0	7	4	
	3		0	2		2	9	3	1	0	4	0	
	5		0	2		5	3	2	1	0	2	0	
,	large	8 mail	$\left\{\begin{array}{l} \text { very } \\ \text { large } \end{array}\right\}$	int.		int	-mall	8tmall	8 8all	$\left\{\begin{array}{l} \text { very } \\ \text { Large } \end{array}\right\}$	minute	Large	
	70	45	-0	Cr,	cr.	E1	37	57	62	cr.	62	73	5
	35	24	24				87	32	33		31	40	30
. 410	489	440	476	485	477		510		480	431	479	475	
. Im.	195	168	161	156	$1>1$	191	164	105	178	178	195	167	138
Ims.	40	35	34	32	40		32		37	41.	41	35	
15:	258	208	228	cr.	248	244	248	210	249	244	268	951	190
	188	188	163	151	170	175	166	168	178	186	170	167	137
85	115	103	145	96	168		104		112	100	102	108	89
. 138	130	184	130	159	129		134		135	142	121	125	118
. 91	144	182	140	122	113		130	118	146	139	124	135	102
. 48	89	76	74	55	66		67		82	73	67	86	69
	909		210	817		221	220	825	217	195	217	203	
	250		± 50	295		272	282	272	275	248	285	267	
+	75		7\%	74		81	78	83	79	81	76	76	
	83						72			90	72		45
+		38	69	75	72			77	77			62	

(1) Length of premsxilla, to front of canine...........
(2) Length of dluatema, canlse to $\mathrm{P}_{\text {, }}$
(3) Diastema, eanlue to 15...................................
(4) Dhastema. I' to I'..

(6) Canine, relative size worn.....................................
(7) Width al palate between MR (r, \& L.)
(A) Index: 1^{3}) $\frac{\text { palate wldth } \times 100}{\text { leagth } \mathrm{f}^{\mathrm{r}} \text { to } \mathrm{Mb}^{5}}$
(8) Length of skull, tip nassis to tip ocelpltal erest.. t10
(9) Width acrons pinstorbltal processes.................Im.

(10) Whth across zygomata..
(11) Whath acrose lacrymal tubercles......nv.rert.
(12) Width across occiput. ...
(14) Witth across post-tympanie procenses. 91
(C) Index:ch width oec. $\times 100 \ldots . . . \ldots$. . is
helght oce.
$210 \quad 217$
(15) FFaee"-laer. tub, to tip. pmx..........................
(16) "Crabium"-laer, tub, to oce, cond........
(D) Index:ciface length $\times 106$
cran. leagth
(17) Lacrymal tubercles, above M:
(18) lacrymal tubercles. above $\mathrm{M}^{\mathbf{3}}, \ldots . .$.

 metyles

GRAPH 4. FREQUENCY CURVES OF PREMOLAR CHARACTERS
iscr tances in AnO Ivi

See page 28 for explanation of graphs.
Key to principal skullst (B) T. osbopal var, fegiani; (C) T, prborai var. figriaaj; (D)
 (H) \boldsymbol{T}. asberm var. Egginsi type; (K)'T. taylori.

TABLE III
VARIATIONS IN PREMOLAR
AND MOLAR CHARACTERS

upparently progressive ; size extremely small; $\mathrm{P}^{1} /$ to $\mathrm{M}^{3} /, 175 \mathrm{~mm}$; $\mathrm{P}^{2} /$ to $\mathrm{P}^{4} /, 80 ; \mathrm{M}^{3} /$ to $\mathrm{M}^{3} /, 18$.

Further preparation of the material nlready in hand will doubtless reveal more intermediate conditions and different combinations of characters.

A highly important fact revealed by the Colorado. Musenm of Natural History series of Trigonins is that the upper premolars were in an extremely variable state, some of them retaining the conditions of earlier known stages (Eobtrigonias), others clearly foreshadowing the most arlvanced stages swen in Comopue and other genern of satceesding horizons.

This highly plastic and variuble state seems to indicate that hybridism has played an important role in the evolation of the gronp, throws new light on sunne probable causes of changes observed in their stricture, and suggests that bybridism has heen a far more important. factor in natural evolution than has leen generally admittes.'.

2aty of Fidat 4CS¢K	$\begin{aligned} & \text { H } \\ & \hline \end{aligned}$		
	59445		Len发
SILE Of soconio MCs01			$\text { a } 1 \mathrm{k}$
			LAf [1
SI2I Oe TAFII "ncisor	d $\mathrm{FH}^{\text {che }}$	1 DE	1 ¢
	SMALI	NTERGEMATL	IANCK
Salct of cavele		$\frac{1}{1}$	1
	SMACL	intoreboul	LA呂
SIZE DF DASTIDA STMTIN CWinte and \vdash^{3}	$K \quad H$SNML	1 DE	$\frac{2}{4}$
		CNTEREDMMI	Latiti

EXPLANATION OF GRAPHS

In Graphs 1, 2 aml 3 (pp. 18, 29 an 124) the skulls are designuted by letter and grouped apon the base line arcording to netual measurements, or where index figures ars involved, according to percentages. T'he method of Gruples 4 and 5 (pp. 96 and 28) which deal with charncters that are difficult or impossible to express in mits of measurement, differs only in the substitution of at more flexible banis of comparisons for the numerical seales used in the other graphos.

These froquency curves revea ${ }^{\text {g pronping tenslencies inflicating sta- }}$ hility in sume characters, and in others varying dugrves of seatfering or fluctamion, which is sugrestive of instability. It is well to note in this comnection that the exiployment of a lariger scale in the drawing of the Eruphs woudd reveal more prominently the divergent tendencies in sanaller measurements, where only if few millimeters are involval, as in the case of tooth proportions.

For further interpretation and inferenoes see Page 4 uf the test.

[^7]Table IV
VARLATIONS IN PREMOLAR AND MOLAR CHARACTERS
(Contimued)

$\left.\frac{\left\{\frac{\text { Metaloph complete and neolariform }}{\text { Metaloph not molariform }}\right.}{\text { Hypostyle present. }} \right\rvert\,$

8	E
8	8
8	8
8	

Elongate, premolariform
Intermberinte................................
Short, submolariform Mip Mastyle proj, distinet
Metastyle proj, intermediate......
Metast vile proj. vestipial to alieent.

"Measuremeats freme Wool, up. cit.

TABLE VI COMPARATIVE MEASUREMENTS OF LOWER JAWS

	T. asborwi var, fogginsi No. 951 (I)	T. taylori No. 1029 (K)
I/, to back cond.	380	340
I/2 to lanek M/a.	246	237
$\mathrm{P} /$, to $\mathrm{M} / \mathrm{a} \ldots$	200	190
$\mathrm{P} /$ to P	82	80
$\mathbf{M} /$, to $\mathrm{M} /$,	11.5	108
Depth beneath post. borver M	62	71
Height cond. above base.....	169	176
Symphysis to angle.	400	394
Height coronoid above angle.	215	217
Length symphysis	90	87
Depth of ramus below P/2	62	56
Depth of ramus below M / z. .	80	70

 describel, therefore no other lower jnw mensurements ire given,

TABLE VII COMPARATIVE MEASUREMENT8 OF TRIGONIA8, CAENOPUS, SUBHYRACODON', AND AMPHICE- NOPUS									$\begin{aligned} & 3 \\ & \frac{3}{9} \\ & 6 \\ & 6 \\ & 5 \end{aligned}$		$\begin{aligned} & 2 \\ & \frac{2}{n} \\ & 0 \end{aligned}$					
Pmx, to cond......	415	451	470	465	$500+$	504	. ${ }^{\text {a }}$	596	**	3400		*	406	434		
$\mathrm{Pm} /$ to $\mathrm{M}^{3 /}$.	85	183	208	200	183	201	207	258	250	175	*.	241	158	174	182	
$\mathrm{P} /$ / to $\mathrm{P} 1 /$		87	95	90	90	91	95	118	114	80	69	116	76	82	85	
$\mathrm{M}^{\mathbf{1}}$ to $\mathrm{M}^{\mathbf{1}}$.	. 107	105	117	113	$\left\{\begin{array}{l}102 \\ 109\end{array}\right.$	115	116	142	139	98		136	84	100	$\left\{\begin{array}{l} 100 \\ 106 \end{array}\right.$	$\left\{\begin{array}{l}103 \\ 108\end{array}\right.$
	78\% ${ }^{7}$	826	890	\$68	$\left\{\begin{array}{l} 875 \\ 882 \end{array}\right.$	911		1114	\cdots	763		...	724	790		

ISfousurcments from Wood, ap. elf.

TABLE VIII					
ANALYBIS OF COMPARATIVE MEASUREMENTS	Pmx to cond.	Transv, zyg.	$\mathrm{P}^{\prime \prime}$ to M^{1}	F^{m} to $\mathrm{P}^{\mathbf{m}}$	M^{*} to $\mathrm{M}^{\text {- }}$
T. taylari type (K)	Very short	Withle limite of T. asborni	Practically same as in T. osborni referred	Much smaller than T. oshornil: far monaller than wectlsi: perhaps equals powridens	About the same as T, osborni
T, osborni var. gogimai rf'd. (B)	Unknown	Slightly smaller than T. of hormi	Unknown	Unknown	Unknown
T. guberni var. Moginal type (H)	Distinctly sborter than T, osborni: far shorter than T. irellsi	Wher than in T. asbornif about the same as in T. pancidens	Larger than T, asbarmi: mach smaller than T, terlisi, aregoryl. etc.	Smaller than T. 0xbarni; ; about equala ptueidens	Considerably larger Than T. osborni; about equals patecidens:
T. asberni var. figgixal (i) (C)	Distinetly shorter than in T. enborni	Narrower than in T. asbarni, T. paucidens	Largef than T, asBarni: mbeh smaller that सr Hzi: about equals pawridenx. ngnolophes	About equals T. osborni. T-pavcidens	Considerahly larger than T. osborni: about equals pancidens
T, asborni var. scennfirs (F)	Shorter than T. asborni	Elightly narrower than T. avberni	About same as in T, ashorni; mach smaller than werllsi	Decidedly smaller than I, esburni	
7. Brecopei type (D)	Moch slanter than T. asborni, etc.	Not wery differeat from T, asborni	Same as in T, asbormi: mach smaller than T, sceltsis, ete	Devidedly smaller than nskorni and most othern	About equals T, asborni far smaller than T. metlsi
T. hypostylus (J)	Much shorter than $T, ~ a x b e r n i$, etc.	Wider than in T, esborni, T. pancidens	Same as In Y, axborni	Decidedly smaller than T, ayberai	About equals T. osborm
T. prooceidentalis (G)	Distinetly shorter than T. osbarni	Not very alfferent from T. asborni; less than T. prizidens	Larger than T, ayborni: aboet the same as in T. mut. hypostylas; T. pascidens. T. sanolopN"s	About the same as T. asborni	Slightly larger than T. osborni; about equals pancidens
? Cornopes prewifis (E)	Shortext of all	Extremely small	Much smailer than T. osberni of the rest	Far smaller than T. osberni	Smallest of all

Plate 1. TRtGONIAS OSBORNI VAR. FIGGINSt. Type No. ss7 (Smull it).

Plate 1I. TRIGONIAS TAYLORL. Type No. 1029 (\$kull K) Right side of skull, slightly less than half matural sime.

Plate tit A. TRIGONIAS OSBORNI VAR. SECUNDUS. Type No. 384 (8 kall F), Right upper molar-premolar teeth, slightly more than natura! sire.

Plate III B. TRIGONIAS OBBORNI VAR. FIGGINSI. Trpe No. an7 (Skull H).
left upper molar-premblar teeth. Natural siae.

Plate IV A. PCAENOPUS PREMITIS. Type No. 1025 (Skull E),
Right upper molar-premelar teth. slightly less than nataral siae.

Plate IVB. TRIGONIAS OSBORNI "Pigginsi", Referred skull No. sisi (Skull C).
Right upper molar-premplar teeth, slightiy less than natural size.

Plate VA. TRIGONLAS TAYLORL. Type Na. toat (Skall K) Right upper molar-premplar teeth, slightly more than nataral sise

Plate VB. TRIGONIAS HYPOSTYLUS. Type No. ks6 (Skull J)
Right upper molar-premolar tetth, slightly less than matural sixe.

Plate VIA. TRIQONLAS PRECOPEI. Type No, 414 ($\$ k u 11$ D), Right upper molar-premolar teeth. Nataral sare.

Plate VIB. TRIGON1AS PREOCCIDENTALIS. Type Ne, 878 (Skult C),

[^0]:

[^1]:
 i Whers, $\mathrm{N}_{1} \mathrm{Y}$

[^2]:

 1. trat

[^3]: Ateprding to Wood (1927) In KuShyracodon IT In loat befoet C. Cf. Alod Onborn 1898.

[^4]: tant ill.

[^5]:

[^6]: The seqpence of capitnt letters, (A) to (Q), Indicates the relative individual ages as Indicated by

[^7]: atr. W. D. Matthew han Iueg beld this view.

