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INTRODUCTION

Human intelligence is acquired through a prolonged 
period of maturation and growth during which a single 
fertilized egg first turns into an embryo, then grows 
into a newborn baby, and eventually becomes an adult 
individual—which, typically before growing old and 
dying, reproduces. The developmental process is 
inherently robust and flexible, and biological organisms 
show an amazing ability during their development to 
devise adaptive strategies and solutions to cope with 
environmental changes and guarantee their survival. 
Because evolution has selected development as the 
process through which to realize some of the highest 
known forms of intelligence, it is plausible to assume 
that development is mechanistically crucial to emulate 
such intelligence in human-made artifacts.

BACKGROUND

The idea that development might be a good avenue 
to understand and construct cognition is not new. 
Already Turing (1950) suggested that using some kind 
of developmental approach might be a good strategy. 
In the context of robotics, many of the original ideas 
can be traced back to embodied artificial intelligence 
(embodied AI), a movement started by Rodney 
Brooks at the beginning of the 1980s (Brooks et al., 
1998), and the notion of enaction (Varela et al., 1991) 
according to which cognitive structures emerge from 
recurrent sensorimotor patterns that enable action 
to be perceptually guided. Researchers of embodied 
AI believe that intelligence can only come from the 
reciprocal interaction across multiple time scales 
between brain and body of an agent, and its environment. 
In a sense, throughout life, experience is learned and 
common sense is acquired, which then supports more 
complex reasoning. This general bootstrapping of 

intelligence has been called “cognitive incrementalism” 
(Clark, 2001). 

DEVELOPMENTAL ROBOTICS

Developmental robotics (also known as epigenetic 
or ontogenetic robotics) is a highly interdisciplinary 
subfield of robotics in which ideas from artificial 
intelligence, developmental psychology, neuroscience, 
and dynamical systems theory play a pivotal role in 
motivating the research (Asada et al., 2001; Lungarella 
et al., 2003; Weng et al., 2001; Zlatev & Balkenius, 
2001). Developmental robotics aims to model the 
development of increasingly complex cognitive 
processes in natural and artificial systems and to 
understand how such processes emerge through physical 
and social interaction. The idea is to realize artificial 
cognitive systems not by simply programming them 
to solve a specific task, but rather by initiating and 
maintaining a developmental process during which 
the systems interact with their physical environments 
(i.e. through their bodies or tools), as well as with their 
social environments (i.e. with people or other robots). 
Cognition, after all, is the result of a process of self-
organization (spontaneous emergence of order) and 
co-development between a developing organism and its 
surrounding environment. Although some researchers 
use simulated environments and computational 
models (e.g. Mareschal et al., 2007), often robots 
are employed as testing platforms for theoretical 
models of the development of cognitive abilities 
– the rationale being that if a model is instantiated in 
a system interacting with the real world, a great deal 
can be learned about its strengths and potential flaws 
(Fig. 1). Unlike evolutionary robotics which operates 
on phylogenetic time scales and populations of many 
individuals, developmental robotics capitalizes on 
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“short” (ontogenetic) time scales and single individuals 
(or small groups of individuals). 

AREAS OF INTEREST

The spectrum of developmental robotics research 
can be roughly segmented into four primary areas of 
interest. Although instances may exist that fall into 
multiple categories, the suggested grouping should 
provide at least some order in the large spectrum of 
issues addressed by developmental roboticists.

Socially oriented interaction: This category includes 
research on robots that communicate or learn particular 
skills via social interaction with humans or other robots. 
Examples are imitation learning, communication and 
language acquisition, attention sharing, turn-taking 
behavior, and social regulation (Dautenhahn, 2007; 
Steels, 2006).

Non-social interaction: Studies on robots 
characterized by a direct and strong coupling between 
sensorimotor processes and the local environment 
(e.g. inanimate objects), but which do not interact 

with other robots or humans. Examples are visually-
guided grasping and manipulation, tool-use, perceptual 
categorization, and navigation (Fitzpatrick et al., 2007; 
Nabeshima et al., 2006).

Agent-centered sensorimotor control: In these 
studies, robots are used to investigate the exploration of 
bodily capabilities, the effect of morphological changes 
on motor skill acquisition, as well as self-supervised 
learning schemes not linked to any functional goal. 
Examples include self-exploration, categorization of 
motor patterns, motor babbling, and learning to walk or 
crawl (Demiris & Meltzoff, 2007; Lungarella, 2004).

Mechanisms and principles: This category embraces 
research on principles, mechanisms or processes 
thought to increase the adaptivity of a behaving system. 
Examples are: developmental and neural plasticity, 
mirror neurons, motivation, freezing and freeing of 
degrees of freedom, and synergies; characterization 
of complexity and emergence, study of the effects of 
adaptation and growth, and practical work on body 
construction or development (Arbib et al., 2007; 
Oudeyer et al., 2007; Lungarella & Sporns, 2006). 

Figure 1. Developmental robots. (a) iCub (http://www.robotcub.org) (b) Babybot (http://www.liralab.it/babybot/robot.htm) 
(c) Infanoid (http://univ.nict.go.jp/people/xkozima/infanoid/robot-eng.html#infanoid).
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PRINCIPLES FOR DEVELOPMENTAL 
SySTEMS

By contrast to traditional disciplines such as physics 
or mathematics, which are described by well-known 
basic principles, the fundamental principles governing 
the dynamics of developmental systems are unknown. 
Could there be laws governing developmental systems 
or a theory? Although various attempts have been 
initiated (Asada et al., 2001; Brooks et al., 1998; 
Weng et al., 2001), it is fair to say that to date no such 
theory has emerged. Here, en route to such a theory, 
we point out a set of candidate principles. An approach 
based on principles is preferable for constructing 
intelligent autonomous systems, because it allows 
capturing design ideas and heuristics in a concise and 
pertinent way, avoiding blind trial-and-error. Principles 
can be abstracted from biological systems, and their 
inspiration can take place at several levels, ranging from 
a “faithful” replication of biological mechanisms to a 
rather generic implementation of biological principles 
leaving room for dynamics intrinsic to artifacts but 
not found in natural systems. In what follows we 
summarize five key principles revealed by observations 
of human development which may be used to construct 
developmental robots.

The Value Principle

Observations: Value systems are neural structures 
that mediate value and saliency and are found in 
virtually all vertebrate species. They are necessary 
for an organism’s behavioral adaptation to salient 
(meaningful) environmental cues. By linking behavior 
and neuroplasticity, value systems are essential for 
deciding what to do in a particular situation (Sporns, 
2007).

Lessons for robotics: The action of value systems 
– through adaptive changes in sensorimotor connections 
and inputs – enables an embodied agent to learn action 
strategies without external supervision by increasing the 
likelihood that a “good” movement pattern can recur in 
the same behavioral context. Value systems may also be 
used to guide an exploratory process and hence allow a 
system to learn sensorimotor patterns more efficiently 
compared to a pure random or a systematic exploration 
(Gómez & Eggenberger, 2007). By imposing constraints 
through value-dependent modulation of saliency, the 

search space can be considerably reduced. Examples 
of value systems in the brain include the dopaminergic, 
cho-linergic, and noradrenergic systems; based on them, 
several models have been implemented and embedded 
in developmental robots (Sporns, 2007).

The Principle of Information 
Self-Structuring

Observations: Infants frequently engage in repetitive 
(seemingly dull) behavioral patterns: they look at 
objects, grasp them, stick them into their mouths, 
bang them on the floor, and so on. It is through such 
interactions that intelligence in humans develops as 
children grow up interacting with their environment 
(Smith & Breazeal, 2007; Smith & Gasser, 2005). 

Lessons for robotics: The first important lesson is 
that information processing (neural coding) needs to 
be considered in the context of the embeddedness of 
the organism within its eco-niche. That is, robots and 
organisms are exposed to a barrage of sensory data 
shaped by sensorimotor interactions and morphology 
(Lungarella & Sporns, 2006). Information is not 
passively absorbed from the surrounding environment 
but is selected and shaped by actions on the environment. 
Second, information structure does not exist before 
the interaction occurs, but emerges only while the 
interaction is taking place. The absence of interaction 
would lead to a large amount of unstructured data 
and consequently to stronger requirements on neural 
coding, and – in the worst case – to the inability to 
learn. It follows that embodied interaction lies at the 
root of a powerful learning mechanism as it enables the 
creation of time-locked correlations and the discovery 
of higher-order regularities that transcend the individual 
sensory modalities. [Lungarella (2004; “principle of 
information self-structuring”)].

The Principle of Incremental Complexity 

Observations: Infants’ early experiences are strongly 
constrained by the immaturity of their sensory, motor, 
and neural systems. Such early constraints, which at first 
appear to be an inadequacy, are in fact of advantage, 
because they effectively decrease the “information 
overload” that otherwise would overwhelm the infant 
(Bjorklund & Green, 1992). 

Lessons for robotics: In order for an organism 
– natural or artificial – to learn to control its own 
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complex brain-body system, it might be a good strategy 
to start simple and gradually build on top of acquired 
abilities. The well-timed and gradual co-development 
of body morphology and neural system provides an 
incremental approach to deal with a complex and 
unpredictable world. Early “morphological constraints” 
and “cognitive limitations” can lead to more adaptive 
systems as they allow exploiting the role that experience 
plays in shaping the “cognitive” architecture. If an 
organism was to begin by using its full complexity, it 
would never be able to learn anything (Gómez et al., 
2004). It follows that designers should not try to “code” 
a full-fledged ready-to-be-used intelligence module 
directly into an artificial system. Instead, the system 
should be able to discover on its own the most effective 
ways of assembling low-level components into novel 
solutions [Lungarella (2004; “starting simple”); Pfeifer 
& Bongard (2007; “incremental process principle”)].

The Principle of Interactive Emergence 

Observations: Development is not determined by innate 
mechanisms alone (in other words: not everything 
should be pre-programmed). Cognitive structure, for 
instance, is largely dependent on the interaction history 
of the developing system with the environment in which 
it is embedded (Hendriks-Jansen, 1996).

Lessons for robotics: In traditional engineering 
the designer of the system imposes (“hard-wires”) the 
structure of the controller and the controlled system. 
Designers of adaptive robots, however, should avoid 
implementing the robot’s control structure according 
to their understanding of the robot’s physics, but 
should endow the robot with means to acquire its 
own understanding through self-exploration and 
interaction with the environment. Systems designed 
for emergence tend to be more adaptive with respect to 
uncertainties and perturbations. The ability to maintain 
performance in the face of changes (such as growth or 
task modifications) is a long-recognized property of 
living systems. Such robustness is achieved through a 
host of mechanisms: feedback, modularity, redundancy, 
structural stability, and plasticity [Dautenhahn (2007; 
“interactive emergence”); Hendriks-Jansen (1996; 
“interactive emergence”); Prince et al. (2005; “ongoing 
emergence”)]. 

The Principle of Cognitive Scaffolding 

Observations: Development takes place among 
conspecifics with similar internal systems and similar 
external bodies (Smith & Breazeal, 2007). Human 
infants, for instance, are endowed from an early age 
with the means to engage in simple, but nevertheless 
crucial social interactions, e.g. they show preferences 
for human faces, smell, and speech, and they imitate 
protruding tongues, smiles, and other facial expressions 
(Demiris & Meltzoff, 2007). 

Lessons for robotics: Social interaction bears 
many potential advantages for developmental robots: 
(a) it increases the system’s behavioral diversity 
through mimicry and imitation (Demiris & Meltzoff, 
2007); (b) it supports the emergence of language and 
communication, and symbol grounding (Steels, 2006); 
and (c) it helps structure the robot’s environment by 
simplifying and speeding up the learning of tasks and the 
acquisition of skills. Scaffolding is often employed by 
parents and caretakers (intentionally or not) to support, 
shape, and guide the development of infants. Similarly, 
the social world of the robot should be prepared to teach 
the robot progressively novel and more complex tasks 
without overwhelming its artificial cognitive structure 
[Lungarella (2004; “social interaction principle”); 
Mareschal et al. (2007; “ensocialment”); Smith & 
Breazeal (2007; “coupling to intelligent others”)]. 

FUTURE TRENDS

The further success of developmental robotics 
will depend on the extent to which theorists and 
experimentalists will be able to identify universal 
principles spanning the multiple levels at which 
developmental systems operate. Here, we briefly 
indicate some “hot” issues that need to be tackled en 
route to a theory of developmental systems.

Semiotics: It is necessary to address the issue of how 
developmental robots (and embodied agents in general) 
can attribute meaning to symbols and construct semiotic 
systems. A promising approach, explored under the 
label of “semiotic dynamics”, is that such semiotic 
systems and the associated information structure are 
continuously invented and negotiated by groups of 
people or agents, and are used for communication and 
information organization (Steels, 2006).
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Core knowledge: An organism cannot develop 
without some built-in ability. If all abilities are built 
in, however, the organism does not develop either. It 
will therefore be important to understand with what 
sort of core knowledge and explorative behaviors a 
developmental system has to be endowed, so that it 
can autonomously develop novel skills. One of the 
greatest challenges will be to identify core abilities 
and how they interact during development in building 
basic skills (Spelke, 2000).

Core motives: It is necessary to conduct research 
on general capacities such as creativity, curiosity, 
motivations, action selection, and prediction (i.e. the 
ability to foresee consequence of actions). Ideally, no 
tasks should be pre-specified to the robot, which should 
only be provided with an internal abstract reward 
function and a set of basic motivational (or emotional) 
drives that could push it to continuously master new 
know-how and skills (Lewis, 2000; Oudeyer et al., 
2007).

Self-exploration: Another important challenge 
is the one of self-exploration or self-programming 
(Bongard et al., 2006). Control theory assumes that 
target values and states are initially provided by the 
system’s designer, whereas in biology, such targets 
are created and revised continuously by the system 
itself. Such spontaneous “self-determined evolution” 
or “autonomous development” is beyond the scope of 
current control theory and needs to be addressed in 
future research.

Learning causality: In a natural setting, no teacher 
can possibly provide a detailed learning signal and 
sufficient training data. Mechanisms will have to 
be created to characterize learning in an “ecological 
context” and for the developing agent to collect relevant 
learning material on its own. One significant future 
avenue will be to endow systems with the possibility 
to recognize progressively longer chains of cause and 
effect (Chater et al., 2006).

Growth: As mentioned in the introduction, 
intelligence is acquired through a process of self-
assembly, growth, and maturation. It will be important 
to study how physical growth, change of shape and 
body composition, as well as material properties of 
sensors and actuators affect and guide the emergence 
of cognition. This will allow connecting developmental 
robotics to computational developmental biology 
(Gómez & Eggenberger, 2007; Kumar & Bentley, 
2003). 

CONClUSION

The study of intelligent systems raises many 
fundamental, but also very difficult questions. Can 
machines think or feel? Can they autonomously acquire 
novel skills? Can the interaction of the body, brain, and 
environment be exploited to discover novel and creative 
solutions to problems? Developmental robotics may be 
an approach to explore such long standing issues. At this 
point, the field is bubbling with activity. Its popularity 
is partly due to recent technological advances which 
have allowed the design of robots whose “kinematic 
complexity” is comparable to that of humans (Fig. 1). 
The success of developmental robotics will ultimately 
depend on whether it will be possible to crystallize its 
central assumptions into a theory. While much additional 
work is surely needed to arrive at or even approach a 
general theory of intelligence, the beginnings of a new 
synthesis are on the horizon. Perhaps, finally, we will 
come closer to understanding and building (growing) 
human-like intelligence. Exciting times are ahead of 
us. 
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KEy TERMS

Adaptation: Refers to particular adjustments that 
organisms undergo to cope with environmental and 
morphological changes. In biology one can distinguish 
four types of adaptation: evolutionary, physiological, 
sensory, and learning.

Bootstrapping: Designates the process of starting 
with a minimal set of functions and building increasingly 
more functionality in a step by step manner on top of 
structures already present in the system.

Degrees of freedom problem: The problem 
of learning how to control a system with a very 
large number of degrees of freedom (also known as 
Bernstein’s problem).

Embodiment: Refers to the fact that intelligence 
requires a body, and cannot merely exist in the form 
of an abstract algorithm. 

Emergence: A process where phenomena at a certain 
level arise from interactions at lower levels. The term 
is sometimes used to denote a property of a system not 
contained in any one of its parts. 

Scaffolding: Encompasses all kinds of external 
support and aids that simplify the learning of tasks and 
the acquisition of new skills.  

Semiotic Dynamics: Field that studies how 
meaningful symbolic structures originates, spreads, 
and evolve over time within populations, by combining 
linguistics and cognitive science with theoretical tools 
from complex systems and computer science.




