

Methods of Measuring Primary Production Differ from Terrestrial Studies

- Incubate water samples in clear & dark bottles, measure:
 - Oxygen evolution (photosynthetic O₂ production) $CO_2 + H_2O \rightarrow$

$$O_2 + CH_2O$$
 (eqn. 5.2)

- ¹⁴C-labeled POC (C-uptake) $^{14}CO_2 + H_2O \rightarrow O_2 + {}^{14}CH_2O$
- Calculate results via O₂-evolution method:
 - Clear bottle yields Net Primary Production (NPP):
 - · photosynthesis in excess of respiration
 - assumes molecular equivalence between C-fixation and O₂ production:
 - Dark bottle yields Respiration (a decrease in O₂ is a measure of net respiration): $O_2 + CH_2O \rightarrow CO_2 + H_2O$
 - Gross Primary Production is the sum of changes in light & dark bottles

	Table 7.3 Origins and Fates of O	Organic Carbon in	Lawrence Lake	e, Michigan
C·N·P of phytoplankton are		$g \ C \ m^{-2} \ yr^{-1}$	%	% (tota
relatively constant, so C budgets	7 Net primary productivity (NPP) POC			
are useful for understanding	Phytoplankton	43.3	25.4%	
	Epiphytic algae	37.9	22.1%	
overall biogeochemistry of fakes.	Macrophytes	87.9	51.3%	
NPP within the lake is	Total	171.2	100.0%	
	DOC			
"autochthonous" production.	Littoral	5.5		
Note importance of macrophytes	Total	20.2		
(i.e. masted alerte) which affects	Total NPP	191.4		88.49
(i.e., rooted plants), which reflects	Imports			
the extent of shallow water.	POC	4.1	16.3%	
Organia asthan from autaida tha	Total imports	21.0	100%	11.69
Organic carbon from outside the	Total available organic inputs	216.5	10070	100.04
lake is "allochthonous" production	Respiration			
(11.6% of total carbon inputs)	Benthic	117.5	73.6%	
	Water column	42.2	26.4%	
Total respiration > autocthonous	Total respiration	159.7	100.0%	74.2
production in many low	Sedimentation Exports	16.8		7.8
	POC	2.8	7.3%	
productivity lakes, and CO_2	DOC	.35.8	92.7%	
supersaturation can occur	Total exports	38.6	100.0%	18.0

Lake Carbon Budgets (cont'd).

- 74% of organic inputs are respired in the lake, with 74% of that respiration occurring in the sediment. (Deeper lakes have more respiration in the water column.)
- Loss to the sediments is 7.8% of organic inputs, which is much higher than in terrestrial systems. Reflects inefficiency of respiration, as compared to non-saturated soils.
- Balance between P-R links C and O cycles in fresh waters.

Table 7.5 Origins and Fales of C	Organic Carbon in	Lawrence Lake,	Michigan
	$g \ C \ m^{-2} \ yr^{-1}$	%	% (total
Net primary productivity (NPP)			
Phytoplankton	43.3	25.4%	
Epiphytic algae	37.9	22.1%	
Epipelic algae	2.0	1.2%	
Macrophytes	87.9	51.3%	
Total	171.2	100.0%	
DOC			
Littoral	5.5		
Pelagic	14.7		
Total	20.2		
Total NPP	191.4		88.4%
Imports			
POC	4.1	16.3%	
DOC	21.0	83.7%	
Total imports	25.1	100%	11.6%
Total available organic inputs	216.5		100.0%
Respiration			
Benthic	117.5	73.6%	
Water column	42.2	26.4%	
Total respiration	159.7	100.0%	74.2%
Sedimentation	16.8		7.8%
Exports			<u> </u>
POC	2.8	7.3%	
DOC	.35.8	92.7%	
Total exports	38.6	100.0%	18.0%
Total removal of carbon	215.1		100.0%

Lake Nutrient Budgets

- Nutrient budgets require an accurate water budget for the system
 - Quantify inputs: precipitation, runoff, N-fixation, groundwater.
 - Quantify losses: sedimentation, outflow, release of gases, groundwater
- Comparison of nutrient residence time (turnover time) with water residence time gives an indication of the importance of internal biological cycling.
- Most lakes show a substantial net retention of N and P.
- Lakes with high water turnover, however, may show relatively low levels of N and P storage.
- Many lakes show near-balanced budgets for Mg, Na, Cl, because these elements are highly soluble and non-limiting to phytoplankton.

Table 7.4 January Data and Anna and Ann							
	Rawson	n Lake, Ontar	r Cayuga Lake io, 1970–1975	e, New York, 197(3ª	–1971, and		
	Precipitation	Runoff	Total	Discharge	Percent		
Element	input	input	input	output	retained		
		Cayuga L	ake				
Phosphorus	3	167	170	61	64		
Nitrogen	179	2,565	2,744	513	81		
Potassium	19	3,480	3,499	3,969	-12		
Sulfur	313	24,671	24,984	31,983	-22		
		Rawson L	ake				
Phosphorus	0.018	0.017	0.035	0.010	71		
Nitrogen	0.339	0.346	0.686	0.275	·60 🔶		
Carbon	2.435	19.005	21.440	10.074	53		
Potassium	0.059	0.442	0.501	0.434	13		
Sulfur	0.055	0.362	0.416	0.881	20		

Lake Classification (cont'd). Table 7.5 Sources of Nitrogen and Phosphorus • Nutrient input to as Percentages of the Total Annual Input to oligotrophic lakes is Lake Ecosystems^a typically dominated by Runoff Precipitation precipitation. Ν Р Ν Р • Eutrophic lakes derive 50 44 50 56 **Oligotrophic** lakes nutrients mainly from 12 7 88 93 Eutrophic lakes the surrounding ^a From Likens (1975a). watershed. • Sedimentation will convert oligotrophic to eutrophic lakes, by a process known as eutrophication; aging sequence of a lake.

• Nutrient status is the most useful criterion for distinguishing oligotrophic vs. eutrophic lakes.

Alkalinity and Acid Rain Effects

• Alkalinity is defined as

Alkalinity = $[HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}] - [H^{+}]$

• Alkalinity is roughly equivalent to the balance of cations and anions in natural waters:

Alkalinity = $2[Ca^{2+}] + 2[Mg^{2+}] + [Na^+] + [K^+] + [NH_4^+]$ - $2[SO_4^{2-}] - [NO_3^{-}] - [Cl^{-}]$

- Any charge imbalance is "corrected" by changes in equilibrium in the DIC system: $HCO_3^- + H^+ = H_2CO_3$.
- Alkalinity increases by processes that consume SO₄²⁻, NO₃⁻ or other anions, or that release DIC.
- Drainage basin contributes a large amount of Alkalinity.
- Acid rain decreases alkalinity due to addition of H⁺.

Lecture Summary / Main Points

- Physical properties of water exert profound control on nutrient cycling and NPP in lakes
- Lakes respond dynamically to seasonal climate change
- The biogeochemical character of lakes is directly linked to the nature of the surrounding landscape and geology
- Eutrophication is a natural process, which can be accelerated by anthropogenic activities
- Acid rain has had profound impacts on some lakes; underlying geology is a factor