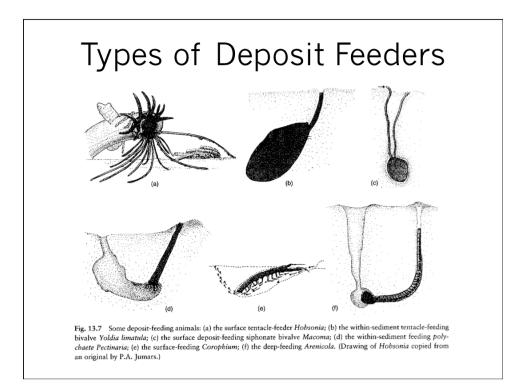
3. Deposit Feeding

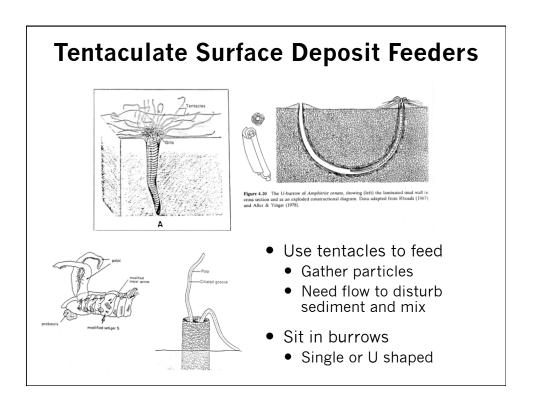
- What is feeding & deposit feeding?
- Getting and Keeping the food
 - Types of deposit feeding
- Digesting the food
 - Nutritional Needs
- Particle Selection
- Particle Movement

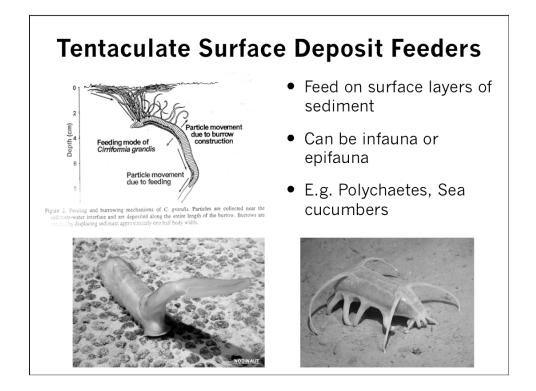
Dr Rhian G. Waller 12th April 2010 Reading: Levinton, Chapter 13, "Life in the Mud and Sand"

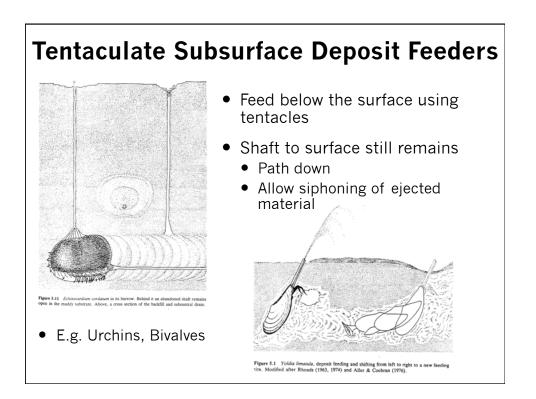
Feeding

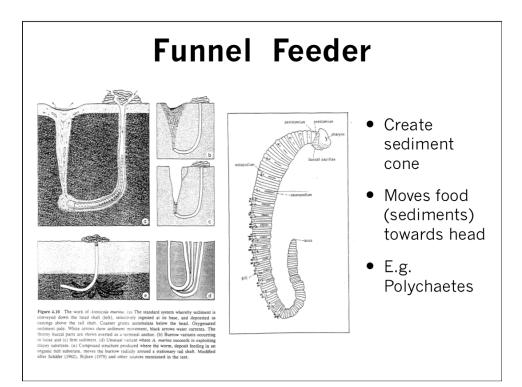
- Why study feeding?
 - Nutritional needs of organisms
 - Control life histories
 - Movement and recycling of particles
- Two main types of feeding in the benthos
 - Suspension Feeding
 - Feeds on particles by removing them from suspension
 - Deposit Feeding
 - An animal that ingests deposited, particulate food
 - Inert material of low nutritional value
 - Has the greatest biological effect on sediment microstructure

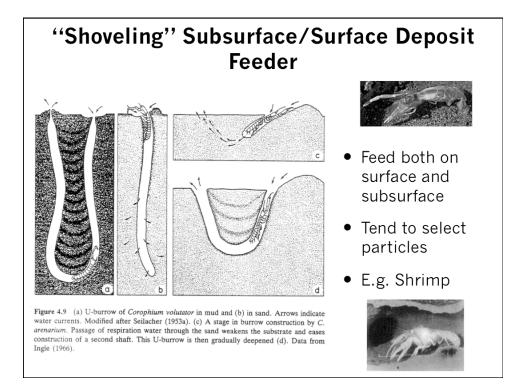

Feeding

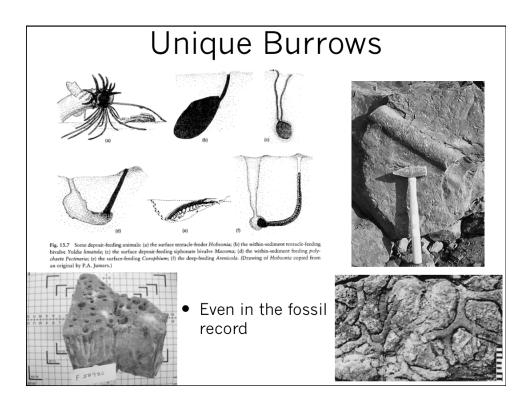

- To feed complex!
 - Get the food
 - Retain the food
 - Digest the food
- Require specific structures and strategies




Deposit Feeding


- Ingest sediment
 - Gain nutrition from microalgae, POM & bacteria
 - Sediment complex mixture
 - Inorganics, microorganisms, decomposing organic matter, pore water etc.
- Tend to be found in areas with finer sediments
 - $10-30 \,\mu$ m peak range
- INGESTION Take in Food
- **DIGESTION** Absorb Food



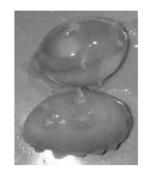



Getting the food...

- Tentaculate Surface Feeders
 - Use tentacles to feed on surface
- Tentaculate Subsurface Feeders
 - Use tentacles to feed within the sediment
- Funnel Feeders
 - Use tunnels and feeding to create U-shaped burrows, funneling sediment into mouth
- Subsurface/Surface Deposit Feeders
 - Use mandibles to shovel food from both surface and subsurface
- All species tend to have unique burrows
 - Feeding strategy, mouth parts, size, etc...

Digest the food....

- Organisms need to maximize net rate of energy gain
 - Deposit feeders tend to be continuous feeders
- Ingestion Rates
 - Smaller food particles ingested faster
 - Higher quality food particles ingested faster
 - Taghon & Jumars, 1984
- But time available for digestion decreases as amount of food taken in increases
 - Intermediate rate of ingestion best
 - Lopez & Levington, 1987

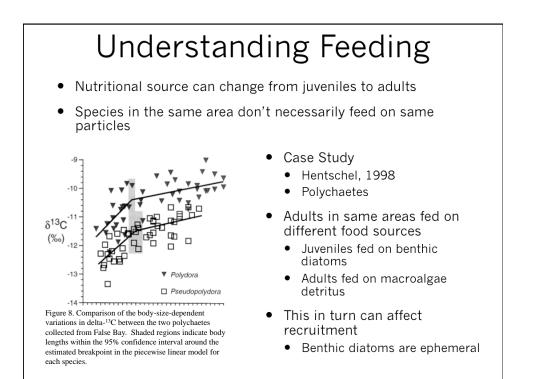

Digest the food...

Nutritional needs of deposit feeders:

- •Organic carbon
- •Organic nitrogen
- •Essential fatty acids (long chain PUFAs)
- •Essential amino acids (~10)
- •Sterols
- Vitamins

Potential food sources:

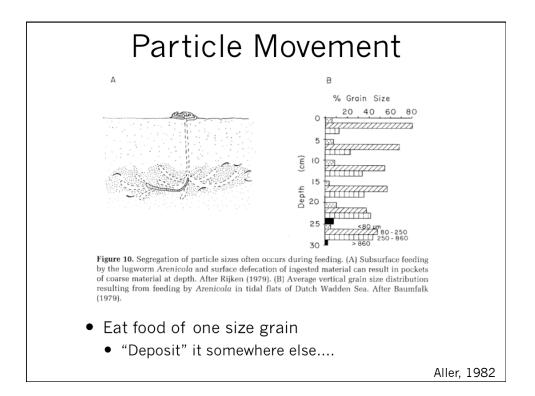
- •Vascular plant detritus
- •Algae (live and dead)
- Sediment bacteria
- •Protozoa and meio-fauna
- •Amorphous OM

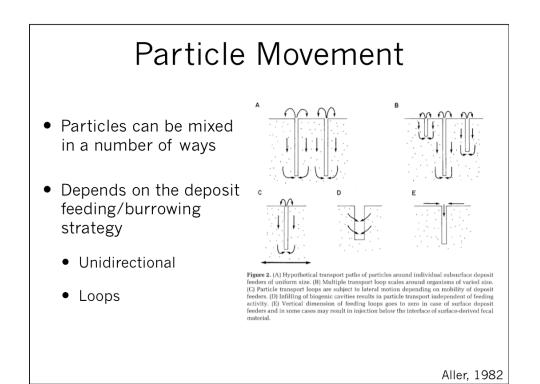


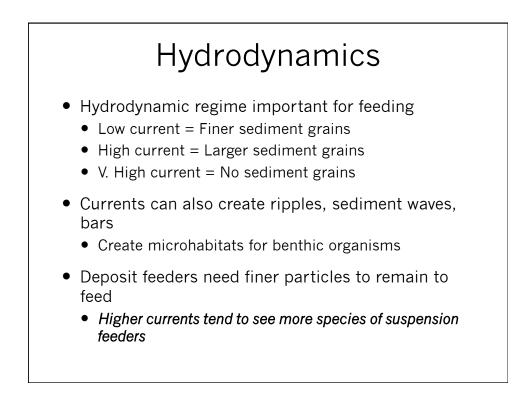
C_{org}, N?, sterols? C_{org}, N?, sterols, PUFAs C_{org}, N, E.A.A.s? all nutrients C_{org}, ?

Digest the food....

- Two feeding strategies
 - Swallow sediment non-selectively
 - Absorb the good stuff, poop the rest
 - More selective feeding on specific particles
 - Sort sediment first, then eat the good stuff


	Absorption of micr	TABLE 2 obes and sedimentary orgo	TABLE 2 and sedimentary organic matter by deposit feeders		
		% absorption			
	Species	Bacteria	Microalgae	Organics	
	GASTROPODS				
Some animals	Potamopyrgus jenkensi (Heywood & Edwards, 1962)	-	-	4	
	Hydrobia ventrosa (Kofoed, 1975)	75	60-71	34 ^b	
actively select for	Hydrobia totteni	36-49	30-48	29	
different food	(Lopez & Cheng, 1983) Amphibola crenata (Juniper, 1981)	56	-	-	
sources	BIVALVES				
sources	Nucula annulata (Cheng, 1983 & unpub.)	66-78	-	0-76	
	Nucula proxima (Cheng, 1983 & unpub.)	87-92	-	0-16	
	ANNELLOS Tubifex tubifex	· _	-	3.0	
Some animals	(Brinkhurst & Austin, 1979) Limnodrilus hoffmeisteri			5.2	
passively select	(Brinkhurst & Austin, 1979)	-	-	5.2	
 Selected absorption 	Nereis succinnea (Cammen, 1980a)	57-62	-	10.5 ^e	
	Cirriformia tentaculata	-	-	7.9	
	(George, 1964) Capitella capitata 1 (Forbes, 1984)	33	-	38	
	ARTHROPODS				
	Hyallela azteca (Hargrave, 1970)	60-83	45-75	6-15	
	Corophium volutator	-	80-92	-	
	(Nielsen and Kofoed, 1982) Chironomus plumosus (Johannsson, 1980)	-	-	0-14	
	ECHINODERMATA				
	Parastichopus parvimensis (Yingst, 1976)	43	47	11-43	
	^a Bulk sedimentary organic matter, is ^b Barley hay ^c Spartina detritus	ncluding detrital and mic	robial fractions.		
			Lopez and Lev	inton 198'	




Deposit Feeding

- Has the greatest biological effect on sediment microstructure
 - Deposit feeders are dominant organisms in muddy sediments
 - The majority of the benthos is sediment
 - Individual sediment particles are transported long way
 - Relative to the size of the particle
 - Near continuous movement of particles
 - Little rest between feeding

Conclusions

- Deposit feeding = ingestion of sediments, either in bulk or selectively
 - Different by species
 - Different through life stages
 - Can control recruitment
- Four main modes of deposit feeding
- Deposit feeding mixes the benthic layers
 - Bioturbation
- Hydrodynamics control where deposit feeders found