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Multilevel (hierarchical) modeling is a generalization of linear and generalized linear modeling in which
regression coefficients are themselves given a model, whose parameters are also estimated from data.
We illustrate the strengths and limitations of multilevel modeling through an example of the prediction of
home radon levels in U.S. counties. The multilevel model is highly effective for predictions at both levels
of the model, but could easily be misinterpreted for causal inference.
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1. INTRODUCTION

Multilevel modeling is a generalization of regression meth-
ods, and as such can be used for a variety of purposes, including
prediction, data reduction, and causal inference from experi-
ments and observational studies (for recent reviews, see Kreft
and De Leeuw 1998; Snijders and Bosker 1999; Raudenbush
and Bryk 2002; Hox 2002). Compared with classical regres-
sion, multilevel modeling is almost always an improvement,
but to varying degrees; for prediction multilevel modeling can
be essential, for data reduction it can be useful, and for causal
inference it can be helpful.

We illustrate the strengths and limitations of multilevel mod-
eling through an example of the prediction of home radon levels
in U.S. counties.

2. MULTILEVEL MODELING FOR ESTIMATING
HOME RADON LEVELS

2.1 Background and Model

Radon is a carcinogen—a naturally occurring radioactive gas
whose decay products are also radioactive—known to cause
lung cancer in high concentrations and estimated to cause
several thousand lung cancer deaths per year in the United
States. The distribution of radon levels in U.S. homes varies
greatly, with some houses having dangerously high concentra-
tions. To identify areas of high radon exposure, the Environ-
mental Protection Agency coordinated radon measurements in
a random sample of more than 80,000 houses throughout the
country.

To simplify the problem somewhat, our goal in analyzing
these data was to estimate the distribution of radon levels in
each of the approximately 3,000 U.S. counties, so that home-
owners could make decisions about measuring or remediating
the radon in their houses based on the best available knowledge
of local conditions. For the purpose of this analysis, the data
were structured hierarchically: houses within counties. (If we
were to analyze multiple measurements within houses, then
there would be a three-level hierarchy of measurements, houses,
and counties.)

In performing the analysis, we had an important predictor—
whether the measurement was taken in a basement. (Radon

comes from underground and can enter more easily when a
house is built into the ground.) We also had an important
county-level predictor—a measurement of soil uranium that
was available at the county level. We fit a model of the form

yij ∼ N(αj + βxij, σ
2
y ), for i = 1, . . . ,nj, j = 1, . . . , J,

(1)
αj ∼ N(γ0 + γ1uj, σ

2
α ), for j = 1, . . . , J,

where yij is the logarithm of the radon measurement in house i
within county j, xij is an indicator for whether the measure-
ment was taken in a basement, and uj is the log uranium level
in county j. The errors with variance σ 2

y in the first line of (1)
represent “within-county variation,” which in this case includes
measurement error, natural variation in radon levels within a
house over time, and variation between houses (beyond what
is explained by the basement indicator). The errors with vari-
ance σ 2

α in the second line represent variation between counties
beyond what is explained by the county-level uranium predic-
tor. The hierarchical model allows us to fit a regression model
to the individual measurements while accounting for systematic
unexplained variation among the 3,000 counties.

Equivalently, the model can be written as a single-level re-
gression with correlated errors

y ∼ N(γ01 + γ1Gu + βx, σ 2
y I + σ 2

α GGT),

where G is the n × J matrix of county indicators.
The model can be expanded in many ways, most naturally

by adding more predictors at the individual and county lev-
els and by allowing the slope β and the intercept α to vary
by county. For the purposes of this article, however, model
(1) is general enough. We further simplify by focusing on a
subset of our data—the 919 houses from the state radon sur-
vey of the 85 counties of Minnesota (Price, Nero, and Gelman
1996). We fit the model using hierarchical Bayes methods (e.g.,
Gelman, Carlin, Stern, and Rubin 2003). The posterior density
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is simply,

p(α,β, γ,σy, σα|y,x,u)

∝
J∏

j=1

nj∏

i=1

N( yij|αj + βxij, σ
2
j )

J∏

j=1

N(αj|γ0 + γ1uj, σ
2
α ), (2)

where N(·|M,S2) represents the normal density function with
mean M and standard deviation S and assuming a uniform prior
distribution on γ,σy, and σα , which is reasonable given that the
number of counties, J, is large (Gelman 2006).

2.2 Data Reduction: Estimating Associations

Figure 1 displays the estimated multilevel model for a selec-
tion of 8 of the 85 counties in Minnesota, along with the com-
pletely pooled and unpooled regression line for each county.
(The completely pooled line is y = α +βx, with a common line
for all counties, and the unpooled lines are y = αj + βx, with
the 85 αj’s estimated by least squares.)

Compared with the two classical estimates (no pooling and
complete pooling), the inferences from the multilevel models
are more reasonable. At one extreme, the complete-pooling
method gives identical estimates for all counties, which is par-
ticularly inappropriate for this application, whose goal is to
identify the locations in which residents are at high risk of
radon. At the other extreme, the no-pooling model overfits the
data; for example, it gave an implausibly high estimate of the
average radon levels in Lac Qui Parle County, in which only
two observations were available.

Although the specific assumptions of model (1) could be
questioned or improved, it would be difficult to argue against
the use of multilevel modeling for the purpose of estimating
radon levels within counties.

Another advantage of multilevel modeling for this applica-
tion is that it allows us to study the relation of the county pa-
rameters to county-level predictors—in this case, the uranium
measurement, as displayed in Figure 2. It would be possible

Figure 2. Estimated County Coefficients αj (±1 standard error) Plot-
ted versus County-Level Log Uranium Measurement uj , Along With the
Estimated Multilevel Regression Line α = γ0 + γ1u. The county coef-
ficients roughly follow the line but not exactly; the deviation of the co-
efficients from the line is captured in σα , the standard deviation of the
errors in the county-level regression.

to estimate this second-level relation using classical regression,
first fitting the no-pooling model to estimate the αj’s and then
fitting county-level regression to the α̂j’s. The multilevel model
has the appeal of fitting the two levels together and actually can
be implemented using a Gibbs sampler alternating between the
data-level and county-level regression steps. So the point here
is not whether the estimates are identified as “multilevel,” but
whether they take into account the estimation uncertainty of the
αj’s, as is done in Figure 1 by shrinking toward the complete-
pooling estimate.

2.3 Prediction

Perhaps the clearest advantage of multilevel models comes in
prediction. In our example we can predict the radon levels for
new houses in an existing county or a new county. (Because we
actually have data on all 85 counties in Minnesota, that would
be a new county in a neighboring state.)

Figure 1. Multilevel (partial pooling) Regression Lines y = aj + βx Fit to Radon Data From Minnesota, Displayed for Eight Counties j With a
Range of Sample Sizes. Light-colored dotted and solid lines show the complete-pooling and no-pooling estimates. The x-positions of the points are
jittered slightly to improve visibility.
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We can use cross-validation to formally demonstrate the ben-
efits of multilevel modeling. We perform two cross-validation
tests: first removing single data points and checking the pre-
diction from the model fit to the rest of the data, then remov-
ing single counties and performing the same procedure. For
each cross-validation step, we compare complete-pooling, no-
pooling, and multilevel estimates. Other cross-validation tests
for this example were performed by Price et al. (1996).

When removing individual data points and refitting each
model, the root mean squared cross-validation prediction errors
are .84 for complete pooling, .86 for no pooling, and .79 for
multilevel modeling. (In making this comparison, we exclude
measurements that, when removed, make the no-pooling model
impossible to fit. See Fig. 1, for example; if either of the houses
in Lac Qui Parle County or the no-basement house in Aitkin
County were removed, then it would not be possible to estimate
the regression slope from that county’s data alone.)

When removing entire counties one at a time, we summarize
by the errors of the predicted county mean responses (given
the county-level uranium and the basement information for the
houses in the excluded county). The root mean squared pre-
dictive errors at the county level are .50 for complete pooling
and .40 for multilevel modeling. (Cross-validation cannot be
performed at the county level for the no-pooling model because
it is does not allow estimation of a county’s radon level using
data from other counties.)

The multilevel model gives more accurate predictions than
the no-pooling and complete-pooling regressions, especially
when predicting group averages.

2.4 Causal Inference

We now consider our model as an observational study of the
effect of basements on home radon levels. The study includes
houses with and without basements throughout Minnesota. The
proportion of homes with basements varies by county (see
Fig. 1), but a regression model should address that lack of
balance by estimating county and basement effects separately.
(As noted earlier, we set aside the possibility that basement
effects might vary by county.) The estimated coefficient β in
model (1) is .67 (with a standard error of .06), implying that
within any given county, houses with basements have typical
radon levels exp(.67) = 2.0 times higher than houses without
basements. (Measurements are made in the lowest living area
of the house. The “basement effect” on living-area radon levels
thus includes differences between houses explainable by having
a basement, as well as differing radon concentrations among
levels of a particular house. For our purposes here, we combine
these effects.)

So far, so good. However, a complication arises if we con-
sider the possibility of correlation between the individual-level
predictor, x, and the county-level error, αj −γ0 −γ1uj (see, e.g.,
Woolridge 2001 for a discussion of this sort of correlation in
multilevel models). By simply multiplying the likelihood and
prior densities in (1), the posterior density (2) implicitly as-
sumes that the county errors are independent of x. We can al-
low for possible correlation by including x̄j, the average of x
within county j (i.e., the proportion of basements in the houses
in county j in the dataset) into the group-level regression,

αj ∼ N(γ0 + γ1uj + γ2x̄j, σ
2
α ), for j = 1, . . . , J.

The new group-level coefficient γ2 is estimated at −.39 (with
standard error .20), implying that, all other things being equal,
counties with more basements tend to have lower baseline
radon levels. For the radon problem, the county-level basement
proportion is difficult to interpret directly as a predictor, and we
consider it a proxy for underlying variables (e.g., the type of
soil prevalent in the county).

In other settings, especially in social science, individual av-
erages used as group-level predictors are often interpreted as
“contextual effects.” For example, the presence of more base-
ments in a county would somehow have a radon-lowering ef-
fect. This makes no sense here, but it serves as a warning that,
with identical data of a social nature (e.g., consider substituting
“income” for “radon level” and “ethnic minority” for “base-
ment” in our study), it would be easy to leap to a misleading
conclusion and find contextual effects where none necessarily
exist.

This is related to the “ecological fallacy” studied in ge-
ography (see Wakefield 2003 for a recent review with many
references), in which group-level correlations can be mistak-
enly attributed to individual-level causes, but our setting is
slightly different in that both individual- and group-level data
are available. The available data are modeled correctly but the
group-level coefficient γ2 can be misinterpreted causally. This
is related to the problem in meta-analysis that between-study
variation is typically observational even if individual studies are
randomized experiments (see Rubin 1989; Gelman, Stevens,
and Chan 2003).

3. DISCUSSION

Multilevel modeling is an increasingly popular approach to
modeling hierarchically structured data, outperforming classi-
cal regression in predictive accuracy. This is no surprise, given
that multilevel modeling includes least squares regression as a
special case. One intriguing feature of multilevel models is their
ability to separately estimate the predictive effects of an indi-
vidual predictor and its group-level mean, which are sometimes
interpreted as “direct” and “contextual” effects of the predictor.
As we have illustrated in this article, these effects cannot nec-
essarily be interpreted causally for observational data, even if
these data are a random sample from the population of interest.
Our analysis arose in a real research problem (Price et al. 1996)
and is not a “trick” example. The houses in the study were sam-
pled at random from Minnesota counties, and there were no
problems of selection bias.
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