－Suppose the prior distribution of K is $\operatorname{Binomial}(21, p)$ ．Then probability of

$$
\text { riv. } \frac{1}{\}} \xrightarrow{\text { generating a defective }}
$$ $E(K)=\underline{21 p}, \quad \underline{\operatorname{Var}(K)}=\underline{21 p(1-p)}, \quad \underline{E\left(K^{2}\right)}=\underline{21 p(1-p)}+\underline{(21 p)^{2}}$ ．assume known

－The Bayes risks of d_{1} and d_{2} are
$\rightarrow B\left(\underline{d_{1}}\right)=-20+3 \times E(K)-(2 / 21) E\left(K^{2}\right)$
θ is gone

$$
\begin{equation*}
=-20+3 \times 2 \overline{1 p-(2 / 21)}\left[21 \overline{p(1-p)}+(21 p)^{2}\right] \tag{2}
\end{equation*}
$$

nam werner

－Figure 15．2：Bayes risks versus $\underline{p}, \underline{d_{2}}$ has a smaller Bayes risk as long as $p \leq 0.5$ ．（If the product is fairly reliable，may prefer d_{2} ．）
＊Reading：textbook（2 $2^{\text {nd }}$ ed．），15．1，15．2，15．2．1
－Posterior Analysis－－－A simple method for finding Bayes rule

Definition 10.3 （Posterior Distribution and Posterior Risk，2 ${ }^{\text {nd }}$ Ed．，TBp．578－579）

－In Bayesian procedures，we have
θ a－$\underline{\theta}$ ：a random variable with a pdf／pmf $g_{\underline{\Theta}}(\theta)$
In estimation（CH8）and testing（CH9），
the joint pdf／pmf of x（data） not observed－ $\frac{\text { fixed }}{\text { value }}-g_{\underline{\Theta}}(\theta):$ prior distribution of $\underline{\theta}<$ 事前分西己
$\longrightarrow f_{X \mid \Theta}(\underline{x} \mid \underline{\theta}):$ pdf／pmf of \underline{X} ，conditional on the value θ of $\underline{\Theta}$＊

ค
$2^{\text {nd }}$ Edition，Ch15，p． 11
－Joint distribution of \underline{X} and Θ
$\left.\begin{array}{l}\text { multiplication law } \\ \text {（LN．CHI～6．P．23）}\end{array}\right]$
is
Marginal distribution of \underline{X} is
is

－Conditional distribution of $\underline{\Theta}$ given $X=x$ is

if $\underline{\theta}$ is continuous
if $\underline{\Theta}$ is discrete
$\begin{array}{c}\text { cf distribution } \\ \text { of data }\end{array}$

\leqslant the conditional g＠（ 0 （ distribution under Bayesian approach（ Θ ：random）is cf．which is also called the posterior distribution of $\underline{\Theta} . \leftarrow$ 事後分配 \downarrow Given observed $\underline{X}=x$ ，define posterior risk of an action $a(=d(\underline{x}))$ as

Information about the parameter
contains prior information about the parameter

contains prior information and the information from x

Theorem 10.1 (2 ${ }^{\text {nd }}$ Ed., TBp.579)

Suppose that there is a decision function $d_{0}(x)$ that minimizes the posterior risk for each x. Then $d_{0}(x)$ is a Bayes rule.
Proof. (for continuous case) The Bayes risk of a decision function \underline{d} is dx)

$$
\begin{aligned}
& \int\left[\int \underline{l(\theta, d(x))} \underline{\underline{f_{X \mid \Theta}(x \mid \theta)}} \underline{d x}\right] \underline{\underline{g_{\Theta}}(\theta)} \underline{d \theta}=\iint \underline{l(\theta, d(x))} \underset{\underline{a}-\mathrm{fan} \text { action }}{\underline{f_{\underline{X}, \Theta}(x, \theta)}}
\end{aligned}
$$

$\overbrace{R}\left(\theta \mid x_{1}\right) \xrightarrow{x_{2}} R_{\left.(\theta) \mid \underline{x}_{2}\right)}$ $\Psi_{\text {posterior dist. }}$

Since $\underline{f_{X}(x)}$ is nonnegative, $\underline{B(d)}$ is minimized by choosing $\underline{d(x)=d_{0}(x)}$.

Algorithm for finding the Bayes rule (2 ${ }^{\text {nd }}$ Ed., TBp.579-580)

Step 1 : Calculate posterior distribution $h(\theta \mid x)$ for each x.
Step 2 : For each x, fix $\underline{X}=x$. For each action \underline{a}, calculate the posterior risk:

$$
\underline{E_{\underline{\Theta} \mid X=x}}[\underline{l(\underline{\Theta}, \underline{a})}]= \begin{cases}\int \underline{l(\underline{\theta}, \underline{a})}, \frac{h(\underline{\theta} \mid x)}{} \underline{d \theta}, & \text { in the continuous case } \\ \sum_{\underline{\theta_{i}}} \underline{\left.l \underline{\theta_{i}}, \underline{a}\right)} \underline{h\left(\underline{\theta_{i}} \mid x\right),} & \text { in the discrete case }\end{cases}
$$

Step 3: The action $\underline{\underline{a^{*}}(\underline{x})}$ that minimizes the posterior risk is the Bayes rule.

Example 10.6 (steel section (cont.), $2^{\text {nd }}$ Ed., TBp. 580, LAp. 6~8)

- prior distribution: $g\left(\underline{\theta_{1}}\right)=\underline{0.8}, g\left(\underline{\theta_{2}}\right)=\underline{0.2}$
update
- Suppose that we observe $X=x_{2}=45$, the posterior distribution is

$$
\begin{aligned}
& h\left(\underline{\theta_{1}} \mid \underline{x_{2}}\right) \\
& f_{\mathbf{x}}\left(\overline{\chi_{2}}\right)=\frac{f\left(x_{2} \mid \theta_{1}\right) g\left(\theta_{1}\right)}{\sum_{i=1}^{2} f\left(x_{2} \mid \theta_{i}\right) g\left(\theta_{i}\right)}=\frac{0.3 \times 0.8}{0.3 \times 0.8+0.2 \times 0.2}=\underline{0.86} \\
& h\left(\underline{\theta_{2}} \mid \underline{x_{2}}\right)=1-h\left(\theta_{1} \mid x_{2}\right)=\underline{0.14}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\operatorname{PR}\left(\underline{a_{1}} \mid x_{2}\right)=l\left(\underline{\theta_{1}}, \underline{a_{1}}\right) h\left(\underline{\theta_{1}} \mid x_{2}\right)+l\left(\underline{\theta_{2}}, \underline{a_{1}}\right) h\left(\underline{\theta_{2}} \mid x_{2}\right)=00 \times 0.14=\underline{56} \\
\operatorname{PR}\left(\underline{a_{2}} \mid x_{2}\right)=l\left(\theta_{1}, \underline{a_{2}}\right) h\left(\theta_{1} \mid x_{2}\right)+l\left(\theta_{2}, \underline{a_{2}}\right) h\left(\theta_{2} \mid x_{2}\right)=100 \times 0.86+0=\underline{86}
\end{array}\right]
$$

- \underline{a}_{1} has the smallest posterior risk, and is the Bayes rule for \underline{x}_{2}.
- Apply the procedure to any other possible observed data $\left(\frac{x_{1}^{\prime 40}}{10} \underline{x}_{3}^{x_{3}^{50}}-\right.$ (exercise)

Estimation theory can be cast in a decision theoretic framework.

- a decision function $\underline{d(X)}(=\underline{\hat{\theta}}: \underline{S} \rightarrow \underline{\Omega})$ is an estimator of θ

Alternative:

L^{ρ}-norm
$=|\theta-\hat{\theta}|^{\underline{p}}$

- square error loss: $l \underline{l(\underline{\theta}, \underline{d(X)})}=\underline{[\theta-d(X)]^{2}}=\underline{(\underline{\theta}-\hat{\theta})^{2}} \leftarrow L^{2}$-norm \longleftarrow cf. ${ }^{\mathbf{t}}$ (other loss functions, e.g., $|\theta-\hat{\theta}|$, are allowable) check ThmI0.3 (L Np.I6)
- Then the $\underline{\text { risk }}$ is $\underline{R(\theta, d)}=\underline{E_{\underline{X}}}\left[\underline{(\theta-d(X))^{2}}\right]=\underline{E}\left[\underline{(\theta-\hat{\theta})^{2}}\right]=$ MSE

Theorem 10.2 (Bayes rule for Estimation under Squared Error Loss, 2nd Ed., TBp.584)

- The Bayes rule minimizes the posterior risk, which is

↔

- Thus, Bayes rule is
$\xrightarrow{\text { mean is the best }} \rightarrow$ reasonable $? \rightarrow \underline{\hat{\theta}}= \begin{cases}\int \underline{\theta} \frac{h(\underline{\theta} \mid x)}{d \theta}, & \text { in the continuous case }\end{cases}$ predictor of a r.v. under MSE

- In the case of squared error loss, the Bayes estimator (i.e., Bayes rule) is the mean of the posterior distribution.

Example 10.7 (Throw a coin once, Bayes estimator, 2 ${ }^{\text {nd }}$ Ed., TBp. 584-585)

- A biased coin is thrown once. Estimate $\underline{\theta}=$ probability of heads.
- Suppose that we have no idea how biased the coin is \Rightarrow for $\underline{\theta}$, can use uniform prior: $g(\theta)=1,0 \leq \theta \leq 1$.
- Let a vague prior

Data $\rightarrow \underline{X}= \begin{cases}\underline{1}, & \text { if a head appears } \\ \underline{0}, & \text { if a tail appears }\end{cases}$
Then the distribution of X given θ is $\operatorname{Bernoulli}(\theta)$:

- The posterior distribution is

conditional joint $(\theta . x) \longrightarrow f(\theta) \times g(\theta)$

$\theta \left\lvert\, \mathbf{x} \rightarrow \frac{h(\underline{\theta} \mid \underline{x})}{\text { marginal } \mathbf{x}^{J} \int_{0}^{1} f(x \mid \theta) \times \underline{1} d \theta}= \begin{cases}\frac{\underline{1}}{\underline{1}} f(x \mid \theta) \times \underline{1} \\ \frac{\underline{\theta}}{\int_{0}^{1} \frac{\theta}{1} d \theta} & = \\ \frac{1-\theta}{\int_{0}^{1} \underline{1-\theta} d \theta} & =\end{cases}\right.$
marginal $\times \int_{0}^{1} f(x \mid \theta) \times \frac{1}{4} d \theta \quad\left\{\begin{array}{l}\overline{\int_{0}^{1} \underline{1-\theta}} d \theta \\ \underline{2(1-\theta)}, \quad \underline{x=0}\end{array}\right.$

