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Abstract. It is shown that there are no consistent decision rules for the

hypothesis testing problem of distinguishing between absolutely continuous
and purely singular probability distributions on the real line. In fact, there are

no consistent decision rules for distinguishing between absolutely continuous

distributions and distributions supported by Borel sets of Hausdorff dimension
0. It follows that there is no consistent sequence of estimators of the Hausdorff

dimension of a probability distribution.

1. Introduction

Let X1, X2, . . . be independent, identically distributed random variables with
common distribution µ. A decision rule for choosing between the null hypothesis
that µ ∈ A and the alternative hypothesis that µ ∈ B, where A and B are mutually
exclusive sets of probability distributions, is a sequence

(1.1) φn = φn(X1, X2, . . . , Xn)

of Borel measurable functions taking values in the two-element set {0, 1}. A decision
rule is said to be consistent for a probability distribution µ if

lim
n→∞

φn(X1, X2, . . . , Xn) = 0 a.s.(µ) if µ ∈ A and(1.2)

lim
n→∞

φn(X1, X2, . . . , Xn) = 1 a.s.(µ) if µ ∈ B,(1.3)

and it is said to be consistent if it is consistent for every µ ∈ A ∪ B.

Theorem 1. There is no consistent decision rule for choosing between the null
hypothesis that µ is absolutely continuous and the alternative hypothesis that µ is
singular.

The Hausdorff dimension of a probability distribution µ on the real line is de-
fined to be the infimal Hausdorff dimension of a measurable set with µ−probability
one. A probability distribution of Hausdorff dimension less than one is necessarily
singular, as sets of Hausdorff dimension less than one have Lebesgue measure 0,
and so the set of probability distributions with Hausdorff dimension less than one
is contained in the set of singular probability distributions. In fact the containment
is strict, as there are singular probability distributions with Hausdorff dimension 1.
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Theorem 2. There is no consistent decision rule for choosing between the null
hypothesis that µ is absolutely continuous and the alternative hypothesis that µ has
Hausdorff dimension 0.

Theorem 2 implies that it is impossible to discriminate between probability dis-
tributions of Hausdorff dimension ≤ α and probability distributions of Hausdorff
dimension ≥ β, for any 0 ≤ α < β ≤ 1. It also implies that it is impossible to
consistently estimate the Hausdorff dimension of a probability distribution µ:

Corollary 1.1. There is no sequence of estimators θn = θn(X1, X2, . . . , Xn) such
that

(1.4) lim
n→∞

θn(X1, X2, . . . , Xn) = dimH(µ) a.s. (µ)

Proof. If there were such estimators, then the decision rule

φn := 1{θn > 1/2}
would be consistent for choosing between the null hypothesis that the Hausdorff
dimension of µ is 0 and the alternative hypothesis that the Hausdorff dimension of
µ is 1. �

2. Construction of Singular Measures

To prove Theorem 1, we shall prove that, for any decision rule {φn}n≥1 that
is universally consistent for absolutely continuous distributions, there is at least
one singular distribution for which {φn}n≥1 is not consistent. In fact, we shall
construct such a singular distribution; more precisely, we shall construct a random
singular distribution µΓ in such a way that, almost surely, the decision rule {φn}n≥1

is not consistent for µΓ. Furthermore, the random singular distribution µΓ will,
almost surely, be supported by a set of Hausdorff dimension 0, and therefore it will
follow that there is no consistent decision rule for distinguishing between absolutely
continuous distributions and singular distributions with Hausdorff dimension ≤ α,
for any value of α < 1. This will prove Theorem 2.

Note: Professor Vladimir Vapnik has informed us that a similar construction to
ours was used by N. N. Chentsov [1] in a somewhat different context. We have not
been able to decipher Chentsov’s arguments.

In this section we outline a general procedure for randomly choosing a singular
probability distribution of Hausdorff dimension 0. In the following section, we show
that the parameters of this construction can be adapted to particular decision rules
so as to produce, almost surely, singular distributions for which the decision rules
fail to be consistent.

2.1. Condensates of Uniform Distributions. Let F = ∪N
i=1Ji be a finite union

of N nonoverlapping subintervals Ji of the unit interval I = [0, 1], each of positive
length. For any pair (m,n) of integers both greater than 1, define an (m,n)−combing
of F to be one of the nmN subsets F ′ of F that can be obtained in the following
manner: First, partition each constituent interval Ji of F into m nonoverlapping
subintervals Ji,j of equal lengths |Ji|/m; then partition each subinterval Ji,j into
n nonoverlapping subintervals Ji,j,k of equal lengths |Ji|/mn; choose exactly one
interval Ji,j,k in each interval Ji,j , and let F ′ be the union of these. Note that any
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subset F ′ constructed in this manner must itself be a finite union of mN intervals,
and that the Lebesgue measure of F ′ must be 1/n times that of F .

Now let µ = µF be the uniform probability distribution on the set F . For integers
m,n ≥ 2, define the (m,n)−condensates of µ to be the uniform distributions µF ′

on the (m,n)−combings of F , and set

(2.1) Um,n(µ) = {(m,n)− condensates of µ}.
The following simple lemma will be of fundamental importance in the arguments

to follow. Its proof is entirely routine, and is therefore omitted.

Lemma 2.1. For any integers m,n ≥ 2, the uniform distribution µ on a finite
union of nonoverlapping intervals F = ∪Ji is the average of its (m,n)−condensates:

(2.2) µ =
1

#Um,n(µ)

∑
µ′∈Um,n(µ)

µ′.

Here # denotes cardinality. Notice that Lemma 2.1 has the following interpre-
tation: If one chooses an m,n−condensate µ′ of µ at random, then chooses X at
random from the distribution µ′, the unconditional distribution of X will be µ.

2.2. Trees in the Space of Absolutely Continuous Distributions. A tree is
a connected graph with no nontrivial cycles, equivalently, a graph in which any two
vertices are connected by a unique self-avoiding path. If a vertex is designated as
the root of the tree, then the vertices may be arranged in layers, according to their
distances from the root. Thus, the root is the unique vertex at depth 0, and for
any other vertex v the depth of v is the length of the unique self-avoiding path γ
from the root to v. The penultimate vertex v′ on this path is called the parent of
v, and v is said to be an offspring of v′. Any vertex w through which the path γ
passes on its way to its terminus v is designated an ancestor of v, and v is said to
be a descendant of w.

For any sequence of integer pairs (mn,m′
n) satisfying mn ≥ 2 and m′

n ≥ 2, there
is a unique infinite rooted tree T = T ({(mn,m′

n)}) in the space A of absolutely
continuous probability distributions (that is, a tree whose vertices are elements of
A) satisfying the following properties:

(a) The root node is the uniform distribution on the unit interval.
(b) The offspring of any vertex µ at depth n ≥ 0 are its (mn,m′

n)− condensates.
Observe that each vertex of T is the uniform distribution on a finite union of
nonoverlapping intervals of equal lengths, and its support is contained in that of
its parent, and, therefore, in the supports of all its ancestors. For each vertex µ at
depth n, support(µ) is the union of

∏n
i=1 mi intervals, each of length 1/

∏n
i=1 mim

′
i,

and so has Lebesgue measure

(2.3) |support(µ)| = 1/
n∏

i=1

m′
i.

2.3. Ends of the Trees T . Fix sequences of integers mn,m′
n ≥ 2, and let T be

the infinite rooted tree in A described above. The ends of T are defined to be the
infinite, self-avoiding paths in T beginning at the root. Thus, an end of T is an
infinite sequence γ = (µ0, µ1, µ2, . . . ) of vertices with µ0 = root and such that each
vertex µn+1 is an offspring of µn. The boundary (at infinity) of T is the set ∂T of
all ends, endowed with the topology of coordinatewise convergence.
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Proposition 2.2. Let γ = (µ0, µ1, µ2, . . . ) be any end of the tree T . Then

(2.4) lim
n→∞

µn
D= µγ

exists and is a singular distribution.

Proof. To show that the sequence µn converges weakly, it suffices to show that
on some probability space are defined random variables Xn with distributions µn

such that limn→∞Xn exists almost surely. Such random variables Xn may be
constructed on any probability space supporting a random variable U with the
uniform distribution on the unit interval, by setting

(2.5) Xn = G−1
n (U),

where Gn is the cumulative distribution function of the measure µn. Since γ is
a self-avoiding path in T beginning at the root, every step of γ is from a vertex
to one of its offspring; consequently, each element of the sequence µn must be an
mn,m′

n−condensate of its predecessor µn−1. Now if µ′ is an m,m′−condensate of
µ, where µ is the uniform distribution on the finite union ∪Ji of nonoverlapping
intervals Ji, then µ′ must assign the same total mass to each of the intervals Ji

as does µ, and so the cumulative distribution functions of µ and µ′ have the same
values at all endpoints of the intervals Ji. Thus, for each n,

|Xn+1 −Xn| ≤ 1/
n∏
i

mim
′
i ≤ 1/4n.

This implies that the random variables Xn converge almost surely.
Because each µn has support Fn contained in that of its predecessor µn−1, the

support of the weak limit µγ is the intersection of the sets Fn. Since these form a
nested sequence of nonempty compact sets, their intersection is a nonempty com-
pact set whose Lebesgue measure is limn→∞ |Fn|. This limit is zero, by equation
(2.3). Therefore, µγ is a singular measure. �

Proposition 2.3. Assume that

(2.6) lim
n→∞

∑n
i=1 log mi

log m′
n

= 0.

Then for every end γ of T , the support of µγ has Hausdorff dimension 0.

Proof. Since the Hausdorff dimension of any compact set is dominated by its lower
Minkowski dimension, it suffices to show that the lower Minkowski dimension of
support(µγ) is 0. Recall ([2], section 5.3) that the lower Minkowski (box-counting)
dimension of a compact set K is defined to be

(2.7) dimM (K) = lim inf
ε→0

log N(K; ε)/ log ε−1

where N(K; ε) is the minimum number of intervals of length ε needed to cover K.
Consider the set K =support(µγ). If γ = (µ0, µ1, . . . ), then for each n ≥ 0 the
support of µn contains K. But support(µn) is the union of

∏n
i=1 mi intervals, each

of length εn := 1/
∏n

i=1 mim
′
i. Consequently, the hypothesis (2.6) implies that

lim
n→∞

log N(K; εn)/ log ε−1
n = 0.

�
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2.4. Random Singular Distributions. By Proposition 2.3, every end of the tree
T is a singular measure, and by Proposition 2.2, if relation (2.6) holds then every
end is supported by a compact set of Hausdorff dimension 0. Thus, if µΓ is a
randomly chosen end of T then it too must have these properties. The simplest
and most natural way to choose an end of T at random is to follow the random
path

(2.8) Γ := (Γ0,Γ1,Γ2, . . . ),

where Γ0 is the root and Γn+1 is obtained by choosing randomly among the offspring
of Γn. We shall refer to the sequence Γn as simple self-avoiding random walk on
the tree, and the distribution of the random end µΓ as the Liouville distribution on
the boundary.

Proposition 2.4. Assume that µΓ has the Liouville distribution on ∂T , and that
X is a random variable whose (regular) conditional distribution given µΓ is µΓ.
Then the unconditional distribution of X is the uniform distribution on the unit
interval. More generally, the conditional distribution of X given the first k steps
Γ1,Γ2, . . . ,Γk of the path Γ is Γk.

Proof. For each n let Xn = G−1
n (U), where U is uniformly distributed on the unit

interval and Gn is the cumulative distribution function of Γn. As was shown in
the proof of Proposition 2.2, the random variables Xn converge almost surely to a
random variable X whose conditional distribution, given the complete random path
Γ, is µΓ. Therefore, for any integer k ≥ 0, the conditional distribution of X given
the first k steps Γ1,Γ2, . . . ,Γk is the limit as n →∞ of the conditional distribution
of Xn.

By construction, the conditional distribution of Xn given the first n steps of the
random walk Γ is Γn. Since Γn is equidistributed among the offspring of Γn−1, it
follows that the conditional distribution of Xn given the first n − 1 steps of the
path is Γn−1, by Lemma 2.1. Hence, by induction, the conditional distribution of
Xn given the first k steps of the path, for any positive integer k < n, is Γk. �

2.5. Recursive Structure of the Liouville Distribution. Each individual step
of the random walk Γ consists of randomly choosing an (mn,m′

n)− condensate Γn

of the distribution Γn−1. This random choice comprises mnN independent random
choices of subintervals, mn in each of the N constituent intervals in the support
of Γn−1. Not only are the subchoices in the different intervals independent, but
they are of the same type (choosing among subintervals of equal lengths) and use
the same distribution (the uniform distribution on a set of cardinality m′

n). This
independence and identity in law extends to the choices made at subsequent depths
n + 2, n + 3, . . . in different intervals of support(Γn−1). Thus, the restrictions of
the random measure µΓ to the distinct intervals in support(Γn) are themselves
independent random measures, with the same distribution (up to translations),
conditional on Γn.

Consider the very first step Γ1 of the random walk: this consists of randomly
choosing m1 intervals Ji,j(i) of length 1/m1m

′
1, one in each of the intervals Ji =

(i/m1, (i+1)/m1], and letting Γ1 be the uniform distribution on the union of these.
The restriction of µΓ to any of these intervals Ji,j(i) is now constructed in essentially
the same manner, but using the tree T ′ = T ({(mn+1,m

′
n+1)}) specified by the
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shifted sequence (mn+1,m
′
n+1). We have already argued that the restrictions of µΓ

to different intervals Ji,j(i) are independent. Thus, we have proved the following
structure theorem for the Liouville distribution.

Proposition 2.5. Let (Ji,j(i))1≤i≤m1 be a random (m1,m
′
1)−combing of the unit

interval, and for each i let Ti be the affine transformation that maps the unit interval
onto Ji,j(i). Let µi, for 1 ≤ i ≤ m1, be independent, identically distributed random
measures, each with the Liouville distribution for the tree T ′ specified by the shifted
sequence (mn+1,m

′
n+1). Then

(2.9) µΓ
D=

1
m1

m1∑
i=1

µi ◦ T−1
i

The decomposition (2.9) exhibits µΓ as a mixture of random probability measures
µi with nonoverlapping supports. This implies that a random variable Y with
distribution µΓ (conditional on Γ) may be obtained by first choosing an interval
Ji at random from among the m1 intervals in the initial decomposition of the unit
interval; then choosing at random a subinterval Ji,j(i); then choosing a random
measure µi at random from the Liouville distribution on ∂T ′; and then choosing Y
at random from µi ◦T−1

i , where Ti is the increasing affine transformation mapping
[0, 1] onto Ji,j(i). Observe that if interval Ji is chosen in the initial step, then the
other measures µi′ in the decomposition (2.9) play no role in the selection of Y . As
the measures µj are independent, this proves the following:

Corollary 2.6. Let µΓ be a random measure with the Liouville distribution on
∂T , and let Y be a random variable whose conditional distribution, given µΓ, is
µΓ. Then conditional on the event {Y ∈ Ji}, the random variable Y is independent
of the restriction of µΓ to [0, 1] \ Ji.

Because the independent random measures µi in the decomposition (2.9) are
themselves chosen from the Liouville distribution on ∂T ′, they admit similar de-
compositions; and the random measures that appear in their decompositions admit
similar decompositions; and so on. For each of these decompositions, the argument
that led to Corollary 2.6 again applies: Thus, conditional on the event {Y ∈ J},
for any interval J of the form

J = (k/mn

n−1∏
j=1

mjm
′
j , (k + 1)/mn

n−1∏
j=1

mjm
′
j ],

the random variable Y is independent of the restriction of µΓ to [0, 1] \ J .

2.6. Sampling from the Random Singular Distribution µΓ. Proposition 2.4
implies that if µΓ is chosen randomly from the Liouville distribution on ∂T , and
if X is then chosen randomly from µΓ, then X is unconditionally distributed uni-
formly on the unit interval. This property only holds for random samples of size
one: If µΓ has the Liouville distribution, and if X1, X2, . . . , Xn are conditionally
i.i.d. with distribution µΓ then the unconditional distribution of the random vec-
tor (X1, X2, . . . , Xn) is not that of a random sample of size n from the uniform
distribution. Nevertheless, if the integer m1 in the specification of the tree T is
sufficiently large compared to the sample size n, then the unconditional distribution
of (X1, X2, . . . , Xn) is close, in the total variation distance, to that of a uniform
random sample. More generally, if the sample size is small compared to mk+1, then



INDISTINGUISHABILITY OF DISTRIBUTIONS 7

the conditional distribution of (X1, X2, . . . , Xn) given Γ1,Γ2, . . . ,Γk will be close
to that of a random sample of size n from the distribution Γk:

Proposition 2.7. Assume that X1, X2, . . . , Xn are conditionally i.i.d. with dis-
tribution µΓ, where µΓ has the Liouville distribution on ∂T . Let Qn

k denote the
conditional joint distribution of X1, X2, . . . , Xn given Γ1,Γ2, . . . ,Γk. Then

(2.10) ‖Qn
k − Γ⊗n

k ‖TV ≤
(

n

2

)
/

k+1∏
i=1

mi

Here ‖ ·‖TV denotes the total variation norm, and Γ⊗n
k the product of n copies of

Γk, that is, the joint distribution of a random sample of size n, with replacement,
from the distribution Γk.

Proof. It suffices to show that, on a suitable probability space, there are random
vectors

X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn)
whose conditional distributions, given Γ1,Γ2, . . . ,Γk, are Qn

k and Γ⊗n
k , respectively,

and satisfy

(2.11) P{X 6= Y} ≤
(

n

2

)
/

k+1∏
i=1

mi.

For ease of exposition, we shall consider the case k = 0, so that Γ0 is the uniform
distribution on the unit interval; the general case k ≥ 0 is similar. Let Y be a
random sample of size n from the uniform distribution. For each 1 ≤ i ≤ n, define
Ji to be the interval Ij := (j/m1, (j+1)/m1] containing Yi. Since there are precisely
m1 intervals from which to choose, the vector

J = (J1, J2, . . . , Jn)

constitutes a random sample (with replacement!) of size n from a population of size
m1. The probability that two elements of this random sample coincide is bounded
by the expected number of coincident pairs; thus,

P{#{J1, J2, . . . , Jn} < n} ≤
(

n

2

)
/m1.

To complete the proof of inequality (2.11), we will show that random vectors X
and Y with the desired conditional distributions may be constructed in such a way
that X = Y on the event that the entries J1, J2, . . . , Jn are distinct.

Consider the following sampling procedures:

Procedure A: Choose intervals J1, J2, . . . , Jn by sampling with replacement from
the m1−element set I1, I2, . . . , Im1 . For each index i ≤ n, choose an interval Ji,j(i)

at random from among the m′
1 nonoverlapping subintervals of Ji of length 1/m1m

′
1,

and independently choose µi at random from the Liouville distribution on ∂T ′.
Finally, choose Yi at random from µi ◦ T−1

i , where Ti is the increasing affine trans-
formation mapping the unit interval onto Ji,j(i).

Procedure B: Choose intervals J1, J2, . . . , Jn by sampling with replacement from
the m1−element set I1, I2, . . . , Im1 . For each index i ≤ n, choose an interval Ji,j(i)

at random from among the m′
1 nonoverlapping subintervals of Ji of length 1/m1m

′
1,

and independently choose µi at random from the Liouville distribution on ∂T ′,
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provided that the interval Ji has not occurred earlier in the sequence Ji′ ; otherwise,
set µi = µi′ and Ji,j(i) = Ji′,j(i′), where i′ is the smallest index where Ji = Ji′ .
Finally, choose Xi at random from the distribution µi ◦ T−1

i .

By Proposition 2.4 and Corollary 2.6, Procedure A produces a random sample Y
from the uniform distribution, and Procedure B produces a random sample X with
distribution Qn

0 . Clearly, the random choices in Procedures A and B can be made
in such a way that the two samples coincide if the sample J1, J2, . . . , Jn contains
no duplicates.

The case k ≥ 1 is similar; the only difference is that the intervals Ji are chosen
from a population of size

∏k+1
i=1 mi. �

3. Indistinguishability of Absolutely Continuous and Singular
Measures

Let φn = φn(X1, X2, . . . , Xn) be a decision rule for choosing between the null
hypothesis that µ is absolutely continuous and the alternative hypothesis that µ
has Hausdorff dimension 0. Assume that this decision rule is consistent for all
absolutely continuous probability distributions, that is,

(3.1) lim
n→∞

φn(X1, X2, . . . , Xn) = 0 a.s.(µ).

We will show that sequences mn,m′
n of integers greater than 1 can be constructed

in such a way that if µΓ is chosen from the Liouville distribution on ∂T , where
T = T ({(mn,m′

n)}), then with probability one µΓ has Hausdorff dimension 0, and
has the property that the decision rule φn is inconsistent for µΓ.

The tree is constructed one layer at a time, starting from the root (the uniform
distribution on [0, 1]). Specification of the first k entries of the sequences mn,m′

n

determines the vertices Vk and edges of T to depth k. The sequences mn,m′
n, along

with a third sequence νn are chosen so that, for each n ≥ 1,

log m′
n ≥ n

n∑
i=1

log mn(3.2)

(
νn

2

)
/

n+1∏
i=1

mi ≤ e−n; and(3.3)

µ{φk(X1, X2, . . . , Xk) = 1 for some k ≥ νn} ≤ e−n ∀ µ ∈ Vn−1.(3.4)

The consistency hypothesis (3.1) and the fact that each set Vk is finite ensure that,
for each n ≥ 1, a positive integer νn > νn−1 + 1 can be chosen so that inequality
(3.4) holds. Once νn is determined, mn+1 is chosen so that inequality (3.3) holds,
and then m′

n+1 may be taken so large that (3.2) holds.
Inequality (3.2) guarantees that for any end γ of the tree T , the distribution µγ

will have Hausdorff dimension 0, by Proposition 2.3.

Proposition 3.1. Let µΓ be a random probability measure chosen from the Li-
ouville distribution on ∂T , where T is the tree specified by sequences mn and m′

n

satisfying relations (3.2), (3.3), and (3.4). Let X1, X2, . . . be random variables
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that are conditionally i.i.d. with common conditional distribution µΓ. Then with
probability one,

(3.5) lim inf
n→∞

φn(X1, X2, . . . , Xn) = 0.

Proof. The conditional distribution of the random vector (X1, X2, . . . , Xνn+1), given
the first n steps of the random walk Γ, differs in total variation norm from the
product measure Γ⊗νn+1

n by less than e−n, by inequality (3.3) and Proposition 2.7.
Consequently, by inequality (3.4),

P{φνn+1(X1, X2, . . . , Xνn+1) = 1} ≤ 2e−n.

By the Borel-Cantelli Lemma, it must be that, with probability one, for all suffi-
ciently large n,

φνn+1(X1, X2, . . . , Xνn+1) = 0.

�

Corollary 3.2. With probability one, the singular random measure µΓ has the
property that the decision rule φn is inconsistent for µΓ.
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